mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 15:11:40 +01:00 
			
		
		
		
	
		
			
	
	
		
			938 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			938 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | // Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
 | ||
|  | //
 | ||
|  | // Licensed under the Apache License, Version 2.0 (the "License");
 | ||
|  | // you may not use this file except in compliance with the License.
 | ||
|  | // You may obtain a copy of the License at
 | ||
|  | 
 | ||
|  | //     http://www.apache.org/licenses/LICENSE-2.0
 | ||
|  | //
 | ||
|  | // Unless required by applicable law or agreed to in writing, software
 | ||
|  | // distributed under the License is distributed on an "AS IS" BASIS,
 | ||
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
|  | // See the License for the specific language governing permissions and
 | ||
|  | // limitations under the License.
 | ||
|  | 
 | ||
|  | #include "freertos/FreeRTOS.h"
 | ||
|  | #include "freertos/portmacro.h"
 | ||
|  | #include "freertos/task.h"
 | ||
|  | #include "freertos/queue.h"
 | ||
|  | #include "freertos/semphr.h"
 | ||
|  | #include "esp_types.h"
 | ||
|  | #include "esp_log.h"
 | ||
|  | #include "esp_intr_alloc.h"
 | ||
|  | #include "soc/dport_reg.h"
 | ||
|  | #include "soc/can_struct.h"
 | ||
|  | #include "driver/gpio.h"
 | ||
|  | #include "driver/periph_ctrl.h"
 | ||
|  | #include "driver/can.h"
 | ||
|  | 
 | ||
|  | /* ---------------------------- Definitions --------------------------------- */ | ||
|  | //Internal Macros
 | ||
|  | #define CAN_CHECK(cond, ret_val) ({                                         \
 | ||
|  |             if (!(cond)) {                                                  \ | ||
|  |                 return (ret_val);                                           \ | ||
|  |             }                                                               \ | ||
|  | }) | ||
|  | #define CAN_CHECK_FROM_CRIT(cond, ret_val) ({                               \
 | ||
|  |             if (!(cond)) {                                                  \ | ||
|  |                 CAN_EXIT_CRITICAL();                                        \ | ||
|  |                 return ret_val;                                             \ | ||
|  |             }                                                               \ | ||
|  | }) | ||
|  | #define CAN_SET_FLAG(var, mask)     ((var) |= (mask))
 | ||
|  | #define CAN_RESET_FLAG(var, mask)   ((var) &= ~(mask))
 | ||
|  | #define CAN_TAG "CAN"
 | ||
|  | 
 | ||
|  | //Driver default config/values
 | ||
|  | #define DRIVER_DEFAULT_EWL          96          //Default Error Warning Limit value
 | ||
|  | #define DRIVER_DEFAULT_TEC          0           //TX Error Counter starting value
 | ||
|  | #define DRIVER_DEFAULT_REC          0           //RX Error Counter starting value
 | ||
|  | #define DRIVER_DEFAULT_CLKOUT_DIV   14          //APB CLK divided by two
 | ||
|  | #define DRIVER_DEFAULT_INTERRUPTS   0xE7        //Exclude data overrun
 | ||
|  | #define DRIVER_DEFAULT_ERR_PASS_CNT 128         //Error counter threshold for error passive
 | ||
|  | 
 | ||
|  | //Command Bit Masks
 | ||
|  | #define CMD_TX_REQ                  0x01        //Transmission Request
 | ||
|  | #define CMD_ABORT_TX                0x02        //Abort Transmission
 | ||
|  | #define CMD_RELEASE_RX_BUFF         0x04        //Release Receive Buffer
 | ||
|  | #define CMD_CLR_DATA_OVRN           0x08        //Clear Data Overrun
 | ||
|  | #define CMD_SELF_RX_REQ             0x10        //Self Reception Request
 | ||
|  | #define CMD_TX_SINGLE_SHOT          0x03        //Single Shot Transmission
 | ||
|  | #define CMD_SELF_RX_SINGLE_SHOT     0x12        //Single Shot Self Reception
 | ||
|  | 
 | ||
|  | //Control flags
 | ||
|  | #define CTRL_FLAG_STOPPED           0x001       //CAN peripheral in stopped state
 | ||
|  | #define CTRL_FLAG_RECOVERING        0x002       //Bus is undergoing bus recovery
 | ||
|  | #define CTRL_FLAG_ERR_WARN          0x004       //TEC or REC is >= error warning limit
 | ||
|  | #define CTRL_FLAG_ERR_PASSIVE       0x008       //TEC or REC is >= 128
 | ||
|  | #define CTRL_FLAG_BUS_OFF           0x010       //Bus-off due to TEC >= 256
 | ||
|  | #define CTRL_FLAG_TX_BUFF_OCCUPIED  0x020       //Transmit buffer is occupied
 | ||
|  | #define CTRL_FLAG_SELF_TEST         0x040       //Configured to Self Test Mode
 | ||
|  | #define CTRL_FLAG_LISTEN_ONLY       0x080       //Configured to Listen Only Mode
 | ||
|  | 
 | ||
|  | //Constants use for frame formatting and parsing
 | ||
|  | #define FRAME_MAX_LEN               13          //EFF with 8 bytes of data
 | ||
|  | #define FRAME_MAX_DATA_LEN          8           //Max data bytes allowed in CAN2.0
 | ||
|  | #define FRAME_EXTD_ID_LEN           4           //EFF ID requires 4 bytes (29bit)
 | ||
|  | #define FRAME_STD_ID_LEN            2           //SFF ID requires 2 bytes (11bit)
 | ||
|  | #define FRAME_INFO_LEN              1           //Frame info requires 1 byte
 | ||
|  | 
 | ||
|  | #define ALERT_LOG_LEVEL_WARNING     CAN_ALERT_ARB_LOST  //Alerts above and including this level use ESP_LOGW
 | ||
|  | #define ALERT_LOG_LEVEL_ERROR       CAN_ALERT_TX_FAILED //Alerts above and including this level use ESP_LOGE
 | ||
|  | 
 | ||
|  | /* ------------------ Typedefs, structures, and variables ------------------- */ | ||
|  | 
 | ||
|  | /* Formatted frame structure has identical layout as TX/RX buffer registers.
 | ||
|  |    This allows for direct copy to/from TX/RX buffer. The two reserved bits in TX | ||
|  |    buffer are used in the frame structure to store the self_reception and | ||
|  |    single_shot flags. */ | ||
|  | typedef union { | ||
|  |     struct { | ||
|  |         struct { | ||
|  |             uint8_t dlc: 4;                         //Data length code (0 to 8) of the frame
 | ||
|  |             uint8_t self_reception: 1;              //This frame should be transmitted using self reception command
 | ||
|  |             uint8_t single_shot: 1;                 //This frame should be transmitted using single shot command
 | ||
|  |             uint8_t rtr: 1;                         //This frame is a remote transmission request
 | ||
|  |             uint8_t frame_format: 1;                //Format of the frame (1 = extended, 0 = standard)
 | ||
|  |         }; | ||
|  |         union { | ||
|  |             struct { | ||
|  |                 uint8_t id[FRAME_STD_ID_LEN];       //11 bit standard frame identifier
 | ||
|  |                 uint8_t data[FRAME_MAX_DATA_LEN];   //Data bytes (0 to 8)
 | ||
|  |                 uint8_t reserved8[2]; | ||
|  |             } standard; | ||
|  |             struct { | ||
|  |                 uint8_t id[FRAME_EXTD_ID_LEN];      //29 bit extended frame identifier
 | ||
|  |                 uint8_t data[FRAME_MAX_DATA_LEN];   //Data bytes (0 to 8)
 | ||
|  |             } extended; | ||
|  |         }; | ||
|  |     }; | ||
|  |     uint8_t bytes[FRAME_MAX_LEN]; | ||
|  | } can_frame_t; | ||
|  | 
 | ||
|  | //Control structure for CAN driver
 | ||
|  | typedef struct { | ||
|  |     //Control and status members
 | ||
|  |     uint32_t control_flags; | ||
|  |     uint32_t rx_missed_count; | ||
|  |     uint32_t tx_failed_count; | ||
|  |     uint32_t arb_lost_count; | ||
|  |     uint32_t bus_error_count; | ||
|  |     intr_handle_t isr_handle; | ||
|  |     //TX and RX
 | ||
|  |     QueueHandle_t tx_queue; | ||
|  |     QueueHandle_t rx_queue; | ||
|  |     int tx_msg_count; | ||
|  |     int rx_msg_count; | ||
|  |     //Alerts
 | ||
|  |     SemaphoreHandle_t alert_semphr; | ||
|  |     uint32_t alerts_enabled; | ||
|  |     uint32_t alerts_triggered; | ||
|  | } can_obj_t; | ||
|  | 
 | ||
|  | static can_obj_t *p_can_obj = NULL; | ||
|  | static portMUX_TYPE can_spinlock = portMUX_INITIALIZER_UNLOCKED; | ||
|  | #define CAN_ENTER_CRITICAL()  portENTER_CRITICAL(&can_spinlock)
 | ||
|  | #define CAN_EXIT_CRITICAL()   portEXIT_CRITICAL(&can_spinlock)
 | ||
|  | 
 | ||
|  | /* ------------------- Configuration Register Functions---------------------- */ | ||
|  | 
 | ||
|  | static inline esp_err_t can_enter_reset_mode() | ||
|  | { | ||
|  |     /* Enter reset mode (required to write to configuration registers). Reset mode
 | ||
|  |        also prevents all CAN activity on the current module and is automatically | ||
|  |        set upon entering a BUS-OFF condition. */ | ||
|  |     CAN.mode_reg.reset = 1;                                     //Set reset mode bit
 | ||
|  |     CAN_CHECK(CAN.mode_reg.reset == 1, ESP_ERR_INVALID_STATE);  //Check bit was set
 | ||
|  |     return ESP_OK; | ||
|  | } | ||
|  | 
 | ||
|  | static inline esp_err_t can_exit_reset_mode() | ||
|  | { | ||
|  |     /* Exiting reset mode will return the CAN module to operating mode. Reset mode
 | ||
|  |        must also be exited in order to trigger BUS-OFF recovery sequence. */ | ||
|  |     CAN.mode_reg.reset = 0;                                     //Exit reset mode
 | ||
|  |     CAN_CHECK(CAN.mode_reg.reset == 0, ESP_ERR_INVALID_STATE);  //Check bit was reset
 | ||
|  |     return ESP_OK; | ||
|  | } | ||
|  | 
 | ||
|  | static inline void can_config_pelican() | ||
|  | { | ||
|  |     //Use PeliCAN address layout. Exposes extra registers
 | ||
|  |     CAN.clock_divider_reg.can_mode = 1; | ||
|  | } | ||
|  | 
 | ||
|  | static inline void can_config_mode(can_mode_t mode) | ||
|  | { | ||
|  |     //Configure CAN mode of operation
 | ||
|  |     can_mode_reg_t mode_reg; | ||
|  |     mode_reg.val = CAN.mode_reg.val;        //Get current value of mode register
 | ||
|  |     if (mode == CAN_MODE_NO_ACK) { | ||
|  |         mode_reg.self_test = 1; | ||
|  |         mode_reg.listen_only = 0; | ||
|  |     } else if (mode == CAN_MODE_LISTEN_ONLY) { | ||
|  |         mode_reg.self_test = 0; | ||
|  |         mode_reg.listen_only = 1; | ||
|  |     } else { | ||
|  |         //Default to normal operating mode
 | ||
|  |         mode_reg.self_test = 0; | ||
|  |         mode_reg.listen_only = 0; | ||
|  |     } | ||
|  |     CAN.mode_reg.val = mode_reg.val;        //Write back modified value to register
 | ||
|  | } | ||
|  | 
 | ||
|  | static inline void can_config_interrupts(uint32_t interrupts) | ||
|  | { | ||
|  |     //Enable interrupt sources
 | ||
|  |     CAN.interrupt_enable_reg.val = interrupts; | ||
|  | } | ||
|  | 
 | ||
|  | static inline void can_config_bus_timing(uint32_t brp, uint32_t sjw, uint32_t tseg_1, uint32_t tseg_2, bool triple_sampling) | ||
|  | { | ||
|  |     /* Configure bus/bit timing of CAN peripheral.
 | ||
|  |        - BRP (even from 2 to 128) divide APB to CAN system clock (T_scl) | ||
|  |        - SJW (1 to 4) is number of T_scl to shorten/lengthen for bit synchronization | ||
|  |        - TSEG_1 (1 to 16) is number of T_scl in a bit time before sample point | ||
|  |        - TSEG_2 (1 to 8) is number of T_scl in a bit time after sample point | ||
|  |        - triple_sampling will cause each bit time to be sampled 3 times*/ | ||
|  |     can_bus_tim_0_reg_t timing_reg_0; | ||
|  |     can_bus_tim_1_reg_t timing_reg_1; | ||
|  |     timing_reg_0.baud_rate_prescaler = (brp / 2) - 1; | ||
|  |     timing_reg_0.sync_jump_width = sjw - 1; | ||
|  |     timing_reg_1.time_seg_1 = tseg_1 - 1; | ||
|  |     timing_reg_1.time_seg_2 = tseg_2 - 1; | ||
|  |     timing_reg_1.sampling = triple_sampling; | ||
|  |     CAN.bus_timing_0_reg.val = timing_reg_0.val; | ||
|  |     CAN.bus_timing_1_reg.val = timing_reg_1.val; | ||
|  | } | ||
|  | 
 | ||
|  | static inline void can_config_error(int err_warn_lim, int rx_err_cnt, int tx_err_cnt) | ||
|  | { | ||
|  |     /* Set error warning limit, RX error counter, and TX error counter. Note that
 | ||
|  |        forcibly setting RX/TX error counters will incur the expected status changes | ||
|  |        and interrupts as soon as reset mode exits. */ | ||
|  |     if (err_warn_lim >= 0 && err_warn_lim <= UINT8_MAX) { | ||
|  |         //Defaults to 96 after hardware reset.
 | ||
|  |         CAN.error_warning_limit_reg.byte = err_warn_lim; | ||
|  |     } | ||
|  |     if (rx_err_cnt >= 0 && rx_err_cnt <= UINT8_MAX) { | ||
|  |         //Defaults to 0 after hardware reset.
 | ||
|  |         CAN.rx_error_counter_reg.byte = rx_err_cnt; | ||
|  |     } | ||
|  |     if (tx_err_cnt >= 0 && tx_err_cnt <= UINT8_MAX) { | ||
|  |         //Defaults to 0 after hardware reset, and 127 after BUS-OFF event
 | ||
|  |         CAN.tx_error_counter_reg.byte = tx_err_cnt; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | static inline void can_config_acceptance_filter(uint32_t code, uint32_t mask, bool single_filter) | ||
|  | { | ||
|  |     //Set filter mode
 | ||
|  |     CAN.mode_reg.acceptance_filter = (single_filter) ? 1 : 0; | ||
|  |     //Swap code and mask to match big endian registers
 | ||
|  |     uint32_t code_swapped = __builtin_bswap32(code); | ||
|  |     uint32_t mask_swapped = __builtin_bswap32(mask); | ||
|  |     for (int i = 0; i < 4; i++) { | ||
|  |         CAN.acceptance_filter.code_reg[i].byte = ((code_swapped >> (i * 8)) & 0xFF); | ||
|  |         CAN.acceptance_filter.mask_reg[i].byte = ((mask_swapped >> (i * 8)) & 0xFF); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | static inline void can_config_clk_out(uint32_t divider) | ||
|  | { | ||
|  |     /* Configure CLKOUT. CLKOUT is a pre-scaled version of APB CLK. Divider can be
 | ||
|  |        1, or any even number from 2 to 14. Set to out of range value (0) to disable | ||
|  |        CLKOUT. */ | ||
|  |     can_clk_div_reg_t clock_divider_reg; | ||
|  |     clock_divider_reg.val = CAN.clock_divider_reg.val; | ||
|  |     if (divider >= 2 && divider <= 14) { | ||
|  |         clock_divider_reg.clock_off = 0; | ||
|  |         clock_divider_reg.clock_divider = (divider / 2) - 1; | ||
|  |     } else if (divider == 1) { | ||
|  |         clock_divider_reg.clock_off = 0; | ||
|  |         clock_divider_reg.clock_divider = 7; | ||
|  |     } else { | ||
|  |         clock_divider_reg.clock_off = 1; | ||
|  |         clock_divider_reg.clock_divider = 0; | ||
|  |     } | ||
|  |     CAN.clock_divider_reg.val = clock_divider_reg.val; | ||
|  | } | ||
|  | 
 | ||
|  | /* ---------------------- Runtime Register Functions------------------------- */ | ||
|  | 
 | ||
|  | static inline void can_set_command(uint8_t commands) | ||
|  | { | ||
|  |     CAN.command_reg.val = commands; | ||
|  | } | ||
|  | 
 | ||
|  | static void can_set_tx_buffer_and_transmit(can_frame_t *frame) | ||
|  | { | ||
|  |     //Copy frame structure into TX buffer registers
 | ||
|  |     for (int i = 0; i < FRAME_MAX_LEN; i++) { | ||
|  |         CAN.tx_rx_buffer[i].val = frame->bytes[i]; | ||
|  |     } | ||
|  | 
 | ||
|  |     //Set correct transmit command
 | ||
|  |     uint8_t command; | ||
|  |     if (frame->self_reception) { | ||
|  |         command = (frame->single_shot) ? CMD_SELF_RX_SINGLE_SHOT : CMD_SELF_RX_REQ; | ||
|  |     } else { | ||
|  |         command = (frame->single_shot) ? CMD_TX_SINGLE_SHOT : CMD_TX_REQ; | ||
|  |     } | ||
|  |     can_set_command(command); | ||
|  | } | ||
|  | 
 | ||
|  | static inline uint32_t can_get_status() | ||
|  | { | ||
|  |     return CAN.status_reg.val; | ||
|  | } | ||
|  | 
 | ||
|  | static inline uint32_t can_get_interrupt_reason() | ||
|  | { | ||
|  |     return CAN.interrupt_reg.val; | ||
|  | } | ||
|  | 
 | ||
|  | static inline uint32_t can_get_arbitration_lost_capture() | ||
|  | { | ||
|  |     return CAN.arbitration_lost_captue_reg.val; | ||
|  |     //Todo: ALC read only to re-arm arb lost interrupt. Add function to decode ALC
 | ||
|  | } | ||
|  | 
 | ||
|  | static inline uint32_t can_get_error_code_capture() | ||
|  | { | ||
|  |     return CAN.error_code_capture_reg.val; | ||
|  |     //Todo: ECC read only to re-arm bus error interrupt. Add function to decode ECC
 | ||
|  | } | ||
|  | 
 | ||
|  | static inline void can_get_error_counters(uint32_t *tx_error_cnt, uint32_t *rx_error_cnt) | ||
|  | { | ||
|  |     if (tx_error_cnt != NULL) { | ||
|  |         *tx_error_cnt = CAN.tx_error_counter_reg.byte; | ||
|  |     } | ||
|  |     if (rx_error_cnt != NULL) { | ||
|  |         *rx_error_cnt = CAN.rx_error_counter_reg.byte; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | static inline void can_get_rx_buffer_and_clear(can_frame_t *frame) | ||
|  | { | ||
|  |     //Copy RX buffer registers into frame structure
 | ||
|  |     for (int i = 0; i < FRAME_MAX_LEN; i++) { | ||
|  |         frame->bytes[i] = CAN.tx_rx_buffer[i].val; | ||
|  |     } | ||
|  |     //Clear RX buffer
 | ||
|  |     can_set_command(CMD_RELEASE_RX_BUFF); | ||
|  | } | ||
|  | 
 | ||
|  | static inline uint32_t can_get_rx_message_counter() | ||
|  | { | ||
|  |     return CAN.rx_message_counter_reg.val; | ||
|  | } | ||
|  | 
 | ||
|  | /* -------------------- Interrupt and Alert Handlers ------------------------ */ | ||
|  | 
 | ||
|  | static void can_alert_handler(uint32_t alert_code, int *alert_req) | ||
|  | { | ||
|  |     if (p_can_obj->alerts_enabled & alert_code) { | ||
|  |         //Signify alert has occurred
 | ||
|  |         CAN_SET_FLAG(p_can_obj->alerts_triggered, alert_code); | ||
|  |         *alert_req = 1; | ||
|  |         if (p_can_obj->alerts_enabled & CAN_ALERT_AND_LOG) { | ||
|  |             if (alert_code >= ALERT_LOG_LEVEL_ERROR) { | ||
|  |                 ESP_EARLY_LOGE(CAN_TAG, "Alert %d", alert_code); | ||
|  |             } else if (alert_code >= ALERT_LOG_LEVEL_WARNING) { | ||
|  |                 ESP_EARLY_LOGW(CAN_TAG, "Alert %d", alert_code); | ||
|  |             } else { | ||
|  |                 ESP_EARLY_LOGI(CAN_TAG, "Alert %d", alert_code); | ||
|  |             } | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | static void can_intr_handler_err_warn(can_status_reg_t *status, BaseType_t *task_woken, int *alert_req) | ||
|  | { | ||
|  |     if (status->bus) { | ||
|  |         if (status->error) { | ||
|  |             //Bus-Off condition. TEC should set and held at 127, REC should be 0, reset mode entered
 | ||
|  |             CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_BUS_OFF); | ||
|  |             /* Note: REC is still allowed to increase during bus-off. REC > err_warn
 | ||
|  |                can prevent "bus recovery complete" interrupt from occurring. Set to | ||
|  |                listen only mode to freeze REC. */ | ||
|  |             can_config_mode(CAN_MODE_LISTEN_ONLY); | ||
|  |             can_alert_handler(CAN_ALERT_BUS_OFF, alert_req); | ||
|  |         } else { | ||
|  |             //Bus-recovery in progress. TEC has dropped below error warning limit
 | ||
|  |             can_alert_handler(CAN_ALERT_RECOVERY_IN_PROGRESS, alert_req); | ||
|  |         } | ||
|  |     } else { | ||
|  |         if (status->error) { | ||
|  |             //TEC or REC surpassed error warning limit
 | ||
|  |             CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_ERR_WARN); | ||
|  |             can_alert_handler(CAN_ALERT_ABOVE_ERR_WARN, alert_req); | ||
|  |         } else if (p_can_obj->control_flags & CTRL_FLAG_RECOVERING) { | ||
|  |             //Bus recovery complete.
 | ||
|  |             can_enter_reset_mode(); | ||
|  |             //Reset and set flags to the equivalent of the stopped state
 | ||
|  |             CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_RECOVERING | CTRL_FLAG_ERR_WARN | | ||
|  |                                                      CTRL_FLAG_ERR_PASSIVE | CTRL_FLAG_BUS_OFF | | ||
|  |                                                      CTRL_FLAG_TX_BUFF_OCCUPIED); | ||
|  |             CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_STOPPED); | ||
|  |             can_alert_handler(CAN_ALERT_BUS_RECOVERED, alert_req); | ||
|  |         } else { | ||
|  |             //TEC and REC are both below error warning
 | ||
|  |             CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_ERR_WARN); | ||
|  |             can_alert_handler(CAN_ALERT_BELOW_ERR_WARN, alert_req); | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | static void can_intr_handler_err_passive(int *alert_req) | ||
|  | { | ||
|  |     uint32_t tec, rec; | ||
|  |     can_get_error_counters(&tec, &rec); | ||
|  |     if (tec >= DRIVER_DEFAULT_ERR_PASS_CNT || rec >= DRIVER_DEFAULT_ERR_PASS_CNT) { | ||
|  |         //Entered error passive
 | ||
|  |         CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_ERR_PASSIVE); | ||
|  |         can_alert_handler(CAN_ALERT_ERR_PASS, alert_req); | ||
|  |     } else { | ||
|  |         //Returned to error active
 | ||
|  |         CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_ERR_PASSIVE); | ||
|  |         can_alert_handler(CAN_ALERT_ERR_ACTIVE, alert_req); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | static void can_intr_handler_bus_err(int *alert_req) | ||
|  | { | ||
|  |     // ECC register is read to re-arm bus error interrupt. ECC is not used
 | ||
|  |     (void) can_get_error_code_capture(); | ||
|  |     p_can_obj->bus_error_count++; | ||
|  |     can_alert_handler(CAN_ALERT_BUS_ERROR, alert_req); | ||
|  | } | ||
|  | 
 | ||
|  | static void can_intr_handler_arb_lost(int *alert_req) | ||
|  | { | ||
|  |     //ALC register is read to re-arm arb lost interrupt. ALC is not used
 | ||
|  |     (void) can_get_arbitration_lost_capture(); | ||
|  |     p_can_obj->arb_lost_count++; | ||
|  |     can_alert_handler(CAN_ALERT_ARB_LOST, alert_req); | ||
|  | } | ||
|  | 
 | ||
|  | static void can_intr_handler_rx(BaseType_t *task_woken, int *alert_req) | ||
|  | { | ||
|  |     can_rx_msg_cnt_reg_t msg_count_reg; | ||
|  |     msg_count_reg.val = can_get_rx_message_counter(); | ||
|  | 
 | ||
|  |     for (int i = 0; i < msg_count_reg.rx_message_counter; i++) { | ||
|  |         can_frame_t frame; | ||
|  |         can_get_rx_buffer_and_clear(&frame); | ||
|  |         //Copy frame into RX Queue
 | ||
|  |         if (xQueueSendFromISR(p_can_obj->rx_queue, &frame, task_woken) == pdTRUE) { | ||
|  |             p_can_obj->rx_msg_count++; | ||
|  |         } else { | ||
|  |             p_can_obj->rx_missed_count++; | ||
|  |             can_alert_handler(CAN_ALERT_RX_QUEUE_FULL, alert_req); | ||
|  |         } | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | static void can_intr_handler_tx(can_status_reg_t *status, int *alert_req) | ||
|  | { | ||
|  |     //Handle previously transmitted frame
 | ||
|  |     if (status->tx_complete) { | ||
|  |         can_alert_handler(CAN_ALERT_TX_SUCCESS, alert_req); | ||
|  |     } else { | ||
|  |         p_can_obj->tx_failed_count++; | ||
|  |         can_alert_handler(CAN_ALERT_TX_FAILED, alert_req); | ||
|  |     } | ||
|  | 
 | ||
|  |     //Update TX message count
 | ||
|  |     p_can_obj->tx_msg_count--; | ||
|  |     configASSERT(p_can_obj->tx_msg_count >= 0);     //Sanity check
 | ||
|  | 
 | ||
|  |     //Check if there are more frames to transmit
 | ||
|  |     if (p_can_obj->tx_msg_count > 0 && p_can_obj->tx_queue != NULL) { | ||
|  |         can_frame_t frame; | ||
|  |         configASSERT(xQueueReceiveFromISR(p_can_obj->tx_queue, &frame, NULL) == pdTRUE); | ||
|  |         can_set_tx_buffer_and_transmit(&frame); | ||
|  |     } else { | ||
|  |         //No more frames to transmit
 | ||
|  |         CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED); | ||
|  |         can_alert_handler(CAN_ALERT_TX_IDLE, alert_req); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | static void can_intr_handler_main(void *arg) | ||
|  | { | ||
|  |     BaseType_t task_woken = pdFALSE; | ||
|  |     int alert_req = 0; | ||
|  |     can_status_reg_t status; | ||
|  |     can_intr_reg_t intr_reason; | ||
|  | 
 | ||
|  |     CAN_ENTER_CRITICAL(); | ||
|  |     status.val = can_get_status(); | ||
|  |     intr_reason.val = (p_can_obj != NULL) ? can_get_interrupt_reason() : 0; //Incase intr occurs whilst driver is being uninstalled
 | ||
|  | 
 | ||
|  |     //Handle error counter related interrupts
 | ||
|  |     if (intr_reason.err_warn) { | ||
|  |         //Triggers when Bus-Status or Error-status bits change
 | ||
|  |         can_intr_handler_err_warn(&status, &task_woken, &alert_req); | ||
|  |     } | ||
|  |     if (intr_reason.err_passive) { | ||
|  |         //Triggers when entering/returning error passive/active state
 | ||
|  |         can_intr_handler_err_passive(&alert_req); | ||
|  |     } | ||
|  | 
 | ||
|  |     //Handle other error interrupts
 | ||
|  |     if (intr_reason.bus_err) { | ||
|  |         //Triggers when an error (Bit, Stuff, CRC, Form, ACK) occurs on the CAN bus
 | ||
|  |         can_intr_handler_bus_err(&alert_req); | ||
|  |     } | ||
|  |     if (intr_reason.arb_lost) { | ||
|  |         //Triggers when arbitration is lost
 | ||
|  |         can_intr_handler_arb_lost(&alert_req); | ||
|  |     } | ||
|  |     //Todo: Check data overrun bug where interrupt does not trigger even when enabled
 | ||
|  | 
 | ||
|  |     //Handle TX/RX interrupts
 | ||
|  |     if (intr_reason.rx) { | ||
|  |         //Triggers when RX buffer has one or more frames. Disabled if RX Queue length = 0
 | ||
|  |         can_intr_handler_rx(&task_woken, &alert_req); | ||
|  |     } | ||
|  |     if (intr_reason.tx) { | ||
|  |         //Triggers when TX buffer becomes free after a transmission
 | ||
|  |         can_intr_handler_tx(&status, &alert_req); | ||
|  |     } | ||
|  |     /* Todo: Check possible bug where transmitting self reception request then
 | ||
|  |        clearing rx buffer will cancel the transmission. */ | ||
|  |     CAN_EXIT_CRITICAL(); | ||
|  | 
 | ||
|  |     if (p_can_obj->alert_semphr != NULL && alert_req) { | ||
|  |         //Give semaphore if alerts were triggered
 | ||
|  |         xSemaphoreGiveFromISR(p_can_obj->alert_semphr, &task_woken); | ||
|  |     } | ||
|  |     if (task_woken == pdTRUE) { | ||
|  |         portYIELD_FROM_ISR(); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ---------------------- Frame and GPIO functions  ------------------------- */ | ||
|  | 
 | ||
|  | static void can_format_frame(uint32_t id, uint8_t dlc, const uint8_t *data, uint32_t flags, can_frame_t *tx_frame) | ||
|  | { | ||
|  |     /* This function encodes a message into a frame structure. The frame structure has
 | ||
|  |        an identical layout to the TX buffer, allowing the frame structure to be directly | ||
|  |        copied into TX buffer. */ | ||
|  |     //Set frame information
 | ||
|  |     tx_frame->dlc = dlc; | ||
|  |     tx_frame->rtr = (flags & CAN_MSG_FLAG_RTR) ? 1 : 0; | ||
|  |     tx_frame->frame_format = (flags & CAN_MSG_FLAG_EXTD) ? 1 : 0; | ||
|  |     tx_frame->self_reception = (flags & CAN_MSG_FLAG_SELF) ? 1 : 0; | ||
|  |     tx_frame->single_shot = (flags & CAN_MSG_FLAG_SS) ? 1 : 0; | ||
|  | 
 | ||
|  |     //Set ID
 | ||
|  |     int id_len = (flags & CAN_MSG_FLAG_EXTD) ? FRAME_EXTD_ID_LEN : FRAME_STD_ID_LEN; | ||
|  |     uint8_t *id_buffer = (flags & CAN_MSG_FLAG_EXTD) ? tx_frame->extended.id : tx_frame->standard.id; | ||
|  |     //Split ID into 4 or 2 bytes, and turn into big-endian with left alignment (<< 3 or 5)
 | ||
|  |     uint32_t id_temp = (flags & CAN_MSG_FLAG_EXTD) ? __builtin_bswap32((id & CAN_EXTD_ID_MASK) << 3) :  //((id << 3) >> 8*(3-i))
 | ||
|  |                                                      __builtin_bswap16((id & CAN_STD_ID_MASK) << 5);    //((id << 5) >> 8*(1-i))
 | ||
|  |     for (int i = 0; i < id_len; i++) { | ||
|  |         id_buffer[i] = (id_temp >> (8 * i)) & 0xFF;     //Copy big-endian ID byte by byte
 | ||
|  |     } | ||
|  | 
 | ||
|  |     //Set Data.
 | ||
|  |     uint8_t *data_buffer = (flags & CAN_MSG_FLAG_EXTD) ? tx_frame->extended.data : tx_frame->standard.data; | ||
|  |     for (int i = 0; (i < dlc) && (i < FRAME_MAX_DATA_LEN); i++) {       //Handle case where dlc is > 8
 | ||
|  |         data_buffer[i] = data[i]; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | static void can_parse_frame(can_frame_t *rx_frame, uint32_t *id, uint8_t *dlc, uint8_t *data, uint32_t *flags) | ||
|  | { | ||
|  |     //This function decodes a frame structure into it's constituent components.
 | ||
|  | 
 | ||
|  |     //Copy frame information
 | ||
|  |     *dlc = rx_frame->dlc; | ||
|  |     *flags = 0; | ||
|  |     *flags |= (rx_frame->dlc > FRAME_MAX_DATA_LEN) ? CAN_MSG_FLAG_DLC_NON_COMP : 0; | ||
|  |     *flags |= (rx_frame->rtr) ? CAN_MSG_FLAG_RTR : 0; | ||
|  |     *flags |= (rx_frame->frame_format) ? CAN_MSG_FLAG_EXTD : 0; | ||
|  | 
 | ||
|  |     //Copy ID
 | ||
|  |     int id_len = (rx_frame->frame_format) ? FRAME_EXTD_ID_LEN : FRAME_STD_ID_LEN; | ||
|  |     uint8_t *id_buffer = (rx_frame->frame_format) ? rx_frame->extended.id : rx_frame->standard.id; | ||
|  |     uint32_t id_temp = 0; | ||
|  |     for (int i = 0; i < id_len; i++) { | ||
|  |         id_temp |= id_buffer[i] << (8 * i);     //Copy big-endian ID byte by byte
 | ||
|  |     } | ||
|  |     //Revert endianness of 4 or 2 byte ID, and shift into 29 or 11 bit ID
 | ||
|  |     id_temp = (rx_frame->frame_format) ? (__builtin_bswap32(id_temp) >> 3) :    //((byte[i] << 8*(3-i)) >> 3)
 | ||
|  |                                          (__builtin_bswap16(id_temp) >> 5);     //((byte[i] << 8*(1-i)) >> 5)
 | ||
|  |     *id = id_temp & ((rx_frame->frame_format) ? CAN_EXTD_ID_MASK : CAN_STD_ID_MASK); | ||
|  | 
 | ||
|  |     //Copy data
 | ||
|  |     uint8_t *data_buffer = (rx_frame->frame_format) ? rx_frame->extended.data : rx_frame->standard.data; | ||
|  |     for (int i = 0; (i < rx_frame->dlc) && (i < FRAME_MAX_DATA_LEN); i++) { | ||
|  |         data[i] = data_buffer[i]; | ||
|  |     } | ||
|  |     //Set remaining bytes of data to 0
 | ||
|  |     for (int i = rx_frame->dlc; i < FRAME_MAX_DATA_LEN; i++) { | ||
|  |         data[i] = 0; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | static void can_configure_gpio(gpio_num_t tx, gpio_num_t rx, gpio_num_t clkout, gpio_num_t bus_status) | ||
|  | { | ||
|  |     //Set TX pin
 | ||
|  |     gpio_set_pull_mode(tx, GPIO_FLOATING); | ||
|  |     gpio_matrix_out(tx, CAN_TX_IDX, false, false); | ||
|  |     gpio_pad_select_gpio(tx); | ||
|  | 
 | ||
|  |     //Set RX pin
 | ||
|  |     gpio_set_pull_mode(rx, GPIO_FLOATING); | ||
|  |     gpio_matrix_in(rx, CAN_RX_IDX, false); | ||
|  |     gpio_pad_select_gpio(rx); | ||
|  | 
 | ||
|  |     //Configure output clock pin (Optional)
 | ||
|  |     if (clkout >= 0 && clkout < GPIO_NUM_MAX) { | ||
|  |         gpio_set_pull_mode(clkout, GPIO_FLOATING); | ||
|  |         gpio_matrix_out(clkout, CAN_CLKOUT_IDX, false, false); | ||
|  |         gpio_pad_select_gpio(clkout); | ||
|  |     } | ||
|  | 
 | ||
|  |     //Configure bus status pin (Optional)
 | ||
|  |     if (bus_status >= 0 && bus_status < GPIO_NUM_MAX) { | ||
|  |         gpio_set_pull_mode(bus_status, GPIO_FLOATING); | ||
|  |         gpio_matrix_out(bus_status, CAN_BUS_OFF_ON_IDX, false, false); | ||
|  |         gpio_pad_select_gpio(bus_status); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ---------------------------- Public Functions ---------------------------- */ | ||
|  | 
 | ||
|  | esp_err_t can_driver_install(const can_general_config_t *g_config, const can_timing_config_t *t_config, const can_filter_config_t *f_config) | ||
|  | { | ||
|  |     //Check arguments and state
 | ||
|  |     CAN_CHECK(p_can_obj == NULL, ESP_ERR_INVALID_STATE);     //Check is driver is already installed
 | ||
|  |     CAN_CHECK(g_config != NULL, ESP_ERR_INVALID_ARG); | ||
|  |     CAN_CHECK(t_config != NULL, ESP_ERR_INVALID_ARG); | ||
|  |     CAN_CHECK(f_config != NULL, ESP_ERR_INVALID_ARG); | ||
|  |     CAN_CHECK(g_config->rx_queue_len > 0, ESP_ERR_INVALID_ARG); | ||
|  |     CAN_CHECK(g_config->tx_io >= 0 && g_config->tx_io < GPIO_NUM_MAX, ESP_ERR_INVALID_ARG); | ||
|  |     CAN_CHECK(g_config->rx_io >= 0 && g_config->rx_io < GPIO_NUM_MAX, ESP_ERR_INVALID_ARG); | ||
|  |     esp_err_t ret; | ||
|  | 
 | ||
|  |     //Initialize CAN object
 | ||
|  |     p_can_obj = calloc(1, sizeof(can_obj_t)); | ||
|  |     CAN_CHECK(p_can_obj != NULL, ESP_ERR_NO_MEM); | ||
|  |     p_can_obj->tx_queue = (g_config->tx_queue_len > 0) ? xQueueCreate(g_config->tx_queue_len, sizeof(can_frame_t)) : NULL; | ||
|  |     p_can_obj->rx_queue = xQueueCreate(g_config->rx_queue_len, sizeof(can_frame_t)); | ||
|  |     p_can_obj->alert_semphr = xSemaphoreCreateBinary(); | ||
|  |     if ((g_config->tx_queue_len > 0 && p_can_obj->tx_queue == NULL) || | ||
|  |         p_can_obj->rx_queue == NULL || p_can_obj->alert_semphr == NULL) { | ||
|  |         ret = ESP_ERR_NO_MEM; | ||
|  |         goto err; | ||
|  |     } | ||
|  |     p_can_obj->control_flags = CTRL_FLAG_STOPPED; | ||
|  |     p_can_obj->control_flags |= (g_config->mode == CAN_MODE_NO_ACK) ? CTRL_FLAG_SELF_TEST : 0; | ||
|  |     p_can_obj->control_flags |= (g_config->mode == CAN_MODE_LISTEN_ONLY) ? CTRL_FLAG_LISTEN_ONLY : 0; | ||
|  |     p_can_obj->tx_msg_count = 0; | ||
|  |     p_can_obj->rx_msg_count = 0; | ||
|  |     p_can_obj->tx_failed_count = 0; | ||
|  |     p_can_obj->rx_missed_count = 0; | ||
|  |     p_can_obj->arb_lost_count = 0; | ||
|  |     p_can_obj->bus_error_count = 0; | ||
|  |     p_can_obj->alerts_enabled = g_config->alerts_enabled; | ||
|  |     p_can_obj->alerts_triggered = 0; | ||
|  | 
 | ||
|  |     CAN_ENTER_CRITICAL(); | ||
|  |     //Initialize CAN peripheral
 | ||
|  |     periph_module_enable(PERIPH_CAN_MODULE);            //Enable APB CLK to CAN peripheral
 | ||
|  |     configASSERT(can_enter_reset_mode() == ESP_OK);     //Must enter reset mode to write to config registers
 | ||
|  |     can_config_pelican();                               //Use PeliCAN addresses
 | ||
|  |     /* Note: REC is allowed to increase even in reset mode. Listen only mode
 | ||
|  |        will freeze REC. The desired mode will be set when can_start() is called. */ | ||
|  |     can_config_mode(CAN_MODE_LISTEN_ONLY); | ||
|  |     can_config_interrupts(DRIVER_DEFAULT_INTERRUPTS); | ||
|  |     can_config_bus_timing(t_config->brp, t_config->sjw, t_config->tseg_1, t_config->tseg_2, t_config->triple_sampling); | ||
|  |     can_config_error(DRIVER_DEFAULT_EWL, DRIVER_DEFAULT_REC, DRIVER_DEFAULT_TEC); | ||
|  |     can_config_acceptance_filter(f_config->acceptance_code, f_config->acceptance_mask, f_config->single_filter); | ||
|  |     can_config_clk_out(g_config->clkout_divider); | ||
|  |     //Allocate GPIO and Interrupts
 | ||
|  |     can_configure_gpio(g_config->tx_io, g_config->rx_io, g_config->clkout_io, g_config->bus_off_io); | ||
|  |     (void) can_get_interrupt_reason();                  //Read interrupt reg to clear it before allocating ISR
 | ||
|  |     ESP_ERROR_CHECK(esp_intr_alloc(ETS_CAN_INTR_SOURCE, 0, can_intr_handler_main, NULL, &p_can_obj->isr_handle)); | ||
|  |     CAN_EXIT_CRITICAL(); | ||
|  |     //Todo: Allow interrupt to be registered to specified CPU
 | ||
|  | 
 | ||
|  |     //CAN module is still in reset mode, users need to call can_start() afterwards
 | ||
|  |     return ESP_OK; | ||
|  | 
 | ||
|  |     err: | ||
|  |     //Cleanup and return error
 | ||
|  |     if (p_can_obj != NULL) { | ||
|  |         if (p_can_obj->tx_queue != NULL) { | ||
|  |             vQueueDelete(p_can_obj->tx_queue); | ||
|  |             p_can_obj->tx_queue = NULL; | ||
|  |         } | ||
|  |         if (p_can_obj->rx_queue != NULL) { | ||
|  |             vQueueDelete(p_can_obj->rx_queue); | ||
|  |             p_can_obj->rx_queue = NULL; | ||
|  |         } | ||
|  |         if (p_can_obj->alert_semphr != NULL) { | ||
|  |             vSemaphoreDelete(p_can_obj->alert_semphr); | ||
|  |             p_can_obj->alert_semphr = NULL; | ||
|  |         } | ||
|  |         free(p_can_obj); | ||
|  |     } | ||
|  |     return ret; | ||
|  | } | ||
|  | 
 | ||
|  | esp_err_t can_driver_uninstall() | ||
|  | { | ||
|  |     //Check state
 | ||
|  |     CAN_ENTER_CRITICAL(); | ||
|  |     CAN_CHECK_FROM_CRIT(p_can_obj != NULL, ESP_ERR_INVALID_STATE); | ||
|  |     CAN_CHECK_FROM_CRIT(p_can_obj->control_flags & (CTRL_FLAG_STOPPED | CTRL_FLAG_BUS_OFF), ESP_ERR_INVALID_STATE); | ||
|  | 
 | ||
|  |     //Clear registers
 | ||
|  |     configASSERT(can_enter_reset_mode() == ESP_OK); //Enter reset mode to stop any CAN bus activity
 | ||
|  |     (void) can_get_interrupt_reason(); | ||
|  |     (void) can_get_arbitration_lost_capture(); | ||
|  |     (void) can_get_error_code_capture(); | ||
|  | 
 | ||
|  |     ESP_ERROR_CHECK(esp_intr_free(p_can_obj->isr_handle));  //Free interrupt
 | ||
|  |     periph_module_disable(PERIPH_CAN_MODULE);               //Disable CAN peripheral
 | ||
|  |     //Delete queues, semaphores
 | ||
|  |     if (p_can_obj->tx_queue != NULL) { | ||
|  |         vQueueDelete(p_can_obj->tx_queue); | ||
|  |     } | ||
|  |     vQueueDelete(p_can_obj->rx_queue); | ||
|  |     vSemaphoreDelete(p_can_obj->alert_semphr); | ||
|  |     free(p_can_obj);        //Free can driver object
 | ||
|  |     CAN_EXIT_CRITICAL(); | ||
|  | 
 | ||
|  |     return ESP_OK; | ||
|  | } | ||
|  | 
 | ||
|  | esp_err_t can_start() | ||
|  | { | ||
|  |     //Check state
 | ||
|  |     CAN_ENTER_CRITICAL(); | ||
|  |     CAN_CHECK_FROM_CRIT(p_can_obj != NULL, ESP_ERR_INVALID_STATE); | ||
|  |     CAN_CHECK_FROM_CRIT(p_can_obj->control_flags & CTRL_FLAG_STOPPED, ESP_ERR_INVALID_STATE); | ||
|  | 
 | ||
|  |     //Reset RX queue, and RX message count
 | ||
|  |     xQueueReset(p_can_obj->rx_queue); | ||
|  |     p_can_obj->rx_msg_count = 0; | ||
|  |     configASSERT(can_enter_reset_mode() == ESP_OK); //Should already be in bus-off mode, set again to make sure
 | ||
|  | 
 | ||
|  |     //Currently in listen only mode, need to set to mode specified by configuration
 | ||
|  |     can_mode_t mode; | ||
|  |     if (p_can_obj->control_flags & CTRL_FLAG_SELF_TEST) { | ||
|  |         mode = CAN_MODE_NO_ACK; | ||
|  |     } else if (p_can_obj->control_flags & CTRL_FLAG_LISTEN_ONLY) { | ||
|  |         mode = CAN_MODE_LISTEN_ONLY; | ||
|  |     } else { | ||
|  |         mode = CAN_MODE_NORMAL; | ||
|  |     } | ||
|  |     can_config_mode(mode);                              //Set mode
 | ||
|  |     (void) can_get_interrupt_reason();                  //Clear interrupt register
 | ||
|  |     configASSERT(can_exit_reset_mode() == ESP_OK); | ||
|  | 
 | ||
|  |     CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_STOPPED); | ||
|  |     CAN_EXIT_CRITICAL(); | ||
|  |     return ESP_OK; | ||
|  | } | ||
|  | 
 | ||
|  | esp_err_t can_stop() | ||
|  | { | ||
|  |     //Check state
 | ||
|  |     CAN_ENTER_CRITICAL(); | ||
|  |     CAN_CHECK_FROM_CRIT(p_can_obj != NULL, ESP_ERR_INVALID_STATE); | ||
|  |     CAN_CHECK_FROM_CRIT(!(p_can_obj->control_flags & (CTRL_FLAG_STOPPED | CTRL_FLAG_BUS_OFF)), ESP_ERR_INVALID_STATE); | ||
|  | 
 | ||
|  |     //Clear interrupts and reset flags
 | ||
|  |     configASSERT(can_enter_reset_mode() == ESP_OK); | ||
|  |     (void) can_get_interrupt_reason();          //Read interrupt register to clear interrupts
 | ||
|  |     can_config_mode(CAN_MODE_LISTEN_ONLY);      //Set to listen only mode to freeze REC
 | ||
|  |     CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED); | ||
|  |     CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_STOPPED); | ||
|  | 
 | ||
|  |     //Reset TX Queue and message count
 | ||
|  |     if (p_can_obj->tx_queue != NULL) { | ||
|  |         xQueueReset(p_can_obj->tx_queue); | ||
|  |     } | ||
|  |     p_can_obj->tx_msg_count = 0; | ||
|  | 
 | ||
|  |     CAN_EXIT_CRITICAL(); | ||
|  | 
 | ||
|  |     return ESP_OK; | ||
|  | } | ||
|  | 
 | ||
|  | esp_err_t can_transmit(const can_message_t *message, TickType_t ticks_to_wait) | ||
|  | { | ||
|  |     //Check arguments
 | ||
|  |     CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE); | ||
|  |     CAN_CHECK(message != NULL, ESP_ERR_INVALID_ARG); | ||
|  |     CAN_CHECK((message->data_length_code <= FRAME_MAX_DATA_LEN) || (message->flags & CAN_MSG_FLAG_DLC_NON_COMP), ESP_ERR_INVALID_ARG); | ||
|  | 
 | ||
|  |     CAN_ENTER_CRITICAL(); | ||
|  |     //Check State
 | ||
|  |     CAN_CHECK_FROM_CRIT(!(p_can_obj->control_flags & CTRL_FLAG_LISTEN_ONLY), ESP_ERR_NOT_SUPPORTED); | ||
|  |     CAN_CHECK_FROM_CRIT(!(p_can_obj->control_flags & (CTRL_FLAG_STOPPED | CTRL_FLAG_BUS_OFF)), ESP_ERR_INVALID_STATE); | ||
|  |     //Format frame
 | ||
|  |     esp_err_t ret = ESP_FAIL; | ||
|  |     can_frame_t tx_frame; | ||
|  |     can_format_frame(message->identifier, message->data_length_code, message->data, message->flags, &tx_frame); | ||
|  |     //Check if frame can be sent immediately
 | ||
|  |     if ((p_can_obj->tx_msg_count == 0) && !(p_can_obj->control_flags & CTRL_FLAG_TX_BUFF_OCCUPIED)) { | ||
|  |         //No other frames waiting to transmit. Bypass queue and transmit immediately
 | ||
|  |         can_set_tx_buffer_and_transmit(&tx_frame); | ||
|  |         p_can_obj->tx_msg_count++; | ||
|  |         CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED); | ||
|  |         ret = ESP_OK; | ||
|  |     } | ||
|  |     CAN_EXIT_CRITICAL(); | ||
|  | 
 | ||
|  |     if (ret != ESP_OK) { | ||
|  |         if (p_can_obj->tx_queue == NULL) { | ||
|  |             //TX Queue is disabled and TX buffer is occupied, message was not sent
 | ||
|  |             ret = ESP_FAIL; | ||
|  |         } else if (xQueueSend(p_can_obj->tx_queue, &tx_frame, ticks_to_wait) == pdTRUE) { | ||
|  |             //Copied to TX Queue
 | ||
|  |             CAN_ENTER_CRITICAL(); | ||
|  |             if (p_can_obj->control_flags & (CTRL_FLAG_STOPPED | CTRL_FLAG_STOPPED)) { | ||
|  |                 //TX queue was reset (due to stop/bus_off), remove copied frame from queue to prevent transmission
 | ||
|  |                 configASSERT(xQueueReceive(p_can_obj->tx_queue, &tx_frame, 0) == pdTRUE); | ||
|  |                 ret = ESP_ERR_INVALID_STATE; | ||
|  |             } else if ((p_can_obj->tx_msg_count == 0) && !(p_can_obj->control_flags & CTRL_FLAG_TX_BUFF_OCCUPIED)) { | ||
|  |                 //TX buffer was freed during copy, manually trigger transmission
 | ||
|  |                 configASSERT(xQueueReceive(p_can_obj->tx_queue, &tx_frame, 0) == pdTRUE); | ||
|  |                 can_set_tx_buffer_and_transmit(&tx_frame); | ||
|  |                 p_can_obj->tx_msg_count++; | ||
|  |                 CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED); | ||
|  |                 ret = ESP_OK; | ||
|  |             } else { | ||
|  |                 //Frame was copied to queue, waiting to be transmitted
 | ||
|  |                 p_can_obj->tx_msg_count++; | ||
|  |                 ret = ESP_OK; | ||
|  |             } | ||
|  |             CAN_EXIT_CRITICAL(); | ||
|  |         } else { | ||
|  |             //Timed out waiting for free space on TX queue
 | ||
|  |             ret = ESP_ERR_TIMEOUT; | ||
|  |         } | ||
|  |     } | ||
|  |     return ret; | ||
|  | } | ||
|  | 
 | ||
|  | esp_err_t can_receive(can_message_t *message, TickType_t ticks_to_wait) | ||
|  | { | ||
|  |     //Check arguments and state
 | ||
|  |     CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE); | ||
|  |     CAN_CHECK(message != NULL, ESP_ERR_INVALID_ARG); | ||
|  | 
 | ||
|  |     //Get frame from RX Queue or RX Buffer
 | ||
|  |     can_frame_t rx_frame; | ||
|  |     if (xQueueReceive(p_can_obj->rx_queue, &rx_frame, ticks_to_wait) != pdTRUE) { | ||
|  |         return ESP_ERR_TIMEOUT; | ||
|  |     } | ||
|  | 
 | ||
|  |     CAN_ENTER_CRITICAL(); | ||
|  |     p_can_obj->rx_msg_count--; | ||
|  |     CAN_EXIT_CRITICAL(); | ||
|  | 
 | ||
|  |     //Decode frame
 | ||
|  |     can_parse_frame(&rx_frame, &(message->identifier), &(message->data_length_code), message->data, &(message->flags)); | ||
|  |     return ESP_OK; | ||
|  | } | ||
|  | 
 | ||
|  | esp_err_t can_read_alerts(uint32_t *alerts, TickType_t ticks_to_wait) | ||
|  | { | ||
|  |     //Check arguments and state
 | ||
|  |     CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE); | ||
|  |     CAN_CHECK(alerts != NULL, ESP_ERR_INVALID_ARG); | ||
|  | 
 | ||
|  |     //Wait for an alert to occur
 | ||
|  |     if (xSemaphoreTake(p_can_obj->alert_semphr, ticks_to_wait) == pdTRUE) { | ||
|  |         CAN_ENTER_CRITICAL(); | ||
|  |         *alerts = p_can_obj->alerts_triggered; | ||
|  |         p_can_obj->alerts_triggered = 0;    //Clear triggered alerts
 | ||
|  |         CAN_EXIT_CRITICAL(); | ||
|  |         return ESP_OK; | ||
|  |     } else { | ||
|  |         *alerts = 0; | ||
|  |         return ESP_ERR_TIMEOUT; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | esp_err_t can_reconfigure_alerts(uint32_t alerts_enabled, uint32_t *current_alerts) | ||
|  | { | ||
|  |     CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE); | ||
|  |     CAN_ENTER_CRITICAL(); | ||
|  |     uint32_t cur_alerts; | ||
|  |     cur_alerts = can_read_alerts(&cur_alerts, 0);       //Clear any unhandled alerts
 | ||
|  |     p_can_obj->alerts_enabled = alerts_enabled;         //Update enabled alerts
 | ||
|  |     CAN_EXIT_CRITICAL(); | ||
|  | 
 | ||
|  |     if (current_alerts != NULL) { | ||
|  |         *current_alerts = cur_alerts; | ||
|  |     } | ||
|  |     return ESP_OK; | ||
|  | } | ||
|  | 
 | ||
|  | esp_err_t can_initiate_recovery() | ||
|  | { | ||
|  |     CAN_ENTER_CRITICAL(); | ||
|  |     //Check state
 | ||
|  |     CAN_CHECK_FROM_CRIT(p_can_obj != NULL, ESP_ERR_INVALID_STATE); | ||
|  |     CAN_CHECK_FROM_CRIT(p_can_obj->control_flags & CTRL_FLAG_BUS_OFF, ESP_ERR_INVALID_STATE); | ||
|  |     CAN_CHECK_FROM_CRIT(!(p_can_obj->control_flags & CTRL_FLAG_RECOVERING), ESP_ERR_INVALID_STATE); | ||
|  | 
 | ||
|  |     //Reset TX Queue/Counters
 | ||
|  |     if (p_can_obj->tx_queue != NULL) { | ||
|  |         xQueueReset(p_can_obj->tx_queue); | ||
|  |     } | ||
|  |     p_can_obj->tx_msg_count = 0; | ||
|  |     CAN_RESET_FLAG(p_can_obj->control_flags, CTRL_FLAG_TX_BUFF_OCCUPIED); | ||
|  |     CAN_SET_FLAG(p_can_obj->control_flags, CTRL_FLAG_RECOVERING); | ||
|  | 
 | ||
|  |     //Trigger start of recovery process
 | ||
|  |     configASSERT(can_exit_reset_mode() == ESP_OK); | ||
|  |     CAN_EXIT_CRITICAL(); | ||
|  | 
 | ||
|  |     return ESP_OK; | ||
|  | } | ||
|  | 
 | ||
|  | esp_err_t can_get_status_info(can_status_info_t *status_info) | ||
|  | { | ||
|  |     //Check parameters and state
 | ||
|  |     CAN_CHECK(p_can_obj != NULL, ESP_ERR_INVALID_STATE); | ||
|  |     CAN_CHECK(status_info != NULL, ESP_ERR_INVALID_ARG); | ||
|  | 
 | ||
|  |     CAN_ENTER_CRITICAL(); | ||
|  |     uint32_t tec, rec; | ||
|  |     can_get_error_counters(&tec, &rec); | ||
|  |     status_info->tx_error_counter = tec; | ||
|  |     status_info->rx_error_counter = rec; | ||
|  |     status_info->msgs_to_tx = p_can_obj->tx_msg_count; | ||
|  |     status_info->msgs_to_rx = p_can_obj->rx_msg_count; | ||
|  |     status_info->tx_failed_count = p_can_obj->tx_failed_count; | ||
|  |     status_info->rx_missed_count = p_can_obj->rx_missed_count; | ||
|  |     status_info->arb_lost_count = p_can_obj->arb_lost_count; | ||
|  |     status_info->bus_error_count = p_can_obj->bus_error_count; | ||
|  |     if (p_can_obj->control_flags & CTRL_FLAG_RECOVERING) { | ||
|  |         status_info->state = CAN_STATE_RECOVERING; | ||
|  |     } else if (p_can_obj->control_flags & CTRL_FLAG_BUS_OFF) { | ||
|  |         status_info->state = CAN_STATE_BUS_OFF; | ||
|  |     } else if (p_can_obj->control_flags & CTRL_FLAG_STOPPED) { | ||
|  |         status_info->state = CAN_STATE_STOPPED; | ||
|  |     } else { | ||
|  |         status_info->state = CAN_STATE_RUNNING; | ||
|  |     } | ||
|  |     CAN_EXIT_CRITICAL(); | ||
|  | 
 | ||
|  |     return ESP_OK; | ||
|  | } | ||
|  | 
 |