Files
arduino-esp32/cores/esp32/IPAddress.h
Rodrigo Garcia ce2cd111a1 Fixes INADDR_NONE (#6659)
Description of Change

Fixes IPAddress INADDR_NONE declaration when using Arduino WiFi or ETH.
This symbol was defined as 0xffffffff by lwip /inet.h, making it impossible to use INADDR_NONE correctly.

This PR only works when <wifi-provisioning/wifi_config.h> has a modification to include <lwip/ip4_addr.h> instead of <lwip/inet.h>. This will be done directly to the sdk folder in the github structure and it has been fixed in IDF by a separated Merge Request. This will be reflected in the future, for good.

Tests scenarios

This PR was tested with all Arduino WiFi examples, including AsyncUDP. Also with ETH examples.
It was also tested for #6610 test cases.
Testing done for ESP32, ESP32-S2, ESP32-C3 and ESP32-S3.

Related links

fixes #6610
fixes #6247
fixes #4732
2022-04-29 11:13:07 +03:00

97 lines
3.0 KiB
C++

/*
IPAddress.h - Base class that provides IPAddress
Copyright (c) 2011 Adrian McEwen. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef IPAddress_h
#define IPAddress_h
#include <stdint.h>
#include <WString.h>
#include <Printable.h>
// A class to make it easier to handle and pass around IP addresses
class IPAddress: public Printable
{
private:
union {
uint8_t bytes[4]; // IPv4 address
uint32_t dword;
} _address;
// Access the raw byte array containing the address. Because this returns a pointer
// to the internal structure rather than a copy of the address this function should only
// be used when you know that the usage of the returned uint8_t* will be transient and not
// stored.
uint8_t* raw_address()
{
return _address.bytes;
}
public:
// Constructors
IPAddress();
IPAddress(uint8_t first_octet, uint8_t second_octet, uint8_t third_octet, uint8_t fourth_octet);
IPAddress(uint32_t address);
IPAddress(const uint8_t *address);
virtual ~IPAddress() {}
bool fromString(const char *address);
bool fromString(const String &address) { return fromString(address.c_str()); }
// Overloaded cast operator to allow IPAddress objects to be used where a pointer
// to a four-byte uint8_t array is expected
operator uint32_t() const
{
return _address.dword;
}
bool operator==(const IPAddress& addr) const
{
return _address.dword == addr._address.dword;
}
bool operator==(const uint8_t* addr) const;
// Overloaded index operator to allow getting and setting individual octets of the address
uint8_t operator[](int index) const
{
return _address.bytes[index];
}
uint8_t& operator[](int index)
{
return _address.bytes[index];
}
// Overloaded copy operators to allow initialisation of IPAddress objects from other types
IPAddress& operator=(const uint8_t *address);
IPAddress& operator=(uint32_t address);
virtual size_t printTo(Print& p) const;
String toString() const;
friend class EthernetClass;
friend class UDP;
friend class Client;
friend class Server;
friend class DhcpClass;
friend class DNSClient;
};
// changed to extern because const declaration creates copies in BSS of INADDR_NONE for each CPP unit that includes it
extern IPAddress INADDR_NONE;
#endif