mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 07:01:43 +01:00 
			
		
		
		
	
		
			
	
	
		
			263 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			263 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | // Copyright 2010-2016 Espressif Systems (Shanghai) PTE LTD
 | ||
|  | //
 | ||
|  | // Licensed under the Apache License, Version 2.0 (the "License");
 | ||
|  | // you may not use this file except in compliance with the License.
 | ||
|  | // You may obtain a copy of the License at
 | ||
|  | //
 | ||
|  | //     http://www.apache.org/licenses/LICENSE-2.0
 | ||
|  | //
 | ||
|  | // Unless required by applicable law or agreed to in writing, software
 | ||
|  | // distributed under the License is distributed on an "AS IS" BASIS,
 | ||
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
|  | // See the License for the specific language governing permissions and
 | ||
|  | // limitations under the License.
 | ||
|  | 
 | ||
|  | #include <stdio.h>
 | ||
|  | #include <string.h>
 | ||
|  | #include <stdlib.h>
 | ||
|  | 
 | ||
|  | #include "esp_attr.h"
 | ||
|  | #include "esp_err.h"
 | ||
|  | #include "esp_log.h"
 | ||
|  | #include "esp32/ulp.h"
 | ||
|  | 
 | ||
|  | #include "soc/soc.h"
 | ||
|  | #include "soc/rtc_cntl_reg.h"
 | ||
|  | #include "soc/sens_reg.h"
 | ||
|  | 
 | ||
|  | #include "sdkconfig.h"
 | ||
|  | 
 | ||
|  | static const char* TAG = "ulp"; | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |     uint32_t label : 16; | ||
|  |     uint32_t addr : 11; | ||
|  |     uint32_t unused : 1; | ||
|  |     uint32_t type : 4; | ||
|  | } reloc_info_t; | ||
|  | 
 | ||
|  | #define RELOC_TYPE_LABEL   0
 | ||
|  | #define RELOC_TYPE_BRANCH  1
 | ||
|  | 
 | ||
|  | /* This record means: there is a label at address
 | ||
|  |  * insn_addr, with number label_num. | ||
|  |  */ | ||
|  | #define RELOC_INFO_LABEL(label_num, insn_addr) (reloc_info_t) { \
 | ||
|  |     .label = label_num, \ | ||
|  |     .addr = insn_addr, \ | ||
|  |     .unused = 0, \ | ||
|  |     .type = RELOC_TYPE_LABEL } | ||
|  | 
 | ||
|  | /* This record means: there is a branch instruction at
 | ||
|  |  * insn_addr, it needs to be changed to point to address | ||
|  |  * of label label_num. | ||
|  |  */ | ||
|  | #define RELOC_INFO_BRANCH(label_num, insn_addr) (reloc_info_t) { \
 | ||
|  |     .label = label_num, \ | ||
|  |     .addr = insn_addr, \ | ||
|  |     .unused = 0, \ | ||
|  |     .type = RELOC_TYPE_BRANCH } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Processing branch and label macros involves four steps:
 | ||
|  |  * | ||
|  |  * 1. Iterate over program and count all instructions | ||
|  |  *    with "macro" opcode. Allocate relocations array | ||
|  |  *    with number of entries equal to number of macro | ||
|  |  *    instructions. | ||
|  |  * | ||
|  |  * 2. Remove all fake instructions with "macro" opcode | ||
|  |  *    and record their locations into relocations array. | ||
|  |  *    Removal is done using two pointers. Instructions | ||
|  |  *    are read from read_ptr, and written to write_ptr. | ||
|  |  *    When a macro instruction is encountered, | ||
|  |  *    its contents are recorded into the appropriate | ||
|  |  *    table, and then read_ptr is advanced again. | ||
|  |  *    When a real instruction is encountered, it is | ||
|  |  *    read via read_ptr and written to write_ptr. | ||
|  |  *    In the end, all macro instructions are removed, | ||
|  |  *    size of the program (expressed in words) is | ||
|  |  *    reduced by the total number of macro instructions | ||
|  |  *    which were present. | ||
|  |  * | ||
|  |  * 3. Sort relocations array by label number, and then | ||
|  |  *    by type ("label" or "branch") if label numbers | ||
|  |  *    match. This is done to simplify lookup on the next | ||
|  |  *    step. | ||
|  |  * | ||
|  |  * 4. Iterate over entries of relocations table. | ||
|  |  *    For each label number, label entry comes first | ||
|  |  *    because the array was sorted at the previous step. | ||
|  |  *    Label address is recorded, and all subsequent | ||
|  |  *    "branch" entries which point to the same label number | ||
|  |  *    are processed. For each branch entry, correct offset | ||
|  |  *    or absolute address is calculated, depending on branch | ||
|  |  *    type, and written into the appropriate field of | ||
|  |  *    the instruction. | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | static esp_err_t do_single_reloc(ulp_insn_t* program, uint32_t load_addr, | ||
|  |         reloc_info_t label_info, reloc_info_t branch_info) | ||
|  | { | ||
|  |     size_t insn_offset = branch_info.addr - load_addr; | ||
|  |     ulp_insn_t* insn = &program[insn_offset]; | ||
|  |     // B and BX have the same layout of opcode/sub_opcode fields,
 | ||
|  |     // and share the same opcode
 | ||
|  |     assert(insn->b.opcode == OPCODE_BRANCH | ||
|  |             && "branch macro was applied to a non-branch instruction"); | ||
|  |     switch (insn->b.sub_opcode) { | ||
|  |         case SUB_OPCODE_B: { | ||
|  |             int32_t offset = ((int32_t) label_info.addr) - ((int32_t) branch_info.addr); | ||
|  |             uint32_t abs_offset = abs(offset); | ||
|  |             uint32_t sign = (offset >= 0) ? 0 : 1; | ||
|  |             if (abs_offset > 127) { | ||
|  |                 ESP_LOGW(TAG, "target out of range: branch from %x to %x", | ||
|  |                         branch_info.addr, label_info.addr); | ||
|  |                 return ESP_ERR_ULP_BRANCH_OUT_OF_RANGE; | ||
|  |             } | ||
|  |             insn->b.offset = abs_offset; | ||
|  |             insn->b.sign = sign; | ||
|  |             break; | ||
|  |         } | ||
|  |         case SUB_OPCODE_BX: { | ||
|  |             assert(insn->bx.reg == 0 && | ||
|  |                     "relocation applied to a jump with offset in register"); | ||
|  |             insn->bx.addr = label_info.addr; | ||
|  |             break; | ||
|  |         } | ||
|  |         default: | ||
|  |             assert(false && "unexpected sub-opcode"); | ||
|  |     } | ||
|  |     return ESP_OK; | ||
|  | } | ||
|  | 
 | ||
|  | esp_err_t ulp_process_macros_and_load(uint32_t load_addr, const ulp_insn_t* program, size_t* psize) | ||
|  | { | ||
|  |     const ulp_insn_t* read_ptr = program; | ||
|  |     const ulp_insn_t* end = program + *psize; | ||
|  |     size_t macro_count = 0; | ||
|  |     // step 1: calculate number of macros
 | ||
|  |     while (read_ptr < end) { | ||
|  |         ulp_insn_t r_insn = *read_ptr; | ||
|  |         if (r_insn.macro.opcode == OPCODE_MACRO) { | ||
|  |             ++macro_count; | ||
|  |         } | ||
|  |         ++read_ptr; | ||
|  |     } | ||
|  |     size_t real_program_size = *psize - macro_count; | ||
|  |     const size_t ulp_mem_end = CONFIG_ULP_COPROC_RESERVE_MEM / sizeof(ulp_insn_t); | ||
|  |     if (load_addr > ulp_mem_end) { | ||
|  |         ESP_LOGW(TAG, "invalid load address %x, max is %x", | ||
|  |                 load_addr, ulp_mem_end); | ||
|  |         return ESP_ERR_ULP_INVALID_LOAD_ADDR; | ||
|  |     } | ||
|  |     if (real_program_size + load_addr > ulp_mem_end) { | ||
|  |         ESP_LOGE(TAG, "program too big: %d words, max is %d words", | ||
|  |                 real_program_size, ulp_mem_end); | ||
|  |         return ESP_ERR_ULP_SIZE_TOO_BIG; | ||
|  |     } | ||
|  |     // If no macros found, copy the program and return.
 | ||
|  |     if (macro_count == 0) { | ||
|  |         memcpy(((ulp_insn_t*) RTC_SLOW_MEM) + load_addr, program, *psize * sizeof(ulp_insn_t)); | ||
|  |         return ESP_OK; | ||
|  |     } | ||
|  |     reloc_info_t* reloc_info = | ||
|  |             (reloc_info_t*) malloc(sizeof(reloc_info_t) * macro_count); | ||
|  |     if (reloc_info == NULL) { | ||
|  |         return ESP_ERR_NO_MEM; | ||
|  |     } | ||
|  | 
 | ||
|  |     // step 2: record macros into reloc_info array
 | ||
|  |     // and remove them from then program
 | ||
|  |     read_ptr = program; | ||
|  |     ulp_insn_t* output_program = ((ulp_insn_t*) RTC_SLOW_MEM) + load_addr; | ||
|  |     ulp_insn_t* write_ptr = output_program; | ||
|  |     uint32_t cur_insn_addr = load_addr; | ||
|  |     reloc_info_t* cur_reloc = reloc_info; | ||
|  |     while (read_ptr < end) { | ||
|  |         ulp_insn_t r_insn = *read_ptr; | ||
|  |         if (r_insn.macro.opcode == OPCODE_MACRO) { | ||
|  |             switch(r_insn.macro.sub_opcode) { | ||
|  |                 case SUB_OPCODE_MACRO_LABEL: | ||
|  |                     *cur_reloc = RELOC_INFO_LABEL(r_insn.macro.label, | ||
|  |                             cur_insn_addr); | ||
|  |                     break; | ||
|  |                 case SUB_OPCODE_MACRO_BRANCH: | ||
|  |                     *cur_reloc = RELOC_INFO_BRANCH(r_insn.macro.label, | ||
|  |                             cur_insn_addr); | ||
|  |                     break; | ||
|  |                 default: | ||
|  |                     assert(0 && "invalid sub_opcode for macro insn"); | ||
|  |             } | ||
|  |             ++read_ptr; | ||
|  |             assert(read_ptr != end && "program can not end with macro insn"); | ||
|  |             ++cur_reloc; | ||
|  |         } else { | ||
|  |             // normal instruction (not a macro)
 | ||
|  |             *write_ptr = *read_ptr; | ||
|  |             ++read_ptr; | ||
|  |             ++write_ptr; | ||
|  |             ++cur_insn_addr; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     // step 3: sort relocations array
 | ||
|  |     int reloc_sort_func(const void* p_lhs, const void* p_rhs) { | ||
|  |         const reloc_info_t lhs = *(const reloc_info_t*) p_lhs; | ||
|  |         const reloc_info_t rhs = *(const reloc_info_t*) p_rhs; | ||
|  |         if (lhs.label < rhs.label) { | ||
|  |             return -1; | ||
|  |         } else if (lhs.label > rhs.label) { | ||
|  |             return 1; | ||
|  |         } | ||
|  |         // label numbers are equal
 | ||
|  |         if (lhs.type < rhs.type) { | ||
|  |             return -1; | ||
|  |         } else if (lhs.type > rhs.type) { | ||
|  |             return 1; | ||
|  |         } | ||
|  | 
 | ||
|  |         // both label number and type are equal
 | ||
|  |         return 0; | ||
|  |     } | ||
|  |     qsort(reloc_info, macro_count, sizeof(reloc_info_t), | ||
|  |             reloc_sort_func); | ||
|  | 
 | ||
|  |     // step 4: walk relocations array and fix instructions
 | ||
|  |     reloc_info_t* reloc_end = reloc_info + macro_count; | ||
|  |     cur_reloc = reloc_info; | ||
|  |     while(cur_reloc < reloc_end) { | ||
|  |         reloc_info_t label_info = *cur_reloc; | ||
|  |         assert(label_info.type == RELOC_TYPE_LABEL); | ||
|  |         ++cur_reloc; | ||
|  |         while (cur_reloc < reloc_end) { | ||
|  |             if (cur_reloc->type == RELOC_TYPE_LABEL) { | ||
|  |                 if(cur_reloc->label == label_info.label) { | ||
|  |                     ESP_LOGE(TAG, "duplicate label definition: %d", | ||
|  |                             label_info.label); | ||
|  |                     free(reloc_info); | ||
|  |                     return ESP_ERR_ULP_DUPLICATE_LABEL; | ||
|  |                 } | ||
|  |                 break; | ||
|  |             } | ||
|  |             if (cur_reloc->label != label_info.label) { | ||
|  |                 ESP_LOGE(TAG, "branch to an inexistent label: %d", | ||
|  |                         cur_reloc->label); | ||
|  |                 free(reloc_info); | ||
|  |                 return ESP_ERR_ULP_UNDEFINED_LABEL; | ||
|  |             } | ||
|  |             esp_err_t rc = do_single_reloc(output_program, load_addr, | ||
|  |                     label_info, *cur_reloc); | ||
|  |             if (rc != ESP_OK) { | ||
|  |                 free(reloc_info); | ||
|  |                 return rc; | ||
|  |             } | ||
|  |             ++cur_reloc; | ||
|  |         } | ||
|  |     } | ||
|  |     free(reloc_info); | ||
|  |     *psize = real_program_size; | ||
|  |     return ESP_OK; | ||
|  | } |