mirror of
				https://github.com/0xFEEDC0DE64/arduino-esp32.git
				synced 2025-10-31 06:01:39 +01:00 
			
		
		
		
	* fix sdmmc config * Fix warnings in EEPROM from @Curclamas * remove leftover TAG in EEPROM * Initial add of @stickbreaker i2c * Add log_n * fix warnings when log is off * i2c code clean up and reorganization * add flags to interrupt allocator * fix sdmmc config * Fix warnings in EEPROM from @Curclamas * remove leftover TAG in EEPROM * fix errors with latest IDF * fix debug optimization (#1365) incorrect optimization for debugging tick markers. * Fix some missing BT header * Change BTSerial log calls * Update BLE lib * Arduino-ESP32 release management scripted (#1515) * Calculate an absolute path for a custom partitions table (#1452) * * Arduino-ESP32 release management scripted (ready-to-merge) * * secure env for espressif/arduino-esp32 * * build tests enabled * gitter webhook enabled * * gitter room link fixed * better comment * * filepaths fixed * BT Serial adjustments * * don't run sketch builds & tests for tagged builds * Return false from WiFi.hostByName() if hostname is not resolved * Free BT Memory when BT is not used * WIFI_MODE_NULL is not supported anymore * Select some key examples to build with PlatformIO to save some time * Update BLE lib * Fixed BLE lib * Major WiFi overhaul - auto reconnect on connection loss now works - moved to event groups - some code clean up and procedure optimizations - new methods to get a more elaborate system ststus * Add cmake tests to travis * Add initial AsyncUDP * Add NetBIOS lib and fix CMake includes * Add Initial WebServer * Fix WebServer and examples * travis not quiting on build fail * Try different travis build * Update IDF to aaf1239 * Fix WPS Example * fix script permission and add some fail tests to sketch builder * Add missing space in WiFiClient::write(Stream &stream)
		
			
				
	
	
		
			3442 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3442 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Minimal code for RSA support from LibTomMath 0.41
 | |
|  * http://libtom.org/
 | |
|  * http://libtom.org/files/ltm-0.41.tar.bz2
 | |
|  * This library was released in public domain by Tom St Denis.
 | |
|  *
 | |
|  * The combination in this file may not use all of the optimized algorithms
 | |
|  * from LibTomMath and may be considerable slower than the LibTomMath with its
 | |
|  * default settings. The main purpose of having this version here is to make it
 | |
|  * easier to build bignum.c wrapper without having to install and build an
 | |
|  * external library.
 | |
|  *
 | |
|  * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this
 | |
|  * libtommath.c file instead of using the external LibTomMath library.
 | |
|  */
 | |
| #include "os.h"
 | |
| #include "stdarg.h"
 | |
| 
 | |
| #ifdef MEMLEAK_DEBUG
 | |
| static const char mem_debug_file[] ICACHE_RODATA_ATTR = __FILE__;
 | |
| #endif
 | |
| 
 | |
| #ifndef CHAR_BIT
 | |
| #define CHAR_BIT 8
 | |
| #endif
 | |
| 
 | |
| #define BN_MP_INVMOD_C
 | |
| #define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would
 | |
| 			   * require BN_MP_EXPTMOD_FAST_C instead */
 | |
| #define BN_S_MP_MUL_DIGS_C
 | |
| #define BN_MP_INVMOD_SLOW_C
 | |
| #define BN_S_MP_SQR_C
 | |
| #define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
 | |
| 				 * would require other than mp_reduce */
 | |
| 
 | |
| #ifdef LTM_FAST
 | |
| 
 | |
| /* Use faster div at the cost of about 1 kB */
 | |
| #define BN_MP_MUL_D_C
 | |
| 
 | |
| /* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */
 | |
| #define BN_MP_EXPTMOD_FAST_C
 | |
| #define BN_MP_MONTGOMERY_SETUP_C
 | |
| #define BN_FAST_MP_MONTGOMERY_REDUCE_C
 | |
| #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
 | |
| #define BN_MP_MUL_2_C
 | |
| 
 | |
| /* Include faster sqr at the cost of about 0.5 kB in code */
 | |
| #define BN_FAST_S_MP_SQR_C
 | |
| 
 | |
| #else /* LTM_FAST */
 | |
| 
 | |
| #define BN_MP_DIV_SMALL
 | |
| #define BN_MP_INIT_MULTI_C
 | |
| #define BN_MP_CLEAR_MULTI_C
 | |
| #define BN_MP_ABS_C
 | |
| #endif /* LTM_FAST */
 | |
| 
 | |
| /* Current uses do not require support for negative exponent in exptmod, so we
 | |
|  * can save about 1.5 kB in leaving out invmod. */
 | |
| #define LTM_NO_NEG_EXP
 | |
| 
 | |
| /* from tommath.h */
 | |
| 
 | |
| #ifndef MIN
 | |
|    #define MIN(x,y) ((x)<(y)?(x):(y))
 | |
| #endif
 | |
| 
 | |
| #ifndef MAX
 | |
|    #define MAX(x,y) ((x)>(y)?(x):(y))
 | |
| #endif
 | |
| 
 | |
| #define  OPT_CAST(x) (x *)
 | |
| 
 | |
| typedef unsigned long mp_digit;
 | |
| typedef u64 mp_word;
 | |
| 
 | |
| #define DIGIT_BIT          28
 | |
| #define MP_28BIT
 | |
| 
 | |
| 
 | |
| #define XMALLOC  os_malloc
 | |
| #define XFREE    os_free
 | |
| #define XREALLOC os_realloc
 | |
| 
 | |
| 
 | |
| #define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
 | |
| 
 | |
| #define MP_LT        -1   /* less than */
 | |
| #define MP_EQ         0   /* equal to */
 | |
| #define MP_GT         1   /* greater than */
 | |
| 
 | |
| #define MP_ZPOS       0   /* positive integer */
 | |
| #define MP_NEG        1   /* negative */
 | |
| 
 | |
| #define MP_OKAY       0   /* ok result */
 | |
| #define MP_MEM        -2  /* out of mem */
 | |
| #define MP_VAL        -3  /* invalid input */
 | |
| 
 | |
| #define MP_YES        1   /* yes response */
 | |
| #define MP_NO         0   /* no response */
 | |
| 
 | |
| typedef int           mp_err;
 | |
| 
 | |
| /* define this to use lower memory usage routines (exptmods mostly) */
 | |
| #define MP_LOW_MEM
 | |
| 
 | |
| /* default precision */
 | |
| #ifndef MP_PREC
 | |
|    #ifndef MP_LOW_MEM
 | |
|       #define MP_PREC                 32     /* default digits of precision */
 | |
|    #else
 | |
|       #define MP_PREC                 8      /* default digits of precision */
 | |
|    #endif   
 | |
| #endif
 | |
| 
 | |
| /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
 | |
| #define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
 | |
| 
 | |
| /* the infamous mp_int structure */
 | |
| typedef struct  {
 | |
|     int used, alloc, sign;
 | |
|     mp_digit *dp;
 | |
| } mp_int;
 | |
| 
 | |
| 
 | |
| /* ---> Basic Manipulations <--- */
 | |
| #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
 | |
| #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
 | |
| #define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
 | |
| 
 | |
| 
 | |
| /* prototypes for copied functions */
 | |
| #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
 | |
| static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
 | |
| static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
 | |
| static int s_mp_sqr(mp_int * a, mp_int * b);
 | |
| static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
 | |
| 
 | |
| static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
 | |
| 
 | |
| #ifdef BN_MP_INIT_MULTI_C
 | |
| static int mp_init_multi(mp_int *mp, ...);
 | |
| #endif
 | |
| #ifdef BN_MP_CLEAR_MULTI_C
 | |
| static void mp_clear_multi(mp_int *mp, ...);
 | |
| #endif
 | |
| static int mp_lshd(mp_int * a, int b);
 | |
| static void mp_set(mp_int * a, mp_digit b);
 | |
| static void mp_clamp(mp_int * a);
 | |
| static void mp_exch(mp_int * a, mp_int * b);
 | |
| static void mp_rshd(mp_int * a, int b);
 | |
| static void mp_zero(mp_int * a);
 | |
| static int mp_mod_2d(mp_int * a, int b, mp_int * c);
 | |
| static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d);
 | |
| static int mp_init_copy(mp_int * a, mp_int * b);
 | |
| static int mp_mul_2d(mp_int * a, int b, mp_int * c);
 | |
| #ifndef LTM_NO_NEG_EXP
 | |
| static int mp_div_2(mp_int * a, mp_int * b);
 | |
| static int mp_invmod(mp_int * a, mp_int * b, mp_int * c);
 | |
| static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c);
 | |
| #endif /* LTM_NO_NEG_EXP */
 | |
| static int mp_copy(mp_int * a, mp_int * b);
 | |
| static int mp_count_bits(mp_int * a);
 | |
| static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
 | |
| static int mp_mod(mp_int * a, mp_int * b, mp_int * c);
 | |
| static int mp_grow(mp_int * a, int size);
 | |
| static int mp_cmp_mag(mp_int * a, mp_int * b);
 | |
| #ifdef BN_MP_ABS_C
 | |
| static int mp_abs(mp_int * a, mp_int * b);
 | |
| #endif
 | |
| static int mp_sqr(mp_int * a, mp_int * b);
 | |
| static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
 | |
| static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
 | |
| static int mp_2expt(mp_int * a, int b);
 | |
| static int mp_reduce_setup(mp_int * a, mp_int * b);
 | |
| static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu);
 | |
| static int mp_init_size(mp_int * a, int size);
 | |
| #ifdef BN_MP_EXPTMOD_FAST_C
 | |
| static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
 | |
| #endif /* BN_MP_EXPTMOD_FAST_C */
 | |
| #ifdef BN_FAST_S_MP_SQR_C
 | |
| static int fast_s_mp_sqr (mp_int * a, mp_int * b);
 | |
| #endif /* BN_FAST_S_MP_SQR_C */
 | |
| #ifdef BN_MP_MUL_D_C
 | |
| static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c);
 | |
| #endif /* BN_MP_MUL_D_C */
 | |
| 
 | |
| 
 | |
| 
 | |
| /* functions from bn_<func name>.c */
 | |
| 
 | |
| 
 | |
| /* reverse an array, used for radix code */
 | |
| static void
 | |
| bn_reverse (unsigned char *s, int len)
 | |
| {
 | |
|   int     ix, iy;
 | |
|   unsigned char t;
 | |
| 
 | |
|   ix = 0;
 | |
|   iy = len - 1;
 | |
|   while (ix < iy) {
 | |
|     t     = s[ix];
 | |
|     s[ix] = s[iy];
 | |
|     s[iy] = t;
 | |
|     ++ix;
 | |
|     --iy;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* low level addition, based on HAC pp.594, Algorithm 14.7 */
 | |
| static int
 | |
| s_mp_add (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int *x;
 | |
|   int     olduse, res, min, max;
 | |
| 
 | |
|   /* find sizes, we let |a| <= |b| which means we have to sort
 | |
|    * them.  "x" will point to the input with the most digits
 | |
|    */
 | |
|   if (a->used > b->used) {
 | |
|     min = b->used;
 | |
|     max = a->used;
 | |
|     x = a;
 | |
|   } else {
 | |
|     min = a->used;
 | |
|     max = b->used;
 | |
|     x = b;
 | |
|   }
 | |
| 
 | |
|   /* init result */
 | |
|   if (c->alloc < max + 1) {
 | |
|     if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* get old used digit count and set new one */
 | |
|   olduse = c->used;
 | |
|   c->used = max + 1;
 | |
| 
 | |
|   {
 | |
|     register mp_digit u, *tmpa, *tmpb, *tmpc;
 | |
|     register int i;
 | |
| 
 | |
|     /* alias for digit pointers */
 | |
| 
 | |
|     /* first input */
 | |
|     tmpa = a->dp;
 | |
| 
 | |
|     /* second input */
 | |
|     tmpb = b->dp;
 | |
| 
 | |
|     /* destination */
 | |
|     tmpc = c->dp;
 | |
| 
 | |
|     /* zero the carry */
 | |
|     u = 0;
 | |
|     for (i = 0; i < min; i++) {
 | |
|       /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
 | |
|       *tmpc = *tmpa++ + *tmpb++ + u;
 | |
| 
 | |
|       /* U = carry bit of T[i] */
 | |
|       u = *tmpc >> ((mp_digit)DIGIT_BIT);
 | |
| 
 | |
|       /* take away carry bit from T[i] */
 | |
|       *tmpc++ &= MP_MASK;
 | |
|     }
 | |
| 
 | |
|     /* now copy higher words if any, that is in A+B 
 | |
|      * if A or B has more digits add those in 
 | |
|      */
 | |
|     if (min != max) {
 | |
|       for (; i < max; i++) {
 | |
|         /* T[i] = X[i] + U */
 | |
|         *tmpc = x->dp[i] + u;
 | |
| 
 | |
|         /* U = carry bit of T[i] */
 | |
|         u = *tmpc >> ((mp_digit)DIGIT_BIT);
 | |
| 
 | |
|         /* take away carry bit from T[i] */
 | |
|         *tmpc++ &= MP_MASK;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* add carry */
 | |
|     *tmpc++ = u;
 | |
| 
 | |
|     /* clear digits above oldused */
 | |
|     for (i = c->used; i < olduse; i++) {
 | |
|       *tmpc++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
 | |
| static int
 | |
| s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     olduse, res, min, max;
 | |
| 
 | |
|   /* find sizes */
 | |
|   min = b->used;
 | |
|   max = a->used;
 | |
| 
 | |
|   /* init result */
 | |
|   if (c->alloc < max) {
 | |
|     if ((res = mp_grow (c, max)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
|   olduse = c->used;
 | |
|   c->used = max;
 | |
| 
 | |
|   {
 | |
|     register mp_digit u, *tmpa, *tmpb, *tmpc;
 | |
|     register int i;
 | |
| 
 | |
|     /* alias for digit pointers */
 | |
|     tmpa = a->dp;
 | |
|     tmpb = b->dp;
 | |
|     tmpc = c->dp;
 | |
| 
 | |
|     /* set carry to zero */
 | |
|     u = 0;
 | |
|     for (i = 0; i < min; i++) {
 | |
|       /* T[i] = A[i] - B[i] - U */
 | |
|       *tmpc = *tmpa++ - *tmpb++ - u;
 | |
| 
 | |
|       /* U = carry bit of T[i]
 | |
|        * Note this saves performing an AND operation since
 | |
|        * if a carry does occur it will propagate all the way to the
 | |
|        * MSB.  As a result a single shift is enough to get the carry
 | |
|        */
 | |
|       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
 | |
| 
 | |
|       /* Clear carry from T[i] */
 | |
|       *tmpc++ &= MP_MASK;
 | |
|     }
 | |
| 
 | |
|     /* now copy higher words if any, e.g. if A has more digits than B  */
 | |
|     for (; i < max; i++) {
 | |
|       /* T[i] = A[i] - U */
 | |
|       *tmpc = *tmpa++ - u;
 | |
| 
 | |
|       /* U = carry bit of T[i] */
 | |
|       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
 | |
| 
 | |
|       /* Clear carry from T[i] */
 | |
|       *tmpc++ &= MP_MASK;
 | |
|     }
 | |
| 
 | |
|     /* clear digits above used (since we may not have grown result above) */
 | |
|     for (i = c->used; i < olduse; i++) {
 | |
|       *tmpc++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* init a new mp_int */
 | |
| static int
 | |
| mp_init (mp_int * a)
 | |
| {
 | |
|   int i;
 | |
| 
 | |
|   /* allocate memory required and clear it */
 | |
|   a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
 | |
|   if (a->dp == NULL) {
 | |
|     return MP_MEM;
 | |
|   }
 | |
| 
 | |
|   /* set the digits to zero */
 | |
|   for (i = 0; i < MP_PREC; i++) {
 | |
|       a->dp[i] = 0;
 | |
|   }
 | |
| 
 | |
|   /* set the used to zero, allocated digits to the default precision
 | |
|    * and sign to positive */
 | |
|   a->used  = 0;
 | |
|   a->alloc = MP_PREC;
 | |
|   a->sign  = MP_ZPOS;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* clear one (frees)  */
 | |
| static void
 | |
| mp_clear (mp_int * a)
 | |
| {
 | |
|   int i;
 | |
| 
 | |
|   /* only do anything if a hasn't been freed previously */
 | |
|   if (a->dp != NULL) {
 | |
|     /* first zero the digits */
 | |
|     for (i = 0; i < a->used; i++) {
 | |
|         a->dp[i] = 0;
 | |
|     }
 | |
| 
 | |
|     /* free ram */
 | |
|     XFREE(a->dp);
 | |
| 
 | |
|     /* reset members to make debugging easier */
 | |
|     a->dp    = NULL;
 | |
|     a->alloc = a->used = 0;
 | |
|     a->sign  = MP_ZPOS;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* high level addition (handles signs) */
 | |
| static int
 | |
| mp_add (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     sa, sb, res;
 | |
| 
 | |
|   /* get sign of both inputs */
 | |
|   sa = a->sign;
 | |
|   sb = b->sign;
 | |
| 
 | |
|   /* handle two cases, not four */
 | |
|   if (sa == sb) {
 | |
|     /* both positive or both negative */
 | |
|     /* add their magnitudes, copy the sign */
 | |
|     c->sign = sa;
 | |
|     res = s_mp_add (a, b, c);
 | |
|   } else {
 | |
|     /* one positive, the other negative */
 | |
|     /* subtract the one with the greater magnitude from */
 | |
|     /* the one of the lesser magnitude.  The result gets */
 | |
|     /* the sign of the one with the greater magnitude. */
 | |
|     if (mp_cmp_mag (a, b) == MP_LT) {
 | |
|       c->sign = sb;
 | |
|       res = s_mp_sub (b, a, c);
 | |
|     } else {
 | |
|       c->sign = sa;
 | |
|       res = s_mp_sub (a, b, c);
 | |
|     }
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* high level subtraction (handles signs) */
 | |
| static int
 | |
| mp_sub (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     sa, sb, res;
 | |
| 
 | |
|   sa = a->sign;
 | |
|   sb = b->sign;
 | |
| 
 | |
|   if (sa != sb) {
 | |
|     /* subtract a negative from a positive, OR */
 | |
|     /* subtract a positive from a negative. */
 | |
|     /* In either case, ADD their magnitudes, */
 | |
|     /* and use the sign of the first number. */
 | |
|     c->sign = sa;
 | |
|     res = s_mp_add (a, b, c);
 | |
|   } else {
 | |
|     /* subtract a positive from a positive, OR */
 | |
|     /* subtract a negative from a negative. */
 | |
|     /* First, take the difference between their */
 | |
|     /* magnitudes, then... */
 | |
|     if (mp_cmp_mag (a, b) != MP_LT) {
 | |
|       /* Copy the sign from the first */
 | |
|       c->sign = sa;
 | |
|       /* The first has a larger or equal magnitude */
 | |
|       res = s_mp_sub (a, b, c);
 | |
|     } else {
 | |
|       /* The result has the *opposite* sign from */
 | |
|       /* the first number. */
 | |
|       c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
 | |
|       /* The second has a larger magnitude */
 | |
|       res = s_mp_sub (b, a, c);
 | |
|     }
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* high level multiplication (handles sign) */
 | |
| static int
 | |
| mp_mul (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     res, neg;
 | |
|   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
 | |
| 
 | |
|   /* use Toom-Cook? */
 | |
| #ifdef BN_MP_TOOM_MUL_C
 | |
|   if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
 | |
|     res = mp_toom_mul(a, b, c);
 | |
|   } else 
 | |
| #endif
 | |
| #ifdef BN_MP_KARATSUBA_MUL_C
 | |
|   /* use Karatsuba? */
 | |
|   if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
 | |
|     res = mp_karatsuba_mul (a, b, c);
 | |
|   } else 
 | |
| #endif
 | |
|   {
 | |
|     /* can we use the fast multiplier?
 | |
|      *
 | |
|      * The fast multiplier can be used if the output will 
 | |
|      * have less than MP_WARRAY digits and the number of 
 | |
|      * digits won't affect carry propagation
 | |
|      */
 | |
| #ifdef BN_FAST_S_MP_MUL_DIGS_C
 | |
|     int     digs = a->used + b->used + 1;
 | |
| 
 | |
|     if ((digs < MP_WARRAY) &&
 | |
|         MIN(a->used, b->used) <= 
 | |
|         (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|       res = fast_s_mp_mul_digs (a, b, c, digs);
 | |
|     } else 
 | |
| #endif
 | |
| #ifdef BN_S_MP_MUL_DIGS_C
 | |
|       res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
 | |
| #else
 | |
| #error mp_mul could fail
 | |
|       res = MP_VAL;
 | |
| #endif
 | |
| 
 | |
|   }
 | |
|   c->sign = (c->used > 0) ? neg : MP_ZPOS;
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* d = a * b (mod c) */
 | |
| static int
 | |
| mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   int     res;
 | |
|   mp_int  t;
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
|   res = mp_mod (&t, c, d);
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* c = a mod b, 0 <= c < b */
 | |
| static int
 | |
| mp_mod (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res;
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if (t.sign != b->sign) {
 | |
|     res = mp_add (b, &t, c);
 | |
|   } else {
 | |
|     res = MP_OKAY;
 | |
|     mp_exch (&t, c);
 | |
|   }
 | |
| 
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* this is a shell function that calls either the normal or Montgomery
 | |
|  * exptmod functions.  Originally the call to the montgomery code was
 | |
|  * embedded in the normal function but that wasted a lot of stack space
 | |
|  * for nothing (since 99% of the time the Montgomery code would be called)
 | |
|  */
 | |
| static int
 | |
| mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
 | |
| {
 | |
| #if defined(BN_MP_DR_IS_MODULUS_C)||defined(BN_MP_REDUCE_IS_2K_C)||defined(BN_MP_EXPTMOD_FAST_C)
 | |
|   int dr = 0;
 | |
| #endif
 | |
| 
 | |
|   /* modulus P must be positive */
 | |
|   if (P->sign == MP_NEG) {
 | |
|      return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if exponent X is negative we have to recurse */
 | |
|   if (X->sign == MP_NEG) {
 | |
| #ifdef LTM_NO_NEG_EXP
 | |
|         return MP_VAL;
 | |
| #else /* LTM_NO_NEG_EXP */
 | |
| #ifdef BN_MP_INVMOD_C
 | |
|      mp_int tmpG, tmpX;
 | |
|      int err;
 | |
| 
 | |
|      /* first compute 1/G mod P */
 | |
|      if ((err = mp_init(&tmpG)) != MP_OKAY) {
 | |
|         return err;
 | |
|      }
 | |
|      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
 | |
|         mp_clear(&tmpG);
 | |
|         return err;
 | |
|      }
 | |
| 
 | |
|      /* now get |X| */
 | |
|      if ((err = mp_init(&tmpX)) != MP_OKAY) {
 | |
|         mp_clear(&tmpG);
 | |
|         return err;
 | |
|      }
 | |
|      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
 | |
|         mp_clear_multi(&tmpG, &tmpX, NULL);
 | |
|         return err;
 | |
|      }
 | |
| 
 | |
|      /* and now compute (1/G)**|X| instead of G**X [X < 0] */
 | |
|      err = mp_exptmod(&tmpG, &tmpX, P, Y);
 | |
|      mp_clear_multi(&tmpG, &tmpX, NULL);
 | |
|      return err;
 | |
| #else 
 | |
| #error mp_exptmod would always fail
 | |
|      /* no invmod */
 | |
|      return MP_VAL;
 | |
| #endif
 | |
| #endif /* LTM_NO_NEG_EXP */
 | |
|   }
 | |
| 
 | |
| /* modified diminished radix reduction */
 | |
| #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
 | |
|   if (mp_reduce_is_2k_l(P) == MP_YES) {
 | |
|      return s_mp_exptmod(G, X, P, Y, 1);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef BN_MP_DR_IS_MODULUS_C
 | |
|   /* is it a DR modulus? */
 | |
|   dr = mp_dr_is_modulus(P);
 | |
| #endif
 | |
| 
 | |
| #ifdef BN_MP_REDUCE_IS_2K_C
 | |
|   /* if not, is it a unrestricted DR modulus? */
 | |
|   if (dr == 0) {
 | |
|      dr = mp_reduce_is_2k(P) << 1;
 | |
|   }
 | |
| #endif
 | |
|     
 | |
|   /* if the modulus is odd or dr != 0 use the montgomery method */
 | |
| #ifdef BN_MP_EXPTMOD_FAST_C
 | |
|   if (mp_isodd (P) == 1 || dr !=  0) {
 | |
|     return mp_exptmod_fast (G, X, P, Y, dr);
 | |
|   } else {
 | |
| #endif
 | |
| #ifdef BN_S_MP_EXPTMOD_C
 | |
|     /* otherwise use the generic Barrett reduction technique */
 | |
|     return s_mp_exptmod (G, X, P, Y, 0);
 | |
| #else
 | |
| #error mp_exptmod could fail
 | |
|     /* no exptmod for evens */
 | |
|     return MP_VAL;
 | |
| #endif
 | |
| #ifdef BN_MP_EXPTMOD_FAST_C
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /* compare two ints (signed)*/
 | |
| static int
 | |
| mp_cmp (mp_int * a, mp_int * b)
 | |
| {
 | |
|   /* compare based on sign */
 | |
|   if (a->sign != b->sign) {
 | |
|      if (a->sign == MP_NEG) {
 | |
|         return MP_LT;
 | |
|      } else {
 | |
|         return MP_GT;
 | |
|      }
 | |
|   }
 | |
|   
 | |
|   /* compare digits */
 | |
|   if (a->sign == MP_NEG) {
 | |
|      /* if negative compare opposite direction */
 | |
|      return mp_cmp_mag(b, a);
 | |
|   } else {
 | |
|      return mp_cmp_mag(a, b);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* compare a digit */
 | |
| static int
 | |
| mp_cmp_d(mp_int * a, mp_digit b)
 | |
| {
 | |
|   /* compare based on sign */
 | |
|   if (a->sign == MP_NEG) {
 | |
|     return MP_LT;
 | |
|   }
 | |
| 
 | |
|   /* compare based on magnitude */
 | |
|   if (a->used > 1) {
 | |
|     return MP_GT;
 | |
|   }
 | |
| 
 | |
|   /* compare the only digit of a to b */
 | |
|   if (a->dp[0] > b) {
 | |
|     return MP_GT;
 | |
|   } else if (a->dp[0] < b) {
 | |
|     return MP_LT;
 | |
|   } else {
 | |
|     return MP_EQ;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef LTM_NO_NEG_EXP
 | |
| /* hac 14.61, pp608 */
 | |
| static int
 | |
| mp_invmod (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   /* b cannot be negative */
 | |
|   if (b->sign == MP_NEG || mp_iszero(b) == 1) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
| #ifdef BN_FAST_MP_INVMOD_C
 | |
|   /* if the modulus is odd we can use a faster routine instead */
 | |
|   if (mp_isodd (b) == 1) {
 | |
|     return fast_mp_invmod (a, b, c);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef BN_MP_INVMOD_SLOW_C
 | |
|   return mp_invmod_slow(a, b, c);
 | |
| #endif
 | |
| 
 | |
| #ifndef BN_FAST_MP_INVMOD_C
 | |
| #ifndef BN_MP_INVMOD_SLOW_C
 | |
| #error mp_invmod would always fail
 | |
| #endif
 | |
| #endif
 | |
|   return MP_VAL;
 | |
| }
 | |
| #endif /* LTM_NO_NEG_EXP */
 | |
| 
 | |
| 
 | |
| /* get the size for an unsigned equivalent */
 | |
| static int
 | |
| mp_unsigned_bin_size (mp_int * a)
 | |
| {
 | |
|   int     size = mp_count_bits (a);
 | |
|   return (size / 8 + ((size & 7) != 0 ? 1 : 0));
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef LTM_NO_NEG_EXP
 | |
| /* hac 14.61, pp608 */
 | |
| static int
 | |
| mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  x, y, u, v, A, B, C, D;
 | |
|   int     res;
 | |
| 
 | |
|   /* b cannot be negative */
 | |
|   if (b->sign == MP_NEG || mp_iszero(b) == 1) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* init temps */
 | |
|   if ((res = mp_init_multi(&x, &y, &u, &v, 
 | |
|                            &A, &B, &C, &D, NULL)) != MP_OKAY) {
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
|   /* x = a, y = b */
 | |
|   if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|   }
 | |
|   if ((res = mp_copy (b, &y)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* 2. [modified] if x,y are both even then return an error! */
 | |
|   if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
 | |
|     res = MP_VAL;
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
 | |
|   if ((res = mp_copy (&x, &u)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
|   if ((res = mp_copy (&y, &v)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
|   mp_set (&A, 1);
 | |
|   mp_set (&D, 1);
 | |
| 
 | |
| top:
 | |
|   /* 4.  while u is even do */
 | |
|   while (mp_iseven (&u) == 1) {
 | |
|     /* 4.1 u = u/2 */
 | |
|     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     /* 4.2 if A or B is odd then */
 | |
|     if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
 | |
|       /* A = (A+y)/2, B = (B-x)/2 */
 | |
|       if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|     }
 | |
|     /* A = A/2, B = B/2 */
 | |
|     if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 5.  while v is even do */
 | |
|   while (mp_iseven (&v) == 1) {
 | |
|     /* 5.1 v = v/2 */
 | |
|     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     /* 5.2 if C or D is odd then */
 | |
|     if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
 | |
|       /* C = (C+y)/2, D = (D-x)/2 */
 | |
|       if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|     }
 | |
|     /* C = C/2, D = D/2 */
 | |
|     if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 6.  if u >= v then */
 | |
|   if (mp_cmp (&u, &v) != MP_LT) {
 | |
|     /* u = u - v, A = A - C, B = B - D */
 | |
|     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   } else {
 | |
|     /* v - v - u, C = C - A, D = D - B */
 | |
|     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if not zero goto step 4 */
 | |
|   if (mp_iszero (&u) == 0)
 | |
|     goto top;
 | |
| 
 | |
|   /* now a = C, b = D, gcd == g*v */
 | |
| 
 | |
|   /* if v != 1 then there is no inverse */
 | |
|   if (mp_cmp_d (&v, 1) != MP_EQ) {
 | |
|     res = MP_VAL;
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* if its too low */
 | |
|   while (mp_cmp_d(&C, 0) == MP_LT) {
 | |
|       if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   /* too big */
 | |
|   while (mp_cmp_mag(&C, b) != MP_LT) {
 | |
|       if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   /* C is now the inverse */
 | |
|   mp_exch (&C, c);
 | |
|   res = MP_OKAY;
 | |
| LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
 | |
|   return res;
 | |
| }
 | |
| #endif /* LTM_NO_NEG_EXP */
 | |
| 
 | |
| 
 | |
| /* compare maginitude of two ints (unsigned) */
 | |
| static int
 | |
| mp_cmp_mag (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     n;
 | |
|   mp_digit *tmpa, *tmpb;
 | |
| 
 | |
|   /* compare based on # of non-zero digits */
 | |
|   if (a->used > b->used) {
 | |
|     return MP_GT;
 | |
|   }
 | |
|   
 | |
|   if (a->used < b->used) {
 | |
|     return MP_LT;
 | |
|   }
 | |
| 
 | |
|   /* alias for a */
 | |
|   tmpa = a->dp + (a->used - 1);
 | |
| 
 | |
|   /* alias for b */
 | |
|   tmpb = b->dp + (a->used - 1);
 | |
| 
 | |
|   /* compare based on digits  */
 | |
|   for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
 | |
|     if (*tmpa > *tmpb) {
 | |
|       return MP_GT;
 | |
|     }
 | |
| 
 | |
|     if (*tmpa < *tmpb) {
 | |
|       return MP_LT;
 | |
|     }
 | |
|   }
 | |
|   return MP_EQ;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* reads a unsigned char array, assumes the msb is stored first [big endian] */
 | |
| static int
 | |
| mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   /* make sure there are at least two digits */
 | |
|   if (a->alloc < 2) {
 | |
|      if ((res = mp_grow(a, 2)) != MP_OKAY) {
 | |
|         return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* zero the int */
 | |
|   mp_zero (a);
 | |
| 
 | |
|   /* read the bytes in */
 | |
|   while (c-- > 0) {
 | |
|     if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
| 
 | |
| #ifndef MP_8BIT
 | |
|       a->dp[0] |= *b++;
 | |
|       a->used += 1;
 | |
| #else
 | |
|       a->dp[0] = (*b & MP_MASK);
 | |
|       a->dp[1] |= ((*b++ >> 7U) & 1);
 | |
|       a->used += 2;
 | |
| #endif
 | |
|   }
 | |
|   mp_clamp (a);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* store in unsigned [big endian] format */
 | |
| static int
 | |
| mp_to_unsigned_bin (mp_int * a, unsigned char *b)
 | |
| {
 | |
|   int     x, res;
 | |
|   mp_int  t;
 | |
| 
 | |
|   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   x = 0;
 | |
|   while (mp_iszero (&t) == 0) {
 | |
| #ifndef MP_8BIT
 | |
|       b[x++] = (unsigned char) (t.dp[0] & 255);
 | |
| #else
 | |
|       b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
 | |
| #endif
 | |
|     if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
 | |
|       mp_clear (&t);
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
|   bn_reverse (b, x);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
 | |
| static int
 | |
| mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   mp_digit D, r, rr;
 | |
|   int     x, res;
 | |
|   mp_int  t;
 | |
| 
 | |
| 
 | |
|   /* if the shift count is <= 0 then we do no work */
 | |
|   if (b <= 0) {
 | |
|     res = mp_copy (a, c);
 | |
|     if (d != NULL) {
 | |
|       mp_zero (d);
 | |
|     }
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* get the remainder */
 | |
|   if (d != NULL) {
 | |
|     if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
 | |
|       mp_clear (&t);
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* copy */
 | |
|   if ((res = mp_copy (a, c)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* shift by as many digits in the bit count */
 | |
|   if (b >= (int)DIGIT_BIT) {
 | |
|     mp_rshd (c, b / DIGIT_BIT);
 | |
|   }
 | |
| 
 | |
|   /* shift any bit count < DIGIT_BIT */
 | |
|   D = (mp_digit) (b % DIGIT_BIT);
 | |
|   if (D != 0) {
 | |
|     register mp_digit *tmpc, mask, shift;
 | |
| 
 | |
|     /* mask */
 | |
|     mask = (((mp_digit)1) << D) - 1;
 | |
| 
 | |
|     /* shift for lsb */
 | |
|     shift = DIGIT_BIT - D;
 | |
| 
 | |
|     /* alias */
 | |
|     tmpc = c->dp + (c->used - 1);
 | |
| 
 | |
|     /* carry */
 | |
|     r = 0;
 | |
|     for (x = c->used - 1; x >= 0; x--) {
 | |
|       /* get the lower  bits of this word in a temp */
 | |
|       rr = *tmpc & mask;
 | |
| 
 | |
|       /* shift the current word and mix in the carry bits from the previous word */
 | |
|       *tmpc = (*tmpc >> D) | (r << shift);
 | |
|       --tmpc;
 | |
| 
 | |
|       /* set the carry to the carry bits of the current word found above */
 | |
|       r = rr;
 | |
|     }
 | |
|   }
 | |
|   mp_clamp (c);
 | |
|   if (d != NULL) {
 | |
|     mp_exch (&t, d);
 | |
|   }
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| mp_init_copy (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   if ((res = mp_init (a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   return mp_copy (b, a);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* set to zero */
 | |
| static void
 | |
| mp_zero (mp_int * a)
 | |
| {
 | |
|   int       n;
 | |
|   mp_digit *tmp;
 | |
| 
 | |
|   a->sign = MP_ZPOS;
 | |
|   a->used = 0;
 | |
| 
 | |
|   tmp = a->dp;
 | |
|   for (n = 0; n < a->alloc; n++) {
 | |
|      *tmp++ = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* copy, b = a */
 | |
| static int
 | |
| mp_copy (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res, n;
 | |
| 
 | |
|   /* if dst == src do nothing */
 | |
|   if (a == b) {
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* grow dest */
 | |
|   if (b->alloc < a->used) {
 | |
|      if ((res = mp_grow (b, a->used)) != MP_OKAY) {
 | |
|         return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* zero b and copy the parameters over */
 | |
|   {
 | |
|     register mp_digit *tmpa, *tmpb;
 | |
| 
 | |
|     /* pointer aliases */
 | |
| 
 | |
|     /* source */
 | |
|     tmpa = a->dp;
 | |
| 
 | |
|     /* destination */
 | |
|     tmpb = b->dp;
 | |
| 
 | |
|     /* copy all the digits */
 | |
|     for (n = 0; n < a->used; n++) {
 | |
|       *tmpb++ = *tmpa++;
 | |
|     }
 | |
| 
 | |
|     /* clear high digits */
 | |
|     for (; n < b->used; n++) {
 | |
|       *tmpb++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* copy used count and sign */
 | |
|   b->used = a->used;
 | |
|   b->sign = a->sign;
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* shift right a certain amount of digits */
 | |
| static void
 | |
| mp_rshd (mp_int * a, int b)
 | |
| {
 | |
|   int     x;
 | |
| 
 | |
|   /* if b <= 0 then ignore it */
 | |
|   if (b <= 0) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   /* if b > used then simply zero it and return */
 | |
|   if (a->used <= b) {
 | |
|     mp_zero (a);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     register mp_digit *bottom, *top;
 | |
| 
 | |
|     /* shift the digits down */
 | |
| 
 | |
|     /* bottom */
 | |
|     bottom = a->dp;
 | |
| 
 | |
|     /* top [offset into digits] */
 | |
|     top = a->dp + b;
 | |
| 
 | |
|     /* this is implemented as a sliding window where 
 | |
|      * the window is b-digits long and digits from 
 | |
|      * the top of the window are copied to the bottom
 | |
|      *
 | |
|      * e.g.
 | |
| 
 | |
|      b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
 | |
|                  /\                   |      ---->
 | |
|                   \-------------------/      ---->
 | |
|      */
 | |
|     for (x = 0; x < (a->used - b); x++) {
 | |
|       *bottom++ = *top++;
 | |
|     }
 | |
| 
 | |
|     /* zero the top digits */
 | |
|     for (; x < a->used; x++) {
 | |
|       *bottom++ = 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   /* remove excess digits */
 | |
|   a->used -= b;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* swap the elements of two integers, for cases where you can't simply swap the 
 | |
|  * mp_int pointers around
 | |
|  */
 | |
| static void
 | |
| mp_exch (mp_int * a, mp_int * b)
 | |
| {
 | |
|   mp_int  t;
 | |
| 
 | |
|   t  = *a;
 | |
|   *a = *b;
 | |
|   *b = t;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* trim unused digits 
 | |
|  *
 | |
|  * This is used to ensure that leading zero digits are
 | |
|  * trimed and the leading "used" digit will be non-zero
 | |
|  * Typically very fast.  Also fixes the sign if there
 | |
|  * are no more leading digits
 | |
|  */
 | |
| static void
 | |
| mp_clamp (mp_int * a)
 | |
| {
 | |
|   /* decrease used while the most significant digit is
 | |
|    * zero.
 | |
|    */
 | |
|   while (a->used > 0 && a->dp[a->used - 1] == 0) {
 | |
|     --(a->used);
 | |
|   }
 | |
| 
 | |
|   /* reset the sign flag if used == 0 */
 | |
|   if (a->used == 0) {
 | |
|     a->sign = MP_ZPOS;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* grow as required */
 | |
| static int
 | |
| mp_grow (mp_int * a, int size)
 | |
| {
 | |
|   int     i;
 | |
|   mp_digit *tmp;
 | |
| 
 | |
|   /* if the alloc size is smaller alloc more ram */
 | |
|   if (a->alloc < size) {
 | |
|     /* ensure there are always at least MP_PREC digits extra on top */
 | |
|     size += (MP_PREC * 2) - (size % MP_PREC);
 | |
| 
 | |
|     /* reallocate the array a->dp
 | |
|      *
 | |
|      * We store the return in a temporary variable
 | |
|      * in case the operation failed we don't want
 | |
|      * to overwrite the dp member of a.
 | |
|      */
 | |
|     tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
 | |
|     if (tmp == NULL) {
 | |
|       /* reallocation failed but "a" is still valid [can be freed] */
 | |
|       return MP_MEM;
 | |
|     }
 | |
| 
 | |
|     /* reallocation succeeded so set a->dp */
 | |
|     a->dp = tmp;
 | |
| 
 | |
|     /* zero excess digits */
 | |
|     i        = a->alloc;
 | |
|     a->alloc = size;
 | |
|     for (; i < a->alloc; i++) {
 | |
|       a->dp[i] = 0;
 | |
|     }
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef BN_MP_ABS_C
 | |
| /* b = |a| 
 | |
|  *
 | |
|  * Simple function copies the input and fixes the sign to positive
 | |
|  */
 | |
| static int
 | |
| mp_abs (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   /* copy a to b */
 | |
|   if (a != b) {
 | |
|      if ((res = mp_copy (a, b)) != MP_OKAY) {
 | |
|        return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* force the sign of b to positive */
 | |
|   b->sign = MP_ZPOS;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* set to a digit */
 | |
| static void
 | |
| mp_set (mp_int * a, mp_digit b)
 | |
| {
 | |
|   mp_zero (a);
 | |
|   a->dp[0] = b & MP_MASK;
 | |
|   a->used  = (a->dp[0] != 0) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifndef LTM_NO_NEG_EXP
 | |
| /* b = a/2 */
 | |
| static int
 | |
| mp_div_2(mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     x, res, oldused;
 | |
| 
 | |
|   /* copy */
 | |
|   if (b->alloc < a->used) {
 | |
|     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   oldused = b->used;
 | |
|   b->used = a->used;
 | |
|   {
 | |
|     register mp_digit r, rr, *tmpa, *tmpb;
 | |
| 
 | |
|     /* source alias */
 | |
|     tmpa = a->dp + b->used - 1;
 | |
| 
 | |
|     /* dest alias */
 | |
|     tmpb = b->dp + b->used - 1;
 | |
| 
 | |
|     /* carry */
 | |
|     r = 0;
 | |
|     for (x = b->used - 1; x >= 0; x--) {
 | |
|       /* get the carry for the next iteration */
 | |
|       rr = *tmpa & 1;
 | |
| 
 | |
|       /* shift the current digit, add in carry and store */
 | |
|       *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
 | |
| 
 | |
|       /* forward carry to next iteration */
 | |
|       r = rr;
 | |
|     }
 | |
| 
 | |
|     /* zero excess digits */
 | |
|     tmpb = b->dp + b->used;
 | |
|     for (x = b->used; x < oldused; x++) {
 | |
|       *tmpb++ = 0;
 | |
|     }
 | |
|   }
 | |
|   b->sign = a->sign;
 | |
|   mp_clamp (b);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif /* LTM_NO_NEG_EXP */
 | |
| 
 | |
| 
 | |
| /* shift left by a certain bit count */
 | |
| static int
 | |
| mp_mul_2d (mp_int * a, int b, mp_int * c)
 | |
| {
 | |
|   mp_digit d;
 | |
|   int      res;
 | |
| 
 | |
|   /* copy */
 | |
|   if (a != c) {
 | |
|      if ((res = mp_copy (a, c)) != MP_OKAY) {
 | |
|        return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
 | |
|      if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
 | |
|        return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* shift by as many digits in the bit count */
 | |
|   if (b >= (int)DIGIT_BIT) {
 | |
|     if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* shift any bit count < DIGIT_BIT */
 | |
|   d = (mp_digit) (b % DIGIT_BIT);
 | |
|   if (d != 0) {
 | |
|     register mp_digit *tmpc, shift, mask, r, rr;
 | |
|     register int x;
 | |
| 
 | |
|     /* bitmask for carries */
 | |
|     mask = (((mp_digit)1) << d) - 1;
 | |
| 
 | |
|     /* shift for msbs */
 | |
|     shift = DIGIT_BIT - d;
 | |
| 
 | |
|     /* alias */
 | |
|     tmpc = c->dp;
 | |
| 
 | |
|     /* carry */
 | |
|     r    = 0;
 | |
|     for (x = 0; x < c->used; x++) {
 | |
|       /* get the higher bits of the current word */
 | |
|       rr = (*tmpc >> shift) & mask;
 | |
| 
 | |
|       /* shift the current word and OR in the carry */
 | |
|       *tmpc = ((*tmpc << d) | r) & MP_MASK;
 | |
|       ++tmpc;
 | |
| 
 | |
|       /* set the carry to the carry bits of the current word */
 | |
|       r = rr;
 | |
|     }
 | |
|     
 | |
|     /* set final carry */
 | |
|     if (r != 0) {
 | |
|        c->dp[(c->used)++] = r;
 | |
|     }
 | |
|   }
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef BN_MP_INIT_MULTI_C
 | |
| static int
 | |
| mp_init_multi(mp_int *mp, ...) 
 | |
| {
 | |
|     mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
 | |
|     int n = 0;                 /* Number of ok inits */
 | |
|     mp_int* cur_arg = mp;
 | |
|     va_list args;
 | |
| 
 | |
|     va_start(args, mp);        /* init args to next argument from caller */
 | |
|     while (cur_arg != NULL) {
 | |
|         if (mp_init(cur_arg) != MP_OKAY) {
 | |
|             /* Oops - error! Back-track and mp_clear what we already
 | |
|                succeeded in init-ing, then return error.
 | |
|             */
 | |
|             va_list clean_args;
 | |
|             
 | |
|             /* end the current list */
 | |
|             va_end(args);
 | |
|             
 | |
|             /* now start cleaning up */            
 | |
|             cur_arg = mp;
 | |
|             va_start(clean_args, mp);
 | |
|             while (n--) {
 | |
|                 mp_clear(cur_arg);
 | |
|                 cur_arg = va_arg(clean_args, mp_int*);
 | |
|             }
 | |
|             va_end(clean_args);
 | |
|             res = MP_MEM;
 | |
|             break;
 | |
|         }
 | |
|         n++;
 | |
|         cur_arg = va_arg(args, mp_int*);
 | |
|     }
 | |
|     va_end(args);
 | |
|     return res;                /* Assumed ok, if error flagged above. */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef BN_MP_CLEAR_MULTI_C
 | |
| static void
 | |
| mp_clear_multi(mp_int *mp, ...) 
 | |
| {
 | |
|     mp_int* next_mp = mp;
 | |
|     va_list args;
 | |
|     va_start(args, mp);
 | |
|     while (next_mp != NULL) {
 | |
|         mp_clear(next_mp);
 | |
|         next_mp = va_arg(args, mp_int*);
 | |
|     }
 | |
|     va_end(args);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* shift left a certain amount of digits */
 | |
| static int
 | |
| mp_lshd (mp_int * a, int b)
 | |
| {
 | |
|   int     x, res;
 | |
| 
 | |
|   /* if its less than zero return */
 | |
|   if (b <= 0) {
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* grow to fit the new digits */
 | |
|   if (a->alloc < a->used + b) {
 | |
|      if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
 | |
|        return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     register mp_digit *top, *bottom;
 | |
| 
 | |
|     /* increment the used by the shift amount then copy upwards */
 | |
|     a->used += b;
 | |
| 
 | |
|     /* top */
 | |
|     top = a->dp + a->used - 1;
 | |
| 
 | |
|     /* base */
 | |
|     bottom = a->dp + a->used - 1 - b;
 | |
| 
 | |
|     /* much like mp_rshd this is implemented using a sliding window
 | |
|      * except the window goes the otherway around.  Copying from
 | |
|      * the bottom to the top.  see bn_mp_rshd.c for more info.
 | |
|      */
 | |
|     for (x = a->used - 1; x >= b; x--) {
 | |
|       *top-- = *bottom--;
 | |
|     }
 | |
| 
 | |
|     /* zero the lower digits */
 | |
|     top = a->dp;
 | |
|     for (x = 0; x < b; x++) {
 | |
|       *top++ = 0;
 | |
|     }
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* returns the number of bits in an int */
 | |
| static int
 | |
| mp_count_bits (mp_int * a)
 | |
| {
 | |
|   int     r;
 | |
|   mp_digit q;
 | |
| 
 | |
|   /* shortcut */
 | |
|   if (a->used == 0) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /* get number of digits and add that */
 | |
|   r = (a->used - 1) * DIGIT_BIT;
 | |
|   
 | |
|   /* take the last digit and count the bits in it */
 | |
|   q = a->dp[a->used - 1];
 | |
|   while (q > ((mp_digit) 0)) {
 | |
|     ++r;
 | |
|     q >>= ((mp_digit) 1);
 | |
|   }
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* calc a value mod 2**b */
 | |
| static int
 | |
| mp_mod_2d (mp_int * a, int b, mp_int * c)
 | |
| {
 | |
|   int     x, res;
 | |
| 
 | |
|   /* if b is <= 0 then zero the int */
 | |
|   if (b <= 0) {
 | |
|     mp_zero (c);
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* if the modulus is larger than the value than return */
 | |
|   if (b >= (int) (a->used * DIGIT_BIT)) {
 | |
|     res = mp_copy (a, c);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* copy */
 | |
|   if ((res = mp_copy (a, c)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* zero digits above the last digit of the modulus */
 | |
|   for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
 | |
|     c->dp[x] = 0;
 | |
|   }
 | |
|   /* clear the digit that is not completely outside/inside the modulus */
 | |
|   c->dp[b / DIGIT_BIT] &=
 | |
|     (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef BN_MP_DIV_SMALL
 | |
| 
 | |
| /* slower bit-bang division... also smaller */
 | |
| static int
 | |
| mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|    mp_int ta, tb, tq, q;
 | |
|    int    res, n, n2;
 | |
| 
 | |
|   /* is divisor zero ? */
 | |
|   if (mp_iszero (b) == 1) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if a < b then q=0, r = a */
 | |
|   if (mp_cmp_mag (a, b) == MP_LT) {
 | |
|     if (d != NULL) {
 | |
|       res = mp_copy (a, d);
 | |
|     } else {
 | |
|       res = MP_OKAY;
 | |
|     }
 | |
|     if (c != NULL) {
 | |
|       mp_zero (c);
 | |
|     }
 | |
|     return res;
 | |
|   }
 | |
| 	
 | |
|   /* init our temps */
 | |
|   if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   mp_set(&tq, 1);
 | |
|   n = mp_count_bits(a) - mp_count_bits(b);
 | |
|   if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
 | |
|       ((res = mp_abs(b, &tb)) != MP_OKAY) || 
 | |
|       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
 | |
|       ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
 | |
|       goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   while (n-- >= 0) {
 | |
|      if (mp_cmp(&tb, &ta) != MP_GT) {
 | |
|         if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
 | |
|             ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
 | |
|            goto LBL_ERR;
 | |
|         }
 | |
|      }
 | |
|      if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
 | |
|          ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
 | |
|            goto LBL_ERR;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* now q == quotient and ta == remainder */
 | |
|   n  = a->sign;
 | |
|   n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
 | |
|   if (c != NULL) {
 | |
|      mp_exch(c, &q);
 | |
|      c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
 | |
|   }
 | |
|   if (d != NULL) {
 | |
|      mp_exch(d, &ta);
 | |
|      d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
 | |
|   }
 | |
| LBL_ERR:
 | |
|    mp_clear_multi(&ta, &tb, &tq, &q, NULL);
 | |
|    return res;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* integer signed division. 
 | |
|  * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 | |
|  * HAC pp.598 Algorithm 14.20
 | |
|  *
 | |
|  * Note that the description in HAC is horribly 
 | |
|  * incomplete.  For example, it doesn't consider 
 | |
|  * the case where digits are removed from 'x' in 
 | |
|  * the inner loop.  It also doesn't consider the 
 | |
|  * case that y has fewer than three digits, etc..
 | |
|  *
 | |
|  * The overall algorithm is as described as 
 | |
|  * 14.20 from HAC but fixed to treat these cases.
 | |
| */
 | |
| static int
 | |
| mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   mp_int  q, x, y, t1, t2;
 | |
|   int     res, n, t, i, norm, neg;
 | |
| 
 | |
|   /* is divisor zero ? */
 | |
|   if (mp_iszero (b) == 1) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if a < b then q=0, r = a */
 | |
|   if (mp_cmp_mag (a, b) == MP_LT) {
 | |
|     if (d != NULL) {
 | |
|       res = mp_copy (a, d);
 | |
|     } else {
 | |
|       res = MP_OKAY;
 | |
|     }
 | |
|     if (c != NULL) {
 | |
|       mp_zero (c);
 | |
|     }
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   q.used = a->used + 2;
 | |
| 
 | |
|   if ((res = mp_init (&t1)) != MP_OKAY) {
 | |
|     goto LBL_Q;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t2)) != MP_OKAY) {
 | |
|     goto LBL_T1;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
 | |
|     goto LBL_T2;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
 | |
|     goto LBL_X;
 | |
|   }
 | |
| 
 | |
|   /* fix the sign */
 | |
|   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
 | |
|   x.sign = y.sign = MP_ZPOS;
 | |
| 
 | |
|   /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
 | |
|   norm = mp_count_bits(&y) % DIGIT_BIT;
 | |
|   if (norm < (int)(DIGIT_BIT-1)) {
 | |
|      norm = (DIGIT_BIT-1) - norm;
 | |
|      if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
 | |
|        goto LBL_Y;
 | |
|      }
 | |
|      if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
 | |
|        goto LBL_Y;
 | |
|      }
 | |
|   } else {
 | |
|      norm = 0;
 | |
|   }
 | |
| 
 | |
|   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
 | |
|   n = x.used - 1;
 | |
|   t = y.used - 1;
 | |
| 
 | |
|   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
 | |
|   if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
 | |
|     goto LBL_Y;
 | |
|   }
 | |
| 
 | |
|   while (mp_cmp (&x, &y) != MP_LT) {
 | |
|     ++(q.dp[n - t]);
 | |
|     if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* reset y by shifting it back down */
 | |
|   mp_rshd (&y, n - t);
 | |
| 
 | |
|   /* step 3. for i from n down to (t + 1) */
 | |
|   for (i = n; i >= (t + 1); i--) {
 | |
|     if (i > x.used) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 
 | |
|      * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
 | |
|     if (x.dp[i] == y.dp[t]) {
 | |
|       q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
 | |
|     } else {
 | |
|       mp_word tmp;
 | |
|       tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
 | |
|       tmp |= ((mp_word) x.dp[i - 1]);
 | |
|       tmp /= ((mp_word) y.dp[t]);
 | |
|       if (tmp > (mp_word) MP_MASK)
 | |
|         tmp = MP_MASK;
 | |
|       q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
 | |
|     }
 | |
| 
 | |
|     /* while (q{i-t-1} * (yt * b + y{t-1})) > 
 | |
|              xi * b**2 + xi-1 * b + xi-2 
 | |
|      
 | |
|        do q{i-t-1} -= 1; 
 | |
|     */
 | |
|     q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
 | |
|     do {
 | |
|       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
 | |
| 
 | |
|       /* find left hand */
 | |
|       mp_zero (&t1);
 | |
|       t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
 | |
|       t1.dp[1] = y.dp[t];
 | |
|       t1.used = 2;
 | |
|       if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
 | |
|         goto LBL_Y;
 | |
|       }
 | |
| 
 | |
|       /* find right hand */
 | |
|       t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
 | |
|       t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
 | |
|       t2.dp[2] = x.dp[i];
 | |
|       t2.used = 3;
 | |
|     } while (mp_cmp_mag(&t1, &t2) == MP_GT);
 | |
| 
 | |
|     /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
 | |
|     if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
| 
 | |
|     /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
 | |
|     if (x.sign == MP_NEG) {
 | |
|       if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
 | |
|         goto LBL_Y;
 | |
|       }
 | |
|       if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
 | |
|         goto LBL_Y;
 | |
|       }
 | |
|       if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
 | |
|         goto LBL_Y;
 | |
|       }
 | |
| 
 | |
|       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* now q is the quotient and x is the remainder 
 | |
|    * [which we have to normalize] 
 | |
|    */
 | |
|   
 | |
|   /* get sign before writing to c */
 | |
|   x.sign = x.used == 0 ? MP_ZPOS : a->sign;
 | |
| 
 | |
|   if (c != NULL) {
 | |
|     mp_clamp (&q);
 | |
|     mp_exch (&q, c);
 | |
|     c->sign = neg;
 | |
|   }
 | |
| 
 | |
|   if (d != NULL) {
 | |
|     mp_div_2d (&x, norm, &x, NULL);
 | |
|     mp_exch (&x, d);
 | |
|   }
 | |
| 
 | |
|   res = MP_OKAY;
 | |
| 
 | |
| LBL_Y:mp_clear (&y);
 | |
| LBL_X:mp_clear (&x);
 | |
| LBL_T2:mp_clear (&t2);
 | |
| LBL_T1:mp_clear (&t1);
 | |
| LBL_Q:mp_clear (&q);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef MP_LOW_MEM
 | |
|    #define TAB_SIZE 32
 | |
| #else
 | |
|    #define TAB_SIZE 256
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
 | |
| {
 | |
|   mp_int  M[TAB_SIZE], res, mu;
 | |
|   mp_digit buf;
 | |
|   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | |
|   int (*redux)(mp_int*,mp_int*,mp_int*);
 | |
| 
 | |
|   /* find window size */
 | |
|   x = mp_count_bits (X);
 | |
|   if (x <= 7) {
 | |
|     winsize = 2;
 | |
|   } else if (x <= 36) {
 | |
|     winsize = 3;
 | |
|   } else if (x <= 140) {
 | |
|     winsize = 4;
 | |
|   } else if (x <= 450) {
 | |
|     winsize = 5;
 | |
|   } else if (x <= 1303) {
 | |
|     winsize = 6;
 | |
|   } else if (x <= 3529) {
 | |
|     winsize = 7;
 | |
|   } else {
 | |
|     winsize = 8;
 | |
|   }
 | |
| 
 | |
| #ifdef MP_LOW_MEM
 | |
|     if (winsize > 5) {
 | |
|        winsize = 5;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   /* init M array */
 | |
|   /* init first cell */
 | |
|   if ((err = mp_init(&M[1])) != MP_OKAY) {
 | |
|      return err; 
 | |
|   }
 | |
| 
 | |
|   /* now init the second half of the array */
 | |
|   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|     if ((err = mp_init(&M[x])) != MP_OKAY) {
 | |
|       for (y = 1<<(winsize-1); y < x; y++) {
 | |
|         mp_clear (&M[y]);
 | |
|       }
 | |
|       mp_clear(&M[1]);
 | |
|       return err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* create mu, used for Barrett reduction */
 | |
|   if ((err = mp_init (&mu)) != MP_OKAY) {
 | |
|     goto LBL_M;
 | |
|   }
 | |
|   
 | |
|   if (redmode == 0) {
 | |
|      if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
 | |
|         goto LBL_MU;
 | |
|      }
 | |
|      redux = mp_reduce;
 | |
|   } else {
 | |
|      if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
 | |
|         goto LBL_MU;
 | |
|      }
 | |
|      redux = mp_reduce_2k_l;
 | |
|   }    
 | |
| 
 | |
|   /* create M table
 | |
|    *
 | |
|    * The M table contains powers of the base, 
 | |
|    * e.g. M[x] = G**x mod P
 | |
|    *
 | |
|    * The first half of the table is not 
 | |
|    * computed though accept for M[0] and M[1]
 | |
|    */
 | |
|   if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
 | |
|     goto LBL_MU;
 | |
|   }
 | |
| 
 | |
|   /* compute the value at M[1<<(winsize-1)] by squaring 
 | |
|    * M[1] (winsize-1) times 
 | |
|    */
 | |
|   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|     goto LBL_MU;
 | |
|   }
 | |
| 
 | |
|   for (x = 0; x < (winsize - 1); x++) {
 | |
|     /* square it */
 | |
|     if ((err = mp_sqr (&M[1 << (winsize - 1)], 
 | |
|                        &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
| 
 | |
|     /* reduce modulo P */
 | |
|     if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
 | |
|    * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
 | |
|    */
 | |
|   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | |
|     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
|     if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* setup result */
 | |
|   if ((err = mp_init (&res)) != MP_OKAY) {
 | |
|     goto LBL_MU;
 | |
|   }
 | |
|   mp_set (&res, 1);
 | |
| 
 | |
|   /* set initial mode and bit cnt */
 | |
|   mode   = 0;
 | |
|   bitcnt = 1;
 | |
|   buf    = 0;
 | |
|   digidx = X->used - 1;
 | |
|   bitcpy = 0;
 | |
|   bitbuf = 0;
 | |
| 
 | |
|   for (;;) {
 | |
|     /* grab next digit as required */
 | |
|     if (--bitcnt == 0) {
 | |
|       /* if digidx == -1 we are out of digits */
 | |
|       if (digidx == -1) {
 | |
|         break;
 | |
|       }
 | |
|       /* read next digit and reset the bitcnt */
 | |
|       buf    = X->dp[digidx--];
 | |
|       bitcnt = (int) DIGIT_BIT;
 | |
|     }
 | |
| 
 | |
|     /* grab the next msb from the exponent */
 | |
|     y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
 | |
|     buf <<= (mp_digit)1;
 | |
| 
 | |
|     /* if the bit is zero and mode == 0 then we ignore it
 | |
|      * These represent the leading zero bits before the first 1 bit
 | |
|      * in the exponent.  Technically this opt is not required but it
 | |
|      * does lower the # of trivial squaring/reductions used
 | |
|      */
 | |
|     if (mode == 0 && y == 0) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* if the bit is zero and mode == 1 then we square */
 | |
|     if (mode == 1 && y == 0) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* else we add it to the window */
 | |
|     bitbuf |= (y << (winsize - ++bitcpy));
 | |
|     mode    = 2;
 | |
| 
 | |
|     if (bitcpy == winsize) {
 | |
|       /* ok window is filled so square as required and multiply  */
 | |
|       /* square first */
 | |
|       for (x = 0; x < winsize; x++) {
 | |
|         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       /* then multiply */
 | |
|       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
| 
 | |
|       /* empty window and reset */
 | |
|       bitcpy = 0;
 | |
|       bitbuf = 0;
 | |
|       mode   = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if bits remain then square/multiply */
 | |
|   if (mode == 2 && bitcpy > 0) {
 | |
|     /* square then multiply if the bit is set */
 | |
|     for (x = 0; x < bitcpy; x++) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
| 
 | |
|       bitbuf <<= 1;
 | |
|       if ((bitbuf & (1 << winsize)) != 0) {
 | |
|         /* then multiply */
 | |
|         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_exch (&res, Y);
 | |
|   err = MP_OKAY;
 | |
| LBL_RES:mp_clear (&res);
 | |
| LBL_MU:mp_clear (&mu);
 | |
| LBL_M:
 | |
|   mp_clear(&M[1]);
 | |
|   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|     mp_clear (&M[x]);
 | |
|   }
 | |
|   return err;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* computes b = a*a */
 | |
| static int
 | |
| mp_sqr (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
| #ifdef BN_MP_TOOM_SQR_C
 | |
|   /* use Toom-Cook? */
 | |
|   if (a->used >= TOOM_SQR_CUTOFF) {
 | |
|     res = mp_toom_sqr(a, b);
 | |
|   /* Karatsuba? */
 | |
|   } else 
 | |
| #endif
 | |
| #ifdef BN_MP_KARATSUBA_SQR_C
 | |
| if (a->used >= KARATSUBA_SQR_CUTOFF) {
 | |
|     res = mp_karatsuba_sqr (a, b);
 | |
|   } else 
 | |
| #endif
 | |
|   {
 | |
| #ifdef BN_FAST_S_MP_SQR_C
 | |
|     /* can we use the fast comba multiplier? */
 | |
|     if ((a->used * 2 + 1) < MP_WARRAY && 
 | |
|          a->used < 
 | |
|          (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
 | |
|       res = fast_s_mp_sqr (a, b);
 | |
|     } else
 | |
| #endif
 | |
| #ifdef BN_S_MP_SQR_C
 | |
|       res = s_mp_sqr (a, b);
 | |
| #else
 | |
| #error mp_sqr could fail
 | |
|       res = MP_VAL;
 | |
| #endif
 | |
|   }
 | |
|   b->sign = MP_ZPOS;
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* reduces a modulo n where n is of the form 2**p - d 
 | |
|    This differs from reduce_2k since "d" can be larger
 | |
|    than a single digit.
 | |
| */
 | |
| static int
 | |
| mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
 | |
| {
 | |
|    mp_int q;
 | |
|    int    p, res;
 | |
|    
 | |
|    if ((res = mp_init(&q)) != MP_OKAY) {
 | |
|       return res;
 | |
|    }
 | |
|    
 | |
|    p = mp_count_bits(n);    
 | |
| top:
 | |
|    /* q = a/2**p, a = a mod 2**p */
 | |
|    if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
 | |
|       goto ERR;
 | |
|    }
 | |
|    
 | |
|    /* q = q * d */
 | |
|    if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { 
 | |
|       goto ERR;
 | |
|    }
 | |
|    
 | |
|    /* a = a + q */
 | |
|    if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
 | |
|       goto ERR;
 | |
|    }
 | |
|    
 | |
|    if (mp_cmp_mag(a, n) != MP_LT) {
 | |
|       s_mp_sub(a, n, a);
 | |
|       goto top;
 | |
|    }
 | |
|    
 | |
| ERR:
 | |
|    mp_clear(&q);
 | |
|    return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* determines the setup value */
 | |
| static int
 | |
| mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
 | |
| {
 | |
|    int    res;
 | |
|    mp_int tmp;
 | |
|    
 | |
|    if ((res = mp_init(&tmp)) != MP_OKAY) {
 | |
|       return res;
 | |
|    }
 | |
|    
 | |
|    if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
 | |
|       goto ERR;
 | |
|    }
 | |
|    
 | |
|    if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
 | |
|       goto ERR;
 | |
|    }
 | |
|    
 | |
| ERR:
 | |
|    mp_clear(&tmp);
 | |
|    return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* computes a = 2**b 
 | |
|  *
 | |
|  * Simple algorithm which zeroes the int, grows it then just sets one bit
 | |
|  * as required.
 | |
|  */
 | |
| static int
 | |
| mp_2expt (mp_int * a, int b)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   /* zero a as per default */
 | |
|   mp_zero (a);
 | |
| 
 | |
|   /* grow a to accommodate the single bit */
 | |
|   if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* set the used count of where the bit will go */
 | |
|   a->used = b / DIGIT_BIT + 1;
 | |
| 
 | |
|   /* put the single bit in its place */
 | |
|   a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* pre-calculate the value required for Barrett reduction
 | |
|  * For a given modulus "b" it calulates the value required in "a"
 | |
|  */
 | |
| static int
 | |
| mp_reduce_setup (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
|   
 | |
|   if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   return mp_div (a, b, a, NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* reduces x mod m, assumes 0 < x < m**2, mu is 
 | |
|  * precomputed via mp_reduce_setup.
 | |
|  * From HAC pp.604 Algorithm 14.42
 | |
|  */
 | |
| static int
 | |
| mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
 | |
| {
 | |
|   mp_int  q;
 | |
|   int     res, um = m->used;
 | |
| 
 | |
|   /* q = x */
 | |
|   if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* q1 = x / b**(k-1)  */
 | |
|   mp_rshd (&q, um - 1);         
 | |
| 
 | |
|   /* according to HAC this optimization is ok */
 | |
|   if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
 | |
|     if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
 | |
|       goto CLEANUP;
 | |
|     }
 | |
|   } else {
 | |
| #ifdef BN_S_MP_MUL_HIGH_DIGS_C
 | |
|     if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
 | |
|       goto CLEANUP;
 | |
|     }
 | |
| #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
 | |
|     if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
 | |
|       goto CLEANUP;
 | |
|     }
 | |
| #else 
 | |
|     { 
 | |
| #error mp_reduce would always fail
 | |
|       res = MP_VAL;
 | |
|       goto CLEANUP;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   /* q3 = q2 / b**(k+1) */
 | |
|   mp_rshd (&q, um + 1);         
 | |
| 
 | |
|   /* x = x mod b**(k+1), quick (no division) */
 | |
|   if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
 | |
|     goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* q = q * m mod b**(k+1), quick (no division) */
 | |
|   if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
 | |
|     goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* x = x - q */
 | |
|   if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
 | |
|     goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* If x < 0, add b**(k+1) to it */
 | |
|   if (mp_cmp_d (x, 0) == MP_LT) {
 | |
|     mp_set (&q, 1);
 | |
|     if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) {
 | |
|       goto CLEANUP;
 | |
|     }
 | |
|     if ((res = mp_add (x, &q, x)) != MP_OKAY) {
 | |
|       goto CLEANUP;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Back off if it's too big */
 | |
|   while (mp_cmp (x, m) != MP_LT) {
 | |
|     if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
 | |
|       goto CLEANUP;
 | |
|     }
 | |
|   }
 | |
|   
 | |
| CLEANUP:
 | |
|   mp_clear (&q);
 | |
| 
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* multiplies |a| * |b| and only computes up to digs digits of result
 | |
|  * HAC pp. 595, Algorithm 14.12  Modified so you can control how 
 | |
|  * many digits of output are created.
 | |
|  */
 | |
| static int
 | |
| s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res, pa, pb, ix, iy;
 | |
|   mp_digit u;
 | |
|   mp_word r;
 | |
|   mp_digit tmpx, *tmpt, *tmpy;
 | |
| 
 | |
|   /* can we use the fast multiplier? */
 | |
|   if (((digs) < MP_WARRAY) &&
 | |
|       MIN (a->used, b->used) < 
 | |
|           (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|     return fast_s_mp_mul_digs (a, b, c, digs);
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   t.used = digs;
 | |
| 
 | |
|   /* compute the digits of the product directly */
 | |
|   pa = a->used;
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|     /* set the carry to zero */
 | |
|     u = 0;
 | |
| 
 | |
|     /* limit ourselves to making digs digits of output */
 | |
|     pb = MIN (b->used, digs - ix);
 | |
| 
 | |
|     /* setup some aliases */
 | |
|     /* copy of the digit from a used within the nested loop */
 | |
|     tmpx = a->dp[ix];
 | |
|     
 | |
|     /* an alias for the destination shifted ix places */
 | |
|     tmpt = t.dp + ix;
 | |
|     
 | |
|     /* an alias for the digits of b */
 | |
|     tmpy = b->dp;
 | |
| 
 | |
|     /* compute the columns of the output and propagate the carry */
 | |
|     for (iy = 0; iy < pb; iy++) {
 | |
|       /* compute the column as a mp_word */
 | |
|       r       = ((mp_word)*tmpt) +
 | |
|                 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
 | |
|                 ((mp_word) u);
 | |
| 
 | |
|       /* the new column is the lower part of the result */
 | |
|       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|       /* get the carry word from the result */
 | |
|       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | |
|     }
 | |
|     /* set carry if it is placed below digs */
 | |
|     if (ix + iy < digs) {
 | |
|       *tmpt = u;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (&t, c);
 | |
| 
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Fast (comba) multiplier
 | |
|  *
 | |
|  * This is the fast column-array [comba] multiplier.  It is 
 | |
|  * designed to compute the columns of the product first 
 | |
|  * then handle the carries afterwards.  This has the effect 
 | |
|  * of making the nested loops that compute the columns very
 | |
|  * simple and schedulable on super-scalar processors.
 | |
|  *
 | |
|  * This has been modified to produce a variable number of 
 | |
|  * digits of output so if say only a half-product is required 
 | |
|  * you don't have to compute the upper half (a feature 
 | |
|  * required for fast Barrett reduction).
 | |
|  *
 | |
|  * Based on Algorithm 14.12 on pp.595 of HAC.
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | |
| {
 | |
|   int     olduse, res, pa, ix, iz;
 | |
|   mp_digit W[MP_WARRAY];
 | |
|   register mp_word  _W;
 | |
| 
 | |
|   /* grow the destination as required */
 | |
|   if (c->alloc < digs) {
 | |
|     if ((res = mp_grow (c, digs)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* number of output digits to produce */
 | |
|   pa = MIN(digs, a->used + b->used);
 | |
| 
 | |
|   /* clear the carry */
 | |
|   _W = 0;
 | |
|   for (ix = 0; ix < pa; ix++) { 
 | |
|       int      tx, ty;
 | |
|       int      iy;
 | |
|       mp_digit *tmpx, *tmpy;
 | |
| 
 | |
|       /* get offsets into the two bignums */
 | |
|       ty = MIN(b->used-1, ix);
 | |
|       tx = ix - ty;
 | |
| 
 | |
|       /* setup temp aliases */
 | |
|       tmpx = a->dp + tx;
 | |
|       tmpy = b->dp + ty;
 | |
| 
 | |
|       /* this is the number of times the loop will iterrate, essentially 
 | |
|          while (tx++ < a->used && ty-- >= 0) { ... }
 | |
|        */
 | |
|       iy = MIN(a->used-tx, ty+1);
 | |
| 
 | |
|       /* execute loop */
 | |
|       for (iz = 0; iz < iy; ++iz) {
 | |
|          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
 | |
| 
 | |
|       }
 | |
| 
 | |
|       /* store term */
 | |
|       W[ix] = ((mp_digit)_W) & MP_MASK;
 | |
| 
 | |
|       /* make next carry */
 | |
|       _W = _W >> ((mp_word)DIGIT_BIT);
 | |
|  }
 | |
| 
 | |
|   /* setup dest */
 | |
|   olduse  = c->used;
 | |
|   c->used = pa;
 | |
| 
 | |
|   {
 | |
|     register mp_digit *tmpc;
 | |
|     tmpc = c->dp;
 | |
|     for (ix = 0; ix < pa+1; ix++) {
 | |
|       /* now extract the previous digit [below the carry] */
 | |
|       *tmpc++ = W[ix];
 | |
|     }
 | |
| 
 | |
|     /* clear unused digits [that existed in the old copy of c] */
 | |
|     for (; ix < olduse; ix++) {
 | |
|       *tmpc++ = 0;
 | |
|     }
 | |
|   }
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* init an mp_init for a given size */
 | |
| static int
 | |
| mp_init_size (mp_int * a, int size)
 | |
| {
 | |
|   int x;
 | |
| 
 | |
|   /* pad size so there are always extra digits */
 | |
|   size += (MP_PREC * 2) - (size % MP_PREC);	
 | |
|   
 | |
|   /* alloc mem */
 | |
|   a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
 | |
|   if (a->dp == NULL) {
 | |
|     return MP_MEM;
 | |
|   }
 | |
| 
 | |
|   /* set the members */
 | |
|   a->used  = 0;
 | |
|   a->alloc = size;
 | |
|   a->sign  = MP_ZPOS;
 | |
| 
 | |
|   /* zero the digits */
 | |
|   for (x = 0; x < size; x++) {
 | |
|       a->dp[x] = 0;
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
 | |
| static int
 | |
| s_mp_sqr (mp_int * a, mp_int * b)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res, ix, iy, pa;
 | |
|   mp_word r;
 | |
|   mp_digit u, tmpx, *tmpt;
 | |
| 
 | |
|   pa = a->used;
 | |
|   if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* default used is maximum possible size */
 | |
|   t.used = 2*pa + 1;
 | |
| 
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|     /* first calculate the digit at 2*ix */
 | |
|     /* calculate double precision result */
 | |
|     r = ((mp_word) t.dp[2*ix]) +
 | |
|         ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
 | |
| 
 | |
|     /* store lower part in result */
 | |
|     t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|     /* get the carry */
 | |
|     u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | |
| 
 | |
|     /* left hand side of A[ix] * A[iy] */
 | |
|     tmpx        = a->dp[ix];
 | |
| 
 | |
|     /* alias for where to store the results */
 | |
|     tmpt        = t.dp + (2*ix + 1);
 | |
|     
 | |
|     for (iy = ix + 1; iy < pa; iy++) {
 | |
|       /* first calculate the product */
 | |
|       r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
 | |
| 
 | |
|       /* now calculate the double precision result, note we use
 | |
|        * addition instead of *2 since it's easier to optimize
 | |
|        */
 | |
|       r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);
 | |
| 
 | |
|       /* store lower part */
 | |
|       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|       /* get carry */
 | |
|       u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | |
|     }
 | |
|     /* propagate upwards */
 | |
|     while (u != ((mp_digit) 0)) {
 | |
|       r       = ((mp_word) *tmpt) + ((mp_word) u);
 | |
|       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
|       u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (&t, b);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* multiplies |a| * |b| and does not compute the lower digs digits
 | |
|  * [meant to get the higher part of the product]
 | |
|  */
 | |
| static int
 | |
| s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res, pa, pb, ix, iy;
 | |
|   mp_digit u;
 | |
|   mp_word r;
 | |
|   mp_digit tmpx, *tmpt, *tmpy;
 | |
| 
 | |
|   /* can we use the fast multiplier? */
 | |
| #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
 | |
|   if (((a->used + b->used + 1) < MP_WARRAY)
 | |
|       && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|     return fast_s_mp_mul_high_digs (a, b, c, digs);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   t.used = a->used + b->used + 1;
 | |
| 
 | |
|   pa = a->used;
 | |
|   pb = b->used;
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|     /* clear the carry */
 | |
|     u = 0;
 | |
| 
 | |
|     /* left hand side of A[ix] * B[iy] */
 | |
|     tmpx = a->dp[ix];
 | |
| 
 | |
|     /* alias to the address of where the digits will be stored */
 | |
|     tmpt = &(t.dp[digs]);
 | |
| 
 | |
|     /* alias for where to read the right hand side from */
 | |
|     tmpy = b->dp + (digs - ix);
 | |
| 
 | |
|     for (iy = digs - ix; iy < pb; iy++) {
 | |
|       /* calculate the double precision result */
 | |
|       r       = ((mp_word)*tmpt) +
 | |
|                 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
 | |
|                 ((mp_word) u);
 | |
| 
 | |
|       /* get the lower part */
 | |
|       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|       /* carry the carry */
 | |
|       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | |
|     }
 | |
|     *tmpt = u;
 | |
|   }
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (&t, c);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef BN_MP_MONTGOMERY_SETUP_C
 | |
| /* setups the montgomery reduction stuff */
 | |
| static int
 | |
| mp_montgomery_setup (mp_int * n, mp_digit * rho)
 | |
| {
 | |
|   mp_digit x, b;
 | |
| 
 | |
| /* fast inversion mod 2**k
 | |
|  *
 | |
|  * Based on the fact that
 | |
|  *
 | |
|  * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
 | |
|  *                    =>  2*X*A - X*X*A*A = 1
 | |
|  *                    =>  2*(1) - (1)     = 1
 | |
|  */
 | |
|   b = n->dp[0];
 | |
| 
 | |
|   if ((b & 1) == 0) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
 | |
|   x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
 | |
| #if !defined(MP_8BIT)
 | |
|   x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
 | |
| #endif
 | |
| #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
 | |
|   x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
 | |
| #endif
 | |
| #ifdef MP_64BIT
 | |
|   x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
 | |
| #endif
 | |
| 
 | |
|   /* rho = -1/m mod b */
 | |
|   *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
 | |
| /* computes xR**-1 == x (mod N) via Montgomery Reduction
 | |
|  *
 | |
|  * This is an optimized implementation of montgomery_reduce
 | |
|  * which uses the comba method to quickly calculate the columns of the
 | |
|  * reduction.
 | |
|  *
 | |
|  * Based on Algorithm 14.32 on pp.601 of HAC.
 | |
| */
 | |
| int
 | |
| fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 | |
| {
 | |
|   int     ix, res, olduse;
 | |
|   mp_word W[MP_WARRAY];
 | |
| 
 | |
|   /* get old used count */
 | |
|   olduse = x->used;
 | |
| 
 | |
|   /* grow a as required */
 | |
|   if (x->alloc < n->used + 1) {
 | |
|     if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* first we have to get the digits of the input into
 | |
|    * an array of double precision words W[...]
 | |
|    */
 | |
|   {
 | |
|     register mp_word *_W;
 | |
|     register mp_digit *tmpx;
 | |
| 
 | |
|     /* alias for the W[] array */
 | |
|     _W   = W;
 | |
| 
 | |
|     /* alias for the digits of  x*/
 | |
|     tmpx = x->dp;
 | |
| 
 | |
|     /* copy the digits of a into W[0..a->used-1] */
 | |
|     for (ix = 0; ix < x->used; ix++) {
 | |
|       *_W++ = *tmpx++;
 | |
|     }
 | |
| 
 | |
|     /* zero the high words of W[a->used..m->used*2] */
 | |
|     for (; ix < n->used * 2 + 1; ix++) {
 | |
|       *_W++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* now we proceed to zero successive digits
 | |
|    * from the least significant upwards
 | |
|    */
 | |
|   for (ix = 0; ix < n->used; ix++) {
 | |
|     /* mu = ai * m' mod b
 | |
|      *
 | |
|      * We avoid a double precision multiplication (which isn't required)
 | |
|      * by casting the value down to a mp_digit.  Note this requires
 | |
|      * that W[ix-1] have  the carry cleared (see after the inner loop)
 | |
|      */
 | |
|     register mp_digit mu;
 | |
|     mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
 | |
| 
 | |
|     /* a = a + mu * m * b**i
 | |
|      *
 | |
|      * This is computed in place and on the fly.  The multiplication
 | |
|      * by b**i is handled by offseting which columns the results
 | |
|      * are added to.
 | |
|      *
 | |
|      * Note the comba method normally doesn't handle carries in the
 | |
|      * inner loop In this case we fix the carry from the previous
 | |
|      * column since the Montgomery reduction requires digits of the
 | |
|      * result (so far) [see above] to work.  This is
 | |
|      * handled by fixing up one carry after the inner loop.  The
 | |
|      * carry fixups are done in order so after these loops the
 | |
|      * first m->used words of W[] have the carries fixed
 | |
|      */
 | |
|     {
 | |
|       register int iy;
 | |
|       register mp_digit *tmpn;
 | |
|       register mp_word *_W;
 | |
| 
 | |
|       /* alias for the digits of the modulus */
 | |
|       tmpn = n->dp;
 | |
| 
 | |
|       /* Alias for the columns set by an offset of ix */
 | |
|       _W = W + ix;
 | |
| 
 | |
|       /* inner loop */
 | |
|       for (iy = 0; iy < n->used; iy++) {
 | |
|           *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* now fix carry for next digit, W[ix+1] */
 | |
|     W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
 | |
|   }
 | |
| 
 | |
|   /* now we have to propagate the carries and
 | |
|    * shift the words downward [all those least
 | |
|    * significant digits we zeroed].
 | |
|    */
 | |
|   {
 | |
|     register mp_digit *tmpx;
 | |
|     register mp_word *_W, *_W1;
 | |
| 
 | |
|     /* nox fix rest of carries */
 | |
| 
 | |
|     /* alias for current word */
 | |
|     _W1 = W + ix;
 | |
| 
 | |
|     /* alias for next word, where the carry goes */
 | |
|     _W = W + ++ix;
 | |
| 
 | |
|     for (; ix <= n->used * 2 + 1; ix++) {
 | |
|       *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
 | |
|     }
 | |
| 
 | |
|     /* copy out, A = A/b**n
 | |
|      *
 | |
|      * The result is A/b**n but instead of converting from an
 | |
|      * array of mp_word to mp_digit than calling mp_rshd
 | |
|      * we just copy them in the right order
 | |
|      */
 | |
| 
 | |
|     /* alias for destination word */
 | |
|     tmpx = x->dp;
 | |
| 
 | |
|     /* alias for shifted double precision result */
 | |
|     _W = W + n->used;
 | |
| 
 | |
|     for (ix = 0; ix < n->used + 1; ix++) {
 | |
|       *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
 | |
|     }
 | |
| 
 | |
|     /* zero oldused digits, if the input a was larger than
 | |
|      * m->used+1 we'll have to clear the digits
 | |
|      */
 | |
|     for (; ix < olduse; ix++) {
 | |
|       *tmpx++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* set the max used and clamp */
 | |
|   x->used = n->used + 1;
 | |
|   mp_clamp (x);
 | |
| 
 | |
|   /* if A >= m then A = A - m */
 | |
|   if (mp_cmp_mag (x, n) != MP_LT) {
 | |
|     return s_mp_sub (x, n, x);
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef BN_MP_MUL_2_C
 | |
| /* b = a*2 */
 | |
| static int
 | |
| mp_mul_2(mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     x, res, oldused;
 | |
| 
 | |
|   /* grow to accommodate result */
 | |
|   if (b->alloc < a->used + 1) {
 | |
|     if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   oldused = b->used;
 | |
|   b->used = a->used;
 | |
| 
 | |
|   {
 | |
|     register mp_digit r, rr, *tmpa, *tmpb;
 | |
| 
 | |
|     /* alias for source */
 | |
|     tmpa = a->dp;
 | |
|     
 | |
|     /* alias for dest */
 | |
|     tmpb = b->dp;
 | |
| 
 | |
|     /* carry */
 | |
|     r = 0;
 | |
|     for (x = 0; x < a->used; x++) {
 | |
|     
 | |
|       /* get what will be the *next* carry bit from the 
 | |
|        * MSB of the current digit 
 | |
|        */
 | |
|       rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
 | |
|       
 | |
|       /* now shift up this digit, add in the carry [from the previous] */
 | |
|       *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
 | |
|       
 | |
|       /* copy the carry that would be from the source 
 | |
|        * digit into the next iteration 
 | |
|        */
 | |
|       r = rr;
 | |
|     }
 | |
| 
 | |
|     /* new leading digit? */
 | |
|     if (r != 0) {
 | |
|       /* add a MSB which is always 1 at this point */
 | |
|       *tmpb = 1;
 | |
|       ++(b->used);
 | |
|     }
 | |
| 
 | |
|     /* now zero any excess digits on the destination 
 | |
|      * that we didn't write to 
 | |
|      */
 | |
|     tmpb = b->dp + b->used;
 | |
|     for (x = b->used; x < oldused; x++) {
 | |
|       *tmpb++ = 0;
 | |
|     }
 | |
|   }
 | |
|   b->sign = a->sign;
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
 | |
| /*
 | |
|  * shifts with subtractions when the result is greater than b.
 | |
|  *
 | |
|  * The method is slightly modified to shift B unconditionally up to just under
 | |
|  * the leading bit of b.  This saves a lot of multiple precision shifting.
 | |
|  */
 | |
| static int
 | |
| mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     x, bits, res;
 | |
| 
 | |
|   /* how many bits of last digit does b use */
 | |
|   bits = mp_count_bits (b) % DIGIT_BIT;
 | |
| 
 | |
|   if (b->used > 1) {
 | |
|      if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
 | |
|         return res;
 | |
|      }
 | |
|   } else {
 | |
|      mp_set(a, 1);
 | |
|      bits = 1;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* now compute C = A * B mod b */
 | |
|   for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
 | |
|     if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     if (mp_cmp_mag (a, b) != MP_LT) {
 | |
|       if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
 | |
|         return res;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef BN_MP_EXPTMOD_FAST_C
 | |
| /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 | |
|  *
 | |
|  * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 | |
|  * The value of k changes based on the size of the exponent.
 | |
|  *
 | |
|  * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 | |
|  */
 | |
| 
 | |
| static int
 | |
| mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
 | |
| {
 | |
|   mp_int  M[TAB_SIZE], res;
 | |
|   mp_digit buf, mp;
 | |
|   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | |
| 
 | |
|   /* use a pointer to the reduction algorithm.  This allows us to use
 | |
|    * one of many reduction algorithms without modding the guts of
 | |
|    * the code with if statements everywhere.
 | |
|    */
 | |
|   int     (*redux)(mp_int*,mp_int*,mp_digit);
 | |
| 
 | |
|   /* find window size */
 | |
|   x = mp_count_bits (X);
 | |
|   if (x <= 7) {
 | |
|     winsize = 2;
 | |
|   } else if (x <= 36) {
 | |
|     winsize = 3;
 | |
|   } else if (x <= 140) {
 | |
|     winsize = 4;
 | |
|   } else if (x <= 450) {
 | |
|     winsize = 5;
 | |
|   } else if (x <= 1303) {
 | |
|     winsize = 6;
 | |
|   } else if (x <= 3529) {
 | |
|     winsize = 7;
 | |
|   } else {
 | |
|     winsize = 8;
 | |
|   }
 | |
| 
 | |
| #ifdef MP_LOW_MEM
 | |
|   if (winsize > 5) {
 | |
|      winsize = 5;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* init M array */
 | |
|   /* init first cell */
 | |
|   if ((err = mp_init(&M[1])) != MP_OKAY) {
 | |
|      return err;
 | |
|   }
 | |
| 
 | |
|   /* now init the second half of the array */
 | |
|   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|     if ((err = mp_init(&M[x])) != MP_OKAY) {
 | |
|       for (y = 1<<(winsize-1); y < x; y++) {
 | |
|         mp_clear (&M[y]);
 | |
|       }
 | |
|       mp_clear(&M[1]);
 | |
|       return err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* determine and setup reduction code */
 | |
|   if (redmode == 0) {
 | |
| #ifdef BN_MP_MONTGOMERY_SETUP_C     
 | |
|      /* now setup montgomery  */
 | |
|      if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
 | |
|         goto LBL_M;
 | |
|      }
 | |
| #else
 | |
|      err = MP_VAL;
 | |
|      goto LBL_M;
 | |
| #endif
 | |
| 
 | |
|      /* automatically pick the comba one if available (saves quite a few calls/ifs) */
 | |
| #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
 | |
|      if (((P->used * 2 + 1) < MP_WARRAY) &&
 | |
|           P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|         redux = fast_mp_montgomery_reduce;
 | |
|      } else 
 | |
| #endif
 | |
|      {
 | |
| #ifdef BN_MP_MONTGOMERY_REDUCE_C
 | |
|         /* use slower baseline Montgomery method */
 | |
|         redux = mp_montgomery_reduce;
 | |
| #else
 | |
|         err = MP_VAL;
 | |
|         goto LBL_M;
 | |
| #endif
 | |
|      }
 | |
|   } else if (redmode == 1) {
 | |
| #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
 | |
|      /* setup DR reduction for moduli of the form B**k - b */
 | |
|      mp_dr_setup(P, &mp);
 | |
|      redux = mp_dr_reduce;
 | |
| #else
 | |
|      err = MP_VAL;
 | |
|      goto LBL_M;
 | |
| #endif
 | |
|   } else {
 | |
| #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
 | |
|      /* setup DR reduction for moduli of the form 2**k - b */
 | |
|      if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
 | |
|         goto LBL_M;
 | |
|      }
 | |
|      redux = mp_reduce_2k;
 | |
| #else
 | |
|      err = MP_VAL;
 | |
|      goto LBL_M;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   /* setup result */
 | |
|   if ((err = mp_init (&res)) != MP_OKAY) {
 | |
|     goto LBL_M;
 | |
|   }
 | |
| 
 | |
|   /* create M table
 | |
|    *
 | |
| 
 | |
|    *
 | |
|    * The first half of the table is not computed though accept for M[0] and M[1]
 | |
|    */
 | |
| 
 | |
|   if (redmode == 0) {
 | |
| #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
 | |
|      /* now we need R mod m */
 | |
|      if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
 | |
|        goto LBL_RES;
 | |
|      }
 | |
| #else 
 | |
|      err = MP_VAL;
 | |
|      goto LBL_RES;
 | |
| #endif
 | |
| 
 | |
|      /* now set M[1] to G * R mod m */
 | |
|      if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
 | |
|        goto LBL_RES;
 | |
|      }
 | |
|   } else {
 | |
|      mp_set(&res, 1);
 | |
|      if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
 | |
|   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|     goto LBL_RES;
 | |
|   }
 | |
| 
 | |
|   for (x = 0; x < (winsize - 1); x++) {
 | |
|     if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|       goto LBL_RES;
 | |
|     }
 | |
|     if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
 | |
|       goto LBL_RES;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* create upper table */
 | |
|   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | |
|     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 | |
|       goto LBL_RES;
 | |
|     }
 | |
|     if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
 | |
|       goto LBL_RES;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* set initial mode and bit cnt */
 | |
|   mode   = 0;
 | |
|   bitcnt = 1;
 | |
|   buf    = 0;
 | |
|   digidx = X->used - 1;
 | |
|   bitcpy = 0;
 | |
|   bitbuf = 0;
 | |
| 
 | |
|   for (;;) {
 | |
|     /* grab next digit as required */
 | |
|     if (--bitcnt == 0) {
 | |
|       /* if digidx == -1 we are out of digits so break */
 | |
|       if (digidx == -1) {
 | |
|         break;
 | |
|       }
 | |
|       /* read next digit and reset bitcnt */
 | |
|       buf    = X->dp[digidx--];
 | |
|       bitcnt = (int)DIGIT_BIT;
 | |
|     }
 | |
| 
 | |
|     /* grab the next msb from the exponent */
 | |
|     y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
 | |
|     buf <<= (mp_digit)1;
 | |
| 
 | |
|     /* if the bit is zero and mode == 0 then we ignore it
 | |
|      * These represent the leading zero bits before the first 1 bit
 | |
|      * in the exponent.  Technically this opt is not required but it
 | |
|      * does lower the # of trivial squaring/reductions used
 | |
|      */
 | |
|     if (mode == 0 && y == 0) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* if the bit is zero and mode == 1 then we square */
 | |
|     if (mode == 1 && y == 0) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* else we add it to the window */
 | |
|     bitbuf |= (y << (winsize - ++bitcpy));
 | |
|     mode    = 2;
 | |
| 
 | |
|     if (bitcpy == winsize) {
 | |
|       /* ok window is filled so square as required and multiply  */
 | |
|       /* square first */
 | |
|       for (x = 0; x < winsize; x++) {
 | |
|         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       /* then multiply */
 | |
|       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
| 
 | |
|       /* empty window and reset */
 | |
|       bitcpy = 0;
 | |
|       bitbuf = 0;
 | |
|       mode   = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if bits remain then square/multiply */
 | |
|   if (mode == 2 && bitcpy > 0) {
 | |
|     /* square then multiply if the bit is set */
 | |
|     for (x = 0; x < bitcpy; x++) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
| 
 | |
|       /* get next bit of the window */
 | |
|       bitbuf <<= 1;
 | |
|       if ((bitbuf & (1 << winsize)) != 0) {
 | |
|         /* then multiply */
 | |
|         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (redmode == 0) {
 | |
|      /* fixup result if Montgomery reduction is used
 | |
|       * recall that any value in a Montgomery system is
 | |
|       * actually multiplied by R mod n.  So we have
 | |
|       * to reduce one more time to cancel out the factor
 | |
|       * of R.
 | |
|       */
 | |
|      if ((err = redux(&res, P, mp)) != MP_OKAY) {
 | |
|        goto LBL_RES;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* swap res with Y */
 | |
|   mp_exch (&res, Y);
 | |
|   err = MP_OKAY;
 | |
| LBL_RES:mp_clear (&res);
 | |
| LBL_M:
 | |
|   mp_clear(&M[1]);
 | |
|   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|     mp_clear (&M[x]);
 | |
|   }
 | |
|   return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef BN_FAST_S_MP_SQR_C
 | |
| /* the jist of squaring...
 | |
|  * you do like mult except the offset of the tmpx [one that 
 | |
|  * starts closer to zero] can't equal the offset of tmpy.  
 | |
|  * So basically you set up iy like before then you min it with
 | |
|  * (ty-tx) so that it never happens.  You double all those 
 | |
|  * you add in the inner loop
 | |
| 
 | |
| After that loop you do the squares and add them in.
 | |
| */
 | |
| 
 | |
| static int
 | |
| fast_s_mp_sqr (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int       olduse, res, pa, ix, iz;
 | |
|   mp_digit   W[MP_WARRAY], *tmpx;
 | |
|   mp_word   W1;
 | |
| 
 | |
|   /* grow the destination as required */
 | |
|   pa = a->used + a->used;
 | |
|   if (b->alloc < pa) {
 | |
|     if ((res = mp_grow (b, pa)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* number of output digits to produce */
 | |
|   W1 = 0;
 | |
|   for (ix = 0; ix < pa; ix++) { 
 | |
|       int      tx, ty, iy;
 | |
|       mp_word  _W;
 | |
|       mp_digit *tmpy;
 | |
| 
 | |
|       /* clear counter */
 | |
|       _W = 0;
 | |
| 
 | |
|       /* get offsets into the two bignums */
 | |
|       ty = MIN(a->used-1, ix);
 | |
|       tx = ix - ty;
 | |
| 
 | |
|       /* setup temp aliases */
 | |
|       tmpx = a->dp + tx;
 | |
|       tmpy = a->dp + ty;
 | |
| 
 | |
|       /* this is the number of times the loop will iterrate, essentially
 | |
|          while (tx++ < a->used && ty-- >= 0) { ... }
 | |
|        */
 | |
|       iy = MIN(a->used-tx, ty+1);
 | |
| 
 | |
|       /* now for squaring tx can never equal ty 
 | |
|        * we halve the distance since they approach at a rate of 2x
 | |
|        * and we have to round because odd cases need to be executed
 | |
|        */
 | |
|       iy = MIN(iy, (ty-tx+1)>>1);
 | |
| 
 | |
|       /* execute loop */
 | |
|       for (iz = 0; iz < iy; iz++) {
 | |
|          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
 | |
|       }
 | |
| 
 | |
|       /* double the inner product and add carry */
 | |
|       _W = _W + _W + W1;
 | |
| 
 | |
|       /* even columns have the square term in them */
 | |
|       if ((ix&1) == 0) {
 | |
|          _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
 | |
|       }
 | |
| 
 | |
|       /* store it */
 | |
|       W[ix] = (mp_digit)(_W & MP_MASK);
 | |
| 
 | |
|       /* make next carry */
 | |
|       W1 = _W >> ((mp_word)DIGIT_BIT);
 | |
|   }
 | |
| 
 | |
|   /* setup dest */
 | |
|   olduse  = b->used;
 | |
|   b->used = a->used+a->used;
 | |
| 
 | |
|   {
 | |
|     mp_digit *tmpb;
 | |
|     tmpb = b->dp;
 | |
|     for (ix = 0; ix < pa; ix++) {
 | |
|       *tmpb++ = W[ix] & MP_MASK;
 | |
|     }
 | |
| 
 | |
|     /* clear unused digits [that existed in the old copy of c] */
 | |
|     for (; ix < olduse; ix++) {
 | |
|       *tmpb++ = 0;
 | |
|     }
 | |
|   }
 | |
|   mp_clamp (b);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #ifdef BN_MP_MUL_D_C
 | |
| /* multiply by a digit */
 | |
| static int
 | |
| mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
 | |
| {
 | |
|   mp_digit u, *tmpa, *tmpc;
 | |
|   mp_word  r;
 | |
|   int      ix, res, olduse;
 | |
| 
 | |
|   /* make sure c is big enough to hold a*b */
 | |
|   if (c->alloc < a->used + 1) {
 | |
|     if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* get the original destinations used count */
 | |
|   olduse = c->used;
 | |
| 
 | |
|   /* set the sign */
 | |
|   c->sign = a->sign;
 | |
| 
 | |
|   /* alias for a->dp [source] */
 | |
|   tmpa = a->dp;
 | |
| 
 | |
|   /* alias for c->dp [dest] */
 | |
|   tmpc = c->dp;
 | |
| 
 | |
|   /* zero carry */
 | |
|   u = 0;
 | |
| 
 | |
|   /* compute columns */
 | |
|   for (ix = 0; ix < a->used; ix++) {
 | |
|     /* compute product and carry sum for this term */
 | |
|     r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
 | |
| 
 | |
|     /* mask off higher bits to get a single digit */
 | |
|     *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|     /* send carry into next iteration */
 | |
|     u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | |
|   }
 | |
| 
 | |
|   /* store final carry [if any] and increment ix offset  */
 | |
|   *tmpc++ = u;
 | |
|   ++ix;
 | |
| 
 | |
|   /* now zero digits above the top */
 | |
|   while (ix++ < olduse) {
 | |
|      *tmpc++ = 0;
 | |
|   }
 | |
| 
 | |
|   /* set used count */
 | |
|   c->used = a->used + 1;
 | |
|   mp_clamp(c);
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 |