mirror of
				https://github.com/0xFEEDC0DE64/arduino-esp32.git
				synced 2025-11-03 23:51:39 +01:00 
			
		
		
		
	* fix sdmmc config * Fix warnings in EEPROM from @Curclamas * remove leftover TAG in EEPROM * Initial add of @stickbreaker i2c * Add log_n * fix warnings when log is off * i2c code clean up and reorganization * add flags to interrupt allocator * fix sdmmc config * Fix warnings in EEPROM from @Curclamas * remove leftover TAG in EEPROM * fix errors with latest IDF * fix debug optimization (#1365) incorrect optimization for debugging tick markers. * Fix some missing BT header * Change BTSerial log calls * Update BLE lib * Arduino-ESP32 release management scripted (#1515) * Calculate an absolute path for a custom partitions table (#1452) * * Arduino-ESP32 release management scripted (ready-to-merge) * * secure env for espressif/arduino-esp32 * * build tests enabled * gitter webhook enabled * * gitter room link fixed * better comment * * filepaths fixed * BT Serial adjustments * * don't run sketch builds & tests for tagged builds * Return false from WiFi.hostByName() if hostname is not resolved * Free BT Memory when BT is not used * WIFI_MODE_NULL is not supported anymore * Select some key examples to build with PlatformIO to save some time * Update BLE lib * Fixed BLE lib * Major WiFi overhaul - auto reconnect on connection loss now works - moved to event groups - some code clean up and procedure optimizations - new methods to get a more elaborate system ststus * Add cmake tests to travis * Add initial AsyncUDP * Add NetBIOS lib and fix CMake includes * Add Initial WebServer * Fix WebServer and examples * travis not quiting on build fail * Try different travis build * Update IDF to aaf1239 * Fix WPS Example * fix script permission and add some fail tests to sketch builder * Add missing space in WiFiClient::write(Stream &stream)
		
			
				
	
	
		
			3442 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3442 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Minimal code for RSA support from LibTomMath 0.41
 | 
						|
 * http://libtom.org/
 | 
						|
 * http://libtom.org/files/ltm-0.41.tar.bz2
 | 
						|
 * This library was released in public domain by Tom St Denis.
 | 
						|
 *
 | 
						|
 * The combination in this file may not use all of the optimized algorithms
 | 
						|
 * from LibTomMath and may be considerable slower than the LibTomMath with its
 | 
						|
 * default settings. The main purpose of having this version here is to make it
 | 
						|
 * easier to build bignum.c wrapper without having to install and build an
 | 
						|
 * external library.
 | 
						|
 *
 | 
						|
 * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this
 | 
						|
 * libtommath.c file instead of using the external LibTomMath library.
 | 
						|
 */
 | 
						|
#include "os.h"
 | 
						|
#include "stdarg.h"
 | 
						|
 | 
						|
#ifdef MEMLEAK_DEBUG
 | 
						|
static const char mem_debug_file[] ICACHE_RODATA_ATTR = __FILE__;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef CHAR_BIT
 | 
						|
#define CHAR_BIT 8
 | 
						|
#endif
 | 
						|
 | 
						|
#define BN_MP_INVMOD_C
 | 
						|
#define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would
 | 
						|
			   * require BN_MP_EXPTMOD_FAST_C instead */
 | 
						|
#define BN_S_MP_MUL_DIGS_C
 | 
						|
#define BN_MP_INVMOD_SLOW_C
 | 
						|
#define BN_S_MP_SQR_C
 | 
						|
#define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
 | 
						|
				 * would require other than mp_reduce */
 | 
						|
 | 
						|
#ifdef LTM_FAST
 | 
						|
 | 
						|
/* Use faster div at the cost of about 1 kB */
 | 
						|
#define BN_MP_MUL_D_C
 | 
						|
 | 
						|
/* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */
 | 
						|
#define BN_MP_EXPTMOD_FAST_C
 | 
						|
#define BN_MP_MONTGOMERY_SETUP_C
 | 
						|
#define BN_FAST_MP_MONTGOMERY_REDUCE_C
 | 
						|
#define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
 | 
						|
#define BN_MP_MUL_2_C
 | 
						|
 | 
						|
/* Include faster sqr at the cost of about 0.5 kB in code */
 | 
						|
#define BN_FAST_S_MP_SQR_C
 | 
						|
 | 
						|
#else /* LTM_FAST */
 | 
						|
 | 
						|
#define BN_MP_DIV_SMALL
 | 
						|
#define BN_MP_INIT_MULTI_C
 | 
						|
#define BN_MP_CLEAR_MULTI_C
 | 
						|
#define BN_MP_ABS_C
 | 
						|
#endif /* LTM_FAST */
 | 
						|
 | 
						|
/* Current uses do not require support for negative exponent in exptmod, so we
 | 
						|
 * can save about 1.5 kB in leaving out invmod. */
 | 
						|
#define LTM_NO_NEG_EXP
 | 
						|
 | 
						|
/* from tommath.h */
 | 
						|
 | 
						|
#ifndef MIN
 | 
						|
   #define MIN(x,y) ((x)<(y)?(x):(y))
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef MAX
 | 
						|
   #define MAX(x,y) ((x)>(y)?(x):(y))
 | 
						|
#endif
 | 
						|
 | 
						|
#define  OPT_CAST(x) (x *)
 | 
						|
 | 
						|
typedef unsigned long mp_digit;
 | 
						|
typedef u64 mp_word;
 | 
						|
 | 
						|
#define DIGIT_BIT          28
 | 
						|
#define MP_28BIT
 | 
						|
 | 
						|
 | 
						|
#define XMALLOC  os_malloc
 | 
						|
#define XFREE    os_free
 | 
						|
#define XREALLOC os_realloc
 | 
						|
 | 
						|
 | 
						|
#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
 | 
						|
 | 
						|
#define MP_LT        -1   /* less than */
 | 
						|
#define MP_EQ         0   /* equal to */
 | 
						|
#define MP_GT         1   /* greater than */
 | 
						|
 | 
						|
#define MP_ZPOS       0   /* positive integer */
 | 
						|
#define MP_NEG        1   /* negative */
 | 
						|
 | 
						|
#define MP_OKAY       0   /* ok result */
 | 
						|
#define MP_MEM        -2  /* out of mem */
 | 
						|
#define MP_VAL        -3  /* invalid input */
 | 
						|
 | 
						|
#define MP_YES        1   /* yes response */
 | 
						|
#define MP_NO         0   /* no response */
 | 
						|
 | 
						|
typedef int           mp_err;
 | 
						|
 | 
						|
/* define this to use lower memory usage routines (exptmods mostly) */
 | 
						|
#define MP_LOW_MEM
 | 
						|
 | 
						|
/* default precision */
 | 
						|
#ifndef MP_PREC
 | 
						|
   #ifndef MP_LOW_MEM
 | 
						|
      #define MP_PREC                 32     /* default digits of precision */
 | 
						|
   #else
 | 
						|
      #define MP_PREC                 8      /* default digits of precision */
 | 
						|
   #endif   
 | 
						|
#endif
 | 
						|
 | 
						|
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
 | 
						|
#define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
 | 
						|
 | 
						|
/* the infamous mp_int structure */
 | 
						|
typedef struct  {
 | 
						|
    int used, alloc, sign;
 | 
						|
    mp_digit *dp;
 | 
						|
} mp_int;
 | 
						|
 | 
						|
 | 
						|
/* ---> Basic Manipulations <--- */
 | 
						|
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
 | 
						|
#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
 | 
						|
#define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
 | 
						|
 | 
						|
 | 
						|
/* prototypes for copied functions */
 | 
						|
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
 | 
						|
static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
 | 
						|
static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
 | 
						|
static int s_mp_sqr(mp_int * a, mp_int * b);
 | 
						|
static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
 | 
						|
 | 
						|
static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
 | 
						|
 | 
						|
#ifdef BN_MP_INIT_MULTI_C
 | 
						|
static int mp_init_multi(mp_int *mp, ...);
 | 
						|
#endif
 | 
						|
#ifdef BN_MP_CLEAR_MULTI_C
 | 
						|
static void mp_clear_multi(mp_int *mp, ...);
 | 
						|
#endif
 | 
						|
static int mp_lshd(mp_int * a, int b);
 | 
						|
static void mp_set(mp_int * a, mp_digit b);
 | 
						|
static void mp_clamp(mp_int * a);
 | 
						|
static void mp_exch(mp_int * a, mp_int * b);
 | 
						|
static void mp_rshd(mp_int * a, int b);
 | 
						|
static void mp_zero(mp_int * a);
 | 
						|
static int mp_mod_2d(mp_int * a, int b, mp_int * c);
 | 
						|
static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d);
 | 
						|
static int mp_init_copy(mp_int * a, mp_int * b);
 | 
						|
static int mp_mul_2d(mp_int * a, int b, mp_int * c);
 | 
						|
#ifndef LTM_NO_NEG_EXP
 | 
						|
static int mp_div_2(mp_int * a, mp_int * b);
 | 
						|
static int mp_invmod(mp_int * a, mp_int * b, mp_int * c);
 | 
						|
static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c);
 | 
						|
#endif /* LTM_NO_NEG_EXP */
 | 
						|
static int mp_copy(mp_int * a, mp_int * b);
 | 
						|
static int mp_count_bits(mp_int * a);
 | 
						|
static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
 | 
						|
static int mp_mod(mp_int * a, mp_int * b, mp_int * c);
 | 
						|
static int mp_grow(mp_int * a, int size);
 | 
						|
static int mp_cmp_mag(mp_int * a, mp_int * b);
 | 
						|
#ifdef BN_MP_ABS_C
 | 
						|
static int mp_abs(mp_int * a, mp_int * b);
 | 
						|
#endif
 | 
						|
static int mp_sqr(mp_int * a, mp_int * b);
 | 
						|
static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
 | 
						|
static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
 | 
						|
static int mp_2expt(mp_int * a, int b);
 | 
						|
static int mp_reduce_setup(mp_int * a, mp_int * b);
 | 
						|
static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu);
 | 
						|
static int mp_init_size(mp_int * a, int size);
 | 
						|
#ifdef BN_MP_EXPTMOD_FAST_C
 | 
						|
static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
 | 
						|
#endif /* BN_MP_EXPTMOD_FAST_C */
 | 
						|
#ifdef BN_FAST_S_MP_SQR_C
 | 
						|
static int fast_s_mp_sqr (mp_int * a, mp_int * b);
 | 
						|
#endif /* BN_FAST_S_MP_SQR_C */
 | 
						|
#ifdef BN_MP_MUL_D_C
 | 
						|
static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c);
 | 
						|
#endif /* BN_MP_MUL_D_C */
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* functions from bn_<func name>.c */
 | 
						|
 | 
						|
 | 
						|
/* reverse an array, used for radix code */
 | 
						|
static void
 | 
						|
bn_reverse (unsigned char *s, int len)
 | 
						|
{
 | 
						|
  int     ix, iy;
 | 
						|
  unsigned char t;
 | 
						|
 | 
						|
  ix = 0;
 | 
						|
  iy = len - 1;
 | 
						|
  while (ix < iy) {
 | 
						|
    t     = s[ix];
 | 
						|
    s[ix] = s[iy];
 | 
						|
    s[iy] = t;
 | 
						|
    ++ix;
 | 
						|
    --iy;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* low level addition, based on HAC pp.594, Algorithm 14.7 */
 | 
						|
static int
 | 
						|
s_mp_add (mp_int * a, mp_int * b, mp_int * c)
 | 
						|
{
 | 
						|
  mp_int *x;
 | 
						|
  int     olduse, res, min, max;
 | 
						|
 | 
						|
  /* find sizes, we let |a| <= |b| which means we have to sort
 | 
						|
   * them.  "x" will point to the input with the most digits
 | 
						|
   */
 | 
						|
  if (a->used > b->used) {
 | 
						|
    min = b->used;
 | 
						|
    max = a->used;
 | 
						|
    x = a;
 | 
						|
  } else {
 | 
						|
    min = a->used;
 | 
						|
    max = b->used;
 | 
						|
    x = b;
 | 
						|
  }
 | 
						|
 | 
						|
  /* init result */
 | 
						|
  if (c->alloc < max + 1) {
 | 
						|
    if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* get old used digit count and set new one */
 | 
						|
  olduse = c->used;
 | 
						|
  c->used = max + 1;
 | 
						|
 | 
						|
  {
 | 
						|
    register mp_digit u, *tmpa, *tmpb, *tmpc;
 | 
						|
    register int i;
 | 
						|
 | 
						|
    /* alias for digit pointers */
 | 
						|
 | 
						|
    /* first input */
 | 
						|
    tmpa = a->dp;
 | 
						|
 | 
						|
    /* second input */
 | 
						|
    tmpb = b->dp;
 | 
						|
 | 
						|
    /* destination */
 | 
						|
    tmpc = c->dp;
 | 
						|
 | 
						|
    /* zero the carry */
 | 
						|
    u = 0;
 | 
						|
    for (i = 0; i < min; i++) {
 | 
						|
      /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
 | 
						|
      *tmpc = *tmpa++ + *tmpb++ + u;
 | 
						|
 | 
						|
      /* U = carry bit of T[i] */
 | 
						|
      u = *tmpc >> ((mp_digit)DIGIT_BIT);
 | 
						|
 | 
						|
      /* take away carry bit from T[i] */
 | 
						|
      *tmpc++ &= MP_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    /* now copy higher words if any, that is in A+B 
 | 
						|
     * if A or B has more digits add those in 
 | 
						|
     */
 | 
						|
    if (min != max) {
 | 
						|
      for (; i < max; i++) {
 | 
						|
        /* T[i] = X[i] + U */
 | 
						|
        *tmpc = x->dp[i] + u;
 | 
						|
 | 
						|
        /* U = carry bit of T[i] */
 | 
						|
        u = *tmpc >> ((mp_digit)DIGIT_BIT);
 | 
						|
 | 
						|
        /* take away carry bit from T[i] */
 | 
						|
        *tmpc++ &= MP_MASK;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* add carry */
 | 
						|
    *tmpc++ = u;
 | 
						|
 | 
						|
    /* clear digits above oldused */
 | 
						|
    for (i = c->used; i < olduse; i++) {
 | 
						|
      *tmpc++ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  mp_clamp (c);
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
 | 
						|
static int
 | 
						|
s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
 | 
						|
{
 | 
						|
  int     olduse, res, min, max;
 | 
						|
 | 
						|
  /* find sizes */
 | 
						|
  min = b->used;
 | 
						|
  max = a->used;
 | 
						|
 | 
						|
  /* init result */
 | 
						|
  if (c->alloc < max) {
 | 
						|
    if ((res = mp_grow (c, max)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  olduse = c->used;
 | 
						|
  c->used = max;
 | 
						|
 | 
						|
  {
 | 
						|
    register mp_digit u, *tmpa, *tmpb, *tmpc;
 | 
						|
    register int i;
 | 
						|
 | 
						|
    /* alias for digit pointers */
 | 
						|
    tmpa = a->dp;
 | 
						|
    tmpb = b->dp;
 | 
						|
    tmpc = c->dp;
 | 
						|
 | 
						|
    /* set carry to zero */
 | 
						|
    u = 0;
 | 
						|
    for (i = 0; i < min; i++) {
 | 
						|
      /* T[i] = A[i] - B[i] - U */
 | 
						|
      *tmpc = *tmpa++ - *tmpb++ - u;
 | 
						|
 | 
						|
      /* U = carry bit of T[i]
 | 
						|
       * Note this saves performing an AND operation since
 | 
						|
       * if a carry does occur it will propagate all the way to the
 | 
						|
       * MSB.  As a result a single shift is enough to get the carry
 | 
						|
       */
 | 
						|
      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
 | 
						|
 | 
						|
      /* Clear carry from T[i] */
 | 
						|
      *tmpc++ &= MP_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    /* now copy higher words if any, e.g. if A has more digits than B  */
 | 
						|
    for (; i < max; i++) {
 | 
						|
      /* T[i] = A[i] - U */
 | 
						|
      *tmpc = *tmpa++ - u;
 | 
						|
 | 
						|
      /* U = carry bit of T[i] */
 | 
						|
      u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
 | 
						|
 | 
						|
      /* Clear carry from T[i] */
 | 
						|
      *tmpc++ &= MP_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    /* clear digits above used (since we may not have grown result above) */
 | 
						|
    for (i = c->used; i < olduse; i++) {
 | 
						|
      *tmpc++ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  mp_clamp (c);
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* init a new mp_int */
 | 
						|
static int
 | 
						|
mp_init (mp_int * a)
 | 
						|
{
 | 
						|
  int i;
 | 
						|
 | 
						|
  /* allocate memory required and clear it */
 | 
						|
  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
 | 
						|
  if (a->dp == NULL) {
 | 
						|
    return MP_MEM;
 | 
						|
  }
 | 
						|
 | 
						|
  /* set the digits to zero */
 | 
						|
  for (i = 0; i < MP_PREC; i++) {
 | 
						|
      a->dp[i] = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* set the used to zero, allocated digits to the default precision
 | 
						|
   * and sign to positive */
 | 
						|
  a->used  = 0;
 | 
						|
  a->alloc = MP_PREC;
 | 
						|
  a->sign  = MP_ZPOS;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* clear one (frees)  */
 | 
						|
static void
 | 
						|
mp_clear (mp_int * a)
 | 
						|
{
 | 
						|
  int i;
 | 
						|
 | 
						|
  /* only do anything if a hasn't been freed previously */
 | 
						|
  if (a->dp != NULL) {
 | 
						|
    /* first zero the digits */
 | 
						|
    for (i = 0; i < a->used; i++) {
 | 
						|
        a->dp[i] = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* free ram */
 | 
						|
    XFREE(a->dp);
 | 
						|
 | 
						|
    /* reset members to make debugging easier */
 | 
						|
    a->dp    = NULL;
 | 
						|
    a->alloc = a->used = 0;
 | 
						|
    a->sign  = MP_ZPOS;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* high level addition (handles signs) */
 | 
						|
static int
 | 
						|
mp_add (mp_int * a, mp_int * b, mp_int * c)
 | 
						|
{
 | 
						|
  int     sa, sb, res;
 | 
						|
 | 
						|
  /* get sign of both inputs */
 | 
						|
  sa = a->sign;
 | 
						|
  sb = b->sign;
 | 
						|
 | 
						|
  /* handle two cases, not four */
 | 
						|
  if (sa == sb) {
 | 
						|
    /* both positive or both negative */
 | 
						|
    /* add their magnitudes, copy the sign */
 | 
						|
    c->sign = sa;
 | 
						|
    res = s_mp_add (a, b, c);
 | 
						|
  } else {
 | 
						|
    /* one positive, the other negative */
 | 
						|
    /* subtract the one with the greater magnitude from */
 | 
						|
    /* the one of the lesser magnitude.  The result gets */
 | 
						|
    /* the sign of the one with the greater magnitude. */
 | 
						|
    if (mp_cmp_mag (a, b) == MP_LT) {
 | 
						|
      c->sign = sb;
 | 
						|
      res = s_mp_sub (b, a, c);
 | 
						|
    } else {
 | 
						|
      c->sign = sa;
 | 
						|
      res = s_mp_sub (a, b, c);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* high level subtraction (handles signs) */
 | 
						|
static int
 | 
						|
mp_sub (mp_int * a, mp_int * b, mp_int * c)
 | 
						|
{
 | 
						|
  int     sa, sb, res;
 | 
						|
 | 
						|
  sa = a->sign;
 | 
						|
  sb = b->sign;
 | 
						|
 | 
						|
  if (sa != sb) {
 | 
						|
    /* subtract a negative from a positive, OR */
 | 
						|
    /* subtract a positive from a negative. */
 | 
						|
    /* In either case, ADD their magnitudes, */
 | 
						|
    /* and use the sign of the first number. */
 | 
						|
    c->sign = sa;
 | 
						|
    res = s_mp_add (a, b, c);
 | 
						|
  } else {
 | 
						|
    /* subtract a positive from a positive, OR */
 | 
						|
    /* subtract a negative from a negative. */
 | 
						|
    /* First, take the difference between their */
 | 
						|
    /* magnitudes, then... */
 | 
						|
    if (mp_cmp_mag (a, b) != MP_LT) {
 | 
						|
      /* Copy the sign from the first */
 | 
						|
      c->sign = sa;
 | 
						|
      /* The first has a larger or equal magnitude */
 | 
						|
      res = s_mp_sub (a, b, c);
 | 
						|
    } else {
 | 
						|
      /* The result has the *opposite* sign from */
 | 
						|
      /* the first number. */
 | 
						|
      c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
 | 
						|
      /* The second has a larger magnitude */
 | 
						|
      res = s_mp_sub (b, a, c);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* high level multiplication (handles sign) */
 | 
						|
static int
 | 
						|
mp_mul (mp_int * a, mp_int * b, mp_int * c)
 | 
						|
{
 | 
						|
  int     res, neg;
 | 
						|
  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
 | 
						|
 | 
						|
  /* use Toom-Cook? */
 | 
						|
#ifdef BN_MP_TOOM_MUL_C
 | 
						|
  if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
 | 
						|
    res = mp_toom_mul(a, b, c);
 | 
						|
  } else 
 | 
						|
#endif
 | 
						|
#ifdef BN_MP_KARATSUBA_MUL_C
 | 
						|
  /* use Karatsuba? */
 | 
						|
  if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
 | 
						|
    res = mp_karatsuba_mul (a, b, c);
 | 
						|
  } else 
 | 
						|
#endif
 | 
						|
  {
 | 
						|
    /* can we use the fast multiplier?
 | 
						|
     *
 | 
						|
     * The fast multiplier can be used if the output will 
 | 
						|
     * have less than MP_WARRAY digits and the number of 
 | 
						|
     * digits won't affect carry propagation
 | 
						|
     */
 | 
						|
#ifdef BN_FAST_S_MP_MUL_DIGS_C
 | 
						|
    int     digs = a->used + b->used + 1;
 | 
						|
 | 
						|
    if ((digs < MP_WARRAY) &&
 | 
						|
        MIN(a->used, b->used) <= 
 | 
						|
        (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | 
						|
      res = fast_s_mp_mul_digs (a, b, c, digs);
 | 
						|
    } else 
 | 
						|
#endif
 | 
						|
#ifdef BN_S_MP_MUL_DIGS_C
 | 
						|
      res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
 | 
						|
#else
 | 
						|
#error mp_mul could fail
 | 
						|
      res = MP_VAL;
 | 
						|
#endif
 | 
						|
 | 
						|
  }
 | 
						|
  c->sign = (c->used > 0) ? neg : MP_ZPOS;
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* d = a * b (mod c) */
 | 
						|
static int
 | 
						|
mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | 
						|
{
 | 
						|
  int     res;
 | 
						|
  mp_int  t;
 | 
						|
 | 
						|
  if ((res = mp_init (&t)) != MP_OKAY) {
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
 | 
						|
    mp_clear (&t);
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
  res = mp_mod (&t, c, d);
 | 
						|
  mp_clear (&t);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* c = a mod b, 0 <= c < b */
 | 
						|
static int
 | 
						|
mp_mod (mp_int * a, mp_int * b, mp_int * c)
 | 
						|
{
 | 
						|
  mp_int  t;
 | 
						|
  int     res;
 | 
						|
 | 
						|
  if ((res = mp_init (&t)) != MP_OKAY) {
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
 | 
						|
    mp_clear (&t);
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  if (t.sign != b->sign) {
 | 
						|
    res = mp_add (b, &t, c);
 | 
						|
  } else {
 | 
						|
    res = MP_OKAY;
 | 
						|
    mp_exch (&t, c);
 | 
						|
  }
 | 
						|
 | 
						|
  mp_clear (&t);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* this is a shell function that calls either the normal or Montgomery
 | 
						|
 * exptmod functions.  Originally the call to the montgomery code was
 | 
						|
 * embedded in the normal function but that wasted a lot of stack space
 | 
						|
 * for nothing (since 99% of the time the Montgomery code would be called)
 | 
						|
 */
 | 
						|
static int
 | 
						|
mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
 | 
						|
{
 | 
						|
#if defined(BN_MP_DR_IS_MODULUS_C)||defined(BN_MP_REDUCE_IS_2K_C)||defined(BN_MP_EXPTMOD_FAST_C)
 | 
						|
  int dr = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
  /* modulus P must be positive */
 | 
						|
  if (P->sign == MP_NEG) {
 | 
						|
     return MP_VAL;
 | 
						|
  }
 | 
						|
 | 
						|
  /* if exponent X is negative we have to recurse */
 | 
						|
  if (X->sign == MP_NEG) {
 | 
						|
#ifdef LTM_NO_NEG_EXP
 | 
						|
        return MP_VAL;
 | 
						|
#else /* LTM_NO_NEG_EXP */
 | 
						|
#ifdef BN_MP_INVMOD_C
 | 
						|
     mp_int tmpG, tmpX;
 | 
						|
     int err;
 | 
						|
 | 
						|
     /* first compute 1/G mod P */
 | 
						|
     if ((err = mp_init(&tmpG)) != MP_OKAY) {
 | 
						|
        return err;
 | 
						|
     }
 | 
						|
     if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
 | 
						|
        mp_clear(&tmpG);
 | 
						|
        return err;
 | 
						|
     }
 | 
						|
 | 
						|
     /* now get |X| */
 | 
						|
     if ((err = mp_init(&tmpX)) != MP_OKAY) {
 | 
						|
        mp_clear(&tmpG);
 | 
						|
        return err;
 | 
						|
     }
 | 
						|
     if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
 | 
						|
        mp_clear_multi(&tmpG, &tmpX, NULL);
 | 
						|
        return err;
 | 
						|
     }
 | 
						|
 | 
						|
     /* and now compute (1/G)**|X| instead of G**X [X < 0] */
 | 
						|
     err = mp_exptmod(&tmpG, &tmpX, P, Y);
 | 
						|
     mp_clear_multi(&tmpG, &tmpX, NULL);
 | 
						|
     return err;
 | 
						|
#else 
 | 
						|
#error mp_exptmod would always fail
 | 
						|
     /* no invmod */
 | 
						|
     return MP_VAL;
 | 
						|
#endif
 | 
						|
#endif /* LTM_NO_NEG_EXP */
 | 
						|
  }
 | 
						|
 | 
						|
/* modified diminished radix reduction */
 | 
						|
#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
 | 
						|
  if (mp_reduce_is_2k_l(P) == MP_YES) {
 | 
						|
     return s_mp_exptmod(G, X, P, Y, 1);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef BN_MP_DR_IS_MODULUS_C
 | 
						|
  /* is it a DR modulus? */
 | 
						|
  dr = mp_dr_is_modulus(P);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef BN_MP_REDUCE_IS_2K_C
 | 
						|
  /* if not, is it a unrestricted DR modulus? */
 | 
						|
  if (dr == 0) {
 | 
						|
     dr = mp_reduce_is_2k(P) << 1;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
    
 | 
						|
  /* if the modulus is odd or dr != 0 use the montgomery method */
 | 
						|
#ifdef BN_MP_EXPTMOD_FAST_C
 | 
						|
  if (mp_isodd (P) == 1 || dr !=  0) {
 | 
						|
    return mp_exptmod_fast (G, X, P, Y, dr);
 | 
						|
  } else {
 | 
						|
#endif
 | 
						|
#ifdef BN_S_MP_EXPTMOD_C
 | 
						|
    /* otherwise use the generic Barrett reduction technique */
 | 
						|
    return s_mp_exptmod (G, X, P, Y, 0);
 | 
						|
#else
 | 
						|
#error mp_exptmod could fail
 | 
						|
    /* no exptmod for evens */
 | 
						|
    return MP_VAL;
 | 
						|
#endif
 | 
						|
#ifdef BN_MP_EXPTMOD_FAST_C
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* compare two ints (signed)*/
 | 
						|
static int
 | 
						|
mp_cmp (mp_int * a, mp_int * b)
 | 
						|
{
 | 
						|
  /* compare based on sign */
 | 
						|
  if (a->sign != b->sign) {
 | 
						|
     if (a->sign == MP_NEG) {
 | 
						|
        return MP_LT;
 | 
						|
     } else {
 | 
						|
        return MP_GT;
 | 
						|
     }
 | 
						|
  }
 | 
						|
  
 | 
						|
  /* compare digits */
 | 
						|
  if (a->sign == MP_NEG) {
 | 
						|
     /* if negative compare opposite direction */
 | 
						|
     return mp_cmp_mag(b, a);
 | 
						|
  } else {
 | 
						|
     return mp_cmp_mag(a, b);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* compare a digit */
 | 
						|
static int
 | 
						|
mp_cmp_d(mp_int * a, mp_digit b)
 | 
						|
{
 | 
						|
  /* compare based on sign */
 | 
						|
  if (a->sign == MP_NEG) {
 | 
						|
    return MP_LT;
 | 
						|
  }
 | 
						|
 | 
						|
  /* compare based on magnitude */
 | 
						|
  if (a->used > 1) {
 | 
						|
    return MP_GT;
 | 
						|
  }
 | 
						|
 | 
						|
  /* compare the only digit of a to b */
 | 
						|
  if (a->dp[0] > b) {
 | 
						|
    return MP_GT;
 | 
						|
  } else if (a->dp[0] < b) {
 | 
						|
    return MP_LT;
 | 
						|
  } else {
 | 
						|
    return MP_EQ;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifndef LTM_NO_NEG_EXP
 | 
						|
/* hac 14.61, pp608 */
 | 
						|
static int
 | 
						|
mp_invmod (mp_int * a, mp_int * b, mp_int * c)
 | 
						|
{
 | 
						|
  /* b cannot be negative */
 | 
						|
  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
 | 
						|
    return MP_VAL;
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef BN_FAST_MP_INVMOD_C
 | 
						|
  /* if the modulus is odd we can use a faster routine instead */
 | 
						|
  if (mp_isodd (b) == 1) {
 | 
						|
    return fast_mp_invmod (a, b, c);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef BN_MP_INVMOD_SLOW_C
 | 
						|
  return mp_invmod_slow(a, b, c);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef BN_FAST_MP_INVMOD_C
 | 
						|
#ifndef BN_MP_INVMOD_SLOW_C
 | 
						|
#error mp_invmod would always fail
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
  return MP_VAL;
 | 
						|
}
 | 
						|
#endif /* LTM_NO_NEG_EXP */
 | 
						|
 | 
						|
 | 
						|
/* get the size for an unsigned equivalent */
 | 
						|
static int
 | 
						|
mp_unsigned_bin_size (mp_int * a)
 | 
						|
{
 | 
						|
  int     size = mp_count_bits (a);
 | 
						|
  return (size / 8 + ((size & 7) != 0 ? 1 : 0));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifndef LTM_NO_NEG_EXP
 | 
						|
/* hac 14.61, pp608 */
 | 
						|
static int
 | 
						|
mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
 | 
						|
{
 | 
						|
  mp_int  x, y, u, v, A, B, C, D;
 | 
						|
  int     res;
 | 
						|
 | 
						|
  /* b cannot be negative */
 | 
						|
  if (b->sign == MP_NEG || mp_iszero(b) == 1) {
 | 
						|
    return MP_VAL;
 | 
						|
  }
 | 
						|
 | 
						|
  /* init temps */
 | 
						|
  if ((res = mp_init_multi(&x, &y, &u, &v, 
 | 
						|
                           &A, &B, &C, &D, NULL)) != MP_OKAY) {
 | 
						|
     return res;
 | 
						|
  }
 | 
						|
 | 
						|
  /* x = a, y = b */
 | 
						|
  if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
  }
 | 
						|
  if ((res = mp_copy (b, &y)) != MP_OKAY) {
 | 
						|
    goto LBL_ERR;
 | 
						|
  }
 | 
						|
 | 
						|
  /* 2. [modified] if x,y are both even then return an error! */
 | 
						|
  if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
 | 
						|
    res = MP_VAL;
 | 
						|
    goto LBL_ERR;
 | 
						|
  }
 | 
						|
 | 
						|
  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
 | 
						|
  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
 | 
						|
    goto LBL_ERR;
 | 
						|
  }
 | 
						|
  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
 | 
						|
    goto LBL_ERR;
 | 
						|
  }
 | 
						|
  mp_set (&A, 1);
 | 
						|
  mp_set (&D, 1);
 | 
						|
 | 
						|
top:
 | 
						|
  /* 4.  while u is even do */
 | 
						|
  while (mp_iseven (&u) == 1) {
 | 
						|
    /* 4.1 u = u/2 */
 | 
						|
    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
    /* 4.2 if A or B is odd then */
 | 
						|
    if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
 | 
						|
      /* A = (A+y)/2, B = (B-x)/2 */
 | 
						|
      if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
 | 
						|
         goto LBL_ERR;
 | 
						|
      }
 | 
						|
      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
 | 
						|
         goto LBL_ERR;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    /* A = A/2, B = B/2 */
 | 
						|
    if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* 5.  while v is even do */
 | 
						|
  while (mp_iseven (&v) == 1) {
 | 
						|
    /* 5.1 v = v/2 */
 | 
						|
    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
    /* 5.2 if C or D is odd then */
 | 
						|
    if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
 | 
						|
      /* C = (C+y)/2, D = (D-x)/2 */
 | 
						|
      if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
 | 
						|
         goto LBL_ERR;
 | 
						|
      }
 | 
						|
      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
 | 
						|
         goto LBL_ERR;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    /* C = C/2, D = D/2 */
 | 
						|
    if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* 6.  if u >= v then */
 | 
						|
  if (mp_cmp (&u, &v) != MP_LT) {
 | 
						|
    /* u = u - v, A = A - C, B = B - D */
 | 
						|
    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    /* v - v - u, C = C - A, D = D - B */
 | 
						|
    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
 | 
						|
      goto LBL_ERR;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* if not zero goto step 4 */
 | 
						|
  if (mp_iszero (&u) == 0)
 | 
						|
    goto top;
 | 
						|
 | 
						|
  /* now a = C, b = D, gcd == g*v */
 | 
						|
 | 
						|
  /* if v != 1 then there is no inverse */
 | 
						|
  if (mp_cmp_d (&v, 1) != MP_EQ) {
 | 
						|
    res = MP_VAL;
 | 
						|
    goto LBL_ERR;
 | 
						|
  }
 | 
						|
 | 
						|
  /* if its too low */
 | 
						|
  while (mp_cmp_d(&C, 0) == MP_LT) {
 | 
						|
      if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
 | 
						|
         goto LBL_ERR;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  /* too big */
 | 
						|
  while (mp_cmp_mag(&C, b) != MP_LT) {
 | 
						|
      if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
 | 
						|
         goto LBL_ERR;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  /* C is now the inverse */
 | 
						|
  mp_exch (&C, c);
 | 
						|
  res = MP_OKAY;
 | 
						|
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
#endif /* LTM_NO_NEG_EXP */
 | 
						|
 | 
						|
 | 
						|
/* compare maginitude of two ints (unsigned) */
 | 
						|
static int
 | 
						|
mp_cmp_mag (mp_int * a, mp_int * b)
 | 
						|
{
 | 
						|
  int     n;
 | 
						|
  mp_digit *tmpa, *tmpb;
 | 
						|
 | 
						|
  /* compare based on # of non-zero digits */
 | 
						|
  if (a->used > b->used) {
 | 
						|
    return MP_GT;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (a->used < b->used) {
 | 
						|
    return MP_LT;
 | 
						|
  }
 | 
						|
 | 
						|
  /* alias for a */
 | 
						|
  tmpa = a->dp + (a->used - 1);
 | 
						|
 | 
						|
  /* alias for b */
 | 
						|
  tmpb = b->dp + (a->used - 1);
 | 
						|
 | 
						|
  /* compare based on digits  */
 | 
						|
  for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
 | 
						|
    if (*tmpa > *tmpb) {
 | 
						|
      return MP_GT;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*tmpa < *tmpb) {
 | 
						|
      return MP_LT;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MP_EQ;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* reads a unsigned char array, assumes the msb is stored first [big endian] */
 | 
						|
static int
 | 
						|
mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
 | 
						|
{
 | 
						|
  int     res;
 | 
						|
 | 
						|
  /* make sure there are at least two digits */
 | 
						|
  if (a->alloc < 2) {
 | 
						|
     if ((res = mp_grow(a, 2)) != MP_OKAY) {
 | 
						|
        return res;
 | 
						|
     }
 | 
						|
  }
 | 
						|
 | 
						|
  /* zero the int */
 | 
						|
  mp_zero (a);
 | 
						|
 | 
						|
  /* read the bytes in */
 | 
						|
  while (c-- > 0) {
 | 
						|
    if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
 | 
						|
#ifndef MP_8BIT
 | 
						|
      a->dp[0] |= *b++;
 | 
						|
      a->used += 1;
 | 
						|
#else
 | 
						|
      a->dp[0] = (*b & MP_MASK);
 | 
						|
      a->dp[1] |= ((*b++ >> 7U) & 1);
 | 
						|
      a->used += 2;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  mp_clamp (a);
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* store in unsigned [big endian] format */
 | 
						|
static int
 | 
						|
mp_to_unsigned_bin (mp_int * a, unsigned char *b)
 | 
						|
{
 | 
						|
  int     x, res;
 | 
						|
  mp_int  t;
 | 
						|
 | 
						|
  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  x = 0;
 | 
						|
  while (mp_iszero (&t) == 0) {
 | 
						|
#ifndef MP_8BIT
 | 
						|
      b[x++] = (unsigned char) (t.dp[0] & 255);
 | 
						|
#else
 | 
						|
      b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
 | 
						|
#endif
 | 
						|
    if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
 | 
						|
      mp_clear (&t);
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  bn_reverse (b, x);
 | 
						|
  mp_clear (&t);
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
 | 
						|
static int
 | 
						|
mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
 | 
						|
{
 | 
						|
  mp_digit D, r, rr;
 | 
						|
  int     x, res;
 | 
						|
  mp_int  t;
 | 
						|
 | 
						|
 | 
						|
  /* if the shift count is <= 0 then we do no work */
 | 
						|
  if (b <= 0) {
 | 
						|
    res = mp_copy (a, c);
 | 
						|
    if (d != NULL) {
 | 
						|
      mp_zero (d);
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((res = mp_init (&t)) != MP_OKAY) {
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  /* get the remainder */
 | 
						|
  if (d != NULL) {
 | 
						|
    if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
 | 
						|
      mp_clear (&t);
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* copy */
 | 
						|
  if ((res = mp_copy (a, c)) != MP_OKAY) {
 | 
						|
    mp_clear (&t);
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  /* shift by as many digits in the bit count */
 | 
						|
  if (b >= (int)DIGIT_BIT) {
 | 
						|
    mp_rshd (c, b / DIGIT_BIT);
 | 
						|
  }
 | 
						|
 | 
						|
  /* shift any bit count < DIGIT_BIT */
 | 
						|
  D = (mp_digit) (b % DIGIT_BIT);
 | 
						|
  if (D != 0) {
 | 
						|
    register mp_digit *tmpc, mask, shift;
 | 
						|
 | 
						|
    /* mask */
 | 
						|
    mask = (((mp_digit)1) << D) - 1;
 | 
						|
 | 
						|
    /* shift for lsb */
 | 
						|
    shift = DIGIT_BIT - D;
 | 
						|
 | 
						|
    /* alias */
 | 
						|
    tmpc = c->dp + (c->used - 1);
 | 
						|
 | 
						|
    /* carry */
 | 
						|
    r = 0;
 | 
						|
    for (x = c->used - 1; x >= 0; x--) {
 | 
						|
      /* get the lower  bits of this word in a temp */
 | 
						|
      rr = *tmpc & mask;
 | 
						|
 | 
						|
      /* shift the current word and mix in the carry bits from the previous word */
 | 
						|
      *tmpc = (*tmpc >> D) | (r << shift);
 | 
						|
      --tmpc;
 | 
						|
 | 
						|
      /* set the carry to the carry bits of the current word found above */
 | 
						|
      r = rr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  mp_clamp (c);
 | 
						|
  if (d != NULL) {
 | 
						|
    mp_exch (&t, d);
 | 
						|
  }
 | 
						|
  mp_clear (&t);
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int
 | 
						|
mp_init_copy (mp_int * a, mp_int * b)
 | 
						|
{
 | 
						|
  int     res;
 | 
						|
 | 
						|
  if ((res = mp_init (a)) != MP_OKAY) {
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
  return mp_copy (b, a);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* set to zero */
 | 
						|
static void
 | 
						|
mp_zero (mp_int * a)
 | 
						|
{
 | 
						|
  int       n;
 | 
						|
  mp_digit *tmp;
 | 
						|
 | 
						|
  a->sign = MP_ZPOS;
 | 
						|
  a->used = 0;
 | 
						|
 | 
						|
  tmp = a->dp;
 | 
						|
  for (n = 0; n < a->alloc; n++) {
 | 
						|
     *tmp++ = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* copy, b = a */
 | 
						|
static int
 | 
						|
mp_copy (mp_int * a, mp_int * b)
 | 
						|
{
 | 
						|
  int     res, n;
 | 
						|
 | 
						|
  /* if dst == src do nothing */
 | 
						|
  if (a == b) {
 | 
						|
    return MP_OKAY;
 | 
						|
  }
 | 
						|
 | 
						|
  /* grow dest */
 | 
						|
  if (b->alloc < a->used) {
 | 
						|
     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
 | 
						|
        return res;
 | 
						|
     }
 | 
						|
  }
 | 
						|
 | 
						|
  /* zero b and copy the parameters over */
 | 
						|
  {
 | 
						|
    register mp_digit *tmpa, *tmpb;
 | 
						|
 | 
						|
    /* pointer aliases */
 | 
						|
 | 
						|
    /* source */
 | 
						|
    tmpa = a->dp;
 | 
						|
 | 
						|
    /* destination */
 | 
						|
    tmpb = b->dp;
 | 
						|
 | 
						|
    /* copy all the digits */
 | 
						|
    for (n = 0; n < a->used; n++) {
 | 
						|
      *tmpb++ = *tmpa++;
 | 
						|
    }
 | 
						|
 | 
						|
    /* clear high digits */
 | 
						|
    for (; n < b->used; n++) {
 | 
						|
      *tmpb++ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* copy used count and sign */
 | 
						|
  b->used = a->used;
 | 
						|
  b->sign = a->sign;
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* shift right a certain amount of digits */
 | 
						|
static void
 | 
						|
mp_rshd (mp_int * a, int b)
 | 
						|
{
 | 
						|
  int     x;
 | 
						|
 | 
						|
  /* if b <= 0 then ignore it */
 | 
						|
  if (b <= 0) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  /* if b > used then simply zero it and return */
 | 
						|
  if (a->used <= b) {
 | 
						|
    mp_zero (a);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    register mp_digit *bottom, *top;
 | 
						|
 | 
						|
    /* shift the digits down */
 | 
						|
 | 
						|
    /* bottom */
 | 
						|
    bottom = a->dp;
 | 
						|
 | 
						|
    /* top [offset into digits] */
 | 
						|
    top = a->dp + b;
 | 
						|
 | 
						|
    /* this is implemented as a sliding window where 
 | 
						|
     * the window is b-digits long and digits from 
 | 
						|
     * the top of the window are copied to the bottom
 | 
						|
     *
 | 
						|
     * e.g.
 | 
						|
 | 
						|
     b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
 | 
						|
                 /\                   |      ---->
 | 
						|
                  \-------------------/      ---->
 | 
						|
     */
 | 
						|
    for (x = 0; x < (a->used - b); x++) {
 | 
						|
      *bottom++ = *top++;
 | 
						|
    }
 | 
						|
 | 
						|
    /* zero the top digits */
 | 
						|
    for (; x < a->used; x++) {
 | 
						|
      *bottom++ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  /* remove excess digits */
 | 
						|
  a->used -= b;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* swap the elements of two integers, for cases where you can't simply swap the 
 | 
						|
 * mp_int pointers around
 | 
						|
 */
 | 
						|
static void
 | 
						|
mp_exch (mp_int * a, mp_int * b)
 | 
						|
{
 | 
						|
  mp_int  t;
 | 
						|
 | 
						|
  t  = *a;
 | 
						|
  *a = *b;
 | 
						|
  *b = t;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* trim unused digits 
 | 
						|
 *
 | 
						|
 * This is used to ensure that leading zero digits are
 | 
						|
 * trimed and the leading "used" digit will be non-zero
 | 
						|
 * Typically very fast.  Also fixes the sign if there
 | 
						|
 * are no more leading digits
 | 
						|
 */
 | 
						|
static void
 | 
						|
mp_clamp (mp_int * a)
 | 
						|
{
 | 
						|
  /* decrease used while the most significant digit is
 | 
						|
   * zero.
 | 
						|
   */
 | 
						|
  while (a->used > 0 && a->dp[a->used - 1] == 0) {
 | 
						|
    --(a->used);
 | 
						|
  }
 | 
						|
 | 
						|
  /* reset the sign flag if used == 0 */
 | 
						|
  if (a->used == 0) {
 | 
						|
    a->sign = MP_ZPOS;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* grow as required */
 | 
						|
static int
 | 
						|
mp_grow (mp_int * a, int size)
 | 
						|
{
 | 
						|
  int     i;
 | 
						|
  mp_digit *tmp;
 | 
						|
 | 
						|
  /* if the alloc size is smaller alloc more ram */
 | 
						|
  if (a->alloc < size) {
 | 
						|
    /* ensure there are always at least MP_PREC digits extra on top */
 | 
						|
    size += (MP_PREC * 2) - (size % MP_PREC);
 | 
						|
 | 
						|
    /* reallocate the array a->dp
 | 
						|
     *
 | 
						|
     * We store the return in a temporary variable
 | 
						|
     * in case the operation failed we don't want
 | 
						|
     * to overwrite the dp member of a.
 | 
						|
     */
 | 
						|
    tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
 | 
						|
    if (tmp == NULL) {
 | 
						|
      /* reallocation failed but "a" is still valid [can be freed] */
 | 
						|
      return MP_MEM;
 | 
						|
    }
 | 
						|
 | 
						|
    /* reallocation succeeded so set a->dp */
 | 
						|
    a->dp = tmp;
 | 
						|
 | 
						|
    /* zero excess digits */
 | 
						|
    i        = a->alloc;
 | 
						|
    a->alloc = size;
 | 
						|
    for (; i < a->alloc; i++) {
 | 
						|
      a->dp[i] = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef BN_MP_ABS_C
 | 
						|
/* b = |a| 
 | 
						|
 *
 | 
						|
 * Simple function copies the input and fixes the sign to positive
 | 
						|
 */
 | 
						|
static int
 | 
						|
mp_abs (mp_int * a, mp_int * b)
 | 
						|
{
 | 
						|
  int     res;
 | 
						|
 | 
						|
  /* copy a to b */
 | 
						|
  if (a != b) {
 | 
						|
     if ((res = mp_copy (a, b)) != MP_OKAY) {
 | 
						|
       return res;
 | 
						|
     }
 | 
						|
  }
 | 
						|
 | 
						|
  /* force the sign of b to positive */
 | 
						|
  b->sign = MP_ZPOS;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* set to a digit */
 | 
						|
static void
 | 
						|
mp_set (mp_int * a, mp_digit b)
 | 
						|
{
 | 
						|
  mp_zero (a);
 | 
						|
  a->dp[0] = b & MP_MASK;
 | 
						|
  a->used  = (a->dp[0] != 0) ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifndef LTM_NO_NEG_EXP
 | 
						|
/* b = a/2 */
 | 
						|
static int
 | 
						|
mp_div_2(mp_int * a, mp_int * b)
 | 
						|
{
 | 
						|
  int     x, res, oldused;
 | 
						|
 | 
						|
  /* copy */
 | 
						|
  if (b->alloc < a->used) {
 | 
						|
    if ((res = mp_grow (b, a->used)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  oldused = b->used;
 | 
						|
  b->used = a->used;
 | 
						|
  {
 | 
						|
    register mp_digit r, rr, *tmpa, *tmpb;
 | 
						|
 | 
						|
    /* source alias */
 | 
						|
    tmpa = a->dp + b->used - 1;
 | 
						|
 | 
						|
    /* dest alias */
 | 
						|
    tmpb = b->dp + b->used - 1;
 | 
						|
 | 
						|
    /* carry */
 | 
						|
    r = 0;
 | 
						|
    for (x = b->used - 1; x >= 0; x--) {
 | 
						|
      /* get the carry for the next iteration */
 | 
						|
      rr = *tmpa & 1;
 | 
						|
 | 
						|
      /* shift the current digit, add in carry and store */
 | 
						|
      *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
 | 
						|
 | 
						|
      /* forward carry to next iteration */
 | 
						|
      r = rr;
 | 
						|
    }
 | 
						|
 | 
						|
    /* zero excess digits */
 | 
						|
    tmpb = b->dp + b->used;
 | 
						|
    for (x = b->used; x < oldused; x++) {
 | 
						|
      *tmpb++ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  b->sign = a->sign;
 | 
						|
  mp_clamp (b);
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
#endif /* LTM_NO_NEG_EXP */
 | 
						|
 | 
						|
 | 
						|
/* shift left by a certain bit count */
 | 
						|
static int
 | 
						|
mp_mul_2d (mp_int * a, int b, mp_int * c)
 | 
						|
{
 | 
						|
  mp_digit d;
 | 
						|
  int      res;
 | 
						|
 | 
						|
  /* copy */
 | 
						|
  if (a != c) {
 | 
						|
     if ((res = mp_copy (a, c)) != MP_OKAY) {
 | 
						|
       return res;
 | 
						|
     }
 | 
						|
  }
 | 
						|
 | 
						|
  if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
 | 
						|
     if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
 | 
						|
       return res;
 | 
						|
     }
 | 
						|
  }
 | 
						|
 | 
						|
  /* shift by as many digits in the bit count */
 | 
						|
  if (b >= (int)DIGIT_BIT) {
 | 
						|
    if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* shift any bit count < DIGIT_BIT */
 | 
						|
  d = (mp_digit) (b % DIGIT_BIT);
 | 
						|
  if (d != 0) {
 | 
						|
    register mp_digit *tmpc, shift, mask, r, rr;
 | 
						|
    register int x;
 | 
						|
 | 
						|
    /* bitmask for carries */
 | 
						|
    mask = (((mp_digit)1) << d) - 1;
 | 
						|
 | 
						|
    /* shift for msbs */
 | 
						|
    shift = DIGIT_BIT - d;
 | 
						|
 | 
						|
    /* alias */
 | 
						|
    tmpc = c->dp;
 | 
						|
 | 
						|
    /* carry */
 | 
						|
    r    = 0;
 | 
						|
    for (x = 0; x < c->used; x++) {
 | 
						|
      /* get the higher bits of the current word */
 | 
						|
      rr = (*tmpc >> shift) & mask;
 | 
						|
 | 
						|
      /* shift the current word and OR in the carry */
 | 
						|
      *tmpc = ((*tmpc << d) | r) & MP_MASK;
 | 
						|
      ++tmpc;
 | 
						|
 | 
						|
      /* set the carry to the carry bits of the current word */
 | 
						|
      r = rr;
 | 
						|
    }
 | 
						|
    
 | 
						|
    /* set final carry */
 | 
						|
    if (r != 0) {
 | 
						|
       c->dp[(c->used)++] = r;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  mp_clamp (c);
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef BN_MP_INIT_MULTI_C
 | 
						|
static int
 | 
						|
mp_init_multi(mp_int *mp, ...) 
 | 
						|
{
 | 
						|
    mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
 | 
						|
    int n = 0;                 /* Number of ok inits */
 | 
						|
    mp_int* cur_arg = mp;
 | 
						|
    va_list args;
 | 
						|
 | 
						|
    va_start(args, mp);        /* init args to next argument from caller */
 | 
						|
    while (cur_arg != NULL) {
 | 
						|
        if (mp_init(cur_arg) != MP_OKAY) {
 | 
						|
            /* Oops - error! Back-track and mp_clear what we already
 | 
						|
               succeeded in init-ing, then return error.
 | 
						|
            */
 | 
						|
            va_list clean_args;
 | 
						|
            
 | 
						|
            /* end the current list */
 | 
						|
            va_end(args);
 | 
						|
            
 | 
						|
            /* now start cleaning up */            
 | 
						|
            cur_arg = mp;
 | 
						|
            va_start(clean_args, mp);
 | 
						|
            while (n--) {
 | 
						|
                mp_clear(cur_arg);
 | 
						|
                cur_arg = va_arg(clean_args, mp_int*);
 | 
						|
            }
 | 
						|
            va_end(clean_args);
 | 
						|
            res = MP_MEM;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        n++;
 | 
						|
        cur_arg = va_arg(args, mp_int*);
 | 
						|
    }
 | 
						|
    va_end(args);
 | 
						|
    return res;                /* Assumed ok, if error flagged above. */
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#ifdef BN_MP_CLEAR_MULTI_C
 | 
						|
static void
 | 
						|
mp_clear_multi(mp_int *mp, ...) 
 | 
						|
{
 | 
						|
    mp_int* next_mp = mp;
 | 
						|
    va_list args;
 | 
						|
    va_start(args, mp);
 | 
						|
    while (next_mp != NULL) {
 | 
						|
        mp_clear(next_mp);
 | 
						|
        next_mp = va_arg(args, mp_int*);
 | 
						|
    }
 | 
						|
    va_end(args);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* shift left a certain amount of digits */
 | 
						|
static int
 | 
						|
mp_lshd (mp_int * a, int b)
 | 
						|
{
 | 
						|
  int     x, res;
 | 
						|
 | 
						|
  /* if its less than zero return */
 | 
						|
  if (b <= 0) {
 | 
						|
    return MP_OKAY;
 | 
						|
  }
 | 
						|
 | 
						|
  /* grow to fit the new digits */
 | 
						|
  if (a->alloc < a->used + b) {
 | 
						|
     if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
 | 
						|
       return res;
 | 
						|
     }
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    register mp_digit *top, *bottom;
 | 
						|
 | 
						|
    /* increment the used by the shift amount then copy upwards */
 | 
						|
    a->used += b;
 | 
						|
 | 
						|
    /* top */
 | 
						|
    top = a->dp + a->used - 1;
 | 
						|
 | 
						|
    /* base */
 | 
						|
    bottom = a->dp + a->used - 1 - b;
 | 
						|
 | 
						|
    /* much like mp_rshd this is implemented using a sliding window
 | 
						|
     * except the window goes the otherway around.  Copying from
 | 
						|
     * the bottom to the top.  see bn_mp_rshd.c for more info.
 | 
						|
     */
 | 
						|
    for (x = a->used - 1; x >= b; x--) {
 | 
						|
      *top-- = *bottom--;
 | 
						|
    }
 | 
						|
 | 
						|
    /* zero the lower digits */
 | 
						|
    top = a->dp;
 | 
						|
    for (x = 0; x < b; x++) {
 | 
						|
      *top++ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* returns the number of bits in an int */
 | 
						|
static int
 | 
						|
mp_count_bits (mp_int * a)
 | 
						|
{
 | 
						|
  int     r;
 | 
						|
  mp_digit q;
 | 
						|
 | 
						|
  /* shortcut */
 | 
						|
  if (a->used == 0) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* get number of digits and add that */
 | 
						|
  r = (a->used - 1) * DIGIT_BIT;
 | 
						|
  
 | 
						|
  /* take the last digit and count the bits in it */
 | 
						|
  q = a->dp[a->used - 1];
 | 
						|
  while (q > ((mp_digit) 0)) {
 | 
						|
    ++r;
 | 
						|
    q >>= ((mp_digit) 1);
 | 
						|
  }
 | 
						|
  return r;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* calc a value mod 2**b */
 | 
						|
static int
 | 
						|
mp_mod_2d (mp_int * a, int b, mp_int * c)
 | 
						|
{
 | 
						|
  int     x, res;
 | 
						|
 | 
						|
  /* if b is <= 0 then zero the int */
 | 
						|
  if (b <= 0) {
 | 
						|
    mp_zero (c);
 | 
						|
    return MP_OKAY;
 | 
						|
  }
 | 
						|
 | 
						|
  /* if the modulus is larger than the value than return */
 | 
						|
  if (b >= (int) (a->used * DIGIT_BIT)) {
 | 
						|
    res = mp_copy (a, c);
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  /* copy */
 | 
						|
  if ((res = mp_copy (a, c)) != MP_OKAY) {
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  /* zero digits above the last digit of the modulus */
 | 
						|
  for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
 | 
						|
    c->dp[x] = 0;
 | 
						|
  }
 | 
						|
  /* clear the digit that is not completely outside/inside the modulus */
 | 
						|
  c->dp[b / DIGIT_BIT] &=
 | 
						|
    (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
 | 
						|
  mp_clamp (c);
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef BN_MP_DIV_SMALL
 | 
						|
 | 
						|
/* slower bit-bang division... also smaller */
 | 
						|
static int
 | 
						|
mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | 
						|
{
 | 
						|
   mp_int ta, tb, tq, q;
 | 
						|
   int    res, n, n2;
 | 
						|
 | 
						|
  /* is divisor zero ? */
 | 
						|
  if (mp_iszero (b) == 1) {
 | 
						|
    return MP_VAL;
 | 
						|
  }
 | 
						|
 | 
						|
  /* if a < b then q=0, r = a */
 | 
						|
  if (mp_cmp_mag (a, b) == MP_LT) {
 | 
						|
    if (d != NULL) {
 | 
						|
      res = mp_copy (a, d);
 | 
						|
    } else {
 | 
						|
      res = MP_OKAY;
 | 
						|
    }
 | 
						|
    if (c != NULL) {
 | 
						|
      mp_zero (c);
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
	
 | 
						|
  /* init our temps */
 | 
						|
  if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
 | 
						|
     return res;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  mp_set(&tq, 1);
 | 
						|
  n = mp_count_bits(a) - mp_count_bits(b);
 | 
						|
  if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
 | 
						|
      ((res = mp_abs(b, &tb)) != MP_OKAY) || 
 | 
						|
      ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
 | 
						|
      ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
 | 
						|
      goto LBL_ERR;
 | 
						|
  }
 | 
						|
 | 
						|
  while (n-- >= 0) {
 | 
						|
     if (mp_cmp(&tb, &ta) != MP_GT) {
 | 
						|
        if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
 | 
						|
            ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
 | 
						|
           goto LBL_ERR;
 | 
						|
        }
 | 
						|
     }
 | 
						|
     if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
 | 
						|
         ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
 | 
						|
           goto LBL_ERR;
 | 
						|
     }
 | 
						|
  }
 | 
						|
 | 
						|
  /* now q == quotient and ta == remainder */
 | 
						|
  n  = a->sign;
 | 
						|
  n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
 | 
						|
  if (c != NULL) {
 | 
						|
     mp_exch(c, &q);
 | 
						|
     c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
 | 
						|
  }
 | 
						|
  if (d != NULL) {
 | 
						|
     mp_exch(d, &ta);
 | 
						|
     d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
 | 
						|
  }
 | 
						|
LBL_ERR:
 | 
						|
   mp_clear_multi(&ta, &tb, &tq, &q, NULL);
 | 
						|
   return res;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/* integer signed division. 
 | 
						|
 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 | 
						|
 * HAC pp.598 Algorithm 14.20
 | 
						|
 *
 | 
						|
 * Note that the description in HAC is horribly 
 | 
						|
 * incomplete.  For example, it doesn't consider 
 | 
						|
 * the case where digits are removed from 'x' in 
 | 
						|
 * the inner loop.  It also doesn't consider the 
 | 
						|
 * case that y has fewer than three digits, etc..
 | 
						|
 *
 | 
						|
 * The overall algorithm is as described as 
 | 
						|
 * 14.20 from HAC but fixed to treat these cases.
 | 
						|
*/
 | 
						|
static int
 | 
						|
mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | 
						|
{
 | 
						|
  mp_int  q, x, y, t1, t2;
 | 
						|
  int     res, n, t, i, norm, neg;
 | 
						|
 | 
						|
  /* is divisor zero ? */
 | 
						|
  if (mp_iszero (b) == 1) {
 | 
						|
    return MP_VAL;
 | 
						|
  }
 | 
						|
 | 
						|
  /* if a < b then q=0, r = a */
 | 
						|
  if (mp_cmp_mag (a, b) == MP_LT) {
 | 
						|
    if (d != NULL) {
 | 
						|
      res = mp_copy (a, d);
 | 
						|
    } else {
 | 
						|
      res = MP_OKAY;
 | 
						|
    }
 | 
						|
    if (c != NULL) {
 | 
						|
      mp_zero (c);
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
  q.used = a->used + 2;
 | 
						|
 | 
						|
  if ((res = mp_init (&t1)) != MP_OKAY) {
 | 
						|
    goto LBL_Q;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((res = mp_init (&t2)) != MP_OKAY) {
 | 
						|
    goto LBL_T1;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
 | 
						|
    goto LBL_T2;
 | 
						|
  }
 | 
						|
 | 
						|
  if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
 | 
						|
    goto LBL_X;
 | 
						|
  }
 | 
						|
 | 
						|
  /* fix the sign */
 | 
						|
  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
 | 
						|
  x.sign = y.sign = MP_ZPOS;
 | 
						|
 | 
						|
  /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
 | 
						|
  norm = mp_count_bits(&y) % DIGIT_BIT;
 | 
						|
  if (norm < (int)(DIGIT_BIT-1)) {
 | 
						|
     norm = (DIGIT_BIT-1) - norm;
 | 
						|
     if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
 | 
						|
       goto LBL_Y;
 | 
						|
     }
 | 
						|
     if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
 | 
						|
       goto LBL_Y;
 | 
						|
     }
 | 
						|
  } else {
 | 
						|
     norm = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
 | 
						|
  n = x.used - 1;
 | 
						|
  t = y.used - 1;
 | 
						|
 | 
						|
  /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
 | 
						|
  if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
 | 
						|
    goto LBL_Y;
 | 
						|
  }
 | 
						|
 | 
						|
  while (mp_cmp (&x, &y) != MP_LT) {
 | 
						|
    ++(q.dp[n - t]);
 | 
						|
    if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
 | 
						|
      goto LBL_Y;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* reset y by shifting it back down */
 | 
						|
  mp_rshd (&y, n - t);
 | 
						|
 | 
						|
  /* step 3. for i from n down to (t + 1) */
 | 
						|
  for (i = n; i >= (t + 1); i--) {
 | 
						|
    if (i > x.used) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 
 | 
						|
     * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
 | 
						|
    if (x.dp[i] == y.dp[t]) {
 | 
						|
      q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
 | 
						|
    } else {
 | 
						|
      mp_word tmp;
 | 
						|
      tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
 | 
						|
      tmp |= ((mp_word) x.dp[i - 1]);
 | 
						|
      tmp /= ((mp_word) y.dp[t]);
 | 
						|
      if (tmp > (mp_word) MP_MASK)
 | 
						|
        tmp = MP_MASK;
 | 
						|
      q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
 | 
						|
    }
 | 
						|
 | 
						|
    /* while (q{i-t-1} * (yt * b + y{t-1})) > 
 | 
						|
             xi * b**2 + xi-1 * b + xi-2 
 | 
						|
     
 | 
						|
       do q{i-t-1} -= 1; 
 | 
						|
    */
 | 
						|
    q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
 | 
						|
    do {
 | 
						|
      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
 | 
						|
 | 
						|
      /* find left hand */
 | 
						|
      mp_zero (&t1);
 | 
						|
      t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
 | 
						|
      t1.dp[1] = y.dp[t];
 | 
						|
      t1.used = 2;
 | 
						|
      if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
 | 
						|
        goto LBL_Y;
 | 
						|
      }
 | 
						|
 | 
						|
      /* find right hand */
 | 
						|
      t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
 | 
						|
      t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
 | 
						|
      t2.dp[2] = x.dp[i];
 | 
						|
      t2.used = 3;
 | 
						|
    } while (mp_cmp_mag(&t1, &t2) == MP_GT);
 | 
						|
 | 
						|
    /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
 | 
						|
    if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
 | 
						|
      goto LBL_Y;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
 | 
						|
      goto LBL_Y;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
 | 
						|
      goto LBL_Y;
 | 
						|
    }
 | 
						|
 | 
						|
    /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
 | 
						|
    if (x.sign == MP_NEG) {
 | 
						|
      if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
 | 
						|
        goto LBL_Y;
 | 
						|
      }
 | 
						|
      if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
 | 
						|
        goto LBL_Y;
 | 
						|
      }
 | 
						|
      if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
 | 
						|
        goto LBL_Y;
 | 
						|
      }
 | 
						|
 | 
						|
      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* now q is the quotient and x is the remainder 
 | 
						|
   * [which we have to normalize] 
 | 
						|
   */
 | 
						|
  
 | 
						|
  /* get sign before writing to c */
 | 
						|
  x.sign = x.used == 0 ? MP_ZPOS : a->sign;
 | 
						|
 | 
						|
  if (c != NULL) {
 | 
						|
    mp_clamp (&q);
 | 
						|
    mp_exch (&q, c);
 | 
						|
    c->sign = neg;
 | 
						|
  }
 | 
						|
 | 
						|
  if (d != NULL) {
 | 
						|
    mp_div_2d (&x, norm, &x, NULL);
 | 
						|
    mp_exch (&x, d);
 | 
						|
  }
 | 
						|
 | 
						|
  res = MP_OKAY;
 | 
						|
 | 
						|
LBL_Y:mp_clear (&y);
 | 
						|
LBL_X:mp_clear (&x);
 | 
						|
LBL_T2:mp_clear (&t2);
 | 
						|
LBL_T1:mp_clear (&t1);
 | 
						|
LBL_Q:mp_clear (&q);
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#ifdef MP_LOW_MEM
 | 
						|
   #define TAB_SIZE 32
 | 
						|
#else
 | 
						|
   #define TAB_SIZE 256
 | 
						|
#endif
 | 
						|
 | 
						|
static int
 | 
						|
s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
 | 
						|
{
 | 
						|
  mp_int  M[TAB_SIZE], res, mu;
 | 
						|
  mp_digit buf;
 | 
						|
  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | 
						|
  int (*redux)(mp_int*,mp_int*,mp_int*);
 | 
						|
 | 
						|
  /* find window size */
 | 
						|
  x = mp_count_bits (X);
 | 
						|
  if (x <= 7) {
 | 
						|
    winsize = 2;
 | 
						|
  } else if (x <= 36) {
 | 
						|
    winsize = 3;
 | 
						|
  } else if (x <= 140) {
 | 
						|
    winsize = 4;
 | 
						|
  } else if (x <= 450) {
 | 
						|
    winsize = 5;
 | 
						|
  } else if (x <= 1303) {
 | 
						|
    winsize = 6;
 | 
						|
  } else if (x <= 3529) {
 | 
						|
    winsize = 7;
 | 
						|
  } else {
 | 
						|
    winsize = 8;
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef MP_LOW_MEM
 | 
						|
    if (winsize > 5) {
 | 
						|
       winsize = 5;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
  /* init M array */
 | 
						|
  /* init first cell */
 | 
						|
  if ((err = mp_init(&M[1])) != MP_OKAY) {
 | 
						|
     return err; 
 | 
						|
  }
 | 
						|
 | 
						|
  /* now init the second half of the array */
 | 
						|
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | 
						|
    if ((err = mp_init(&M[x])) != MP_OKAY) {
 | 
						|
      for (y = 1<<(winsize-1); y < x; y++) {
 | 
						|
        mp_clear (&M[y]);
 | 
						|
      }
 | 
						|
      mp_clear(&M[1]);
 | 
						|
      return err;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* create mu, used for Barrett reduction */
 | 
						|
  if ((err = mp_init (&mu)) != MP_OKAY) {
 | 
						|
    goto LBL_M;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (redmode == 0) {
 | 
						|
     if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
 | 
						|
        goto LBL_MU;
 | 
						|
     }
 | 
						|
     redux = mp_reduce;
 | 
						|
  } else {
 | 
						|
     if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
 | 
						|
        goto LBL_MU;
 | 
						|
     }
 | 
						|
     redux = mp_reduce_2k_l;
 | 
						|
  }    
 | 
						|
 | 
						|
  /* create M table
 | 
						|
   *
 | 
						|
   * The M table contains powers of the base, 
 | 
						|
   * e.g. M[x] = G**x mod P
 | 
						|
   *
 | 
						|
   * The first half of the table is not 
 | 
						|
   * computed though accept for M[0] and M[1]
 | 
						|
   */
 | 
						|
  if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
 | 
						|
    goto LBL_MU;
 | 
						|
  }
 | 
						|
 | 
						|
  /* compute the value at M[1<<(winsize-1)] by squaring 
 | 
						|
   * M[1] (winsize-1) times 
 | 
						|
   */
 | 
						|
  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | 
						|
    goto LBL_MU;
 | 
						|
  }
 | 
						|
 | 
						|
  for (x = 0; x < (winsize - 1); x++) {
 | 
						|
    /* square it */
 | 
						|
    if ((err = mp_sqr (&M[1 << (winsize - 1)], 
 | 
						|
                       &M[1 << (winsize - 1)])) != MP_OKAY) {
 | 
						|
      goto LBL_MU;
 | 
						|
    }
 | 
						|
 | 
						|
    /* reduce modulo P */
 | 
						|
    if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
 | 
						|
      goto LBL_MU;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
 | 
						|
   * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
 | 
						|
   */
 | 
						|
  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | 
						|
    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 | 
						|
      goto LBL_MU;
 | 
						|
    }
 | 
						|
    if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
 | 
						|
      goto LBL_MU;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* setup result */
 | 
						|
  if ((err = mp_init (&res)) != MP_OKAY) {
 | 
						|
    goto LBL_MU;
 | 
						|
  }
 | 
						|
  mp_set (&res, 1);
 | 
						|
 | 
						|
  /* set initial mode and bit cnt */
 | 
						|
  mode   = 0;
 | 
						|
  bitcnt = 1;
 | 
						|
  buf    = 0;
 | 
						|
  digidx = X->used - 1;
 | 
						|
  bitcpy = 0;
 | 
						|
  bitbuf = 0;
 | 
						|
 | 
						|
  for (;;) {
 | 
						|
    /* grab next digit as required */
 | 
						|
    if (--bitcnt == 0) {
 | 
						|
      /* if digidx == -1 we are out of digits */
 | 
						|
      if (digidx == -1) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      /* read next digit and reset the bitcnt */
 | 
						|
      buf    = X->dp[digidx--];
 | 
						|
      bitcnt = (int) DIGIT_BIT;
 | 
						|
    }
 | 
						|
 | 
						|
    /* grab the next msb from the exponent */
 | 
						|
    y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
 | 
						|
    buf <<= (mp_digit)1;
 | 
						|
 | 
						|
    /* if the bit is zero and mode == 0 then we ignore it
 | 
						|
     * These represent the leading zero bits before the first 1 bit
 | 
						|
     * in the exponent.  Technically this opt is not required but it
 | 
						|
     * does lower the # of trivial squaring/reductions used
 | 
						|
     */
 | 
						|
    if (mode == 0 && y == 0) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    /* if the bit is zero and mode == 1 then we square */
 | 
						|
    if (mode == 1 && y == 0) {
 | 
						|
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    /* else we add it to the window */
 | 
						|
    bitbuf |= (y << (winsize - ++bitcpy));
 | 
						|
    mode    = 2;
 | 
						|
 | 
						|
    if (bitcpy == winsize) {
 | 
						|
      /* ok window is filled so square as required and multiply  */
 | 
						|
      /* square first */
 | 
						|
      for (x = 0; x < winsize; x++) {
 | 
						|
        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
						|
          goto LBL_RES;
 | 
						|
        }
 | 
						|
        if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | 
						|
          goto LBL_RES;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      /* then multiply */
 | 
						|
      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
 | 
						|
      /* empty window and reset */
 | 
						|
      bitcpy = 0;
 | 
						|
      bitbuf = 0;
 | 
						|
      mode   = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* if bits remain then square/multiply */
 | 
						|
  if (mode == 2 && bitcpy > 0) {
 | 
						|
    /* square then multiply if the bit is set */
 | 
						|
    for (x = 0; x < bitcpy; x++) {
 | 
						|
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
      if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
 | 
						|
      bitbuf <<= 1;
 | 
						|
      if ((bitbuf & (1 << winsize)) != 0) {
 | 
						|
        /* then multiply */
 | 
						|
        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 | 
						|
          goto LBL_RES;
 | 
						|
        }
 | 
						|
        if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | 
						|
          goto LBL_RES;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  mp_exch (&res, Y);
 | 
						|
  err = MP_OKAY;
 | 
						|
LBL_RES:mp_clear (&res);
 | 
						|
LBL_MU:mp_clear (&mu);
 | 
						|
LBL_M:
 | 
						|
  mp_clear(&M[1]);
 | 
						|
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | 
						|
    mp_clear (&M[x]);
 | 
						|
  }
 | 
						|
  return err;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* computes b = a*a */
 | 
						|
static int
 | 
						|
mp_sqr (mp_int * a, mp_int * b)
 | 
						|
{
 | 
						|
  int     res;
 | 
						|
 | 
						|
#ifdef BN_MP_TOOM_SQR_C
 | 
						|
  /* use Toom-Cook? */
 | 
						|
  if (a->used >= TOOM_SQR_CUTOFF) {
 | 
						|
    res = mp_toom_sqr(a, b);
 | 
						|
  /* Karatsuba? */
 | 
						|
  } else 
 | 
						|
#endif
 | 
						|
#ifdef BN_MP_KARATSUBA_SQR_C
 | 
						|
if (a->used >= KARATSUBA_SQR_CUTOFF) {
 | 
						|
    res = mp_karatsuba_sqr (a, b);
 | 
						|
  } else 
 | 
						|
#endif
 | 
						|
  {
 | 
						|
#ifdef BN_FAST_S_MP_SQR_C
 | 
						|
    /* can we use the fast comba multiplier? */
 | 
						|
    if ((a->used * 2 + 1) < MP_WARRAY && 
 | 
						|
         a->used < 
 | 
						|
         (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
 | 
						|
      res = fast_s_mp_sqr (a, b);
 | 
						|
    } else
 | 
						|
#endif
 | 
						|
#ifdef BN_S_MP_SQR_C
 | 
						|
      res = s_mp_sqr (a, b);
 | 
						|
#else
 | 
						|
#error mp_sqr could fail
 | 
						|
      res = MP_VAL;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  b->sign = MP_ZPOS;
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* reduces a modulo n where n is of the form 2**p - d 
 | 
						|
   This differs from reduce_2k since "d" can be larger
 | 
						|
   than a single digit.
 | 
						|
*/
 | 
						|
static int
 | 
						|
mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
 | 
						|
{
 | 
						|
   mp_int q;
 | 
						|
   int    p, res;
 | 
						|
   
 | 
						|
   if ((res = mp_init(&q)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
   }
 | 
						|
   
 | 
						|
   p = mp_count_bits(n);    
 | 
						|
top:
 | 
						|
   /* q = a/2**p, a = a mod 2**p */
 | 
						|
   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
 | 
						|
      goto ERR;
 | 
						|
   }
 | 
						|
   
 | 
						|
   /* q = q * d */
 | 
						|
   if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { 
 | 
						|
      goto ERR;
 | 
						|
   }
 | 
						|
   
 | 
						|
   /* a = a + q */
 | 
						|
   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
 | 
						|
      goto ERR;
 | 
						|
   }
 | 
						|
   
 | 
						|
   if (mp_cmp_mag(a, n) != MP_LT) {
 | 
						|
      s_mp_sub(a, n, a);
 | 
						|
      goto top;
 | 
						|
   }
 | 
						|
   
 | 
						|
ERR:
 | 
						|
   mp_clear(&q);
 | 
						|
   return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* determines the setup value */
 | 
						|
static int
 | 
						|
mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
 | 
						|
{
 | 
						|
   int    res;
 | 
						|
   mp_int tmp;
 | 
						|
   
 | 
						|
   if ((res = mp_init(&tmp)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
   }
 | 
						|
   
 | 
						|
   if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
 | 
						|
      goto ERR;
 | 
						|
   }
 | 
						|
   
 | 
						|
   if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
 | 
						|
      goto ERR;
 | 
						|
   }
 | 
						|
   
 | 
						|
ERR:
 | 
						|
   mp_clear(&tmp);
 | 
						|
   return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* computes a = 2**b 
 | 
						|
 *
 | 
						|
 * Simple algorithm which zeroes the int, grows it then just sets one bit
 | 
						|
 * as required.
 | 
						|
 */
 | 
						|
static int
 | 
						|
mp_2expt (mp_int * a, int b)
 | 
						|
{
 | 
						|
  int     res;
 | 
						|
 | 
						|
  /* zero a as per default */
 | 
						|
  mp_zero (a);
 | 
						|
 | 
						|
  /* grow a to accommodate the single bit */
 | 
						|
  if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  /* set the used count of where the bit will go */
 | 
						|
  a->used = b / DIGIT_BIT + 1;
 | 
						|
 | 
						|
  /* put the single bit in its place */
 | 
						|
  a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* pre-calculate the value required for Barrett reduction
 | 
						|
 * For a given modulus "b" it calulates the value required in "a"
 | 
						|
 */
 | 
						|
static int
 | 
						|
mp_reduce_setup (mp_int * a, mp_int * b)
 | 
						|
{
 | 
						|
  int     res;
 | 
						|
  
 | 
						|
  if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
  return mp_div (a, b, a, NULL);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* reduces x mod m, assumes 0 < x < m**2, mu is 
 | 
						|
 * precomputed via mp_reduce_setup.
 | 
						|
 * From HAC pp.604 Algorithm 14.42
 | 
						|
 */
 | 
						|
static int
 | 
						|
mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
 | 
						|
{
 | 
						|
  mp_int  q;
 | 
						|
  int     res, um = m->used;
 | 
						|
 | 
						|
  /* q = x */
 | 
						|
  if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  /* q1 = x / b**(k-1)  */
 | 
						|
  mp_rshd (&q, um - 1);         
 | 
						|
 | 
						|
  /* according to HAC this optimization is ok */
 | 
						|
  if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
 | 
						|
    if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
 | 
						|
      goto CLEANUP;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
 | 
						|
    if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
 | 
						|
      goto CLEANUP;
 | 
						|
    }
 | 
						|
#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
 | 
						|
    if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
 | 
						|
      goto CLEANUP;
 | 
						|
    }
 | 
						|
#else 
 | 
						|
    { 
 | 
						|
#error mp_reduce would always fail
 | 
						|
      res = MP_VAL;
 | 
						|
      goto CLEANUP;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  /* q3 = q2 / b**(k+1) */
 | 
						|
  mp_rshd (&q, um + 1);         
 | 
						|
 | 
						|
  /* x = x mod b**(k+1), quick (no division) */
 | 
						|
  if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
 | 
						|
    goto CLEANUP;
 | 
						|
  }
 | 
						|
 | 
						|
  /* q = q * m mod b**(k+1), quick (no division) */
 | 
						|
  if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
 | 
						|
    goto CLEANUP;
 | 
						|
  }
 | 
						|
 | 
						|
  /* x = x - q */
 | 
						|
  if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
 | 
						|
    goto CLEANUP;
 | 
						|
  }
 | 
						|
 | 
						|
  /* If x < 0, add b**(k+1) to it */
 | 
						|
  if (mp_cmp_d (x, 0) == MP_LT) {
 | 
						|
    mp_set (&q, 1);
 | 
						|
    if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) {
 | 
						|
      goto CLEANUP;
 | 
						|
    }
 | 
						|
    if ((res = mp_add (x, &q, x)) != MP_OKAY) {
 | 
						|
      goto CLEANUP;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Back off if it's too big */
 | 
						|
  while (mp_cmp (x, m) != MP_LT) {
 | 
						|
    if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
 | 
						|
      goto CLEANUP;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
CLEANUP:
 | 
						|
  mp_clear (&q);
 | 
						|
 | 
						|
  return res;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* multiplies |a| * |b| and only computes up to digs digits of result
 | 
						|
 * HAC pp. 595, Algorithm 14.12  Modified so you can control how 
 | 
						|
 * many digits of output are created.
 | 
						|
 */
 | 
						|
static int
 | 
						|
s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | 
						|
{
 | 
						|
  mp_int  t;
 | 
						|
  int     res, pa, pb, ix, iy;
 | 
						|
  mp_digit u;
 | 
						|
  mp_word r;
 | 
						|
  mp_digit tmpx, *tmpt, *tmpy;
 | 
						|
 | 
						|
  /* can we use the fast multiplier? */
 | 
						|
  if (((digs) < MP_WARRAY) &&
 | 
						|
      MIN (a->used, b->used) < 
 | 
						|
          (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | 
						|
    return fast_s_mp_mul_digs (a, b, c, digs);
 | 
						|
  }
 | 
						|
 | 
						|
  if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
  t.used = digs;
 | 
						|
 | 
						|
  /* compute the digits of the product directly */
 | 
						|
  pa = a->used;
 | 
						|
  for (ix = 0; ix < pa; ix++) {
 | 
						|
    /* set the carry to zero */
 | 
						|
    u = 0;
 | 
						|
 | 
						|
    /* limit ourselves to making digs digits of output */
 | 
						|
    pb = MIN (b->used, digs - ix);
 | 
						|
 | 
						|
    /* setup some aliases */
 | 
						|
    /* copy of the digit from a used within the nested loop */
 | 
						|
    tmpx = a->dp[ix];
 | 
						|
    
 | 
						|
    /* an alias for the destination shifted ix places */
 | 
						|
    tmpt = t.dp + ix;
 | 
						|
    
 | 
						|
    /* an alias for the digits of b */
 | 
						|
    tmpy = b->dp;
 | 
						|
 | 
						|
    /* compute the columns of the output and propagate the carry */
 | 
						|
    for (iy = 0; iy < pb; iy++) {
 | 
						|
      /* compute the column as a mp_word */
 | 
						|
      r       = ((mp_word)*tmpt) +
 | 
						|
                ((mp_word)tmpx) * ((mp_word)*tmpy++) +
 | 
						|
                ((mp_word) u);
 | 
						|
 | 
						|
      /* the new column is the lower part of the result */
 | 
						|
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | 
						|
 | 
						|
      /* get the carry word from the result */
 | 
						|
      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | 
						|
    }
 | 
						|
    /* set carry if it is placed below digs */
 | 
						|
    if (ix + iy < digs) {
 | 
						|
      *tmpt = u;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  mp_clamp (&t);
 | 
						|
  mp_exch (&t, c);
 | 
						|
 | 
						|
  mp_clear (&t);
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Fast (comba) multiplier
 | 
						|
 *
 | 
						|
 * This is the fast column-array [comba] multiplier.  It is 
 | 
						|
 * designed to compute the columns of the product first 
 | 
						|
 * then handle the carries afterwards.  This has the effect 
 | 
						|
 * of making the nested loops that compute the columns very
 | 
						|
 * simple and schedulable on super-scalar processors.
 | 
						|
 *
 | 
						|
 * This has been modified to produce a variable number of 
 | 
						|
 * digits of output so if say only a half-product is required 
 | 
						|
 * you don't have to compute the upper half (a feature 
 | 
						|
 * required for fast Barrett reduction).
 | 
						|
 *
 | 
						|
 * Based on Algorithm 14.12 on pp.595 of HAC.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static int
 | 
						|
fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | 
						|
{
 | 
						|
  int     olduse, res, pa, ix, iz;
 | 
						|
  mp_digit W[MP_WARRAY];
 | 
						|
  register mp_word  _W;
 | 
						|
 | 
						|
  /* grow the destination as required */
 | 
						|
  if (c->alloc < digs) {
 | 
						|
    if ((res = mp_grow (c, digs)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* number of output digits to produce */
 | 
						|
  pa = MIN(digs, a->used + b->used);
 | 
						|
 | 
						|
  /* clear the carry */
 | 
						|
  _W = 0;
 | 
						|
  for (ix = 0; ix < pa; ix++) { 
 | 
						|
      int      tx, ty;
 | 
						|
      int      iy;
 | 
						|
      mp_digit *tmpx, *tmpy;
 | 
						|
 | 
						|
      /* get offsets into the two bignums */
 | 
						|
      ty = MIN(b->used-1, ix);
 | 
						|
      tx = ix - ty;
 | 
						|
 | 
						|
      /* setup temp aliases */
 | 
						|
      tmpx = a->dp + tx;
 | 
						|
      tmpy = b->dp + ty;
 | 
						|
 | 
						|
      /* this is the number of times the loop will iterrate, essentially 
 | 
						|
         while (tx++ < a->used && ty-- >= 0) { ... }
 | 
						|
       */
 | 
						|
      iy = MIN(a->used-tx, ty+1);
 | 
						|
 | 
						|
      /* execute loop */
 | 
						|
      for (iz = 0; iz < iy; ++iz) {
 | 
						|
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
 | 
						|
 | 
						|
      }
 | 
						|
 | 
						|
      /* store term */
 | 
						|
      W[ix] = ((mp_digit)_W) & MP_MASK;
 | 
						|
 | 
						|
      /* make next carry */
 | 
						|
      _W = _W >> ((mp_word)DIGIT_BIT);
 | 
						|
 }
 | 
						|
 | 
						|
  /* setup dest */
 | 
						|
  olduse  = c->used;
 | 
						|
  c->used = pa;
 | 
						|
 | 
						|
  {
 | 
						|
    register mp_digit *tmpc;
 | 
						|
    tmpc = c->dp;
 | 
						|
    for (ix = 0; ix < pa+1; ix++) {
 | 
						|
      /* now extract the previous digit [below the carry] */
 | 
						|
      *tmpc++ = W[ix];
 | 
						|
    }
 | 
						|
 | 
						|
    /* clear unused digits [that existed in the old copy of c] */
 | 
						|
    for (; ix < olduse; ix++) {
 | 
						|
      *tmpc++ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  mp_clamp (c);
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* init an mp_init for a given size */
 | 
						|
static int
 | 
						|
mp_init_size (mp_int * a, int size)
 | 
						|
{
 | 
						|
  int x;
 | 
						|
 | 
						|
  /* pad size so there are always extra digits */
 | 
						|
  size += (MP_PREC * 2) - (size % MP_PREC);	
 | 
						|
  
 | 
						|
  /* alloc mem */
 | 
						|
  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
 | 
						|
  if (a->dp == NULL) {
 | 
						|
    return MP_MEM;
 | 
						|
  }
 | 
						|
 | 
						|
  /* set the members */
 | 
						|
  a->used  = 0;
 | 
						|
  a->alloc = size;
 | 
						|
  a->sign  = MP_ZPOS;
 | 
						|
 | 
						|
  /* zero the digits */
 | 
						|
  for (x = 0; x < size; x++) {
 | 
						|
      a->dp[x] = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
 | 
						|
static int
 | 
						|
s_mp_sqr (mp_int * a, mp_int * b)
 | 
						|
{
 | 
						|
  mp_int  t;
 | 
						|
  int     res, ix, iy, pa;
 | 
						|
  mp_word r;
 | 
						|
  mp_digit u, tmpx, *tmpt;
 | 
						|
 | 
						|
  pa = a->used;
 | 
						|
  if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
 | 
						|
  /* default used is maximum possible size */
 | 
						|
  t.used = 2*pa + 1;
 | 
						|
 | 
						|
  for (ix = 0; ix < pa; ix++) {
 | 
						|
    /* first calculate the digit at 2*ix */
 | 
						|
    /* calculate double precision result */
 | 
						|
    r = ((mp_word) t.dp[2*ix]) +
 | 
						|
        ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
 | 
						|
 | 
						|
    /* store lower part in result */
 | 
						|
    t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
 | 
						|
 | 
						|
    /* get the carry */
 | 
						|
    u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | 
						|
 | 
						|
    /* left hand side of A[ix] * A[iy] */
 | 
						|
    tmpx        = a->dp[ix];
 | 
						|
 | 
						|
    /* alias for where to store the results */
 | 
						|
    tmpt        = t.dp + (2*ix + 1);
 | 
						|
    
 | 
						|
    for (iy = ix + 1; iy < pa; iy++) {
 | 
						|
      /* first calculate the product */
 | 
						|
      r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
 | 
						|
 | 
						|
      /* now calculate the double precision result, note we use
 | 
						|
       * addition instead of *2 since it's easier to optimize
 | 
						|
       */
 | 
						|
      r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);
 | 
						|
 | 
						|
      /* store lower part */
 | 
						|
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | 
						|
 | 
						|
      /* get carry */
 | 
						|
      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | 
						|
    }
 | 
						|
    /* propagate upwards */
 | 
						|
    while (u != ((mp_digit) 0)) {
 | 
						|
      r       = ((mp_word) *tmpt) + ((mp_word) u);
 | 
						|
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | 
						|
      u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  mp_clamp (&t);
 | 
						|
  mp_exch (&t, b);
 | 
						|
  mp_clear (&t);
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* multiplies |a| * |b| and does not compute the lower digs digits
 | 
						|
 * [meant to get the higher part of the product]
 | 
						|
 */
 | 
						|
static int
 | 
						|
s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | 
						|
{
 | 
						|
  mp_int  t;
 | 
						|
  int     res, pa, pb, ix, iy;
 | 
						|
  mp_digit u;
 | 
						|
  mp_word r;
 | 
						|
  mp_digit tmpx, *tmpt, *tmpy;
 | 
						|
 | 
						|
  /* can we use the fast multiplier? */
 | 
						|
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
 | 
						|
  if (((a->used + b->used + 1) < MP_WARRAY)
 | 
						|
      && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | 
						|
    return fast_s_mp_mul_high_digs (a, b, c, digs);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
 | 
						|
    return res;
 | 
						|
  }
 | 
						|
  t.used = a->used + b->used + 1;
 | 
						|
 | 
						|
  pa = a->used;
 | 
						|
  pb = b->used;
 | 
						|
  for (ix = 0; ix < pa; ix++) {
 | 
						|
    /* clear the carry */
 | 
						|
    u = 0;
 | 
						|
 | 
						|
    /* left hand side of A[ix] * B[iy] */
 | 
						|
    tmpx = a->dp[ix];
 | 
						|
 | 
						|
    /* alias to the address of where the digits will be stored */
 | 
						|
    tmpt = &(t.dp[digs]);
 | 
						|
 | 
						|
    /* alias for where to read the right hand side from */
 | 
						|
    tmpy = b->dp + (digs - ix);
 | 
						|
 | 
						|
    for (iy = digs - ix; iy < pb; iy++) {
 | 
						|
      /* calculate the double precision result */
 | 
						|
      r       = ((mp_word)*tmpt) +
 | 
						|
                ((mp_word)tmpx) * ((mp_word)*tmpy++) +
 | 
						|
                ((mp_word) u);
 | 
						|
 | 
						|
      /* get the lower part */
 | 
						|
      *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | 
						|
 | 
						|
      /* carry the carry */
 | 
						|
      u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | 
						|
    }
 | 
						|
    *tmpt = u;
 | 
						|
  }
 | 
						|
  mp_clamp (&t);
 | 
						|
  mp_exch (&t, c);
 | 
						|
  mp_clear (&t);
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef BN_MP_MONTGOMERY_SETUP_C
 | 
						|
/* setups the montgomery reduction stuff */
 | 
						|
static int
 | 
						|
mp_montgomery_setup (mp_int * n, mp_digit * rho)
 | 
						|
{
 | 
						|
  mp_digit x, b;
 | 
						|
 | 
						|
/* fast inversion mod 2**k
 | 
						|
 *
 | 
						|
 * Based on the fact that
 | 
						|
 *
 | 
						|
 * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
 | 
						|
 *                    =>  2*X*A - X*X*A*A = 1
 | 
						|
 *                    =>  2*(1) - (1)     = 1
 | 
						|
 */
 | 
						|
  b = n->dp[0];
 | 
						|
 | 
						|
  if ((b & 1) == 0) {
 | 
						|
    return MP_VAL;
 | 
						|
  }
 | 
						|
 | 
						|
  x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
 | 
						|
  x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
 | 
						|
#if !defined(MP_8BIT)
 | 
						|
  x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
 | 
						|
#endif
 | 
						|
#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
 | 
						|
  x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
 | 
						|
#endif
 | 
						|
#ifdef MP_64BIT
 | 
						|
  x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
 | 
						|
#endif
 | 
						|
 | 
						|
  /* rho = -1/m mod b */
 | 
						|
  *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
 | 
						|
/* computes xR**-1 == x (mod N) via Montgomery Reduction
 | 
						|
 *
 | 
						|
 * This is an optimized implementation of montgomery_reduce
 | 
						|
 * which uses the comba method to quickly calculate the columns of the
 | 
						|
 * reduction.
 | 
						|
 *
 | 
						|
 * Based on Algorithm 14.32 on pp.601 of HAC.
 | 
						|
*/
 | 
						|
int
 | 
						|
fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 | 
						|
{
 | 
						|
  int     ix, res, olduse;
 | 
						|
  mp_word W[MP_WARRAY];
 | 
						|
 | 
						|
  /* get old used count */
 | 
						|
  olduse = x->used;
 | 
						|
 | 
						|
  /* grow a as required */
 | 
						|
  if (x->alloc < n->used + 1) {
 | 
						|
    if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* first we have to get the digits of the input into
 | 
						|
   * an array of double precision words W[...]
 | 
						|
   */
 | 
						|
  {
 | 
						|
    register mp_word *_W;
 | 
						|
    register mp_digit *tmpx;
 | 
						|
 | 
						|
    /* alias for the W[] array */
 | 
						|
    _W   = W;
 | 
						|
 | 
						|
    /* alias for the digits of  x*/
 | 
						|
    tmpx = x->dp;
 | 
						|
 | 
						|
    /* copy the digits of a into W[0..a->used-1] */
 | 
						|
    for (ix = 0; ix < x->used; ix++) {
 | 
						|
      *_W++ = *tmpx++;
 | 
						|
    }
 | 
						|
 | 
						|
    /* zero the high words of W[a->used..m->used*2] */
 | 
						|
    for (; ix < n->used * 2 + 1; ix++) {
 | 
						|
      *_W++ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* now we proceed to zero successive digits
 | 
						|
   * from the least significant upwards
 | 
						|
   */
 | 
						|
  for (ix = 0; ix < n->used; ix++) {
 | 
						|
    /* mu = ai * m' mod b
 | 
						|
     *
 | 
						|
     * We avoid a double precision multiplication (which isn't required)
 | 
						|
     * by casting the value down to a mp_digit.  Note this requires
 | 
						|
     * that W[ix-1] have  the carry cleared (see after the inner loop)
 | 
						|
     */
 | 
						|
    register mp_digit mu;
 | 
						|
    mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
 | 
						|
 | 
						|
    /* a = a + mu * m * b**i
 | 
						|
     *
 | 
						|
     * This is computed in place and on the fly.  The multiplication
 | 
						|
     * by b**i is handled by offseting which columns the results
 | 
						|
     * are added to.
 | 
						|
     *
 | 
						|
     * Note the comba method normally doesn't handle carries in the
 | 
						|
     * inner loop In this case we fix the carry from the previous
 | 
						|
     * column since the Montgomery reduction requires digits of the
 | 
						|
     * result (so far) [see above] to work.  This is
 | 
						|
     * handled by fixing up one carry after the inner loop.  The
 | 
						|
     * carry fixups are done in order so after these loops the
 | 
						|
     * first m->used words of W[] have the carries fixed
 | 
						|
     */
 | 
						|
    {
 | 
						|
      register int iy;
 | 
						|
      register mp_digit *tmpn;
 | 
						|
      register mp_word *_W;
 | 
						|
 | 
						|
      /* alias for the digits of the modulus */
 | 
						|
      tmpn = n->dp;
 | 
						|
 | 
						|
      /* Alias for the columns set by an offset of ix */
 | 
						|
      _W = W + ix;
 | 
						|
 | 
						|
      /* inner loop */
 | 
						|
      for (iy = 0; iy < n->used; iy++) {
 | 
						|
          *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* now fix carry for next digit, W[ix+1] */
 | 
						|
    W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
 | 
						|
  }
 | 
						|
 | 
						|
  /* now we have to propagate the carries and
 | 
						|
   * shift the words downward [all those least
 | 
						|
   * significant digits we zeroed].
 | 
						|
   */
 | 
						|
  {
 | 
						|
    register mp_digit *tmpx;
 | 
						|
    register mp_word *_W, *_W1;
 | 
						|
 | 
						|
    /* nox fix rest of carries */
 | 
						|
 | 
						|
    /* alias for current word */
 | 
						|
    _W1 = W + ix;
 | 
						|
 | 
						|
    /* alias for next word, where the carry goes */
 | 
						|
    _W = W + ++ix;
 | 
						|
 | 
						|
    for (; ix <= n->used * 2 + 1; ix++) {
 | 
						|
      *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
 | 
						|
    }
 | 
						|
 | 
						|
    /* copy out, A = A/b**n
 | 
						|
     *
 | 
						|
     * The result is A/b**n but instead of converting from an
 | 
						|
     * array of mp_word to mp_digit than calling mp_rshd
 | 
						|
     * we just copy them in the right order
 | 
						|
     */
 | 
						|
 | 
						|
    /* alias for destination word */
 | 
						|
    tmpx = x->dp;
 | 
						|
 | 
						|
    /* alias for shifted double precision result */
 | 
						|
    _W = W + n->used;
 | 
						|
 | 
						|
    for (ix = 0; ix < n->used + 1; ix++) {
 | 
						|
      *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
 | 
						|
    }
 | 
						|
 | 
						|
    /* zero oldused digits, if the input a was larger than
 | 
						|
     * m->used+1 we'll have to clear the digits
 | 
						|
     */
 | 
						|
    for (; ix < olduse; ix++) {
 | 
						|
      *tmpx++ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* set the max used and clamp */
 | 
						|
  x->used = n->used + 1;
 | 
						|
  mp_clamp (x);
 | 
						|
 | 
						|
  /* if A >= m then A = A - m */
 | 
						|
  if (mp_cmp_mag (x, n) != MP_LT) {
 | 
						|
    return s_mp_sub (x, n, x);
 | 
						|
  }
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#ifdef BN_MP_MUL_2_C
 | 
						|
/* b = a*2 */
 | 
						|
static int
 | 
						|
mp_mul_2(mp_int * a, mp_int * b)
 | 
						|
{
 | 
						|
  int     x, res, oldused;
 | 
						|
 | 
						|
  /* grow to accommodate result */
 | 
						|
  if (b->alloc < a->used + 1) {
 | 
						|
    if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  oldused = b->used;
 | 
						|
  b->used = a->used;
 | 
						|
 | 
						|
  {
 | 
						|
    register mp_digit r, rr, *tmpa, *tmpb;
 | 
						|
 | 
						|
    /* alias for source */
 | 
						|
    tmpa = a->dp;
 | 
						|
    
 | 
						|
    /* alias for dest */
 | 
						|
    tmpb = b->dp;
 | 
						|
 | 
						|
    /* carry */
 | 
						|
    r = 0;
 | 
						|
    for (x = 0; x < a->used; x++) {
 | 
						|
    
 | 
						|
      /* get what will be the *next* carry bit from the 
 | 
						|
       * MSB of the current digit 
 | 
						|
       */
 | 
						|
      rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
 | 
						|
      
 | 
						|
      /* now shift up this digit, add in the carry [from the previous] */
 | 
						|
      *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
 | 
						|
      
 | 
						|
      /* copy the carry that would be from the source 
 | 
						|
       * digit into the next iteration 
 | 
						|
       */
 | 
						|
      r = rr;
 | 
						|
    }
 | 
						|
 | 
						|
    /* new leading digit? */
 | 
						|
    if (r != 0) {
 | 
						|
      /* add a MSB which is always 1 at this point */
 | 
						|
      *tmpb = 1;
 | 
						|
      ++(b->used);
 | 
						|
    }
 | 
						|
 | 
						|
    /* now zero any excess digits on the destination 
 | 
						|
     * that we didn't write to 
 | 
						|
     */
 | 
						|
    tmpb = b->dp + b->used;
 | 
						|
    for (x = b->used; x < oldused; x++) {
 | 
						|
      *tmpb++ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  b->sign = a->sign;
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
 | 
						|
/*
 | 
						|
 * shifts with subtractions when the result is greater than b.
 | 
						|
 *
 | 
						|
 * The method is slightly modified to shift B unconditionally up to just under
 | 
						|
 * the leading bit of b.  This saves a lot of multiple precision shifting.
 | 
						|
 */
 | 
						|
static int
 | 
						|
mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
 | 
						|
{
 | 
						|
  int     x, bits, res;
 | 
						|
 | 
						|
  /* how many bits of last digit does b use */
 | 
						|
  bits = mp_count_bits (b) % DIGIT_BIT;
 | 
						|
 | 
						|
  if (b->used > 1) {
 | 
						|
     if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
 | 
						|
        return res;
 | 
						|
     }
 | 
						|
  } else {
 | 
						|
     mp_set(a, 1);
 | 
						|
     bits = 1;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  /* now compute C = A * B mod b */
 | 
						|
  for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
 | 
						|
    if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
    if (mp_cmp_mag (a, b) != MP_LT) {
 | 
						|
      if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
 | 
						|
        return res;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#ifdef BN_MP_EXPTMOD_FAST_C
 | 
						|
/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 | 
						|
 *
 | 
						|
 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 | 
						|
 * The value of k changes based on the size of the exponent.
 | 
						|
 *
 | 
						|
 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 | 
						|
 */
 | 
						|
 | 
						|
static int
 | 
						|
mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
 | 
						|
{
 | 
						|
  mp_int  M[TAB_SIZE], res;
 | 
						|
  mp_digit buf, mp;
 | 
						|
  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | 
						|
 | 
						|
  /* use a pointer to the reduction algorithm.  This allows us to use
 | 
						|
   * one of many reduction algorithms without modding the guts of
 | 
						|
   * the code with if statements everywhere.
 | 
						|
   */
 | 
						|
  int     (*redux)(mp_int*,mp_int*,mp_digit);
 | 
						|
 | 
						|
  /* find window size */
 | 
						|
  x = mp_count_bits (X);
 | 
						|
  if (x <= 7) {
 | 
						|
    winsize = 2;
 | 
						|
  } else if (x <= 36) {
 | 
						|
    winsize = 3;
 | 
						|
  } else if (x <= 140) {
 | 
						|
    winsize = 4;
 | 
						|
  } else if (x <= 450) {
 | 
						|
    winsize = 5;
 | 
						|
  } else if (x <= 1303) {
 | 
						|
    winsize = 6;
 | 
						|
  } else if (x <= 3529) {
 | 
						|
    winsize = 7;
 | 
						|
  } else {
 | 
						|
    winsize = 8;
 | 
						|
  }
 | 
						|
 | 
						|
#ifdef MP_LOW_MEM
 | 
						|
  if (winsize > 5) {
 | 
						|
     winsize = 5;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  /* init M array */
 | 
						|
  /* init first cell */
 | 
						|
  if ((err = mp_init(&M[1])) != MP_OKAY) {
 | 
						|
     return err;
 | 
						|
  }
 | 
						|
 | 
						|
  /* now init the second half of the array */
 | 
						|
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | 
						|
    if ((err = mp_init(&M[x])) != MP_OKAY) {
 | 
						|
      for (y = 1<<(winsize-1); y < x; y++) {
 | 
						|
        mp_clear (&M[y]);
 | 
						|
      }
 | 
						|
      mp_clear(&M[1]);
 | 
						|
      return err;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* determine and setup reduction code */
 | 
						|
  if (redmode == 0) {
 | 
						|
#ifdef BN_MP_MONTGOMERY_SETUP_C     
 | 
						|
     /* now setup montgomery  */
 | 
						|
     if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
 | 
						|
        goto LBL_M;
 | 
						|
     }
 | 
						|
#else
 | 
						|
     err = MP_VAL;
 | 
						|
     goto LBL_M;
 | 
						|
#endif
 | 
						|
 | 
						|
     /* automatically pick the comba one if available (saves quite a few calls/ifs) */
 | 
						|
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
 | 
						|
     if (((P->used * 2 + 1) < MP_WARRAY) &&
 | 
						|
          P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | 
						|
        redux = fast_mp_montgomery_reduce;
 | 
						|
     } else 
 | 
						|
#endif
 | 
						|
     {
 | 
						|
#ifdef BN_MP_MONTGOMERY_REDUCE_C
 | 
						|
        /* use slower baseline Montgomery method */
 | 
						|
        redux = mp_montgomery_reduce;
 | 
						|
#else
 | 
						|
        err = MP_VAL;
 | 
						|
        goto LBL_M;
 | 
						|
#endif
 | 
						|
     }
 | 
						|
  } else if (redmode == 1) {
 | 
						|
#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
 | 
						|
     /* setup DR reduction for moduli of the form B**k - b */
 | 
						|
     mp_dr_setup(P, &mp);
 | 
						|
     redux = mp_dr_reduce;
 | 
						|
#else
 | 
						|
     err = MP_VAL;
 | 
						|
     goto LBL_M;
 | 
						|
#endif
 | 
						|
  } else {
 | 
						|
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
 | 
						|
     /* setup DR reduction for moduli of the form 2**k - b */
 | 
						|
     if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
 | 
						|
        goto LBL_M;
 | 
						|
     }
 | 
						|
     redux = mp_reduce_2k;
 | 
						|
#else
 | 
						|
     err = MP_VAL;
 | 
						|
     goto LBL_M;
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  /* setup result */
 | 
						|
  if ((err = mp_init (&res)) != MP_OKAY) {
 | 
						|
    goto LBL_M;
 | 
						|
  }
 | 
						|
 | 
						|
  /* create M table
 | 
						|
   *
 | 
						|
 | 
						|
   *
 | 
						|
   * The first half of the table is not computed though accept for M[0] and M[1]
 | 
						|
   */
 | 
						|
 | 
						|
  if (redmode == 0) {
 | 
						|
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
 | 
						|
     /* now we need R mod m */
 | 
						|
     if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
 | 
						|
       goto LBL_RES;
 | 
						|
     }
 | 
						|
#else 
 | 
						|
     err = MP_VAL;
 | 
						|
     goto LBL_RES;
 | 
						|
#endif
 | 
						|
 | 
						|
     /* now set M[1] to G * R mod m */
 | 
						|
     if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
 | 
						|
       goto LBL_RES;
 | 
						|
     }
 | 
						|
  } else {
 | 
						|
     mp_set(&res, 1);
 | 
						|
     if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
     }
 | 
						|
  }
 | 
						|
 | 
						|
  /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
 | 
						|
  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | 
						|
    goto LBL_RES;
 | 
						|
  }
 | 
						|
 | 
						|
  for (x = 0; x < (winsize - 1); x++) {
 | 
						|
    if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | 
						|
      goto LBL_RES;
 | 
						|
    }
 | 
						|
    if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
 | 
						|
      goto LBL_RES;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* create upper table */
 | 
						|
  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | 
						|
    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 | 
						|
      goto LBL_RES;
 | 
						|
    }
 | 
						|
    if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
 | 
						|
      goto LBL_RES;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* set initial mode and bit cnt */
 | 
						|
  mode   = 0;
 | 
						|
  bitcnt = 1;
 | 
						|
  buf    = 0;
 | 
						|
  digidx = X->used - 1;
 | 
						|
  bitcpy = 0;
 | 
						|
  bitbuf = 0;
 | 
						|
 | 
						|
  for (;;) {
 | 
						|
    /* grab next digit as required */
 | 
						|
    if (--bitcnt == 0) {
 | 
						|
      /* if digidx == -1 we are out of digits so break */
 | 
						|
      if (digidx == -1) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      /* read next digit and reset bitcnt */
 | 
						|
      buf    = X->dp[digidx--];
 | 
						|
      bitcnt = (int)DIGIT_BIT;
 | 
						|
    }
 | 
						|
 | 
						|
    /* grab the next msb from the exponent */
 | 
						|
    y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
 | 
						|
    buf <<= (mp_digit)1;
 | 
						|
 | 
						|
    /* if the bit is zero and mode == 0 then we ignore it
 | 
						|
     * These represent the leading zero bits before the first 1 bit
 | 
						|
     * in the exponent.  Technically this opt is not required but it
 | 
						|
     * does lower the # of trivial squaring/reductions used
 | 
						|
     */
 | 
						|
    if (mode == 0 && y == 0) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    /* if the bit is zero and mode == 1 then we square */
 | 
						|
    if (mode == 1 && y == 0) {
 | 
						|
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    /* else we add it to the window */
 | 
						|
    bitbuf |= (y << (winsize - ++bitcpy));
 | 
						|
    mode    = 2;
 | 
						|
 | 
						|
    if (bitcpy == winsize) {
 | 
						|
      /* ok window is filled so square as required and multiply  */
 | 
						|
      /* square first */
 | 
						|
      for (x = 0; x < winsize; x++) {
 | 
						|
        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
						|
          goto LBL_RES;
 | 
						|
        }
 | 
						|
        if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | 
						|
          goto LBL_RES;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      /* then multiply */
 | 
						|
      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
 | 
						|
      /* empty window and reset */
 | 
						|
      bitcpy = 0;
 | 
						|
      bitbuf = 0;
 | 
						|
      mode   = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* if bits remain then square/multiply */
 | 
						|
  if (mode == 2 && bitcpy > 0) {
 | 
						|
    /* square then multiply if the bit is set */
 | 
						|
    for (x = 0; x < bitcpy; x++) {
 | 
						|
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | 
						|
        goto LBL_RES;
 | 
						|
      }
 | 
						|
 | 
						|
      /* get next bit of the window */
 | 
						|
      bitbuf <<= 1;
 | 
						|
      if ((bitbuf & (1 << winsize)) != 0) {
 | 
						|
        /* then multiply */
 | 
						|
        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 | 
						|
          goto LBL_RES;
 | 
						|
        }
 | 
						|
        if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | 
						|
          goto LBL_RES;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (redmode == 0) {
 | 
						|
     /* fixup result if Montgomery reduction is used
 | 
						|
      * recall that any value in a Montgomery system is
 | 
						|
      * actually multiplied by R mod n.  So we have
 | 
						|
      * to reduce one more time to cancel out the factor
 | 
						|
      * of R.
 | 
						|
      */
 | 
						|
     if ((err = redux(&res, P, mp)) != MP_OKAY) {
 | 
						|
       goto LBL_RES;
 | 
						|
     }
 | 
						|
  }
 | 
						|
 | 
						|
  /* swap res with Y */
 | 
						|
  mp_exch (&res, Y);
 | 
						|
  err = MP_OKAY;
 | 
						|
LBL_RES:mp_clear (&res);
 | 
						|
LBL_M:
 | 
						|
  mp_clear(&M[1]);
 | 
						|
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | 
						|
    mp_clear (&M[x]);
 | 
						|
  }
 | 
						|
  return err;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#ifdef BN_FAST_S_MP_SQR_C
 | 
						|
/* the jist of squaring...
 | 
						|
 * you do like mult except the offset of the tmpx [one that 
 | 
						|
 * starts closer to zero] can't equal the offset of tmpy.  
 | 
						|
 * So basically you set up iy like before then you min it with
 | 
						|
 * (ty-tx) so that it never happens.  You double all those 
 | 
						|
 * you add in the inner loop
 | 
						|
 | 
						|
After that loop you do the squares and add them in.
 | 
						|
*/
 | 
						|
 | 
						|
static int
 | 
						|
fast_s_mp_sqr (mp_int * a, mp_int * b)
 | 
						|
{
 | 
						|
  int       olduse, res, pa, ix, iz;
 | 
						|
  mp_digit   W[MP_WARRAY], *tmpx;
 | 
						|
  mp_word   W1;
 | 
						|
 | 
						|
  /* grow the destination as required */
 | 
						|
  pa = a->used + a->used;
 | 
						|
  if (b->alloc < pa) {
 | 
						|
    if ((res = mp_grow (b, pa)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* number of output digits to produce */
 | 
						|
  W1 = 0;
 | 
						|
  for (ix = 0; ix < pa; ix++) { 
 | 
						|
      int      tx, ty, iy;
 | 
						|
      mp_word  _W;
 | 
						|
      mp_digit *tmpy;
 | 
						|
 | 
						|
      /* clear counter */
 | 
						|
      _W = 0;
 | 
						|
 | 
						|
      /* get offsets into the two bignums */
 | 
						|
      ty = MIN(a->used-1, ix);
 | 
						|
      tx = ix - ty;
 | 
						|
 | 
						|
      /* setup temp aliases */
 | 
						|
      tmpx = a->dp + tx;
 | 
						|
      tmpy = a->dp + ty;
 | 
						|
 | 
						|
      /* this is the number of times the loop will iterrate, essentially
 | 
						|
         while (tx++ < a->used && ty-- >= 0) { ... }
 | 
						|
       */
 | 
						|
      iy = MIN(a->used-tx, ty+1);
 | 
						|
 | 
						|
      /* now for squaring tx can never equal ty 
 | 
						|
       * we halve the distance since they approach at a rate of 2x
 | 
						|
       * and we have to round because odd cases need to be executed
 | 
						|
       */
 | 
						|
      iy = MIN(iy, (ty-tx+1)>>1);
 | 
						|
 | 
						|
      /* execute loop */
 | 
						|
      for (iz = 0; iz < iy; iz++) {
 | 
						|
         _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
 | 
						|
      }
 | 
						|
 | 
						|
      /* double the inner product and add carry */
 | 
						|
      _W = _W + _W + W1;
 | 
						|
 | 
						|
      /* even columns have the square term in them */
 | 
						|
      if ((ix&1) == 0) {
 | 
						|
         _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
 | 
						|
      }
 | 
						|
 | 
						|
      /* store it */
 | 
						|
      W[ix] = (mp_digit)(_W & MP_MASK);
 | 
						|
 | 
						|
      /* make next carry */
 | 
						|
      W1 = _W >> ((mp_word)DIGIT_BIT);
 | 
						|
  }
 | 
						|
 | 
						|
  /* setup dest */
 | 
						|
  olduse  = b->used;
 | 
						|
  b->used = a->used+a->used;
 | 
						|
 | 
						|
  {
 | 
						|
    mp_digit *tmpb;
 | 
						|
    tmpb = b->dp;
 | 
						|
    for (ix = 0; ix < pa; ix++) {
 | 
						|
      *tmpb++ = W[ix] & MP_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    /* clear unused digits [that existed in the old copy of c] */
 | 
						|
    for (; ix < olduse; ix++) {
 | 
						|
      *tmpb++ = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  mp_clamp (b);
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#ifdef BN_MP_MUL_D_C
 | 
						|
/* multiply by a digit */
 | 
						|
static int
 | 
						|
mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
 | 
						|
{
 | 
						|
  mp_digit u, *tmpa, *tmpc;
 | 
						|
  mp_word  r;
 | 
						|
  int      ix, res, olduse;
 | 
						|
 | 
						|
  /* make sure c is big enough to hold a*b */
 | 
						|
  if (c->alloc < a->used + 1) {
 | 
						|
    if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* get the original destinations used count */
 | 
						|
  olduse = c->used;
 | 
						|
 | 
						|
  /* set the sign */
 | 
						|
  c->sign = a->sign;
 | 
						|
 | 
						|
  /* alias for a->dp [source] */
 | 
						|
  tmpa = a->dp;
 | 
						|
 | 
						|
  /* alias for c->dp [dest] */
 | 
						|
  tmpc = c->dp;
 | 
						|
 | 
						|
  /* zero carry */
 | 
						|
  u = 0;
 | 
						|
 | 
						|
  /* compute columns */
 | 
						|
  for (ix = 0; ix < a->used; ix++) {
 | 
						|
    /* compute product and carry sum for this term */
 | 
						|
    r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
 | 
						|
 | 
						|
    /* mask off higher bits to get a single digit */
 | 
						|
    *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | 
						|
 | 
						|
    /* send carry into next iteration */
 | 
						|
    u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | 
						|
  }
 | 
						|
 | 
						|
  /* store final carry [if any] and increment ix offset  */
 | 
						|
  *tmpc++ = u;
 | 
						|
  ++ix;
 | 
						|
 | 
						|
  /* now zero digits above the top */
 | 
						|
  while (ix++ < olduse) {
 | 
						|
     *tmpc++ = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /* set used count */
 | 
						|
  c->used = a->used + 1;
 | 
						|
  mp_clamp(c);
 | 
						|
 | 
						|
  return MP_OKAY;
 | 
						|
}
 | 
						|
#endif
 |