mirror of
				https://github.com/0xFEEDC0DE64/arduino-esp32.git
				synced 2025-10-27 12:11:41 +01:00 
			
		
		
		
	* Set IDF to v3.2 * Remove BLE submodule * Add BLE lib source * Update Camera example to support OV3660
		
			
				
	
	
		
			918 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			918 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2016-2018 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #pragma once
 | |
| #include <stdint.h>
 | |
| #include <stddef.h>
 | |
| #include <stdlib.h>
 | |
| #include "esp_err.h"
 | |
| #include "soc/soc.h"
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #define ULP_FSM_PREPARE_SLEEP_CYCLES 2    /*!< Cycles spent by FSM preparing ULP for sleep */
 | |
| #define ULP_FSM_WAKEUP_SLEEP_CYCLES  2    /*!< Cycles spent by FSM waking up ULP from sleep */
 | |
| 
 | |
| /**
 | |
|  * @defgroup ulp_registers ULP coprocessor registers
 | |
|  * @{
 | |
|  */
 | |
| 
 | |
| 
 | |
| #define R0 0    /*!< general purpose register 0 */
 | |
| #define R1 1    /*!< general purpose register 1 */
 | |
| #define R2 2    /*!< general purpose register 2 */
 | |
| #define R3 3    /*!< general purpose register 3 */
 | |
| /**@}*/
 | |
| 
 | |
| /** @defgroup ulp_opcodes ULP coprocessor opcodes, sub opcodes, and various modifiers/flags
 | |
|  *
 | |
|  * These definitions are not intended to be used directly.
 | |
|  * They are used in definitions of instructions later on.
 | |
|  *
 | |
|  * @{
 | |
|  */
 | |
| 
 | |
| #define OPCODE_WR_REG 1         /*!< Instruction: write peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
 | |
| 
 | |
| #define OPCODE_RD_REG 2         /*!< Instruction: read peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */
 | |
| 
 | |
| #define RD_REG_PERIPH_RTC_CNTL 0    /*!< Identifier of RTC_CNTL peripheral for RD_REG and WR_REG instructions */
 | |
| #define RD_REG_PERIPH_RTC_IO   1    /*!< Identifier of RTC_IO peripheral for RD_REG and WR_REG instructions */
 | |
| #define RD_REG_PERIPH_SENS     2    /*!< Identifier of SARADC peripheral for RD_REG and WR_REG instructions */
 | |
| #define RD_REG_PERIPH_RTC_I2C  3    /*!< Identifier of RTC_I2C peripheral for RD_REG and WR_REG instructions */
 | |
| 
 | |
| #define OPCODE_I2C 3            /*!< Instruction: read/write I2C (not implemented yet) */
 | |
| 
 | |
| #define OPCODE_DELAY 4          /*!< Instruction: delay (nop) for a given number of cycles */
 | |
| 
 | |
| #define OPCODE_ADC 5            /*!< Instruction: SAR ADC measurement (not implemented yet) */
 | |
| 
 | |
| #define OPCODE_ST 6             /*!< Instruction: store indirect to RTC memory */
 | |
| #define SUB_OPCODE_ST 4         /*!< Store 32 bits, 16 MSBs contain PC, 16 LSBs contain value from source register */
 | |
| 
 | |
| #define OPCODE_ALU 7            /*!< Arithmetic instructions */
 | |
| #define SUB_OPCODE_ALU_REG 0    /*!< Arithmetic instruction, both source values are in register */
 | |
| #define SUB_OPCODE_ALU_IMM 1    /*!< Arithmetic instruction, one source value is an immediate */
 | |
| #define SUB_OPCODE_ALU_CNT 2    /*!< Arithmetic instruction between counter register and an immediate (not implemented yet)*/
 | |
| #define ALU_SEL_ADD 0           /*!< Addition */
 | |
| #define ALU_SEL_SUB 1           /*!< Subtraction */
 | |
| #define ALU_SEL_AND 2           /*!< Logical AND */
 | |
| #define ALU_SEL_OR  3           /*!< Logical OR */
 | |
| #define ALU_SEL_MOV 4           /*!< Copy value (immediate to destination register or source register to destination register */
 | |
| #define ALU_SEL_LSH 5           /*!< Shift left by given number of bits */
 | |
| #define ALU_SEL_RSH 6           /*!< Shift right by given number of bits */
 | |
| 
 | |
| #define OPCODE_BRANCH 8         /*!< Branch instructions */
 | |
| #define SUB_OPCODE_BX  0        /*!< Branch to absolute PC (immediate or in register) */
 | |
| #define BX_JUMP_TYPE_DIRECT 0   /*!< Unconditional jump */
 | |
| #define BX_JUMP_TYPE_ZERO 1     /*!< Branch if last ALU result is zero */
 | |
| #define BX_JUMP_TYPE_OVF 2      /*!< Branch if last ALU operation caused and overflow */
 | |
| #define SUB_OPCODE_B  1         /*!< Branch to a relative offset */
 | |
| #define B_CMP_L 0               /*!< Branch if R0 is less than an immediate */
 | |
| #define B_CMP_GE 1              /*!< Branch if R0 is greater than or equal to an immediate */
 | |
| 
 | |
| #define OPCODE_END 9            /*!< Stop executing the program */
 | |
| #define SUB_OPCODE_END 0        /*!< Stop executing the program and optionally wake up the chip */
 | |
| #define SUB_OPCODE_SLEEP 1      /*!< Stop executing the program and run it again after selected interval */
 | |
| 
 | |
| #define OPCODE_TSENS 10         /*!< Instruction: temperature sensor measurement (not implemented yet) */
 | |
| 
 | |
| #define OPCODE_HALT 11          /*!< Halt the coprocessor */
 | |
| 
 | |
| #define OPCODE_LD 13            /*!< Indirect load lower 16 bits from RTC memory */
 | |
| 
 | |
| #define OPCODE_MACRO 15         /*!< Not a real opcode. Used to identify labels and branches in the program */
 | |
| #define SUB_OPCODE_MACRO_LABEL 0    /*!< Label macro */
 | |
| #define SUB_OPCODE_MACRO_BRANCH 1   /*!< Branch macro */
 | |
| /**@}*/
 | |
| 
 | |
| /**@{*/
 | |
| #define ESP_ERR_ULP_BASE                0x1200                  /*!< Offset for ULP-related error codes */
 | |
| #define ESP_ERR_ULP_SIZE_TOO_BIG        (ESP_ERR_ULP_BASE + 1)  /*!< Program doesn't fit into RTC memory reserved for the ULP */
 | |
| #define ESP_ERR_ULP_INVALID_LOAD_ADDR   (ESP_ERR_ULP_BASE + 2)  /*!< Load address is outside of RTC memory reserved for the ULP */
 | |
| #define ESP_ERR_ULP_DUPLICATE_LABEL     (ESP_ERR_ULP_BASE + 3)  /*!< More than one label with the same number was defined */
 | |
| #define ESP_ERR_ULP_UNDEFINED_LABEL     (ESP_ERR_ULP_BASE + 4)  /*!< Branch instructions references an undefined label */
 | |
| #define ESP_ERR_ULP_BRANCH_OUT_OF_RANGE (ESP_ERR_ULP_BASE + 5)  /*!< Branch target is out of range of B instruction (try replacing with BX) */
 | |
| /**@}*/
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * @brief Instruction format structure
 | |
|  *
 | |
|  * All ULP instructions are 32 bit long.
 | |
|  * This union contains field layouts used by all of the supported instructions.
 | |
|  * This union also includes a special "macro" instruction layout.
 | |
|  * This is not a real instruction which can be executed by the CPU. It acts
 | |
|  * as a token which is removed from the program by the
 | |
|  * ulp_process_macros_and_load function.
 | |
|  *
 | |
|  * These structures are not intended to be used directly.
 | |
|  * Preprocessor definitions provided below fill the fields of these structure with
 | |
|  * the right arguments.
 | |
|  */
 | |
| typedef union {
 | |
| 
 | |
|     struct {
 | |
|         uint32_t cycles : 16;       /*!< Number of cycles to sleep */
 | |
|         uint32_t unused : 12;       /*!< Unused */
 | |
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_DELAY) */
 | |
|     } delay;                        /*!< Format of DELAY instruction */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t dreg : 2;          /*!< Register which contains data to store */
 | |
|         uint32_t sreg : 2;          /*!< Register which contains address in RTC memory (expressed in words) */
 | |
|         uint32_t unused1 : 6;       /*!< Unused */
 | |
|         uint32_t offset : 11;       /*!< Offset to add to sreg */
 | |
|         uint32_t unused2 : 4;       /*!< Unused */
 | |
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_ST) */
 | |
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_ST) */
 | |
|     } st;                           /*!< Format of ST instruction */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t dreg : 2;          /*!< Register where the data should be loaded to */
 | |
|         uint32_t sreg : 2;          /*!< Register which contains address in RTC memory (expressed in words) */
 | |
|         uint32_t unused1 : 6;       /*!< Unused */
 | |
|         uint32_t offset : 11;       /*!< Offset to add to sreg */
 | |
|         uint32_t unused2 : 7;       /*!< Unused */
 | |
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_LD) */
 | |
|     } ld;                           /*!< Format of LD instruction */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t unused : 28;       /*!< Unused */
 | |
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_HALT) */
 | |
|     } halt;                         /*!< Format of HALT instruction */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t dreg : 2;          /*!< Register which contains target PC, expressed in words (used if .reg == 1) */
 | |
|         uint32_t addr : 11;         /*!< Target PC, expressed in words (used if .reg == 0) */
 | |
|         uint32_t unused : 8;        /*!< Unused */
 | |
|         uint32_t reg : 1;           /*!< Target PC in register (1) or immediate (0) */
 | |
|         uint32_t type : 3;          /*!< Jump condition (BX_JUMP_TYPE_xxx) */
 | |
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_BX) */
 | |
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_BRANCH) */
 | |
|     } bx;                           /*!< Format of BRANCH instruction (absolute address) */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t imm : 16;          /*!< Immediate value to compare against */
 | |
|         uint32_t cmp : 1;           /*!< Comparison to perform: B_CMP_L or B_CMP_GE */
 | |
|         uint32_t offset : 7;        /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */
 | |
|         uint32_t sign : 1;          /*!< Sign of target PC offset: 0: positive, 1: negative */
 | |
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_B) */
 | |
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_BRANCH) */
 | |
|     } b;                            /*!< Format of BRANCH instruction (relative address) */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t dreg : 2;          /*!< Destination register */
 | |
|         uint32_t sreg : 2;          /*!< Register with operand A */
 | |
|         uint32_t treg : 2;          /*!< Register with operand B */
 | |
|         uint32_t unused : 15;       /*!< Unused */
 | |
|         uint32_t sel : 4;           /*!< Operation to perform, one of ALU_SEL_xxx */
 | |
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_ALU_REG) */
 | |
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_ALU) */
 | |
|     } alu_reg;                      /*!< Format of ALU instruction (both sources are registers) */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t dreg : 2;          /*!< Destination register */
 | |
|         uint32_t sreg : 2;          /*!< Register with operand A */
 | |
|         uint32_t imm : 16;          /*!< Immediate value of operand B */
 | |
|         uint32_t unused : 1;        /*!< Unused */
 | |
|         uint32_t sel : 4;           /*!< Operation to perform, one of ALU_SEL_xxx */
 | |
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_ALU_IMM) */
 | |
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_ALU) */
 | |
|     } alu_imm;                      /*!< Format of ALU instruction (one source is an immediate) */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t addr : 8;          /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
 | |
|         uint32_t periph_sel : 2;    /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
 | |
|         uint32_t data : 8;          /*!< 8 bits of data to write */
 | |
|         uint32_t low : 5;           /*!< Low bit */
 | |
|         uint32_t high : 5;          /*!< High bit */
 | |
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_WR_REG) */
 | |
|     } wr_reg;                       /*!< Format of WR_REG instruction */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t addr : 8;          /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */
 | |
|         uint32_t periph_sel : 2;    /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */
 | |
|         uint32_t unused : 8;        /*!< Unused */
 | |
|         uint32_t low : 5;           /*!< Low bit */
 | |
|         uint32_t high : 5;          /*!< High bit */
 | |
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_WR_REG) */
 | |
|     } rd_reg;                       /*!< Format of RD_REG instruction */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t dreg : 2;          /*!< Register where to store ADC result */
 | |
|         uint32_t mux : 4;           /*!< Select SARADC pad (mux + 1) */
 | |
|         uint32_t sar_sel : 1;       /*!< Select SARADC0 (0) or SARADC1 (1) */
 | |
|         uint32_t unused1 : 1;       /*!< Unused */
 | |
|         uint32_t cycles : 16;       /*!< TBD, cycles used for measurement */
 | |
|         uint32_t unused2 : 4;       /*!< Unused */
 | |
|         uint32_t opcode: 4;         /*!< Opcode (OPCODE_ADC) */
 | |
|     } adc;                          /*!< Format of ADC instruction */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t dreg : 2;          /*!< Register where to store temperature measurement result */
 | |
|         uint32_t wait_delay: 14;    /*!< Cycles to wait after measurement is done */
 | |
|         uint32_t reserved: 12;      /*!< Reserved, set to 0 */
 | |
|         uint32_t opcode: 4;         /*!< Opcode (OPCODE_TSENS) */
 | |
|     } tsens;                        /*!< Format of TSENS instruction */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t i2c_addr : 8;      /*!< I2C slave address */
 | |
|         uint32_t data : 8;          /*!< Data to read or write */
 | |
|         uint32_t low_bits : 3;      /*!< TBD */
 | |
|         uint32_t high_bits : 3;     /*!< TBD */
 | |
|         uint32_t i2c_sel : 4;       /*!< TBD, select reg_i2c_slave_address[7:0] */
 | |
|         uint32_t unused : 1;        /*!< Unused */
 | |
|         uint32_t rw : 1;            /*!< Write (1) or read (0) */
 | |
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_I2C) */
 | |
|     } i2c;                          /*!< Format of I2C instruction */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t wakeup : 1;        /*!< Set to 1 to wake up chip */
 | |
|         uint32_t unused : 24;       /*!< Unused */
 | |
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_WAKEUP) */
 | |
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_END) */
 | |
|     } end;                          /*!< Format of END instruction with wakeup */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t cycle_sel : 4;     /*!< Select which one of SARADC_ULP_CP_SLEEP_CYCx_REG to get the sleep duration from */
 | |
|         uint32_t unused : 21;       /*!< Unused */
 | |
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_SLEEP) */
 | |
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_END) */
 | |
|     } sleep;                        /*!< Format of END instruction with sleep */
 | |
| 
 | |
|     struct {
 | |
|         uint32_t label : 16;        /*!< Label number */
 | |
|         uint32_t unused : 8;        /*!< Unused */
 | |
|         uint32_t sub_opcode : 4;    /*!< SUB_OPCODE_MACRO_LABEL or SUB_OPCODE_MACRO_BRANCH */
 | |
|         uint32_t opcode: 4;         /*!< Opcode (OPCODE_MACRO) */
 | |
|     } macro;                        /*!< Format of tokens used by LABEL and BRANCH macros */
 | |
| 
 | |
| } ulp_insn_t;
 | |
| 
 | |
| _Static_assert(sizeof(ulp_insn_t) == 4, "ULP coprocessor instruction size should be 4 bytes");
 | |
| 
 | |
| /**
 | |
|  * Delay (nop) for a given number of cycles
 | |
|  */
 | |
| #define I_DELAY(cycles_) { .delay = {\
 | |
|     .cycles = cycles_, \
 | |
|     .unused = 0, \
 | |
|     .opcode = OPCODE_DELAY } }
 | |
| 
 | |
| /**
 | |
|  * Halt the coprocessor.
 | |
|  *
 | |
|  * This instruction halts the coprocessor, but keeps ULP timer active.
 | |
|  * As such, ULP program will be restarted again by timer.
 | |
|  * To stop the program and prevent the timer from restarting the program,
 | |
|  * use I_END(0) instruction.
 | |
|  */
 | |
| #define I_HALT() { .halt = {\
 | |
|     .unused = 0, \
 | |
|     .opcode = OPCODE_HALT } }
 | |
| 
 | |
| /**
 | |
|  * Map SoC peripheral register to periph_sel field of RD_REG and WR_REG
 | |
|  * instructions.
 | |
|  *
 | |
|  * @param reg peripheral register in RTC_CNTL_, RTC_IO_, SENS_, RTC_I2C peripherals.
 | |
|  * @return periph_sel value for the peripheral to which this register belongs.
 | |
|  */
 | |
| static inline uint32_t SOC_REG_TO_ULP_PERIPH_SEL(uint32_t reg) {
 | |
|     uint32_t ret = 3;
 | |
|     if (reg < DR_REG_RTCCNTL_BASE) {
 | |
|         assert(0 && "invalid register base");
 | |
|     } else if (reg < DR_REG_RTCIO_BASE) {
 | |
|         ret = RD_REG_PERIPH_RTC_CNTL;
 | |
|     } else if (reg < DR_REG_SENS_BASE) {
 | |
|         ret = RD_REG_PERIPH_RTC_IO;
 | |
|     } else if (reg < DR_REG_RTC_I2C_BASE){
 | |
|         ret = RD_REG_PERIPH_SENS;
 | |
|     } else if (reg < DR_REG_IO_MUX_BASE){
 | |
|         ret = RD_REG_PERIPH_RTC_I2C;
 | |
|     } else {
 | |
|         assert(0 && "invalid register base");
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Write literal value to a peripheral register
 | |
|  *
 | |
|  * reg[high_bit : low_bit] = val
 | |
|  * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
 | |
|  */
 | |
| #define I_WR_REG(reg, low_bit, high_bit, val) {.wr_reg = {\
 | |
|     .addr = (reg & 0xff) / sizeof(uint32_t), \
 | |
|     .periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
 | |
|     .data = val, \
 | |
|     .low = low_bit, \
 | |
|     .high = high_bit, \
 | |
|     .opcode = OPCODE_WR_REG } }
 | |
| 
 | |
| /**
 | |
|  * Read from peripheral register into R0
 | |
|  *
 | |
|  * R0 = reg[high_bit : low_bit]
 | |
|  * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
 | |
|  */
 | |
| #define I_RD_REG(reg, low_bit, high_bit) {.rd_reg = {\
 | |
|     .addr = (reg & 0xff) / sizeof(uint32_t), \
 | |
|     .periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \
 | |
|     .unused = 0, \
 | |
|     .low = low_bit, \
 | |
|     .high = high_bit, \
 | |
|     .opcode = OPCODE_RD_REG } }
 | |
| 
 | |
| /**
 | |
|  * Set or clear a bit in the peripheral register.
 | |
|  *
 | |
|  * Sets bit (1 << shift) of register reg to value val.
 | |
|  * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers.
 | |
|  */
 | |
| #define I_WR_REG_BIT(reg, shift, val) I_WR_REG(reg, shift, shift, val)
 | |
| 
 | |
| /**
 | |
|  * Wake the SoC from deep sleep.
 | |
|  *
 | |
|  * This instruction initiates wake up from deep sleep.
 | |
|  * Use esp_deep_sleep_enable_ulp_wakeup to enable deep sleep wakeup
 | |
|  * triggered by the ULP before going into deep sleep.
 | |
|  * Note that ULP program will still keep running until the I_HALT
 | |
|  * instruction, and it will still be restarted by timer at regular
 | |
|  * intervals, even when the SoC is woken up.
 | |
|  *
 | |
|  * To stop the ULP program, use I_HALT instruction.
 | |
|  *
 | |
|  * To disable the timer which start ULP program, use I_END()
 | |
|  * instruction. I_END instruction clears the
 | |
|  * RTC_CNTL_ULP_CP_SLP_TIMER_EN_S bit of RTC_CNTL_STATE0_REG
 | |
|  * register, which controls the ULP timer.
 | |
|  */
 | |
| #define I_WAKE() { .end = { \
 | |
|         .wakeup = 1, \
 | |
|         .unused = 0, \
 | |
|         .sub_opcode = SUB_OPCODE_END, \
 | |
|         .opcode = OPCODE_END } }
 | |
| 
 | |
| /**
 | |
|  * Stop ULP program timer.
 | |
|  *
 | |
|  * This is a convenience macro which disables the ULP program timer.
 | |
|  * Once this instruction is used, ULP program will not be restarted
 | |
|  * anymore until ulp_run function is called.
 | |
|  *
 | |
|  * ULP program will continue running after this instruction. To stop
 | |
|  * the currently running program, use I_HALT().
 | |
|  */
 | |
| #define I_END() \
 | |
|     I_WR_REG_BIT(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN_S, 0)
 | |
| /**
 | |
|  * Select the time interval used to run ULP program.
 | |
|  *
 | |
|  * This instructions selects which of the SENS_SLEEP_CYCLES_Sx
 | |
|  * registers' value is used by the ULP program timer.
 | |
|  * When the ULP program stops at I_HALT instruction, ULP program
 | |
|  * timer start counting. When the counter reaches the value of
 | |
|  * the selected SENS_SLEEP_CYCLES_Sx register, ULP program
 | |
|  * start running again from the start address (passed to the ulp_run
 | |
|  * function).
 | |
|  * There are 5 SENS_SLEEP_CYCLES_Sx registers, so 0 <= timer_idx < 5.
 | |
|  *
 | |
|  * By default, SENS_SLEEP_CYCLES_S0 register is used by the ULP
 | |
|  * program timer.
 | |
|  */
 | |
| #define I_SLEEP_CYCLE_SEL(timer_idx) { .sleep = { \
 | |
|         .cycle_sel = timer_idx, \
 | |
|         .unused = 0, \
 | |
|         .sub_opcode = SUB_OPCODE_SLEEP, \
 | |
|         .opcode = OPCODE_END } }
 | |
| 
 | |
| /**
 | |
|  * Perform temperature sensor measurement and store it into reg_dest.
 | |
|  *
 | |
|  * Delay can be set between 1 and ((1 << 14) - 1). Higher values give
 | |
|  * higher measurement resolution.
 | |
|  */
 | |
| #define I_TSENS(reg_dest, delay) { .tsens = { \
 | |
|         .dreg = reg_dest, \
 | |
|         .wait_delay = delay, \
 | |
|         .reserved = 0, \
 | |
|         .opcode = OPCODE_TSENS } }
 | |
| 
 | |
| /**
 | |
|  * Perform ADC measurement and store result in reg_dest.
 | |
|  *
 | |
|  * adc_idx selects ADC (0 or 1).
 | |
|  * pad_idx selects ADC pad (0 - 7).
 | |
|  */
 | |
| #define I_ADC(reg_dest, adc_idx, pad_idx) { .adc = {\
 | |
|         .dreg = reg_dest, \
 | |
|         .mux = pad_idx + 1, \
 | |
|         .sar_sel = adc_idx, \
 | |
|         .unused1 = 0, \
 | |
|         .cycles = 0, \
 | |
|         .unused2 = 0, \
 | |
|         .opcode = OPCODE_ADC } }
 | |
| 
 | |
| /**
 | |
|  * Store value from register reg_val into RTC memory.
 | |
|  *
 | |
|  * The value is written to an offset calculated by adding value of
 | |
|  * reg_addr register and offset_ field (this offset is expressed in 32-bit words).
 | |
|  * 32 bits written to RTC memory are built as follows:
 | |
|  * - bits [31:21] hold the PC of current instruction, expressed in 32-bit words
 | |
|  * - bits [20:16] = 5'b1
 | |
|  * - bits [15:0] are assigned the contents of reg_val
 | |
|  *
 | |
|  * RTC_SLOW_MEM[addr + offset_] = { 5'b0, insn_PC[10:0], val[15:0] }
 | |
|  */
 | |
| #define I_ST(reg_val, reg_addr, offset_) { .st = { \
 | |
|     .dreg = reg_val, \
 | |
|     .sreg = reg_addr, \
 | |
|     .unused1 = 0, \
 | |
|     .offset = offset_, \
 | |
|     .unused2 = 0, \
 | |
|     .sub_opcode = SUB_OPCODE_ST, \
 | |
|     .opcode = OPCODE_ST } }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Load value from RTC memory into reg_dest register.
 | |
|  *
 | |
|  * Loads 16 LSBs from RTC memory word given by the sum of value in reg_addr and
 | |
|  * value of offset_.
 | |
|  */
 | |
| #define I_LD(reg_dest, reg_addr, offset_) { .ld = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_addr, \
 | |
|     .unused1 = 0, \
 | |
|     .offset = offset_, \
 | |
|     .unused2 = 0, \
 | |
|     .opcode = OPCODE_LD } }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *  Branch relative if R0 less than immediate value.
 | |
|  *
 | |
|  *  pc_offset is expressed in words, and can be from -127 to 127
 | |
|  *  imm_value is a 16-bit value to compare R0 against
 | |
|  */
 | |
| #define I_BL(pc_offset, imm_value) { .b = { \
 | |
|     .imm = imm_value, \
 | |
|     .cmp = B_CMP_L, \
 | |
|     .offset = abs(pc_offset), \
 | |
|     .sign = (pc_offset >= 0) ? 0 : 1, \
 | |
|     .sub_opcode = SUB_OPCODE_B, \
 | |
|     .opcode = OPCODE_BRANCH } }
 | |
| 
 | |
| /**
 | |
|  *  Branch relative if R0 greater or equal than immediate value.
 | |
|  *
 | |
|  *  pc_offset is expressed in words, and can be from -127 to 127
 | |
|  *  imm_value is a 16-bit value to compare R0 against
 | |
|  */
 | |
| #define I_BGE(pc_offset, imm_value) { .b = { \
 | |
|     .imm = imm_value, \
 | |
|     .cmp = B_CMP_GE, \
 | |
|     .offset = abs(pc_offset), \
 | |
|     .sign = (pc_offset >= 0) ? 0 : 1, \
 | |
|     .sub_opcode = SUB_OPCODE_B, \
 | |
|     .opcode = OPCODE_BRANCH } }
 | |
| 
 | |
| /**
 | |
|  * Unconditional branch to absolute PC, address in register.
 | |
|  *
 | |
|  * reg_pc is the register which contains address to jump to.
 | |
|  * Address is expressed in 32-bit words.
 | |
|  */
 | |
| #define I_BXR(reg_pc) { .bx = { \
 | |
|     .dreg = reg_pc, \
 | |
|     .addr = 0, \
 | |
|     .unused = 0, \
 | |
|     .reg = 1, \
 | |
|     .type = BX_JUMP_TYPE_DIRECT, \
 | |
|     .sub_opcode = SUB_OPCODE_BX, \
 | |
|     .opcode = OPCODE_BRANCH } }
 | |
| 
 | |
| /**
 | |
|  *  Unconditional branch to absolute PC, immediate address.
 | |
|  *
 | |
|  *  Address imm_pc is expressed in 32-bit words.
 | |
|  */
 | |
| #define I_BXI(imm_pc) { .bx = { \
 | |
|     .dreg = 0, \
 | |
|     .addr = imm_pc, \
 | |
|     .unused = 0, \
 | |
|     .reg = 0, \
 | |
|     .type = BX_JUMP_TYPE_DIRECT, \
 | |
|     .sub_opcode = SUB_OPCODE_BX, \
 | |
|     .opcode = OPCODE_BRANCH } }
 | |
| 
 | |
| /**
 | |
|  * Branch to absolute PC if ALU result is zero, address in register.
 | |
|  *
 | |
|  * reg_pc is the register which contains address to jump to.
 | |
|  * Address is expressed in 32-bit words.
 | |
|  */
 | |
| #define I_BXZR(reg_pc) { .bx = { \
 | |
|     .dreg = reg_pc, \
 | |
|     .addr = 0, \
 | |
|     .unused = 0, \
 | |
|     .reg = 1, \
 | |
|     .type = BX_JUMP_TYPE_ZERO, \
 | |
|     .sub_opcode = SUB_OPCODE_BX, \
 | |
|     .opcode = OPCODE_BRANCH } }
 | |
| 
 | |
| /**
 | |
|  * Branch to absolute PC if ALU result is zero, immediate address.
 | |
|  *
 | |
|  * Address imm_pc is expressed in 32-bit words.
 | |
|  */
 | |
| #define I_BXZI(imm_pc) { .bx = { \
 | |
|     .dreg = 0, \
 | |
|     .addr = imm_pc, \
 | |
|     .unused = 0, \
 | |
|     .reg = 0, \
 | |
|     .type = BX_JUMP_TYPE_ZERO, \
 | |
|     .sub_opcode = SUB_OPCODE_BX, \
 | |
|     .opcode = OPCODE_BRANCH } }
 | |
| 
 | |
| /**
 | |
|  * Branch to absolute PC if ALU overflow, address in register
 | |
|  *
 | |
|  * reg_pc is the register which contains address to jump to.
 | |
|  * Address is expressed in 32-bit words.
 | |
|  */
 | |
| #define I_BXFR(reg_pc) { .bx = { \
 | |
|     .dreg = reg_pc, \
 | |
|     .addr = 0, \
 | |
|     .unused = 0, \
 | |
|     .reg = 1, \
 | |
|     .type = BX_JUMP_TYPE_OVF, \
 | |
|     .sub_opcode = SUB_OPCODE_BX, \
 | |
|     .opcode = OPCODE_BRANCH } }
 | |
| 
 | |
| /**
 | |
|  * Branch to absolute PC if ALU overflow, immediate address
 | |
|  *
 | |
|  * Address imm_pc is expressed in 32-bit words.
 | |
|  */
 | |
| #define I_BXFI(imm_pc) { .bx = { \
 | |
|     .dreg = 0, \
 | |
|     .addr = imm_pc, \
 | |
|     .unused = 0, \
 | |
|     .reg = 0, \
 | |
|     .type = BX_JUMP_TYPE_OVF, \
 | |
|     .sub_opcode = SUB_OPCODE_BX, \
 | |
|     .opcode = OPCODE_BRANCH } }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Addition: dest = src1 + src2
 | |
|  */
 | |
| #define I_ADDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_src1, \
 | |
|     .treg = reg_src2, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_ADD, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_REG, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| /**
 | |
|  * Subtraction: dest = src1 - src2
 | |
|  */
 | |
| #define I_SUBR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_src1, \
 | |
|     .treg = reg_src2, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_SUB, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_REG, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| /**
 | |
|  * Logical AND: dest = src1 & src2
 | |
|  */
 | |
| #define I_ANDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_src1, \
 | |
|     .treg = reg_src2, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_AND, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_REG, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| /**
 | |
|  * Logical OR: dest = src1 | src2
 | |
|  */
 | |
| #define I_ORR(reg_dest, reg_src1, reg_src2)  { .alu_reg = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_src1, \
 | |
|     .treg = reg_src2, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_OR, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_REG, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| /**
 | |
|  * Copy: dest = src
 | |
|  */
 | |
| #define I_MOVR(reg_dest, reg_src) { .alu_reg = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_src, \
 | |
|     .treg = 0, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_MOV, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_REG, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| /**
 | |
|  * Logical shift left: dest = src << shift
 | |
|  */
 | |
| #define I_LSHR(reg_dest, reg_src, reg_shift)  { .alu_reg = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_src, \
 | |
|     .treg = reg_shift, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_LSH, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_REG, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Logical shift right: dest = src >> shift
 | |
|  */
 | |
| #define I_RSHR(reg_dest, reg_src, reg_shift)  { .alu_reg = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_src, \
 | |
|     .treg = reg_shift, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_RSH, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_REG, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| /**
 | |
|  * Add register and an immediate value: dest = src1 + imm
 | |
|  */
 | |
| #define I_ADDI(reg_dest, reg_src, imm_) { .alu_imm = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_src, \
 | |
|     .imm = imm_, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_ADD, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *  Subtract register and an immediate value: dest = src - imm
 | |
|  */
 | |
| #define I_SUBI(reg_dest, reg_src, imm_) { .alu_imm = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_src, \
 | |
|     .imm = imm_, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_SUB, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| /**
 | |
|  * Logical AND register and an immediate value: dest = src & imm
 | |
|  */
 | |
| #define I_ANDI(reg_dest, reg_src, imm_) { .alu_imm = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_src, \
 | |
|     .imm = imm_, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_AND, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| /**
 | |
|  * Logical OR register and an immediate value: dest = src | imm
 | |
|  */
 | |
| #define I_ORI(reg_dest, reg_src, imm_) { .alu_imm = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_src, \
 | |
|     .imm = imm_, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_OR, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| /**
 | |
|  * Copy an immediate value into register: dest = imm
 | |
|  */
 | |
| #define I_MOVI(reg_dest, imm_) { .alu_imm = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = 0, \
 | |
|     .imm = imm_, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_MOV, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| /**
 | |
|  * Logical shift left register value by an immediate: dest = src << imm
 | |
|  */
 | |
| #define I_LSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_src, \
 | |
|     .imm = imm_, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_LSH, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Logical shift right register value by an immediate: dest = val >> imm
 | |
|  */
 | |
| #define I_RSHI(reg_dest, reg_src, imm_) { .alu_imm = { \
 | |
|     .dreg = reg_dest, \
 | |
|     .sreg = reg_src, \
 | |
|     .imm = imm_, \
 | |
|     .unused = 0, \
 | |
|     .sel = ALU_SEL_RSH, \
 | |
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \
 | |
|     .opcode = OPCODE_ALU } }
 | |
| 
 | |
| /**
 | |
|  * Define a label with number label_num.
 | |
|  *
 | |
|  * This is a macro which doesn't generate a real instruction.
 | |
|  * The token generated by this macro is removed by ulp_process_macros_and_load
 | |
|  * function. Label defined using this macro can be used in branch macros defined
 | |
|  * below.
 | |
|  */
 | |
| #define M_LABEL(label_num) { .macro = { \
 | |
|     .label = label_num, \
 | |
|     .unused = 0, \
 | |
|     .sub_opcode = SUB_OPCODE_MACRO_LABEL, \
 | |
|     .opcode = OPCODE_MACRO } }
 | |
| 
 | |
| /**
 | |
|  * Token macro used by M_B and M_BX macros. Not to be used directly.
 | |
|  */
 | |
| #define M_BRANCH(label_num) { .macro = { \
 | |
|     .label = label_num, \
 | |
|     .unused = 0, \
 | |
|     .sub_opcode = SUB_OPCODE_MACRO_BRANCH, \
 | |
|     .opcode = OPCODE_MACRO } }
 | |
| 
 | |
| /**
 | |
|  * Macro: branch to label label_num if R0 is less than immediate value.
 | |
|  *
 | |
|  * This macro generates two ulp_insn_t values separated by a comma, and should
 | |
|  * be used when defining contents of ulp_insn_t arrays. First value is not a
 | |
|  * real instruction; it is a token which is removed by ulp_process_macros_and_load
 | |
|  * function.
 | |
|  */
 | |
| #define M_BL(label_num, imm_value) \
 | |
|     M_BRANCH(label_num), \
 | |
|     I_BL(0, imm_value)
 | |
| 
 | |
| /**
 | |
|  * Macro: branch to label label_num if R0 is greater or equal than immediate value
 | |
|  *
 | |
|  * This macro generates two ulp_insn_t values separated by a comma, and should
 | |
|  * be used when defining contents of ulp_insn_t arrays. First value is not a
 | |
|  * real instruction; it is a token which is removed by ulp_process_macros_and_load
 | |
|  * function.
 | |
|  */
 | |
| #define M_BGE(label_num, imm_value) \
 | |
|     M_BRANCH(label_num), \
 | |
|     I_BGE(0, imm_value)
 | |
| 
 | |
| /**
 | |
|  * Macro: unconditional branch to label
 | |
|  *
 | |
|  * This macro generates two ulp_insn_t values separated by a comma, and should
 | |
|  * be used when defining contents of ulp_insn_t arrays. First value is not a
 | |
|  * real instruction; it is a token which is removed by ulp_process_macros_and_load
 | |
|  * function.
 | |
|  */
 | |
| #define M_BX(label_num) \
 | |
|     M_BRANCH(label_num), \
 | |
|     I_BXI(0)
 | |
| 
 | |
| /**
 | |
|  * Macro: branch to label if ALU result is zero
 | |
|  *
 | |
|  * This macro generates two ulp_insn_t values separated by a comma, and should
 | |
|  * be used when defining contents of ulp_insn_t arrays. First value is not a
 | |
|  * real instruction; it is a token which is removed by ulp_process_macros_and_load
 | |
|  * function.
 | |
|  */
 | |
| #define M_BXZ(label_num) \
 | |
|     M_BRANCH(label_num), \
 | |
|     I_BXZI(0)
 | |
| 
 | |
| /**
 | |
|  * Macro: branch to label if ALU overflow
 | |
|  *
 | |
|  * This macro generates two ulp_insn_t values separated by a comma, and should
 | |
|  * be used when defining contents of ulp_insn_t arrays. First value is not a
 | |
|  * real instruction; it is a token which is removed by ulp_process_macros_and_load
 | |
|  * function.
 | |
|  */
 | |
| #define M_BXF(label_num) \
 | |
|     M_BRANCH(label_num), \
 | |
|     I_BXFI(0)
 | |
| 
 | |
| 
 | |
| 
 | |
| #define RTC_SLOW_MEM ((uint32_t*) 0x50000000)       /*!< RTC slow memory, 8k size */
 | |
| 
 | |
| /**
 | |
|  * @brief Resolve all macro references in a program and load it into RTC memory
 | |
|  * @param load_addr  address where the program should be loaded, expressed in 32-bit words
 | |
|  * @param program  ulp_insn_t array with the program
 | |
|  * @param psize  size of the program, expressed in 32-bit words
 | |
|  * @return
 | |
|  *      - ESP_OK on success
 | |
|  *      - ESP_ERR_NO_MEM if auxiliary temporary structure can not be allocated
 | |
|  *      - one of ESP_ERR_ULP_xxx if program is not valid or can not be loaded
 | |
|  */
 | |
| esp_err_t ulp_process_macros_and_load(uint32_t load_addr, const ulp_insn_t* program, size_t* psize);
 | |
| 
 | |
| /**
 | |
|  * @brief Load ULP program binary into RTC memory
 | |
|  *
 | |
|  * ULP program binary should have the following format (all values little-endian):
 | |
|  *
 | |
|  * 1. MAGIC, (value 0x00706c75, 4 bytes)
 | |
|  * 2. TEXT_OFFSET, offset of .text section from binary start (2 bytes)
 | |
|  * 3. TEXT_SIZE, size of .text section (2 bytes)
 | |
|  * 4. DATA_SIZE, size of .data section (2 bytes)
 | |
|  * 5. BSS_SIZE, size of .bss section (2 bytes)
 | |
|  * 6. (TEXT_OFFSET - 12) bytes of arbitrary data (will not be loaded into RTC memory)
 | |
|  * 7. .text section
 | |
|  * 8. .data section
 | |
|  *
 | |
|  * Linker script in components/ulp/ld/esp32.ulp.ld produces ELF files which
 | |
|  * correspond to this format. This linker script produces binaries with load_addr == 0.
 | |
|  *
 | |
|  * @param load_addr address where the program should be loaded, expressed in 32-bit words
 | |
|  * @param program_binary pointer to program binary
 | |
|  * @param program_size size of the program binary
 | |
|  * @return
 | |
|  *      - ESP_OK on success
 | |
|  *      - ESP_ERR_INVALID_ARG if load_addr is out of range
 | |
|  *      - ESP_ERR_INVALID_SIZE if program_size doesn't match (TEXT_OFFSET + TEXT_SIZE + DATA_SIZE)
 | |
|  *      - ESP_ERR_NOT_SUPPORTED if the magic number is incorrect
 | |
|  */
 | |
| esp_err_t ulp_load_binary(uint32_t load_addr, const uint8_t* program_binary, size_t program_size);
 | |
| 
 | |
| /**
 | |
|  * @brief Run the program loaded into RTC memory
 | |
|  * @param entry_point entry point, expressed in 32-bit words
 | |
|  * @return  ESP_OK on success
 | |
|  */
 | |
| esp_err_t ulp_run(uint32_t entry_point);
 | |
| 
 | |
| /**
 | |
|  * @brief Set one of ULP wakeup period values
 | |
|  *
 | |
|  * ULP coprocessor starts running the program when the wakeup timer counts up
 | |
|  * to a given value (called period). There are 5 period values which can be
 | |
|  * programmed into SENS_ULP_CP_SLEEP_CYCx_REG registers, x = 0..4.
 | |
|  * By default, wakeup timer will use the period set into SENS_ULP_CP_SLEEP_CYC0_REG,
 | |
|  * i.e. period number 0. ULP program code can use SLEEP instruction to select
 | |
|  * which of the SENS_ULP_CP_SLEEP_CYCx_REG should be used for subsequent wakeups.
 | |
|  *
 | |
|  * @param period_index wakeup period setting number (0 - 4)
 | |
|  * @param period_us wakeup period, us
 | |
|  * @note  The ULP FSM requires two clock cycles to wakeup before being able to run the program.
 | |
|  *        Then additional 16 cycles are reserved after wakeup waiting until the 8M clock is stable.
 | |
|  *        The FSM also requires two more clock cycles to go to sleep after the program execution is halted.
 | |
|  *        The minimum wakeup period that may be set up for the ULP
 | |
|  *        is equal to the total number of cycles spent on the above internal tasks.
 | |
|  *        For a default configuration of the ULP running at 150kHz it makes about 133us.
 | |
|  * @return
 | |
|  *      - ESP_OK on success
 | |
|  *      - ESP_ERR_INVALID_ARG if period_index is out of range
 | |
|  */
 | |
| esp_err_t ulp_set_wakeup_period(size_t period_index, uint32_t period_us);
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 |