mirror of
https://github.com/0xFEEDC0DE64/arduino-esp32.git
synced 2025-07-02 21:41:01 +02:00
Update IDF to a8916daeb (#2992)
This commit is contained in:
@ -1,20 +1,19 @@
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
|
||||
typedef float fptp_t;
|
||||
typedef uint8_t uc_t;
|
||||
|
||||
typedef enum
|
||||
{
|
||||
DL_C_IMPL = 0,
|
||||
DL_XTENSA_IMPL = 1
|
||||
} dl_conv_mode;
|
||||
|
||||
typedef enum
|
||||
{
|
||||
INPUT_UINT8 = 0,
|
||||
INPUT_FLOAT = 1,
|
||||
} dl_op_type;
|
||||
DL_SUCCESS = 0,
|
||||
DL_FAIL = 1,
|
||||
} dl_error_type;
|
||||
|
||||
typedef enum
|
||||
{
|
||||
@ -53,9 +52,7 @@ typedef struct
|
||||
int stride_x;
|
||||
int stride_y;
|
||||
dl_padding_type padding;
|
||||
dl_conv_mode mode;
|
||||
dl_op_type type;
|
||||
} dl_matrix3d_conv_config_t;
|
||||
} dl_matrix3d_mobilenet_config_t;
|
||||
|
||||
/*
|
||||
* @brief Allocate a 3D matrix with float items, the access sequence is NHWC
|
||||
@ -93,7 +90,6 @@ void dl_matrix3d_free(dl_matrix3d_t *m);
|
||||
*/
|
||||
void dl_matrix3du_free(dl_matrix3du_t *m);
|
||||
|
||||
|
||||
/*
|
||||
* @brief Dot product with a vector and matrix
|
||||
*
|
||||
@ -101,24 +97,7 @@ void dl_matrix3du_free(dl_matrix3du_t *m);
|
||||
* @param in input vector
|
||||
* @param f filter matrix
|
||||
*/
|
||||
void dl_matrix3d_dot_product(dl_matrix3d_t *out, dl_matrix3d_t *in, dl_matrix3d_t *f);
|
||||
|
||||
/**
|
||||
* @brief Do a relu (Rectifier Linear Unit) operation, update the input matrix3d
|
||||
*
|
||||
* @param in Floating point input matrix3d
|
||||
* @param clip If value is higher than this, it will be clipped to this value
|
||||
*/
|
||||
void dl_matrix3d_relu(dl_matrix3d_t *m, fptp_t clip);
|
||||
|
||||
/**
|
||||
* @brief Do a leaky relu (Rectifier Linear Unit) operation, update the input matrix3d
|
||||
*
|
||||
* @param in Floating point input matrix3d
|
||||
* @param clip If value is higher than this, it will be clipped to this value
|
||||
* @param alpha If value is less than zero, it will be updated by multiplying this factor
|
||||
*/
|
||||
void dl_matrix3d_leaky_relu(dl_matrix3d_t *m, fptp_t clip, fptp_t alpha);
|
||||
void dl_matrix3dff_dot_product(dl_matrix3d_t *out, dl_matrix3d_t *in, dl_matrix3d_t *f);
|
||||
|
||||
/**
|
||||
* @brief Do a softmax operation on a matrix3d
|
||||
@ -127,18 +106,6 @@ void dl_matrix3d_leaky_relu(dl_matrix3d_t *m, fptp_t clip, fptp_t alpha);
|
||||
*/
|
||||
void dl_matrix3d_softmax(dl_matrix3d_t *m);
|
||||
|
||||
/**
|
||||
* @brief Do a general fully connected layer pass, dimension is (number, width, height, channel)
|
||||
*
|
||||
* @param in Input matrix3d, size is (1, w, 1, 1)
|
||||
* @param filter Weights of the neurons, size is (1, w, h, 1)
|
||||
* @param bias Bias for the fc layer, size is (1, 1, 1, h)
|
||||
* @return The result of fc layer, size is (1, 1, 1, h)
|
||||
*/
|
||||
dl_matrix3d_t *dl_matrix3d_fc(dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *filter,
|
||||
dl_matrix3d_t *bias);
|
||||
|
||||
/**
|
||||
* @brief Copy a range of float items from an existing matrix to a preallocated matrix
|
||||
*
|
||||
@ -173,9 +140,6 @@ void dl_matrix3du_slice_copy(dl_matrix3du_t *dst,
|
||||
int w,
|
||||
int h);
|
||||
|
||||
|
||||
void dl_matrix3d_conv_1x1 (dl_matrix3d_t *out, dl_matrix3d_t *in, dl_matrix3d_t *f);
|
||||
|
||||
/**
|
||||
* @brief Do a general CNN layer pass, dimension is (number, width, height, channel)
|
||||
*
|
||||
@ -197,11 +161,6 @@ dl_matrix3d_t *dl_matrix3d_conv(dl_matrix3d_t *in,
|
||||
int padding,
|
||||
int mode);
|
||||
|
||||
void dl_matrix3d_conv_3x3_normal (dl_matrix3d_t *out,
|
||||
dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *f,
|
||||
int step_x,
|
||||
int step_y);
|
||||
/**
|
||||
* @brief Do a general CNN layer pass, dimension is (number, width, height, channel)
|
||||
*
|
||||
@ -215,57 +174,6 @@ void dl_matrix3d_conv_3x3_normal (dl_matrix3d_t *out,
|
||||
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
||||
* @return The result of CNN layer
|
||||
*/
|
||||
dl_matrix3d_t *dl_matrix3du_conv(dl_matrix3du_t *in,
|
||||
dl_matrix3d_t *filter,
|
||||
dl_matrix3d_t *bias,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
int padding,
|
||||
int mode);
|
||||
|
||||
/**
|
||||
* @brief Do a depthwise CNN layer pass, dimension is (number, width, height, channel)
|
||||
*
|
||||
* @param in Input matrix3d
|
||||
* @param filter Weights of the neurons
|
||||
* @param stride_x The step length of the convolution window in x(width) direction
|
||||
* @param stride_y The step length of the convolution window in y(height) direction
|
||||
* @param padding One of VALID or SAME
|
||||
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
|
||||
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
||||
* @return The result of depthwise CNN layer
|
||||
*/
|
||||
dl_matrix3d_t *dl_matrix3d_depthwise_conv(dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *filter,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
int padding,
|
||||
int mode);
|
||||
|
||||
void dl_matrix3d_depthwise_conv_3x3_normal(dl_matrix3d_t *out,
|
||||
dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *f,
|
||||
int step_x,
|
||||
int step_y);
|
||||
/**
|
||||
* @brief Do a mobilenet block forward, dimension is (number, width, height, channel)
|
||||
*
|
||||
* @param in Input matrix3d
|
||||
* @param filter Weights of the neurons
|
||||
* @param stride_x The step length of the convolution window in x(width) direction
|
||||
* @param stride_y The step length of the convolution window in y(height) direction
|
||||
* @param padding One of VALID or SAME
|
||||
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
|
||||
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
||||
* @return The result of depthwise CNN layer
|
||||
*/
|
||||
dl_matrix3d_t *dl_matrix3d_mobilenet(void *in,
|
||||
dl_matrix3d_t *dilate,
|
||||
dl_matrix3d_t *depthwise,
|
||||
dl_matrix3d_t *compress,
|
||||
dl_matrix3d_t *bias,
|
||||
dl_matrix3d_t *prelu,
|
||||
dl_matrix3d_conv_config_t *config);
|
||||
|
||||
/**
|
||||
* @brief Do a global average pooling layer pass, dimension is (number, width, height, channel)
|
||||
@ -297,13 +205,6 @@ void dl_matrix3d_batch_normalize(dl_matrix3d_t *m,
|
||||
*/
|
||||
dl_matrix3d_t *dl_matrix3d_add(dl_matrix3d_t *in_1, dl_matrix3d_t *in_2);
|
||||
|
||||
/**
|
||||
* @brief Do a standard relu operation, update the input matrix3d
|
||||
*
|
||||
* @param m Floating point input matrix3d
|
||||
*/
|
||||
void dl_matrix3d_relu_std(dl_matrix3d_t *m);
|
||||
|
||||
/**
|
||||
* @brief Concatenate the channels of two matrix3ds into a new matrix3d
|
||||
*
|
||||
@ -372,7 +273,7 @@ dl_matrix3d_t *dl_matrix3d_concat_8(dl_matrix3d_t *in_1,
|
||||
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
||||
* @return The result of a mobilefacenet block
|
||||
*/
|
||||
dl_matrix3d_t *dl_matrix3d_mobilefaceblock(void *in,
|
||||
dl_matrix3d_t *dl_matrix3d_mobilefaceblock(dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *pw,
|
||||
dl_matrix3d_t *pw_bn_scale,
|
||||
dl_matrix3d_t *pw_bn_offset,
|
||||
@ -410,7 +311,7 @@ dl_matrix3d_t *dl_matrix3d_mobilefaceblock(void *in,
|
||||
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
||||
* @return The result of a mobilefacenet block
|
||||
*/
|
||||
dl_matrix3d_t *dl_matrix3d_mobilefaceblock_split(void *in,
|
||||
dl_matrix3d_t *dl_matrix3d_mobilefaceblock_split(dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *pw_1,
|
||||
dl_matrix3d_t *pw_2,
|
||||
dl_matrix3d_t *pw_bn_scale,
|
||||
@ -427,23 +328,200 @@ dl_matrix3d_t *dl_matrix3d_mobilefaceblock_split(void *in,
|
||||
int padding,
|
||||
int mode,
|
||||
int shortcut);
|
||||
/**
|
||||
* @brief Print the matrix3d items
|
||||
*
|
||||
* @param m dl_matrix3d_t to be printed
|
||||
* @param message name of matrix
|
||||
*/
|
||||
void dl_matrix3d_print(dl_matrix3d_t *m, char *message);
|
||||
|
||||
/**
|
||||
* @brief Print the matrix3du items
|
||||
*
|
||||
* @param m dl_matrix3du_t to be printed
|
||||
* @param message name of matrix
|
||||
*/
|
||||
void dl_matrix3du_print(dl_matrix3du_t *m, char *message);
|
||||
|
||||
|
||||
void dl_matrix3d_init_bias (dl_matrix3d_t *out, dl_matrix3d_t *bias);
|
||||
void dl_matrix3d_init_bias(dl_matrix3d_t *out, dl_matrix3d_t *bias);
|
||||
|
||||
void dl_matrix3d_multiply(dl_matrix3d_t *out, dl_matrix3d_t *in1, dl_matrix3d_t *in2);
|
||||
|
||||
//
|
||||
// Activation
|
||||
//
|
||||
|
||||
/**
|
||||
* @brief Do a standard relu operation, update the input matrix3d
|
||||
*
|
||||
* @param m Floating point input matrix3d
|
||||
*/
|
||||
void dl_matrix3d_relu(dl_matrix3d_t *m);
|
||||
|
||||
/**
|
||||
* @brief Do a relu (Rectifier Linear Unit) operation, update the input matrix3d
|
||||
*
|
||||
* @param in Floating point input matrix3d
|
||||
* @param clip If value is higher than this, it will be clipped to this value
|
||||
*/
|
||||
void dl_matrix3d_relu_clip(dl_matrix3d_t *m, fptp_t clip);
|
||||
|
||||
/**
|
||||
* @brief Do a Prelu (Rectifier Linear Unit) operation, update the input matrix3d
|
||||
*
|
||||
* @param in Floating point input matrix3d
|
||||
* @param alpha If value is less than zero, it will be updated by multiplying this factor
|
||||
*/
|
||||
void dl_matrix3d_p_relu(dl_matrix3d_t *in, dl_matrix3d_t *alpha);
|
||||
|
||||
/**
|
||||
* @brief Do a leaky relu (Rectifier Linear Unit) operation, update the input matrix3d
|
||||
*
|
||||
* @param in Floating point input matrix3d
|
||||
* @param alpha If value is less than zero, it will be updated by multiplying this factor
|
||||
*/
|
||||
void dl_matrix3d_leaky_relu(dl_matrix3d_t *m, fptp_t alpha);
|
||||
|
||||
//
|
||||
// Conv 1x1
|
||||
//
|
||||
void dl_matrix3dff_conv_1x1(dl_matrix3d_t *out,
|
||||
dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *filter);
|
||||
|
||||
void dl_matrix3dff_conv_1x1_with_bias(dl_matrix3d_t *out,
|
||||
dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *filter,
|
||||
dl_matrix3d_t *bias);
|
||||
|
||||
void dl_matrix3duf_conv_1x1(dl_matrix3d_t *out,
|
||||
dl_matrix3du_t *in,
|
||||
dl_matrix3d_t *filter);
|
||||
|
||||
void dl_matrix3duf_conv_1x1_with_bias(dl_matrix3d_t *out,
|
||||
dl_matrix3du_t *in,
|
||||
dl_matrix3d_t *filter,
|
||||
dl_matrix3d_t *bias);
|
||||
|
||||
//
|
||||
// Conv 3x3
|
||||
//
|
||||
void dl_matrix3dff_conv_3x3_op(dl_matrix3d_t *out,
|
||||
dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *f,
|
||||
int step_x,
|
||||
int step_y);
|
||||
|
||||
dl_matrix3d_t *dl_matrix3dff_conv_3x3(dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *filter,
|
||||
dl_matrix3d_t *bias,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding);
|
||||
|
||||
//
|
||||
// Conv Common
|
||||
//
|
||||
|
||||
dl_matrix3d_t *dl_matrix3duf_conv_common(dl_matrix3du_t *in,
|
||||
dl_matrix3d_t *filter,
|
||||
dl_matrix3d_t *bias,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding);
|
||||
|
||||
//
|
||||
// Depthwise 3x3
|
||||
//
|
||||
|
||||
dl_matrix3d_t *dl_matrix3dff_depthwise_conv_3x3(dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *filter,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
int padding);
|
||||
|
||||
dl_matrix3d_t *dl_matrix3duf_depthwise_conv_3x3(dl_matrix3du_t *in,
|
||||
dl_matrix3d_t *filter,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
int padding);
|
||||
|
||||
void dl_matrix3dff_depthwise_conv_3x3_op(dl_matrix3d_t *out,
|
||||
dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *f,
|
||||
int step_x,
|
||||
int step_y);
|
||||
|
||||
//
|
||||
// Depthwise Common
|
||||
//
|
||||
|
||||
/**
|
||||
* @brief Do a depthwise CNN layer pass, dimension is (number, width, height, channel)
|
||||
*
|
||||
* @param in Input matrix3d
|
||||
* @param filter Weights of the neurons
|
||||
* @param stride_x The step length of the convolution window in x(width) direction
|
||||
* @param stride_y The step length of the convolution window in y(height) direction
|
||||
* @param padding One of VALID or SAME
|
||||
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
|
||||
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
||||
* @return The result of depthwise CNN layer
|
||||
*/
|
||||
dl_matrix3d_t *dl_matrix3dff_depthwise_conv_common(dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *filter,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding);
|
||||
|
||||
//
|
||||
// FC
|
||||
//
|
||||
/**
|
||||
* @brief Do a general fully connected layer pass, dimension is (number, width, height, channel)
|
||||
*
|
||||
* @param in Input matrix3d, size is (1, w, 1, 1)
|
||||
* @param filter Weights of the neurons, size is (1, w, h, 1)
|
||||
* @param bias Bias for the fc layer, size is (1, 1, 1, h)
|
||||
* @return The result of fc layer, size is (1, 1, 1, h)
|
||||
*/
|
||||
void dl_matrix3dff_fc(dl_matrix3d_t *out,
|
||||
dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *filter);
|
||||
|
||||
void dl_matrix3dff_fc_with_bias(dl_matrix3d_t *out,
|
||||
dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *filter,
|
||||
dl_matrix3d_t *bias);
|
||||
|
||||
//
|
||||
// Mobilenet
|
||||
//
|
||||
|
||||
/**
|
||||
* @brief Do a mobilenet block forward, dimension is (number, width, height, channel)
|
||||
*
|
||||
* @param in Input matrix3d
|
||||
* @param filter Weights of the neurons
|
||||
* @param stride_x The step length of the convolution window in x(width) direction
|
||||
* @param stride_y The step length of the convolution window in y(height) direction
|
||||
* @param padding One of VALID or SAME
|
||||
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
|
||||
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
||||
* @return The result of depthwise CNN layer
|
||||
*/
|
||||
dl_matrix3d_t *dl_matrix3dff_mobilenet(dl_matrix3d_t *in,
|
||||
dl_matrix3d_t *dilate_filter,
|
||||
dl_matrix3d_t *dilate_prelu,
|
||||
dl_matrix3d_t *depthwise_filter,
|
||||
dl_matrix3d_t *depthwise_prelu,
|
||||
dl_matrix3d_t *compress_filter,
|
||||
dl_matrix3d_t *bias,
|
||||
dl_matrix3d_mobilenet_config_t config);
|
||||
|
||||
/**
|
||||
* @brief Do a mobilenet block forward, dimension is (number, width, height, channel)
|
||||
*
|
||||
* @param in Input matrix3du
|
||||
* @param filter Weights of the neurons
|
||||
* @param stride_x The step length of the convolution window in x(width) direction
|
||||
* @param stride_y The step length of the convolution window in y(height) direction
|
||||
* @param padding One of VALID or SAME
|
||||
* @param mode Do convolution using C implement or xtensa implement, 0 or 1, with respect
|
||||
* If ESP_PLATFORM is not defined, this value is not used. Default is 0
|
||||
* @return The result of depthwise CNN layer
|
||||
*/
|
||||
dl_matrix3d_t *dl_matrix3duf_mobilenet(dl_matrix3du_t *in,
|
||||
dl_matrix3d_t *dilate_filter,
|
||||
dl_matrix3d_t *dilate_prelu,
|
||||
dl_matrix3d_t *depthwise_filter,
|
||||
dl_matrix3d_t *depthwise_prelu,
|
||||
dl_matrix3d_t *compress_filter,
|
||||
dl_matrix3d_t *bias,
|
||||
dl_matrix3d_mobilenet_config_t config);
|
||||
|
@ -10,22 +10,48 @@ typedef int16_t qtp_t;
|
||||
typedef struct
|
||||
{
|
||||
/******* fix start *******/
|
||||
int w; // Width
|
||||
int h; // Height
|
||||
int c; // Channel
|
||||
int n; // Number, to record filter's out_channels. input and output must be 1
|
||||
int w; // Width
|
||||
int h; // Height
|
||||
int c; // Channel
|
||||
int n; // Number, to record filter's out_channels. input and output must be 1
|
||||
int stride;
|
||||
int exponent;
|
||||
qtp_t *item;
|
||||
/******* fix end *******/
|
||||
} dl_matrix3dq_t;
|
||||
|
||||
#ifndef DL_QTP_SHIFT
|
||||
#define DL_QTP_SHIFT 15
|
||||
#define DL_QTP_RANGE ((1<<DL_QTP_SHIFT)-1)
|
||||
//#define DL_ITMQ(m, x, y) m->itemq[(y)+(x)*m->stride]
|
||||
#define DL_ITMQ(m, x, y) m->itemq[(y) + (x)*m->stride]
|
||||
#define DL_QTP_RANGE ((1 << DL_QTP_SHIFT) - 1)
|
||||
#define DL_QTP_MAX 32767
|
||||
#define DL_QTP_MIN -32768
|
||||
|
||||
#define DL_QTP_EXP_NA 255 //non-applicable exponent because matrix is null
|
||||
|
||||
#define DL_SHIFT_AUTO 32
|
||||
#endif
|
||||
|
||||
typedef enum
|
||||
{
|
||||
DL_C_IMPL = 0,
|
||||
DL_XTENSA_IMPL = 1
|
||||
} dl_conv_mode;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
int stride_x;
|
||||
int stride_y;
|
||||
dl_padding_type padding;
|
||||
dl_conv_mode mode;
|
||||
int dilate_exponent;
|
||||
int depthwise_exponent;
|
||||
int compress_exponent;
|
||||
} dl_matrix3dq_mobilenet_config_t;
|
||||
|
||||
//
|
||||
// Utility
|
||||
//
|
||||
|
||||
/*
|
||||
* @brief Allocate a 3D matrix
|
||||
@ -49,9 +75,6 @@ void dl_matrix3dq_free(dl_matrix3dq_t *m);
|
||||
* @param m Matrix to zero
|
||||
*/
|
||||
|
||||
dl_matrix3d_t *dl_matrix3d_from_matrixq(dl_matrix3dq_t *m);
|
||||
dl_matrix3dq_t *dl_matrixq_from_matrix3d_qmf(dl_matrix3d_t *m,int exponent);
|
||||
dl_matrix3dq_t *dl_matrixq_from_matrix3d(dl_matrix3d_t *m);
|
||||
/**
|
||||
* @brief Copy a range of items from an existing matrix to a preallocated matrix
|
||||
*
|
||||
@ -62,8 +85,143 @@ void dl_matrix3dq_free(dl_matrix3dq_t *m);
|
||||
* @param h Height of the resulting matrix
|
||||
* @return The resulting slice matrix
|
||||
*/
|
||||
void dl_matrix3dq_slice_copy (dl_matrix3dq_t *dst, dl_matrix3dq_t *src, int x, int y, int w, int h);
|
||||
void dl_matrix3dq_slice_copy(dl_matrix3dq_t *dst, dl_matrix3dq_t *src, int x, int y, int w, int h);
|
||||
|
||||
dl_matrix3d_t *dl_matrix3d_from_matrixq(dl_matrix3dq_t *m);
|
||||
|
||||
dl_matrix3dq_t *dl_matrixq_from_matrix3d_qmf(dl_matrix3d_t *m, int exponent);
|
||||
|
||||
dl_matrix3dq_t *dl_matrixq_from_matrix3d(dl_matrix3d_t *m);
|
||||
|
||||
qtp_t dl_matrix3dq_quant_range_exceeded_checking(int64_t value, char *location);
|
||||
|
||||
void dl_matrix3dq_shift_exponent(dl_matrix3dq_t *out, dl_matrix3dq_t *in, int exponent);
|
||||
|
||||
void dl_matrix3dq_batch_normalize(dl_matrix3dq_t *m, dl_matrix3dq_t *scale, dl_matrix3dq_t *offset);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dq_add(dl_matrix3dq_t *in_1, dl_matrix3dq_t *in_2, int exponent);
|
||||
|
||||
//
|
||||
// Activation
|
||||
//
|
||||
void dl_matrix3dq_relu(dl_matrix3dq_t *in);
|
||||
|
||||
void dl_matrix3dq_relu_clip(dl_matrix3dq_t *in, fptp_t clip);
|
||||
|
||||
void dl_matrix3dq_leaky_relu(dl_matrix3dq_t *in, fptp_t alpha, fptp_t clip);
|
||||
|
||||
void dl_matrix3dq_p_relu(dl_matrix3dq_t *in, dl_matrix3dq_t *alpha);
|
||||
|
||||
//
|
||||
// Concat
|
||||
//
|
||||
dl_matrix3dq_t *dl_matrix3dq_concat(dl_matrix3dq_t *in_1,
|
||||
dl_matrix3dq_t *in_2);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dq_concat_4(dl_matrix3dq_t *in_1,
|
||||
dl_matrix3dq_t *in_2,
|
||||
dl_matrix3dq_t *in_3,
|
||||
dl_matrix3dq_t *in_4);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dq_concat_8(dl_matrix3dq_t *in_1,
|
||||
dl_matrix3dq_t *in_2,
|
||||
dl_matrix3dq_t *in_3,
|
||||
dl_matrix3dq_t *in_4,
|
||||
dl_matrix3dq_t *in_5,
|
||||
dl_matrix3dq_t *in_6,
|
||||
dl_matrix3dq_t *in_7,
|
||||
dl_matrix3dq_t *in_8);
|
||||
|
||||
//
|
||||
// Conv 1x1
|
||||
//
|
||||
void dl_matrix3dqq_conv_1x1(dl_matrix3dq_t *out,
|
||||
dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_conv_mode mode);
|
||||
|
||||
void dl_matrix3dqq_conv_1x1_with_relu(dl_matrix3dq_t *out,
|
||||
dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_conv_mode mode);
|
||||
|
||||
void dl_matrix3dqq_conv_1x1_with_bias(dl_matrix3dq_t *out,
|
||||
dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_matrix3dq_t *bias,
|
||||
dl_conv_mode mode,
|
||||
char *name);
|
||||
|
||||
void dl_matrix3dqq_conv_1x1_with_prelu(dl_matrix3dq_t *out,
|
||||
dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_matrix3dq_t *prelu,
|
||||
dl_conv_mode mode);
|
||||
|
||||
void dl_matrix3dqq_conv_1x1_with_bias_relu(dl_matrix3dq_t *out,
|
||||
dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_matrix3dq_t *bias,
|
||||
dl_conv_mode mode);
|
||||
|
||||
void dl_matrix3duq_conv_1x1(dl_matrix3dq_t *out,
|
||||
dl_matrix3du_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_conv_mode mode);
|
||||
|
||||
void dl_matrix3duq_conv_1x1_with_bias(dl_matrix3dq_t *out,
|
||||
dl_matrix3du_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_matrix3dq_t *bias,
|
||||
dl_conv_mode mode);
|
||||
|
||||
//
|
||||
// Conv 3x3
|
||||
//
|
||||
void dl_matrix3dqq_conv_3x3_op(dl_matrix3dq_t *out,
|
||||
dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *f,
|
||||
int stride_x,
|
||||
int stride_y);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dqq_conv_3x3(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dqq_conv_3x3_with_bias(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *f,
|
||||
dl_matrix3dq_t *bias,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent,
|
||||
int relu);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3duq_conv_3x3_with_bias(dl_matrix3du_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_matrix3dq_t *bias,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent,
|
||||
char *name);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3duq_conv_3x3_with_bias_prelu(dl_matrix3du_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_matrix3dq_t *bias,
|
||||
dl_matrix3dq_t *prelu,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent,
|
||||
char *name);
|
||||
|
||||
//
|
||||
// Conv common
|
||||
//
|
||||
|
||||
/**
|
||||
* @brief Do a general CNN layer pass, dimension is (number, width, height, channel)
|
||||
@ -78,67 +236,213 @@ void dl_matrix3dq_slice_copy (dl_matrix3dq_t *dst, dl_matrix3dq_t *src, int x, i
|
||||
* If ESP_PLATFORM is not defined, this value is not used.
|
||||
* @return The result of CNN layer.
|
||||
*/
|
||||
dl_matrix3dq_t *dl_matrix3dq_fc (dl_matrix3dq_t *in, dl_matrix3dq_t *filter, dl_matrix3dq_t *bias, int exponent,int mode);
|
||||
dl_matrix3dq_t *dl_matrix3dqq_conv_common(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_matrix3dq_t *bias,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent,
|
||||
dl_conv_mode mode);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dq_conv (dl_matrix3dq_t *in, dl_matrix3dq_t *filter, dl_matrix3dq_t *bias,
|
||||
int stride_x, int stride_y, int padding, int exponent, int mode);
|
||||
dl_matrix3dq_t *dl_matrix3dq_conv_normal (dl_matrix3dq_t *in, dl_matrix3dq_t *filter, dl_matrix3dq_t *bias,
|
||||
int stride_x, int stride_y, int padding, int exponent, int mode);
|
||||
dl_matrix3dq_t *dl_matrix3duq_conv_common(dl_matrix3du_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_matrix3dq_t *bias,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent,
|
||||
dl_conv_mode mode);
|
||||
|
||||
void dl_matrix3dq_conv_1x1 (dl_matrix3dq_t *out, dl_matrix3dq_t *in, dl_matrix3dq_t *f, dl_conv_mode mode);
|
||||
//
|
||||
// Depthwise 3x3
|
||||
//
|
||||
dl_matrix3dq_t *dl_matrix3duq_depthwise_conv_3x3(dl_matrix3du_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent);
|
||||
|
||||
void dl_matrix3dq_conv_3x3_normal (dl_matrix3dq_t *out,
|
||||
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent);
|
||||
|
||||
#if CONFIG_DEVELOPING_CODE
|
||||
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_2(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_3(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent);
|
||||
#endif
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_with_bias(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *f,
|
||||
dl_matrix3dq_t *bias,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent,
|
||||
int relu);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_with_prelu(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_matrix3dq_t *prelu,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3s1_with_bias(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *f,
|
||||
dl_matrix3dq_t *bias,
|
||||
dl_padding_type padding,
|
||||
int exponent,
|
||||
int relu);
|
||||
|
||||
//
|
||||
// Depthwise Common
|
||||
//
|
||||
#if CONFIG_DEVELOPING_CODE
|
||||
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_common(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent,
|
||||
dl_conv_mode mode);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3duq_depthwise_conv_common(dl_matrix3du_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
int exponent,
|
||||
dl_conv_mode mode);
|
||||
#endif
|
||||
|
||||
//
|
||||
// Dot Product
|
||||
//
|
||||
|
||||
void dl_matrix3dqq_dot_product(dl_matrix3dq_t *out,
|
||||
dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_conv_mode mode);
|
||||
|
||||
//
|
||||
// FC
|
||||
//
|
||||
|
||||
void dl_matrix3dqq_fc(dl_matrix3dq_t *out,
|
||||
dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_conv_mode mode);
|
||||
|
||||
void dl_matrix3dqq_fc_with_bias(dl_matrix3dq_t *out,
|
||||
dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *filter,
|
||||
dl_matrix3dq_t *bias,
|
||||
dl_conv_mode mode,
|
||||
char *name);
|
||||
|
||||
//
|
||||
// Mobilefaceblock
|
||||
//
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dqq_mobilefaceblock_split(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *pw_1,
|
||||
dl_matrix3dq_t *pw_2,
|
||||
dl_matrix3dq_t *pw_bias,
|
||||
dl_matrix3dq_t *dw,
|
||||
dl_matrix3dq_t *dw_bias,
|
||||
dl_matrix3dq_t *pw_linear_1,
|
||||
dl_matrix3dq_t *pw_linear_2,
|
||||
dl_matrix3dq_t *pw_linear_bias,
|
||||
int pw_exponent,
|
||||
int dw_exponent,
|
||||
int pw_linear_exponent,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
dl_conv_mode mode,
|
||||
int shortcut);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dqq_mobilefaceblock(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *pw,
|
||||
dl_matrix3dq_t *pw_bias,
|
||||
dl_matrix3dq_t *dw,
|
||||
dl_matrix3dq_t *dw_bias,
|
||||
dl_matrix3dq_t *pw_linear,
|
||||
dl_matrix3dq_t *pw_linear_bias,
|
||||
int pw_exponent,
|
||||
int dw_exponent,
|
||||
int pw_linear_exponent,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
dl_padding_type padding,
|
||||
dl_conv_mode mode,
|
||||
int shortcut);
|
||||
|
||||
//
|
||||
// Mobilenet
|
||||
//
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dqq_mobilenet(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *dilate,
|
||||
dl_matrix3dq_t *dilate_prelu,
|
||||
dl_matrix3dq_t *depthwise,
|
||||
dl_matrix3dq_t *depth_prelu,
|
||||
dl_matrix3dq_t *compress,
|
||||
dl_matrix3dq_t *bias,
|
||||
dl_matrix3dq_mobilenet_config_t config,
|
||||
char *name);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3duq_mobilenet(dl_matrix3du_t *in,
|
||||
dl_matrix3dq_t *dilate,
|
||||
dl_matrix3dq_t *dilate_prelu,
|
||||
dl_matrix3dq_t *depthwise,
|
||||
dl_matrix3dq_t *depth_prelu,
|
||||
dl_matrix3dq_t *compress,
|
||||
dl_matrix3dq_t *bias,
|
||||
dl_matrix3dq_mobilenet_config_t config,
|
||||
char *name);
|
||||
|
||||
//
|
||||
// Padding
|
||||
//
|
||||
|
||||
dl_error_type dl_matrix3dqq_padding(dl_matrix3dq_t **padded_in,
|
||||
dl_matrix3dq_t **out,
|
||||
dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *f,
|
||||
int step_x,
|
||||
int step_y);
|
||||
dl_matrix3dq_t *dl_matrix3dq_conv_3x3_with_bn (dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *f,
|
||||
dl_matrix3dq_t *scale,
|
||||
dl_matrix3dq_t *offset,
|
||||
int step_x,
|
||||
int step_y,
|
||||
int out_c,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
int padding,
|
||||
int exponent,
|
||||
int relu);
|
||||
/**
|
||||
* @brief Print the matrix3d items
|
||||
*
|
||||
* @param m dl_matrix3d_t to be printed
|
||||
* @param message name of matrix
|
||||
*/
|
||||
void dl_matrix3dq_print (dl_matrix3dq_t *m, char *message);
|
||||
int exponent);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dq_depthwise_conv (dl_matrix3dq_t *in, dl_matrix3dq_t *filter,
|
||||
int stride_x, int stride_y, int padding, int exponent, int mode);
|
||||
dl_matrix3dq_t *dl_matrix3dq_depthwise_conv_3x3_with_bn(dl_matrix3dq_t *in,
|
||||
dl_matrix3dq_t *f,
|
||||
dl_matrix3dq_t *scale,
|
||||
dl_matrix3dq_t *offset,
|
||||
int step_x,
|
||||
int step_y,
|
||||
int padding,
|
||||
int exponent,
|
||||
int relu);
|
||||
dl_error_type dl_matrix3duq_padding(dl_matrix3du_t **padded_in,
|
||||
dl_matrix3dq_t **out,
|
||||
dl_matrix3du_t *in,
|
||||
int out_c,
|
||||
int stride_x,
|
||||
int stride_y,
|
||||
int padding,
|
||||
int exponent);
|
||||
|
||||
void dl_matrix3dq_relu (dl_matrix3dq_t *m, fptp_t clip);
|
||||
//
|
||||
// Pooling
|
||||
//
|
||||
|
||||
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dq_global_pool (dl_matrix3dq_t *in);
|
||||
void dl_matrix3dq_batch_normalize (dl_matrix3dq_t *m, dl_matrix3dq_t *scale, dl_matrix3dq_t *offset);
|
||||
dl_matrix3dq_t *dl_matrix3dq_add (dl_matrix3dq_t *in_1, dl_matrix3dq_t *in_2, int exponent);
|
||||
void dl_matrix3dq_relu_std (dl_matrix3dq_t *m);
|
||||
dl_matrix3dq_t *dl_matrix3dq_mobilefaceblock (void *in, dl_matrix3dq_t *pw, dl_matrix3dq_t *pw_bn_scale,dl_matrix3dq_t *pw_bn_offset,
|
||||
dl_matrix3dq_t *dw, dl_matrix3dq_t *dw_bn_scale,dl_matrix3dq_t *dw_bn_offset,
|
||||
dl_matrix3dq_t *pw_linear, dl_matrix3dq_t *pw_linear_bn_scale,dl_matrix3dq_t *pw_linear_bn_offset,
|
||||
int pw_exponent,int dw_exponent,int pw_linear_exponent,int stride_x, int stride_y, int padding, int mode, int shortcut);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dq_concat(dl_matrix3dq_t *in_1, dl_matrix3dq_t *in_2);
|
||||
dl_matrix3dq_t *dl_matrix3dq_concat_4(dl_matrix3dq_t *in_1, dl_matrix3dq_t *in_2, dl_matrix3dq_t *in_3, dl_matrix3dq_t *in_4);
|
||||
dl_matrix3dq_t *dl_matrix3dq_concat_8(dl_matrix3dq_t *in_1, dl_matrix3dq_t *in_2, dl_matrix3dq_t *in_3, dl_matrix3dq_t *in_4, dl_matrix3dq_t *in_5, dl_matrix3dq_t *in_6, dl_matrix3dq_t *in_7, dl_matrix3dq_t *in_8);
|
||||
|
||||
dl_matrix3dq_t *dl_matrix3dq_mobilefaceblock_split (void *in, dl_matrix3dq_t *pw_1, dl_matrix3dq_t *pw_2, dl_matrix3dq_t *pw_bn_scale,dl_matrix3dq_t *pw_bn_offset,
|
||||
dl_matrix3dq_t *dw, dl_matrix3dq_t *dw_bn_scale,dl_matrix3dq_t *dw_bn_offset,
|
||||
dl_matrix3dq_t *pw_linear_1, dl_matrix3dq_t *pw_linear_2, dl_matrix3dq_t *pw_linear_bn_scale,dl_matrix3dq_t *pw_linear_bn_offset,
|
||||
int pw_exponent,int dw_exponent,int pw_linear_exponent,int stride_x, int stride_y, int padding, int mode, int shortcut);
|
||||
dl_matrix3dq_t *dl_matrix3dq_global_pool(dl_matrix3dq_t *in);
|
||||
|
@ -40,13 +40,27 @@ extern "C"
|
||||
|
||||
typedef struct
|
||||
{
|
||||
float min_face; /// the minimum size of face can be detected
|
||||
float pyramid; /// the pyramid scale
|
||||
int pyramid_times; /// the pyramid resizing times
|
||||
threshold_config_t p_threshold; /// score, nms and candidate threshold of pnet
|
||||
threshold_config_t r_threshold; /// score, nms and candidate threshold of rnet
|
||||
threshold_config_t o_threshold; /// score, nms and candidate threshold of onet
|
||||
mtmn_resize_type type; /// image resize type. 'pyramid' will lose efficacy, when 'type'==FAST.
|
||||
float score; /// score threshold for filter candidates by score
|
||||
float nms; /// nms threshold for nms process
|
||||
int candidate_number; /// candidate number limitation for each net
|
||||
} threshold_config_t;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
int w; /// net width
|
||||
int h; /// net height
|
||||
threshold_config_t threshold; /// threshold of net
|
||||
} net_config_t;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
float min_face; /// The minimum size of a detectable face
|
||||
float pyramid; /// The scale of the gradient scaling for the input images
|
||||
int pyramid_times; /// The pyramid resizing times
|
||||
threshold_config_t p_threshold; /// The thresholds for P-Net. For details, see the definition of threshold_config_t
|
||||
threshold_config_t r_threshold; /// The thresholds for R-Net. For details, see the definition of threshold_config_t
|
||||
threshold_config_t o_threshold; /// The thresholds for O-Net. For details, see the definition of threshold_config_t
|
||||
mtmn_resize_type type; /// The image resize type. 'pyramid' will lose efficacy, when 'type'==FAST.
|
||||
} mtmn_config_t;
|
||||
|
||||
static inline mtmn_config_t mtmn_init_config()
|
||||
|
@ -135,6 +135,7 @@ extern "C"
|
||||
uint8_t delete_face(face_id_list *l);
|
||||
int8_t delete_face_with_name(face_id_name_list *l, char *name);
|
||||
void delete_face_all_with_name(face_id_name_list *l);
|
||||
dl_matrix3d_t *get_face_id(dl_matrix3du_t *aligned_face);
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -24,6 +24,10 @@ extern "C"
|
||||
*/
|
||||
dl_matrix3dq_t *frmn_q(dl_matrix3dq_t *in, dl_conv_mode mode);
|
||||
|
||||
dl_matrix3dq_t *frmn2_q(dl_matrix3dq_t *in, dl_conv_mode mode);
|
||||
dl_matrix3dq_t *frmn2p_q(dl_matrix3dq_t *in, dl_conv_mode mode);
|
||||
dl_matrix3dq_t *frmn2c_q(dl_matrix3dq_t *in, dl_conv_mode mode);
|
||||
|
||||
#if __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -28,20 +28,7 @@ extern "C"
|
||||
{
|
||||
#endif
|
||||
#include "dl_lib_matrix3d.h"
|
||||
|
||||
typedef struct
|
||||
{
|
||||
float score; /// score threshold for filter candidates by score
|
||||
float nms; /// nms threshold for nms process
|
||||
int candidate_number; /// candidate number limitation for each net
|
||||
} threshold_config_t;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
int w; /// net width
|
||||
int h; /// net height
|
||||
threshold_config_t threshold; /// threshold of net
|
||||
} net_config_t;
|
||||
#include "dl_lib_matrix3dq.h"
|
||||
|
||||
typedef struct
|
||||
{
|
||||
@ -51,30 +38,89 @@ extern "C"
|
||||
} mtmn_net_t;
|
||||
|
||||
/**
|
||||
* @brief Forward the pnet process, coarse detection
|
||||
* @brief Free a mtmn_net_t
|
||||
*
|
||||
* @param p A mtmn_net_t pointer
|
||||
*/
|
||||
void mtmn_net_t_free(mtmn_net_t *p);
|
||||
|
||||
/**
|
||||
* @brief Forward the pnet process, coarse detection. Calculate in float.
|
||||
*
|
||||
* @param in Image matrix, rgb888 format, size is 320x240
|
||||
* @return Scores for every pixel, and box offset with respect.
|
||||
*/
|
||||
mtmn_net_t *pnet(dl_matrix3du_t *in);
|
||||
mtmn_net_t *pnet_lite_f(dl_matrix3du_t *in);
|
||||
|
||||
/**
|
||||
* @brief Forward the rnet process, fine determine the boxes from pnet
|
||||
* @brief Forward the rnet process, fine determine the boxes from pnet. Calculate in float.
|
||||
*
|
||||
* @param in Image matrix, rgb888 format
|
||||
* @param threshold Score threshold to detect human face
|
||||
* @return Scores for every box, and box offset with respect.
|
||||
*/
|
||||
mtmn_net_t *rnet_with_score_verify(dl_matrix3du_t *in, float threshold);
|
||||
mtmn_net_t *rnet_lite_f_with_score_verify(dl_matrix3du_t *in, float threshold);
|
||||
|
||||
/**
|
||||
* @brief Forward the onet process, fine determine the boxes from rnet
|
||||
* @brief Forward the onet process, fine determine the boxes from rnet. Calculate in float.
|
||||
*
|
||||
* @param in Image matrix, rgb888 format
|
||||
* @param threshold Score threshold to detect human face
|
||||
* @return Scores for every box, box offset, and landmark with respect.
|
||||
*/
|
||||
mtmn_net_t *onet_with_score_verify(dl_matrix3du_t *in, float threshold);
|
||||
mtmn_net_t *onet_lite_f_with_score_verify(dl_matrix3du_t *in, float threshold);
|
||||
|
||||
/**
|
||||
* @brief Forward the pnet process, coarse detection. Calculate in quantization.
|
||||
*
|
||||
* @param in Image matrix, rgb888 format, size is 320x240
|
||||
* @return Scores for every pixel, and box offset with respect.
|
||||
*/
|
||||
mtmn_net_t *pnet_lite_q(dl_matrix3du_t *in, dl_conv_mode mode);
|
||||
|
||||
/**
|
||||
* @brief Forward the rnet process, fine determine the boxes from pnet. Calculate in quantization.
|
||||
*
|
||||
* @param in Image matrix, rgb888 format
|
||||
* @param threshold Score threshold to detect human face
|
||||
* @return Scores for every box, and box offset with respect.
|
||||
*/
|
||||
mtmn_net_t *rnet_lite_q_with_score_verify(dl_matrix3du_t *in, float threshold, dl_conv_mode mode);
|
||||
|
||||
/**
|
||||
* @brief Forward the onet process, fine determine the boxes from rnet. Calculate in quantization.
|
||||
*
|
||||
* @param in Image matrix, rgb888 format
|
||||
* @param threshold Score threshold to detect human face
|
||||
* @return Scores for every box, box offset, and landmark with respect.
|
||||
*/
|
||||
mtmn_net_t *onet_lite_q_with_score_verify(dl_matrix3du_t *in, float threshold, dl_conv_mode mode);
|
||||
|
||||
/**
|
||||
* @brief Forward the pnet process, coarse detection. Calculate in quantization.
|
||||
*
|
||||
* @param in Image matrix, rgb888 format, size is 320x240
|
||||
* @return Scores for every pixel, and box offset with respect.
|
||||
*/
|
||||
mtmn_net_t *pnet_heavy_q(dl_matrix3du_t *in, dl_conv_mode mode);
|
||||
|
||||
/**
|
||||
* @brief Forward the rnet process, fine determine the boxes from pnet. Calculate in quantization.
|
||||
*
|
||||
* @param in Image matrix, rgb888 format
|
||||
* @param threshold Score threshold to detect human face
|
||||
* @return Scores for every box, and box offset with respect.
|
||||
*/
|
||||
mtmn_net_t *rnet_heavy_q_with_score_verify(dl_matrix3du_t *in, float threshold, dl_conv_mode mode);
|
||||
|
||||
/**
|
||||
* @brief Forward the onet process, fine determine the boxes from rnet. Calculate in quantization.
|
||||
*
|
||||
* @param in Image matrix, rgb888 format
|
||||
* @param threshold Score threshold to detect human face
|
||||
* @return Scores for every box, box offset, and landmark with respect.
|
||||
*/
|
||||
mtmn_net_t *onet_heavy_q_with_score_verify(dl_matrix3du_t *in, float threshold, dl_conv_mode mode);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
Reference in New Issue
Block a user