mirror of
				https://github.com/0xFEEDC0DE64/arduino-esp32.git
				synced 2025-11-03 23:51:39 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			271 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			271 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#include "esp32-hal.h"
 | 
						|
#include "freertos/FreeRTOS.h"
 | 
						|
#include "freertos/task.h"
 | 
						|
#include "freertos/semphr.h"
 | 
						|
#include "rom/ets_sys.h"
 | 
						|
#include "esp32-hal-matrix.h"
 | 
						|
#include "soc/dport_reg.h"
 | 
						|
#include "soc/ledc_reg.h"
 | 
						|
#include "soc/ledc_struct.h"
 | 
						|
 | 
						|
#if CONFIG_DISABLE_HAL_LOCKS
 | 
						|
#define LEDC_MUTEX_LOCK()
 | 
						|
#define LEDC_MUTEX_UNLOCK()
 | 
						|
#else
 | 
						|
#define LEDC_MUTEX_LOCK()    do {} while (xSemaphoreTake(_ledc_sys_lock, portMAX_DELAY) != pdPASS)
 | 
						|
#define LEDC_MUTEX_UNLOCK()  xSemaphoreGive(_ledc_sys_lock)
 | 
						|
xSemaphoreHandle _ledc_sys_lock;
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * LEDC Chan to Group/Channel/Timer Mapping
 | 
						|
** ledc: 0  => Group: 0, Channel: 0, Timer: 0
 | 
						|
** ledc: 1  => Group: 0, Channel: 1, Timer: 0
 | 
						|
** ledc: 2  => Group: 0, Channel: 2, Timer: 1
 | 
						|
** ledc: 3  => Group: 0, Channel: 3, Timer: 1
 | 
						|
** ledc: 4  => Group: 0, Channel: 4, Timer: 2
 | 
						|
** ledc: 5  => Group: 0, Channel: 5, Timer: 2
 | 
						|
** ledc: 6  => Group: 0, Channel: 6, Timer: 3
 | 
						|
** ledc: 7  => Group: 0, Channel: 7, Timer: 3
 | 
						|
** ledc: 8  => Group: 1, Channel: 0, Timer: 0
 | 
						|
** ledc: 9  => Group: 1, Channel: 1, Timer: 0
 | 
						|
** ledc: 10 => Group: 1, Channel: 2, Timer: 1
 | 
						|
** ledc: 11 => Group: 1, Channel: 3, Timer: 1
 | 
						|
** ledc: 12 => Group: 1, Channel: 4, Timer: 2
 | 
						|
** ledc: 13 => Group: 1, Channel: 5, Timer: 2
 | 
						|
** ledc: 14 => Group: 1, Channel: 6, Timer: 3
 | 
						|
** ledc: 15 => Group: 1, Channel: 7, Timer: 3
 | 
						|
*/
 | 
						|
#define LEDC_CHAN(g,c) LEDC.channel_group[(g)].channel[(c)]
 | 
						|
#define LEDC_TIMER(g,t) LEDC.timer_group[(g)].timer[(t)]
 | 
						|
 | 
						|
static void _on_apb_change(void * arg, apb_change_ev_t ev_type, uint32_t old_apb, uint32_t new_apb){
 | 
						|
    if(ev_type == APB_AFTER_CHANGE && old_apb != new_apb){
 | 
						|
        uint32_t iarg = (uint32_t)arg;
 | 
						|
        uint8_t chan = iarg;
 | 
						|
        uint8_t group=(chan/8), timer=((chan/2)%4);
 | 
						|
        old_apb /= 1000000;
 | 
						|
        new_apb /= 1000000;
 | 
						|
        if(LEDC_TIMER(group, timer).conf.tick_sel){
 | 
						|
            LEDC_MUTEX_LOCK();
 | 
						|
            uint32_t old_div = LEDC_TIMER(group, timer).conf.clock_divider;
 | 
						|
            uint32_t div_num = (new_apb * old_div) / old_apb;
 | 
						|
            if(div_num > LEDC_DIV_NUM_HSTIMER0_V){
 | 
						|
                new_apb = REF_CLK_FREQ / 1000000;
 | 
						|
                div_num = (new_apb * old_div) / old_apb;
 | 
						|
                if(div_num > LEDC_DIV_NUM_HSTIMER0_V) {
 | 
						|
                    div_num = LEDC_DIV_NUM_HSTIMER0_V;//lowest clock possible
 | 
						|
                }
 | 
						|
                LEDC_TIMER(group, timer).conf.tick_sel = 0;
 | 
						|
            } else if(div_num < 256) {
 | 
						|
                div_num = 256;//highest clock possible
 | 
						|
            }
 | 
						|
            LEDC_TIMER(group, timer).conf.clock_divider = div_num;
 | 
						|
            LEDC_MUTEX_UNLOCK();
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//uint32_t frequency = (80MHz or 1MHz)/((div_num / 256.0)*(1 << bit_num));
 | 
						|
static void _ledcSetupTimer(uint8_t chan, uint32_t div_num, uint8_t bit_num, bool apb_clk)
 | 
						|
{
 | 
						|
    uint8_t group=(chan/8), timer=((chan/2)%4);
 | 
						|
    static bool tHasStarted = false;
 | 
						|
    if(!tHasStarted) {
 | 
						|
        tHasStarted = true;
 | 
						|
        DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_LEDC_CLK_EN);
 | 
						|
        DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_LEDC_RST);
 | 
						|
        LEDC.conf.apb_clk_sel = 1;//LS use apb clock
 | 
						|
#if !CONFIG_DISABLE_HAL_LOCKS
 | 
						|
        _ledc_sys_lock = xSemaphoreCreateMutex();
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    LEDC_MUTEX_LOCK();
 | 
						|
    LEDC_TIMER(group, timer).conf.clock_divider = div_num;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part.
 | 
						|
    LEDC_TIMER(group, timer).conf.duty_resolution = bit_num;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20.
 | 
						|
    LEDC_TIMER(group, timer).conf.tick_sel = apb_clk;//apb clock
 | 
						|
    if(group) {
 | 
						|
        LEDC_TIMER(group, timer).conf.low_speed_update = 1;//This bit is only useful for low speed timer channels, reserved for high speed timers
 | 
						|
    }
 | 
						|
    LEDC_TIMER(group, timer).conf.pause = 0;
 | 
						|
    LEDC_TIMER(group, timer).conf.rst = 1;//This bit is used to reset timer the counter will be 0 after reset.
 | 
						|
    LEDC_TIMER(group, timer).conf.rst = 0;
 | 
						|
    LEDC_MUTEX_UNLOCK();
 | 
						|
    uint32_t iarg = chan;
 | 
						|
    addApbChangeCallback((void*)iarg, _on_apb_change);
 | 
						|
}
 | 
						|
 | 
						|
//max div_num 0x3FFFF (262143)
 | 
						|
//max bit_num 0x1F (31)
 | 
						|
static double _ledcSetupTimerFreq(uint8_t chan, double freq, uint8_t bit_num)
 | 
						|
{
 | 
						|
    uint64_t clk_freq = getApbFrequency();
 | 
						|
    clk_freq <<= 8;//div_num is 8 bit decimal
 | 
						|
    uint32_t div_num = (clk_freq >> bit_num) / freq;
 | 
						|
    bool apb_clk = true;
 | 
						|
    if(div_num > LEDC_DIV_NUM_HSTIMER0_V) {
 | 
						|
        clk_freq /= 80;
 | 
						|
        div_num = (clk_freq >> bit_num) / freq;
 | 
						|
        if(div_num > LEDC_DIV_NUM_HSTIMER0_V) {
 | 
						|
            div_num = LEDC_DIV_NUM_HSTIMER0_V;//lowest clock possible
 | 
						|
        }
 | 
						|
        apb_clk = false;
 | 
						|
    } else if(div_num < 256) {
 | 
						|
        div_num = 256;//highest clock possible
 | 
						|
    }
 | 
						|
    _ledcSetupTimer(chan, div_num, bit_num, apb_clk);
 | 
						|
    //log_i("Fin: %f, Fclk: %uMhz, bits: %u, DIV: %u, Fout: %f",
 | 
						|
    //        freq, apb_clk?80:1, bit_num, div_num, (clk_freq >> bit_num) / (double)div_num);
 | 
						|
    return (clk_freq >> bit_num) / (double)div_num;
 | 
						|
}
 | 
						|
 | 
						|
static double _ledcTimerRead(uint8_t chan)
 | 
						|
{
 | 
						|
    uint32_t div_num;
 | 
						|
    uint8_t bit_num;
 | 
						|
    bool apb_clk;
 | 
						|
    uint8_t group=(chan/8), timer=((chan/2)%4);
 | 
						|
    LEDC_MUTEX_LOCK();
 | 
						|
    div_num = LEDC_TIMER(group, timer).conf.clock_divider;//18 bit (10.8) This register is used to configure parameter for divider in timer the least significant eight bits represent the decimal part.
 | 
						|
    bit_num = LEDC_TIMER(group, timer).conf.duty_resolution;//5 bit This register controls the range of the counter in timer. the counter range is [0 2**bit_num] the max bit width for counter is 20.
 | 
						|
    apb_clk = LEDC_TIMER(group, timer).conf.tick_sel;//apb clock
 | 
						|
    LEDC_MUTEX_UNLOCK();
 | 
						|
    uint64_t clk_freq = 1000000;
 | 
						|
    if(apb_clk) {
 | 
						|
        clk_freq = getApbFrequency();
 | 
						|
    }
 | 
						|
    clk_freq <<= 8;//div_num is 8 bit decimal
 | 
						|
    return (clk_freq >> bit_num) / (double)div_num;
 | 
						|
}
 | 
						|
 | 
						|
static void _ledcSetupChannel(uint8_t chan, uint8_t idle_level)
 | 
						|
{
 | 
						|
    uint8_t group=(chan/8), channel=(chan%8), timer=((chan/2)%4);
 | 
						|
    LEDC_MUTEX_LOCK();
 | 
						|
    LEDC_CHAN(group, channel).conf0.timer_sel = timer;//2 bit Selects the timer to attach 0-3
 | 
						|
    LEDC_CHAN(group, channel).conf0.idle_lv = idle_level;//1 bit This bit is used to control the output value when channel is off.
 | 
						|
    LEDC_CHAN(group, channel).hpoint.hpoint = 0;//20 bit The output value changes to high when timer selected by channel has reached hpoint
 | 
						|
    LEDC_CHAN(group, channel).conf1.duty_inc = 1;//1 bit This register is used to increase the duty of output signal or decrease the duty of output signal for high speed channel
 | 
						|
    LEDC_CHAN(group, channel).conf1.duty_num = 1;//10 bit This register is used to control the number of increased or decreased times for channel
 | 
						|
    LEDC_CHAN(group, channel).conf1.duty_cycle = 1;//10 bit This register is used to increase or decrease the duty every duty_cycle cycles for channel
 | 
						|
    LEDC_CHAN(group, channel).conf1.duty_scale = 0;//10 bit This register controls the increase or decrease step scale for channel.
 | 
						|
    LEDC_CHAN(group, channel).duty.duty = 0;
 | 
						|
    LEDC_CHAN(group, channel).conf0.sig_out_en = 0;//This is the output enable control bit for channel
 | 
						|
    LEDC_CHAN(group, channel).conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
 | 
						|
    if(group) {
 | 
						|
        LEDC_CHAN(group, channel).conf0.low_speed_update = 1;
 | 
						|
    } else {
 | 
						|
        LEDC_CHAN(group, channel).conf0.clk_en = 0;
 | 
						|
    }
 | 
						|
    LEDC_MUTEX_UNLOCK();
 | 
						|
}
 | 
						|
 | 
						|
double ledcSetup(uint8_t chan, double freq, uint8_t bit_num)
 | 
						|
{
 | 
						|
    if(chan > 15) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    double res_freq = _ledcSetupTimerFreq(chan, freq, bit_num);
 | 
						|
    _ledcSetupChannel(chan, LOW);
 | 
						|
    return res_freq;
 | 
						|
}
 | 
						|
 | 
						|
void ledcWrite(uint8_t chan, uint32_t duty)
 | 
						|
{
 | 
						|
    if(chan > 15) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    uint8_t group=(chan/8), channel=(chan%8);
 | 
						|
    LEDC_MUTEX_LOCK();
 | 
						|
    LEDC_CHAN(group, channel).duty.duty = duty << 4;//25 bit (21.4)
 | 
						|
    if(duty) {
 | 
						|
        LEDC_CHAN(group, channel).conf0.sig_out_en = 1;//This is the output enable control bit for channel
 | 
						|
        LEDC_CHAN(group, channel).conf1.duty_start = 1;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
 | 
						|
        if(group) {
 | 
						|
            LEDC_CHAN(group, channel).conf0.low_speed_update = 1;
 | 
						|
        } else {
 | 
						|
            LEDC_CHAN(group, channel).conf0.clk_en = 1;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        LEDC_CHAN(group, channel).conf0.sig_out_en = 0;//This is the output enable control bit for channel
 | 
						|
        LEDC_CHAN(group, channel).conf1.duty_start = 0;//When duty_num duty_cycle and duty_scale has been configured. these register won't take effect until set duty_start. this bit is automatically cleared by hardware.
 | 
						|
        if(group) {
 | 
						|
            LEDC_CHAN(group, channel).conf0.low_speed_update = 1;
 | 
						|
        } else {
 | 
						|
            LEDC_CHAN(group, channel).conf0.clk_en = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    LEDC_MUTEX_UNLOCK();
 | 
						|
}
 | 
						|
 | 
						|
uint32_t ledcRead(uint8_t chan)
 | 
						|
{
 | 
						|
    if(chan > 15) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return LEDC.channel_group[chan/8].channel[chan%8].duty.duty >> 4;
 | 
						|
}
 | 
						|
 | 
						|
double ledcReadFreq(uint8_t chan)
 | 
						|
{
 | 
						|
    if(!ledcRead(chan)){
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    return _ledcTimerRead(chan);
 | 
						|
}
 | 
						|
 | 
						|
double ledcWriteTone(uint8_t chan, double freq)
 | 
						|
{
 | 
						|
    if(chan > 15) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if(!freq) {
 | 
						|
        ledcWrite(chan, 0);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    double res_freq = _ledcSetupTimerFreq(chan, freq, 10);
 | 
						|
    ledcWrite(chan, 0x1FF);
 | 
						|
    return res_freq;
 | 
						|
}
 | 
						|
 | 
						|
double ledcWriteNote(uint8_t chan, note_t note, uint8_t octave){
 | 
						|
    const uint16_t noteFrequencyBase[12] = {
 | 
						|
    //   C        C#       D        Eb       E        F       F#        G       G#        A       Bb        B
 | 
						|
        4186,    4435,    4699,    4978,    5274,    5588,    5920,    6272,    6645,    7040,    7459,    7902
 | 
						|
    };
 | 
						|
 | 
						|
    if(octave > 8 || note >= NOTE_MAX){
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    double noteFreq =  (double)noteFrequencyBase[note] / (double)(1 << (8-octave));
 | 
						|
    return ledcWriteTone(chan, noteFreq);
 | 
						|
}
 | 
						|
 | 
						|
void ledcAttachPin(uint8_t pin, uint8_t chan)
 | 
						|
{
 | 
						|
    if(chan > 15) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    pinMode(pin, OUTPUT);
 | 
						|
    pinMatrixOutAttach(pin, ((chan/8)?LEDC_LS_SIG_OUT0_IDX:LEDC_HS_SIG_OUT0_IDX) + (chan%8), false, false);
 | 
						|
}
 | 
						|
 | 
						|
void ledcDetachPin(uint8_t pin)
 | 
						|
{
 | 
						|
    pinMatrixOutDetach(pin, false, false);
 | 
						|
}
 |