soc: separate abstraction, description and implementation

This commit is contained in:
Renz Christian Bagaporo
2020-01-08 12:50:03 +08:00
parent 2e8a894ea7
commit 1f2e2fe8af
346 changed files with 1275 additions and 145 deletions

View File

@@ -0,0 +1,22 @@
set(srcs "brownout_hal.c"
"cpu_util.c"
"rtc_clk.c"
"rtc_init.c"
"rtc_pm.c"
"rtc_sleep.c"
"rtc_time.c"
"rtc_wdt.c"
"soc_memory_layout.c"
"touch_sensor_hal.c"
"usb_hal.c")
add_prefix(srcs "${CMAKE_CURRENT_LIST_DIR}/" "${srcs}")
target_sources(${COMPONENT_LIB} PRIVATE "${srcs}")
target_include_directories(${COMPONENT_LIB} PUBLIC . include)
target_include_directories(${COMPONENT_LIB} PRIVATE ../hal)
if(NOT CMAKE_BUILD_EARLY_EXPANSION)
set_source_files_properties("${CMAKE_CURRENT_LIST_DIR}/rtc_clk.c" PROPERTIES
COMPILE_FLAGS "-fno-jump-tables -fno-tree-switch-conversion")
endif()

View File

@@ -0,0 +1,46 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "hal/brownout_hal.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "i2c_rtc_clk.h"
#include "i2c_brownout.h"
void brownout_hal_config(const brownout_hal_config_t *cfg)
{
I2C_WRITEREG_MASK_RTC(I2C_BOD, I2C_BOD_THRESHOLD, cfg->threshold);
typeof(RTCCNTL.brown_out) brown_out_reg = {
.out2_ena = 1,
.int_wait = 0x002,
.close_flash_ena = cfg->flash_power_down,
.pd_rf_ena = cfg->rf_power_down,
.rst_wait = 0x3ff,
.rst_ena = cfg->reset_enabled,
.ena = cfg->enabled,
};
RTCCNTL.brown_out = brown_out_reg;
}
void brownout_hal_intr_enable(bool enable)
{
RTCCNTL.int_ena.rtc_brown_out = enable;
}
void brownout_hal_intr_clear(void)
{
RTCCNTL.int_clr.rtc_brown_out = 1;
}

View File

@@ -0,0 +1,63 @@
// Copyright 2013-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp_attr.h"
#include "soc/cpu.h"
#include "soc/soc.h"
#include "soc/rtc_cntl_reg.h"
#include "sdkconfig.h"
void IRAM_ATTR esp_cpu_stall(int cpu_id)
{
if (cpu_id == 1) {
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, RTC_CNTL_SW_STALL_APPCPU_C1_M);
SET_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, 0x21<<RTC_CNTL_SW_STALL_APPCPU_C1_S);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_STALL_APPCPU_C0_M);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, 2<<RTC_CNTL_SW_STALL_APPCPU_C0_S);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, RTC_CNTL_SW_STALL_PROCPU_C1_M);
SET_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, 0x21<<RTC_CNTL_SW_STALL_PROCPU_C1_S);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_STALL_PROCPU_C0_M);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, 2<<RTC_CNTL_SW_STALL_PROCPU_C0_S);
}
}
void IRAM_ATTR esp_cpu_unstall(int cpu_id)
{
if (cpu_id == 1) {
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, RTC_CNTL_SW_STALL_APPCPU_C1_M);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_STALL_APPCPU_C0_M);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_SW_CPU_STALL_REG, RTC_CNTL_SW_STALL_PROCPU_C1_M);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_STALL_PROCPU_C0_M);
}
}
void IRAM_ATTR esp_cpu_reset(int cpu_id)
{
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
cpu_id == 0 ? RTC_CNTL_SW_PROCPU_RST_M : RTC_CNTL_SW_APPCPU_RST_M);
}
bool IRAM_ATTR esp_cpu_in_ocd_debug_mode(void)
{
#if CONFIG_ESP32S2_DEBUG_OCDAWARE
int dcr;
int reg=0x10200C; //DSRSET register
asm("rer %0,%1":"=r"(dcr):"r"(reg));
return (dcr&0x1);
#else
return false; // Always return false if "OCD aware" is disabled
#endif
}

View File

@@ -0,0 +1,30 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file i2c_brownout.h
* @brief Register definitions for brownout detector
*
* This file lists register fields of the brownout detector, located on an internal configuration
* bus. These definitions are used via macros defined in i2c_rtc_clk.h.
*/
#define I2C_BOD 0x61
#define I2C_BOD_HOSTID 1
#define I2C_BOD_THRESHOLD 0x5
#define I2C_BOD_THRESHOLD_MSB 2
#define I2C_BOD_THRESHOLD_LSB 0

View File

@@ -0,0 +1,48 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "i2c_apll.h"
#include "i2c_bbpll.h"
/* Analog function control register */
#define ANA_CONFIG_REG 0x6000E044
#define ANA_CONFIG_S (8)
#define ANA_CONFIG_M (0x3FF)
/* Clear to enable APLL */
#define I2C_APLL_M (BIT(14))
/* Clear to enable BBPLL */
#define I2C_BBPLL_M (BIT(17))
/* ROM functions which read/write internal control bus */
uint8_t rom_i2c_readReg(uint8_t block, uint8_t host_id, uint8_t reg_add);
uint8_t rom_i2c_readReg_Mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb);
void rom_i2c_writeReg(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t data);
void rom_i2c_writeReg_Mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb, uint8_t data);
/* Convenience macros for the above functions, these use register definitions
* from i2c_apll.h/i2c_bbpll.h header files.
*/
#define I2C_WRITEREG_MASK_RTC(block, reg_add, indata) \
rom_i2c_writeReg_Mask(block, block##_HOSTID, reg_add, reg_add##_MSB, reg_add##_LSB, indata)
#define I2C_READREG_MASK_RTC(block, reg_add) \
rom_i2c_readReg_Mask(block, block##_HOSTID, reg_add, reg_add##_MSB, reg_add##_LSB)
#define I2C_WRITEREG_RTC(block, reg_add, indata) \
rom_i2c_writeReg(block, block##_HOSTID, reg_add, indata)
#define I2C_READREG_RTC(block, reg_add) \
rom_i2c_readReg(block, block##_HOSTID, reg_add)

View File

@@ -0,0 +1,590 @@
#pragma once
#include "soc/adc_periph.h"
#include "hal/adc_types.h"
#include "soc/apb_ctrl_struct.h"
#include <stdbool.h>
typedef enum {
ADC_DIG_FORMAT_12BIT, /*!< ADC to I2S data format, [15:12]-channel [11:0]-12 bits ADC data.
Note: In single convert mode. */
ADC_DIG_FORMAT_11BIT, /*!< ADC to I2S data format, [15]-1 [14:11]-channel [10:0]-11 bits ADC data.
Note: In multi convert mode. */
ADC_DIG_FORMAT_MAX,
} adc_ll_dig_output_format_t;
typedef enum {
ADC_CONV_SINGLE_UNIT_1 = 1, /*!< SAR ADC 1*/
ADC_CONV_SINGLE_UNIT_2 = 2, /*!< SAR ADC 2, not supported yet*/
ADC_CONV_BOTH_UNIT = 3, /*!< SAR ADC 1 and 2, not supported yet */
ADC_CONV_ALTER_UNIT = 7, /*!< SAR ADC 1 and 2 alternative mode, not supported yet */
ADC_CONV_UNIT_MAX,
} adc_ll_convert_mode_t;
typedef enum {
ADC_NUM_1 = 0, /*!< SAR ADC 1 */
ADC_NUM_2 = 1, /*!< SAR ADC 2 */
ADC_NUM_MAX,
} adc_ll_num_t;
typedef struct {
union {
struct {
uint8_t atten: 2; /*!< ADC sampling voltage attenuation configuration.
0: input voltage * 1;
1: input voltage * 1/1.34;
2: input voltage * 1/2;
3: input voltage * 1/3.6. */
uint8_t bit_width: 2; /*!< ADC resolution.
0: 9 bit;
1: 10 bit;
2: 11 bit;
3: 12 bit. */
uint8_t channel: 4; /*!< ADC channel index. */
};
uint8_t val;
};
} adc_ll_pattern_table_t;
typedef enum {
ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */
ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */
ADC_POWER_SW_OFF, /*!< ADC XPD controled by SW. power off. */
ADC_POWER_MAX, /*!< For parameter check. */
} adc_ll_power_t;
typedef enum {
ADC_HALL_CTRL_ULP = 0x0,/*!< Hall sensor controled by ULP */
ADC_HALL_CTRL_RTC = 0x1 /*!< Hall sensor controled by RTC */
} adc_ll_hall_controller_t ;
typedef enum {
ADC_CTRL_RTC = 0,
ADC_CTRL_ULP = 1,
ADC_CTRL_DIG = 2,
ADC2_CTRL_PWDET = 3,
} adc_ll_controller_t ;
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/**
* Set adc fsm interval parameter for digital controller. These values are fixed for same platforms.
*
* @param rst_wait cycles between DIG ADC controller reset ADC sensor and start ADC sensor.
* @param start_wait Delay time after open xpd.
* @param standby_wait Delay time to close xpd.
*/
static inline void adc_ll_dig_set_fsm_time(uint32_t rst_wait, uint32_t start_wait, uint32_t standby_wait)
{
// Internal FSM reset wait time
APB_CTRL.saradc_fsm_wait.rstb_wait = rst_wait;
// Internal FSM start wait time
APB_CTRL.saradc_fsm_wait.xpd_wait = start_wait;
// Internal FSM standby wait time
APB_CTRL.saradc_fsm_wait.standby_wait = standby_wait;
}
/**
* Set adc sample cycle for digital controller.
*
* @note Normally, please use default value.
* @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor.
* Range: 2 ~ 0xFF.
*/
static inline void adc_ll_dig_set_sample_cycle(uint32_t sample_cycle)
{
APB_CTRL.saradc_fsm.sample_cycle = sample_cycle;
}
/**
* Set adc output data format for digital controller.
*
* @param format Output data format.
*/
static inline void adc_ll_dig_set_output_format(adc_ll_dig_output_format_t format)
{
APB_CTRL.saradc_ctrl.data_sar_sel = format;
}
/**
* Set adc max conversion number for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*
* @param meas_num Max conversion number. Range: 0 ~ 255.
*/
static inline void adc_ll_dig_set_convert_limit_num(uint32_t meas_num)
{
APB_CTRL.saradc_ctrl2.max_meas_num = meas_num;
}
/**
* Enable max conversion number detection for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*/
static inline void adc_ll_dig_convert_limit_enable(void)
{
APB_CTRL.saradc_ctrl2.meas_num_limit = 1;
}
/**
* Disable max conversion number detection for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*/
static inline void adc_ll_dig_convert_limit_disable(void)
{
APB_CTRL.saradc_ctrl2.meas_num_limit = 0;
}
/**
* Set adc conversion mode for digital controller.
*
* @note ESP32 only support ADC1 single mode.
*
* @param mode Conversion mode select.
*/
static inline void adc_ll_dig_set_convert_mode(adc_ll_convert_mode_t mode)
{
if (mode == ADC_CONV_SINGLE_UNIT_1) {
APB_CTRL.saradc_ctrl.work_mode = 0;
APB_CTRL.saradc_ctrl.sar_sel = 0;
} else if (mode == ADC_CONV_SINGLE_UNIT_2) {
APB_CTRL.saradc_ctrl.work_mode = 0;
APB_CTRL.saradc_ctrl.sar_sel = 1;
} else if (mode == ADC_CONV_BOTH_UNIT) {
APB_CTRL.saradc_ctrl.work_mode = 1;
} else if (mode == ADC_CONV_ALTER_UNIT) {
APB_CTRL.saradc_ctrl.work_mode = 2;
}
}
/**
* Set I2S DMA data source for digital controller.
*
* @param src i2s data source.
*/
static inline void adc_ll_dig_set_data_source(adc_i2s_source_t src)
{
/* 1: I2S input data is from SAR ADC (for DMA) 0: I2S input data is from GPIO matrix */
APB_CTRL.saradc_ctrl.data_to_i2s = src;
}
/**
* Set pattern table lenth for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself.
*
* @prarm adc_n ADC unit.
* @param patt_len Items range: 1 ~ 16.
*/
static inline void adc_ll_set_pattern_table_len(adc_ll_num_t adc_n, uint32_t patt_len)
{
if (adc_n == ADC_NUM_1) {
APB_CTRL.saradc_ctrl.sar1_patt_len = patt_len - 1;
} else { // adc_n == ADC_NUM_2
APB_CTRL.saradc_ctrl.sar2_patt_len = patt_len - 1;
}
}
/**
* Set pattern table lenth for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself.
*
* @prarm adc_n ADC unit.
* @param pattern_index Items index. Range: 1 ~ 16.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_set_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_ll_pattern_table_t pattern)
{
uint32_t tab;
uint8_t *arg;
if (adc_n == ADC_NUM_1) {
tab = *(uint32_t *)(&APB_CTRL.saradc_sar1_patt_tab1 + pattern_index / 4);
arg = (uint8_t *)&tab;
arg[pattern_index % 4] = pattern.val;
*(uint32_t *)(&APB_CTRL.saradc_sar1_patt_tab1 + pattern_index / 4) = tab;
} else { // adc_n == ADC_NUM_2
tab = *(uint32_t *)(&APB_CTRL.saradc_sar2_patt_tab1 + pattern_index / 4);
arg = (uint8_t *)&tab;
arg[pattern_index % 4] = pattern.val;
*(uint32_t *)(&APB_CTRL.saradc_sar2_patt_tab1 + pattern_index / 4) = tab;
}
}
/*---------------------------------------------------------------
PWDET(Power detect) controller setting
---------------------------------------------------------------*/
/**
* Set adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @prarm cct Range: 0 ~ 7.
*/
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
{
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
SENS.sar_meas2_mux.sar2_pwdet_cct = cct;
}
/**
* Get adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @return cct Range: 0 ~ 7.
*/
static inline uint32_t adc_ll_pwdet_get_cct(void)
{
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
return SENS.sar_meas2_mux.sar2_pwdet_cct;
}
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
/**
* Set adc output data format for RTC controller.
*
* @prarm adc_n ADC unit.
* @prarm bits Output data bits width option.
*/
static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_width_t bits)
{
if (adc_n == ADC_NUM_1) {
SENS.sar_meas1_ctrl1.sar1_bit_width = bits;
SENS.sar_reader1_ctrl.sar1_sample_bit = bits;
} else { // adc_n == ADC_NUM_2
SENS.sar_meas2_ctrl1.sar2_bit_width = bits;
SENS.sar_reader2_ctrl.sar2_sample_bit = bits;
}
}
/**
* Enable adc channel to start convert.
*
* @note Only one channel can be selected for once measurement.
*
* @prarm adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel)
{
if (adc_n == ADC_NUM_1) {
SENS.sar_meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected.
} else { // adc_n == ADC_NUM_2
SENS.sar_meas2_ctrl2.sar2_en_pad = (1 << channel); //only one channel is selected.
}
}
/**
* Start conversion once by software for RTC controller.
*
* @note It may be block to wait conversion idle for ADC1.
*
* @prarm adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel)
{
if (adc_n == ADC_NUM_1) {
while (SENS.sar_slave_addr1.meas_status != 0);
SENS.sar_meas1_ctrl2.meas1_start_sar = 0;
SENS.sar_meas1_ctrl2.meas1_start_sar = 1;
} else { // adc_n == ADC_NUM_2
SENS.sar_meas2_ctrl2.meas2_start_sar = 0; //start force 0
SENS.sar_meas2_ctrl2.meas2_start_sar = 1; //start force 1
}
}
/**
* Check the conversion done flag for each ADCn for RTC controller.
*
* @prarm adc_n ADC unit.
* @return
* -true : The conversion process is finish.
* -false : The conversion process is not finish.
*/
static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n)
{
bool ret = true;
if (adc_n == ADC_NUM_1) {
ret = (bool)SENS.sar_meas1_ctrl2.meas1_done_sar;
} else { // adc_n == ADC_NUM_2
ret = (bool)SENS.sar_meas2_ctrl2.meas2_done_sar;
}
return ret;
}
/**
* Get the converted value for each ADCn for RTC controller.
*
* @prarm adc_n ADC unit.
* @return
* - Converted value.
*/
static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n)
{
int ret_val = 0;
if (adc_n == ADC_NUM_1) {
ret_val = SENS.sar_meas1_ctrl2.meas1_data_sar;
} else { // adc_n == ADC_NUM_2
ret_val = SENS.sar_meas2_ctrl2.meas2_data_sar;
}
return ret_val;
}
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* Set ADC module power management.
*
* @prarm manage Set ADC power status.
*/
static inline void adc_ll_set_power_manage(adc_ll_power_t manage)
{
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
if (manage == ADC_POWER_SW_ON) {
SENS.sar_power_xpd_sar.force_xpd_sar = SENS_FORCE_XPD_SAR_PU;
} else if (manage == ADC_POWER_BY_FSM) {
SENS.sar_power_xpd_sar.force_xpd_sar = SENS_FORCE_XPD_SAR_FSM;
} else if (manage == ADC_POWER_SW_OFF) {
SENS.sar_power_xpd_sar.force_xpd_sar = SENS_FORCE_XPD_SAR_PD;
}
}
/**
* Get ADC module power management.
*
* @return
* - ADC power status.
*/
static inline adc_ll_power_t adc_ll_get_power_manage(void)
{
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
adc_ll_power_t manage;
if (SENS.sar_power_xpd_sar.force_xpd_sar == SENS_FORCE_XPD_SAR_PU) {
manage = ADC_POWER_SW_ON;
} else if (SENS.sar_power_xpd_sar.force_xpd_sar == SENS_FORCE_XPD_SAR_PD) {
manage = ADC_POWER_SW_OFF;
} else {
manage = ADC_POWER_BY_FSM;
}
return manage;
}
/**
* ADC module clock division factor setting. ADC clock devided from APB clock.
*
* @prarm div Division factor.
*/
static inline void adc_ll_set_clk_div(uint32_t div)
{
/* ADC clock devided from APB clk, e.g. 80 / 2 = 40Mhz, */
APB_CTRL.saradc_ctrl.sar_clk_div = div;
}
/**
* Set the attenuation of a particular channel on ADCn.
*
* @note For any given channel, this function must be called before the first time conversion.
*
* The default ADC full-scale voltage is 1.1V. To read higher voltages (up to the pin maximum voltage,
* usually 3.3V) requires setting >0dB signal attenuation for that ADC channel.
*
* When VDD_A is 3.3V:
*
* - 0dB attenuaton (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) gives full-scale voltage 1.5V
* - 6dB attenuation (ADC_ATTEN_DB_6) gives full-scale voltage 2.2V
* - 11dB attenuation (ADC_ATTEN_DB_11) gives full-scale voltage 3.9V (see note below)
*
* @note The full-scale voltage is the voltage corresponding to a maximum reading (depending on ADC1 configured
* bit width, this value is: 4095 for 12-bits, 2047 for 11-bits, 1023 for 10-bits, 511 for 9 bits.)
*
* @note At 11dB attenuation the maximum voltage is limited by VDD_A, not the full scale voltage.
*
* Due to ADC characteristics, most accurate results are obtained within the following approximate voltage ranges:
*
* - 0dB attenuaton (ADC_ATTEN_DB_0) between 100 and 950mV
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) between 100 and 1250mV
* - 6dB attenuation (ADC_ATTEN_DB_6) between 150 to 1750mV
* - 11dB attenuation (ADC_ATTEN_DB_11) between 150 to 2450mV
*
* For maximum accuracy, use the ADC calibration APIs and measure voltages within these recommended ranges.
*
* @prarm adc_n ADC unit.
* @prarm channel ADCn channel number.
* @prarm atten The attenuation option.
*/
static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
if (adc_n == ADC_NUM_1) {
SENS.sar_atten1 = ( SENS.sar_atten1 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
} else { // adc_n == ADC_NUM_2
SENS.sar_atten2 = ( SENS.sar_atten2 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
}
}
/**
* ADC module output data invert or not.
*
* @prarm adc_n ADC unit.
*/
static inline void adc_ll_output_invert(adc_ll_num_t adc_n, bool inv_en)
{
if (adc_n == ADC_NUM_1) {
SENS.sar_reader1_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_NUM_2
SENS.sar_reader2_ctrl.sar2_data_inv = inv_en; // Enable / Disable ADC data invert
}
}
/**
* Set ADC module controller.
* There are five SAR ADC controllers:
* Two digital controller: Continuous conversion mode (DMA). High performance with multiple channel scan modes;
* Two RTC controller: Single conversion modes (Polling). For low power purpose working during deep sleep;
* the other is dedicated for Power detect (PWDET / PKDET), Only support ADC2.
*
* @prarm adc_n ADC unit.
* @prarm ctrl ADC controller.
*/
static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t ctrl)
{
if (adc_n == ADC_NUM_1) {
switch ( ctrl ) {
case ADC_CTRL_RTC:
SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
SENS.sar_hall_ctrl.xpd_hall_force = 1; // 1: SW control HALL power; 0: ULP FSM control HALL power.
SENS.sar_hall_ctrl.hall_phase_force = 1; // 1: SW control HALL phase; 0: ULP FSM control HALL phase.
break;
case ADC_CTRL_ULP:
SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
SENS.sar_meas1_ctrl2.meas1_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas1_ctrl2.sar1_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
SENS.sar_hall_ctrl.xpd_hall_force = 0; // 1: SW control HALL power; 0: ULP FSM control HALL power.
SENS.sar_hall_ctrl.hall_phase_force = 0; // 1: SW control HALL phase; 0: ULP FSM control HALL phase.
break;
case ADC_CTRL_DIG:
SENS.sar_meas1_mux.sar1_dig_force = 1; // 1: Select digital control; 0: Select RTC control.
SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
SENS.sar_hall_ctrl.xpd_hall_force = 1; // 1: SW control HALL power; 0: ULP FSM control HALL power.
SENS.sar_hall_ctrl.hall_phase_force = 1; // 1: SW control HALL phase; 0: ULP FSM control HALL phase.
break;
default:
break;
}
} else { // adc_n == ADC_NUM_2
switch ( ctrl ) {
case ADC_CTRL_RTC:
SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_CTRL_ULP:
SENS.sar_meas2_ctrl2.meas2_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas2_ctrl2.sar2_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_CTRL_DIG:
SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC2_CTRL_PWDET: // currently only used by Wi-Fi
SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
default:
break;
}
}
}
/**
* Close ADC AMP module if don't use it for power save.
*/
static inline void adc_ll_amp_disable(void)
{
//channel is set in the convert function
SENS.sar_meas1_ctrl1.force_xpd_amp = SENS_FORCE_XPD_AMP_PD;
//disable FSM, it's only used by the LNA.
SENS.sar_amp_ctrl3.amp_rst_fb_fsm = 0;
SENS.sar_amp_ctrl3.amp_short_ref_fsm = 0;
SENS.sar_amp_ctrl3.amp_short_ref_gnd_fsm = 0;
SENS.sar_amp_ctrl1.sar_amp_wait1 = 1;
SENS.sar_amp_ctrl1.sar_amp_wait2 = 1;
SENS.sar_amp_ctrl2.sar_amp_wait3 = 1;
}
/*---------------------------------------------------------------
Hall sensor setting
---------------------------------------------------------------*/
/**
* Enable hall sensor.
*/
static inline void adc_ll_hall_enable(void)
{
SENS.sar_hall_ctrl.xpd_hall = 1;
}
/**
* Disable hall sensor.
*/
static inline void adc_ll_hall_disable(void)
{
SENS.sar_hall_ctrl.xpd_hall = 0;
}
/**
* Reverse phase of hall sensor.
*/
static inline void adc_ll_hall_phase_enable(void)
{
SENS.sar_hall_ctrl.hall_phase = 1;
}
/**
* Don't reverse phase of hall sensor.
*/
static inline void adc_ll_hall_phase_disable(void)
{
SENS.sar_hall_ctrl.hall_phase = 0;
}
/**
* Set hall sensor controller.
*
* @param hall_ctrl Hall controller.
*/
static inline void adc_ll_set_hall_controller(adc_ll_hall_controller_t hall_ctrl)
{
SENS.sar_hall_ctrl.xpd_hall_force = hall_ctrl; // 1: SW control HALL power; 0: ULP FSM control HALL power.
SENS.sar_hall_ctrl.hall_phase_force = hall_ctrl; // 1: SW control HALL phase; 0: ULP FSM control HALL phase.
}
/**
* Output ADC2 reference voltage to gpio 25 or 26 or 27
*
* This function utilizes the testing mux exclusive to ADC 2 to route the
* reference voltage one of ADC2's channels. Supported gpios are gpios
* 25, 26, and 27. This refernce voltage can be manually read from the pin
* and used in the esp_adc_cal component.
*
* @param[in] io GPIO number (gpios 25,26,27 supported)
*
* @return
* - true: v_ref successfully routed to selected gpio
* - false: Unsupported gpio
*/
static inline bool adc_ll_vref_output(int io)
{
return false;
}

View File

@@ -0,0 +1,185 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
#pragma once
#include <stdlib.h>
#include "soc/dac_periph.h"
#include "hal/dac_types.h"
/**
* Power on dac module and start output voltage.
*
* @note Before powering up, make sure the DAC PAD is set to RTC PAD and floating status.
* @param channel DAC channel num.
*/
static inline void dac_ll_power_on(dac_channel_t channel)
{
RTCIO.pad_dac[channel].dac_xpd_force = 1;
RTCIO.pad_dac[channel].xpd_dac = 1;
}
/**
* Power done dac module and stop output voltage.
*
* @param channel DAC channel num.
*/
static inline void dac_ll_power_down(dac_channel_t channel)
{
RTCIO.pad_dac[channel].dac_xpd_force = 0;
RTCIO.pad_dac[channel].xpd_dac = 0;
}
/**
* Output voltage with value (8 bit).
*
* @param channel DAC channel num.
* @param value Output value. Value range: 0 ~ 255.
* The corresponding range of voltage is 0v ~ VDD3P3_RTC.
*/
static inline void dac_ll_update_output_value(dac_channel_t channel, uint8_t value)
{
if (channel == DAC_CHANNEL_1) {
SENS.sar_dac_ctrl2.dac_cw_en1 = 0;
RTCIO.pad_dac[channel].dac = value;
} else if (channel == DAC_CHANNEL_2) {
SENS.sar_dac_ctrl2.dac_cw_en2 = 0;
RTCIO.pad_dac[channel].dac = value;
}
}
/************************************/
/* DAC cosine wave generator API's */
/************************************/
/**
* Enable cosine wave generator output.
*/
static inline void dac_ll_cw_generator_enable(void)
{
SENS.sar_dac_ctrl1.sw_tone_en = 1;
}
/**
* Disable cosine wave generator output.
*/
static inline void dac_ll_cw_generator_disable(void)
{
SENS.sar_dac_ctrl1.sw_tone_en = 0;
}
/**
* Enable the cosine wave generator of DAC channel.
*
* @param channel DAC channel num.
* @param enable
*/
static inline void dac_ll_cw_set_channel(dac_channel_t channel, bool enable)
{
if (channel == DAC_CHANNEL_1) {
SENS.sar_dac_ctrl2.dac_cw_en1 = enable;
} else if (channel == DAC_CHANNEL_2) {
SENS.sar_dac_ctrl2.dac_cw_en2 = enable;
}
}
/**
* Set frequency of cosine wave generator output.
*
* @note We know that CLK8M is about 8M, but don't know the actual value. so this freq have limited error.
* @param freq_hz CW generator frequency. Range: 130(130Hz) ~ 55000(100KHz).
*/
static inline void dac_ll_cw_set_freq(uint32_t freq)
{
uint32_t sw_freq = freq * 0xFFFF / RTC_FAST_CLK_FREQ_APPROX;
SENS.sar_dac_ctrl1.sw_fstep = (sw_freq > 0xFFFF) ? 0xFFFF : sw_freq;
}
/**
* Set the amplitude of the cosine wave generator output.
*
* @param channel DAC channel num.
* @param scale The multiple of the amplitude. The max amplitude is VDD3P3_RTC.
*/
static inline void dac_ll_cw_set_scale(dac_channel_t channel, dac_cw_scale_t scale)
{
if (channel == DAC_CHANNEL_1) {
SENS.sar_dac_ctrl2.dac_scale1 = scale;
} else if (channel == DAC_CHANNEL_2) {
SENS.sar_dac_ctrl2.dac_scale2 = scale;
}
}
/**
* Set the phase of the cosine wave generator output.
*
* @param channel DAC channel num.
* @param scale Phase value.
*/
static inline void dac_ll_cw_set_phase(dac_channel_t channel, dac_cw_phase_t phase)
{
if (channel == DAC_CHANNEL_1) {
SENS.sar_dac_ctrl2.dac_inv1 = phase;
} else if (channel == DAC_CHANNEL_2) {
SENS.sar_dac_ctrl2.dac_inv2 = phase;
}
}
/**
* Set the voltage value of the DC component of the cosine wave generator output.
*
* @note The DC offset setting should be after phase setting.
* @note Unreasonable settings can cause the signal to be oversaturated.
* @param channel DAC channel num.
* @param offset DC value. Range: -128 ~ 127.
*/
static inline void dac_ll_cw_set_dc_offset(dac_channel_t channel, int8_t offset)
{
if (channel == DAC_CHANNEL_1) {
if (SENS.sar_dac_ctrl2.dac_inv1 == DAC_CW_PHASE_180) {
offset = 0 - offset;
}
SENS.sar_dac_ctrl2.dac_dc1 = offset ? offset : (-128 - offset);
} else if (channel == DAC_CHANNEL_2) {
if (SENS.sar_dac_ctrl2.dac_inv2 == DAC_CW_PHASE_180) {
offset = 0 - offset;
}
SENS.sar_dac_ctrl2.dac_dc2 = offset ? offset : (-128 - offset);
}
}
/************************************/
/* DAC DMA API's */
/************************************/
/**
* Enable DAC output data from I2S DMA.
* I2S_CLK connect to DAC_CLK, I2S_DATA_OUT connect to DAC_DATA.
*/
static inline void dac_ll_dma_enable(void)
{
SENS.sar_dac_ctrl1.dac_dig_force = 1;
}
/**
* Disable DAC output data from I2S DMA.
*/
static inline void dac_ll_dma_disable(void)
{
SENS.sar_dac_ctrl1.dac_dig_force = 0;
}

View File

@@ -0,0 +1,422 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The LL layer for ESP32 GPIO register operations
#pragma once
#include "soc/soc.h"
#include "soc/gpio_periph.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc_io_reg.h"
#include "hal/gpio_types.h"
#ifdef __cplusplus
extern "C" {
#endif
// Get GPIO hardware instance with giving gpio num
#define GPIO_LL_GET_HW(num) (((num) == 0) ? (&GPIO) : NULL)
/**
* @brief Enable pull-up on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_pullup_en(gpio_dev_t *hw, gpio_num_t gpio_num)
{
REG_SET_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PU);
}
/**
* @brief Disable pull-up on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_pullup_dis(gpio_dev_t *hw, gpio_num_t gpio_num)
{
REG_CLR_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PU);
}
/**
* @brief Enable pull-down on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_pulldown_en(gpio_dev_t *hw, gpio_num_t gpio_num)
{
REG_SET_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PD);
}
/**
* @brief Disable pull-down on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_pulldown_dis(gpio_dev_t *hw, gpio_num_t gpio_num)
{
REG_CLR_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PD);
}
/**
* @brief GPIO set interrupt trigger type
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number. If you want to set the trigger type of e.g. of GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param intr_type Interrupt type, select from gpio_int_type_t
*/
static inline void gpio_ll_set_intr_type(gpio_dev_t *hw, gpio_num_t gpio_num, gpio_int_type_t intr_type)
{
hw->pin[gpio_num].int_type = intr_type;
}
/**
* @brief Get GPIO interrupt status
*
* @param hw Peripheral GPIO hardware instance address.
* @param core_id interrupt core id
* @param status interrupt status
*/
static inline void gpio_ll_get_intr_status(gpio_dev_t *hw, uint32_t core_id, uint32_t *status)
{
*status = hw->pcpu_int;
}
/**
* @brief Get GPIO interrupt status high
*
* @param hw Peripheral GPIO hardware instance address.
* @param core_id interrupt core id
* @param status interrupt status high
*/
static inline void gpio_ll_get_intr_status_high(gpio_dev_t *hw, uint32_t core_id, uint32_t *status)
{
*status = hw->pcpu_int1.intr;
}
/**
* @brief Clear GPIO interrupt status
*
* @param hw Peripheral GPIO hardware instance address.
* @param mask interrupt status clear mask
*/
static inline void gpio_ll_clear_intr_status(gpio_dev_t *hw, uint32_t mask)
{
hw->status_w1tc = mask;
}
/**
* @brief Clear GPIO interrupt status high
*
* @param hw Peripheral GPIO hardware instance address.
* @param mask interrupt status high clear mask
*/
static inline void gpio_ll_clear_intr_status_high(gpio_dev_t *hw, uint32_t mask)
{
hw->status1_w1tc.intr_st = mask;
}
/**
* @brief Enable GPIO module interrupt signal
*
* @param hw Peripheral GPIO hardware instance address.
* @param core_id Interrupt enabled CPU to corresponding ID
* @param gpio_num GPIO number. If you want to enable the interrupt of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
*/
static inline void gpio_ll_intr_enable_on_core(gpio_dev_t *hw, uint32_t core_id, gpio_num_t gpio_num)
{
if (core_id == 0) {
GPIO.pin[gpio_num].int_ena = GPIO_PRO_CPU_INTR_ENA; //enable pro cpu intr
}
}
/**
* @brief Disable GPIO module interrupt signal
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number. If you want to disable the interrupt of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
*/
static inline void gpio_ll_intr_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->pin[gpio_num].int_ena = 0; //disable GPIO intr
}
/**
* @brief Disable input mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_input_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Enable input mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_input_enable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Disable output mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_output_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
if (gpio_num < 32) {
hw->enable_w1tc = (0x1 << gpio_num);
} else {
hw->enable1_w1tc.data = (0x1 << (gpio_num - 32));
}
// Ensure no other output signal is routed via GPIO matrix to this pin
REG_WRITE(GPIO_FUNC0_OUT_SEL_CFG_REG + (gpio_num * 4),
SIG_GPIO_OUT_IDX);
}
/**
* @brief Enable output mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_output_enable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
if (gpio_num < 32) {
hw->enable_w1ts = (0x1 << gpio_num);
} else {
hw->enable1_w1ts.data = (0x1 << (gpio_num - 32));
}
}
/**
* @brief Disable open-drain mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_od_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->pin[gpio_num].pad_driver = 0;
}
/**
* @brief Enable open-drain mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_od_enable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->pin[gpio_num].pad_driver = 1;
}
/**
* @brief GPIO set output level
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number. If you want to set the output level of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param level Output level. 0: low ; 1: high
*/
static inline void gpio_ll_set_level(gpio_dev_t *hw, gpio_num_t gpio_num, uint32_t level)
{
if (level) {
if (gpio_num < 32) {
hw->out_w1ts = (1 << gpio_num);
} else {
hw->out1_w1ts.data = (1 << (gpio_num - 32));
}
} else {
if (gpio_num < 32) {
hw->out_w1tc = (1 << gpio_num);
} else {
hw->out1_w1tc.data = (1 << (gpio_num - 32));
}
}
}
/**
* @brief GPIO get input level
*
* @warning If the pad is not configured for input (or input and output) the returned value is always 0.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number. If you want to get the logic level of e.g. pin GPIO16, gpio_num should be GPIO_NUM_16 (16);
*
* @return
* - 0 the GPIO input level is 0
* - 1 the GPIO input level is 1
*/
static inline int gpio_ll_get_level(gpio_dev_t *hw, gpio_num_t gpio_num)
{
if (gpio_num < 32) {
return (hw->in >> gpio_num) & 0x1;
} else {
return (hw->in1.data >> (gpio_num - 32)) & 0x1;
}
}
/**
* @brief Enable GPIO wake-up function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number.
* @param intr_type GPIO wake-up type. Only GPIO_INTR_LOW_LEVEL or GPIO_INTR_HIGH_LEVEL can be used.
*/
static inline void gpio_ll_wakeup_enable(gpio_dev_t *hw, gpio_num_t gpio_num, gpio_int_type_t intr_type)
{
hw->pin[gpio_num].int_type = intr_type;
hw->pin[gpio_num].wakeup_enable = 0x1;
}
/**
* @brief Disable GPIO wake-up function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_wakeup_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->pin[gpio_num].wakeup_enable = 0;
}
/**
* @brief Set GPIO pad drive capability
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number, only support output GPIOs
* @param strength Drive capability of the pad
*/
static inline void gpio_ll_set_drive_capability(gpio_dev_t *hw, gpio_num_t gpio_num, gpio_drive_cap_t strength)
{
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[gpio_num], FUN_DRV_V, strength, FUN_DRV_S);
}
/**
* @brief Get GPIO pad drive capability
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number, only support output GPIOs
* @param strength Pointer to accept drive capability of the pad
*/
static inline void gpio_ll_get_drive_capability(gpio_dev_t *hw, gpio_num_t gpio_num, gpio_drive_cap_t *strength)
{
*strength = GET_PERI_REG_BITS2(GPIO_PIN_MUX_REG[gpio_num], FUN_DRV_V, FUN_DRV_S);
}
/**
* @brief Enable all digital gpio pad hold function during Deep-sleep.
*
* @param hw Peripheral GPIO hardware instance address.
*/
static inline void gpio_ll_deep_sleep_hold_en(gpio_dev_t *hw)
{
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_AUTOHOLD_EN_M);
}
/**
* @brief Disable all digital gpio pad hold function during Deep-sleep.
*
* @param hw Peripheral GPIO hardware instance address.
*/
static inline void gpio_ll_deep_sleep_hold_dis(gpio_dev_t *hw)
{
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_CLR_DG_PAD_AUTOHOLD);
}
/**
* @brief Enable gpio pad hold function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number, only support output GPIOs
*/
static inline void gpio_ll_hold_en(gpio_dev_t *hw, gpio_num_t gpio_num)
{
SET_PERI_REG_MASK(RTC_CNTL_DIG_PAD_HOLD_REG, GPIO_HOLD_MASK[gpio_num]);
}
/**
* @brief Disable gpio pad hold function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number, only support output GPIOs
*/
static inline void gpio_ll_hold_dis(gpio_dev_t *hw, gpio_num_t gpio_num)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PAD_HOLD_REG, GPIO_HOLD_MASK[gpio_num]);
}
/**
* @brief Set pad input to a peripheral signal through the IOMUX.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number of the pad.
* @param signal_idx Peripheral signal id to input. One of the ``*_IN_IDX`` signals in ``soc/gpio_sig_map.h``.
*/
static inline void gpio_ll_iomux_in(gpio_dev_t *hw, uint32_t gpio, uint32_t signal_idx)
{
hw->func_in_sel_cfg[signal_idx].sig_in_sel = 0;
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio]);
}
/**
* @brief Set peripheral output to an GPIO pad through the IOMUX.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num gpio_num GPIO number of the pad.
* @param func The function number of the peripheral pin to output pin.
* One of the ``FUNC_X_*`` of specified pin (X) in ``soc/io_mux_reg.h``.
* @param oen_inv True if the output enable needs to be inverted, otherwise False.
*/
static inline void gpio_ll_iomux_out(gpio_dev_t *hw, uint8_t gpio_num, int func, uint32_t oen_inv)
{
hw->func_out_sel_cfg[gpio_num].oen_sel = 0;
hw->func_out_sel_cfg[gpio_num].oen_inv_sel = oen_inv;
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], func);
}
static inline void gpio_ll_force_hold_all(gpio_dev_t *hw)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_UNHOLD);
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_HOLD);
}
static inline void gpio_ll_force_unhold_all(gpio_dev_t *hw)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_HOLD);
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_UNHOLD);
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_CLR_DG_PAD_AUTOHOLD);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,354 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The Lowlevel layer for SPI Flash
#pragma once
#include <stdlib.h>
#include "soc/spi_periph.h"
#include "hal/spi_types.h"
#include "hal/spi_flash_types.h"
#include <sys/param.h> // For MIN/MAX
#include <stdbool.h>
#include <string.h>
#define gpspi_flash_ll_get_hw(host_id) (((host_id)==SPI2_HOST ? &GPSPI2 \
: ((host_id)==SPI3_HOST ? &GPSPI3 \
: ({abort();(spi_dev_t*)0;}))))
typedef typeof(GPSPI2.clock) gpspi_flash_ll_clock_reg_t;
//Supported clock register values
#define GPSPI_FLASH_LL_CLKREG_VAL_5MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x0000F1CF}) ///< Clock set to 5 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_10MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x000070C7}) ///< Clock set to 10 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_20MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x00003043}) ///< Clock set to 20 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_26MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x00002002}) ///< Clock set to 26 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_40MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x00001001}) ///< Clock set to 40 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_80MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x80000000}) ///< Clock set to 80 MHz
/*------------------------------------------------------------------------------
* Control
*----------------------------------------------------------------------------*/
/**
* Reset peripheral registers before configuration and starting control
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void gpspi_flash_ll_reset(spi_dev_t *dev)
{
dev->user.val = 0;
dev->ctrl.val = 0;
}
/**
* Check whether the previous operation is done.
*
* @param dev Beginning address of the peripheral registers.
*
* @return true if last command is done, otherwise false.
*/
static inline bool gpspi_flash_ll_cmd_is_done(const spi_dev_t *dev)
{
return (dev->cmd.val == 0);
}
/**
* Get the read data from the buffer after ``gpspi_flash_ll_read`` is done.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer to hold the output data
* @param read_len Length to get out of the buffer
*/
static inline void gpspi_flash_ll_get_buffer_data(spi_dev_t *dev, void *buffer, uint32_t read_len)
{
if (((intptr_t)buffer % 4 == 0) && (read_len % 4 == 0)) {
// If everything is word-aligned, do a faster memcpy
memcpy(buffer, (void *)dev->data_buf, read_len);
} else {
// Otherwise, slow(er) path copies word by word
int copy_len = read_len;
for (int i = 0; i < (read_len + 3) / 4; i++) {
int word_len = MIN(sizeof(uint32_t), copy_len);
uint32_t word = dev->data_buf[i];
memcpy(buffer, &word, word_len);
buffer = (void *)((intptr_t)buffer + word_len);
copy_len -= word_len;
}
}
}
/**
* Write a word to the data buffer.
*
* @param dev Beginning address of the peripheral registers.
* @param word Data to write at address 0.
*/
static inline void gpspi_flash_ll_write_word(spi_dev_t *dev, uint32_t word)
{
dev->data_buf[0] = word;
}
/**
* Set the data to be written in the data buffer.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer holding the data
* @param length Length of data in bytes.
*/
static inline void gpspi_flash_ll_set_buffer_data(spi_dev_t *dev, const void *buffer, uint32_t length)
{
// Load data registers, word at a time
int num_words = (length + 3) / 4;
for (int i = 0; i < num_words; i++) {
uint32_t word = 0;
uint32_t word_len = MIN(length, sizeof(word));
memcpy(&word, buffer, word_len);
dev->data_buf[i] = word;
length -= word_len;
buffer = (void *)((intptr_t)buffer + word_len);
}
}
/**
* Trigger a user defined transaction. All phases, including command, address, dummy, and the data phases,
* should be configured before this is called.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void gpspi_flash_ll_user_start(spi_dev_t *dev)
{
dev->cmd.usr = 1;
}
/**
* Check whether the host is idle to perform new commands.
*
* @param dev Beginning address of the peripheral registers.
*
* @return true if the host is idle, otherwise false
*/
static inline bool gpspi_flash_ll_host_idle(const spi_dev_t *dev)
{
return dev->fsm.st != 0;
}
/**
* Set phases for user-defined transaction to read
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void gpspi_flash_ll_read_phase(spi_dev_t *dev)
{
typeof (dev->user) user = {
.usr_command = 1,
.usr_mosi = 0,
.usr_miso = 1,
.usr_addr = 1,
};
dev->user = user;
}
/*------------------------------------------------------------------------------
* Configs
*----------------------------------------------------------------------------*/
/**
* Select which pin to use for the flash
*
* @param dev Beginning address of the peripheral registers.
* @param pin Pin ID to use, 0-2. Set to other values to disable all the CS pins.
*/
static inline void gpspi_flash_ll_set_cs_pin(spi_dev_t *dev, int pin)
{
dev->misc.cs0_dis = (pin == 0) ? 0 : 1;
dev->misc.cs1_dis = (pin == 1) ? 0 : 1;
}
/**
* Set the read io mode.
*
* @param dev Beginning address of the peripheral registers.
* @param read_mode I/O mode to use in the following transactions.
*/
static inline void gpspi_flash_ll_set_read_mode(spi_dev_t *dev, esp_flash_io_mode_t read_mode)
{
typeof (dev->ctrl) ctrl = dev->ctrl;
typeof (dev->user) user = dev->user;
ctrl.val &= ~(SPI_FCMD_QUAD_M | SPI_FADDR_QUAD_M | SPI_FREAD_QUAD_M | SPI_FCMD_DUAL_M | SPI_FADDR_DUAL_M | SPI_FREAD_DUAL_M);
user.val &= ~(SPI_FWRITE_QUAD_M | SPI_FWRITE_DUAL_M);
// ctrl.val |= SPI_FAST_RD_MODE_M;
switch (read_mode) {
case SPI_FLASH_FASTRD:
//the default option
break;
case SPI_FLASH_QIO:
ctrl.fread_quad = 1;
ctrl.faddr_quad = 1;
user.fwrite_quad = 1;
break;
case SPI_FLASH_QOUT:
ctrl.fread_quad = 1;
user.fwrite_quad = 1;
break;
case SPI_FLASH_DIO:
ctrl.fread_dual = 1;
ctrl.faddr_dual = 1;
user.fwrite_dual = 1;
break;
case SPI_FLASH_DOUT:
ctrl.fread_dual = 1;
user.fwrite_dual = 1;
break;
// case SPI_FLASH_SLOWRD:
// ctrl.fast_rd_mode = 0;
// break;
default:
abort();
}
dev->ctrl = ctrl;
dev->user = user;
}
/**
* Set clock frequency to work at.
*
* @param dev Beginning address of the peripheral registers.
* @param clock_val pointer to the clock value to set
*/
static inline void gpspi_flash_ll_set_clock(spi_dev_t *dev, gpspi_flash_ll_clock_reg_t *clock_val)
{
dev->clock = *clock_val;
}
/**
* Set the input length, in bits.
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of input, in bits.
*/
static inline void gpspi_flash_ll_set_miso_bitlen(spi_dev_t *dev, uint32_t bitlen)
{
dev->user.usr_miso = bitlen > 0;
dev->miso_dlen.usr_miso_bit_len = bitlen ? (bitlen - 1) : 0;
}
/**
* Set the output length, in bits (not including command, address and dummy
* phases)
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of output, in bits.
*/
static inline void gpspi_flash_ll_set_mosi_bitlen(spi_dev_t *dev, uint32_t bitlen)
{
dev->user.usr_mosi = bitlen > 0;
dev->mosi_dlen.usr_mosi_bit_len = bitlen ? (bitlen - 1) : 0;
}
/**
* Set the command with fixed length (8 bits).
*
* @param dev Beginning address of the peripheral registers.
* @param command Command to send
*/
static inline void gpspi_flash_ll_set_command8(spi_dev_t *dev, uint8_t command)
{
dev->user.usr_command = 1;
typeof(dev->user2) user2 = {
.usr_command_value = command,
.usr_command_bitlen = (8 - 1),
};
dev->user2 = user2;
}
/**
* Get the address length that is set in register, in bits.
*
* @param dev Beginning address of the peripheral registers.
*
*/
static inline int gpspi_flash_ll_get_addr_bitlen(spi_dev_t *dev)
{
return dev->user.usr_addr ? dev->user1.usr_addr_bitlen + 1 : 0;
}
/**
* Set the address length to send, in bits. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of the address, in bits
*/
static inline void gpspi_flash_ll_set_addr_bitlen(spi_dev_t *dev, uint32_t bitlen)
{
dev->user1.usr_addr_bitlen = (bitlen - 1);
dev->user.usr_addr = bitlen ? 1 : 0;
}
/**
* Set the address to send in user mode. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param addr Address to send
*/
static inline void gpspi_flash_ll_set_usr_address(spi_dev_t *dev, uint32_t addr, uint32_t bitlen)
{
dev->addr = (addr << (32 - bitlen));
}
/**
* Set the address to send. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param addr Address to send
*/
static inline void gpspi_flash_ll_set_address(spi_dev_t *dev, uint32_t addr)
{
dev->addr = addr;
}
/**
* Set the length of dummy cycles.
*
* @param dev Beginning address of the peripheral registers.
* @param dummy_n Cycles of dummy phases
*/
static inline void gpspi_flash_ll_set_dummy(spi_dev_t *dev, uint32_t dummy_n)
{
dev->user.usr_dummy = dummy_n ? 1 : 0;
dev->user1.usr_dummy_cyclelen = dummy_n - 1;
}
/**
* Set D/Q output level during dummy phase
*
* @param dev Beginning address of the peripheral registers.
* @param out_en whether to enable IO output for dummy phase
* @param out_level dummy output level
*/
static inline void gpspi_flash_ll_set_dummy_out(spi_dev_t *dev, uint32_t out_en, uint32_t out_lev)
{
dev->ctrl.dummy_out = out_en;
dev->ctrl.q_pol = out_lev;
dev->ctrl.d_pol = out_lev;
}

View File

@@ -0,0 +1,866 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The LL layer for I2C register operations
#pragma once
#include "soc/i2c_periph.h"
#include "hal/i2c_types.h"
/**
* @brief I2C hardware cmd register filed.
*/
typedef union {
struct {
uint32_t byte_num: 8,
ack_en: 1,
ack_exp: 1,
ack_val: 1,
op_code: 3,
reserved14: 17,
done: 1;
};
uint32_t val;
} i2c_hw_cmd_t;
/**
* @brief I2C interrupt event
*/
typedef enum {
I2C_INTR_EVENT_ERR,
I2C_INTR_EVENT_ARBIT_LOST, /*!< I2C arbition lost event */
I2C_INTR_EVENT_NACK, /*!< I2C NACK event */
I2C_INTR_EVENT_TOUT, /*!< I2C time out event */
I2C_INTR_EVENT_END_DET, /*!< I2C end detected event */
I2C_INTR_EVENT_TRANS_DONE, /*!< I2C trans done event */
I2C_INTR_EVENT_RXFIFO_FULL, /*!< I2C rxfifo full event */
I2C_INTR_EVENT_TXFIFO_EMPTY, /*!< I2C txfifo empty event */
} i2c_intr_event_t;
/**
* @brief Data structure for calculating I2C bus timing.
*/
typedef struct {
uint16_t scl_low; /*!< I2C scl low period */
uint16_t scl_high; /*!< I2C scl hight period */
uint16_t scl_wait_high; /*!< I2C scl wait_high period */
uint16_t sda_hold; /*!< I2C scl low period */
uint16_t sda_sample; /*!< I2C sda sample time */
uint16_t setup; /*!< I2C start and stop condition setup period */
uint16_t hold; /*!< I2C start and stop condition hold period */
uint16_t tout; /*!< I2C bus timeout period */
} i2c_clk_cal_t;
// Get the I2C hardware instance
#define I2C_LL_GET_HW(i2c_num) (((i2c_num) == 0) ? &I2C0 : &I2C1)
// Get the I2C hardware FIFO address
#define I2C_LL_GET_FIFO_ADDR(i2c_num) (I2C_DATA_APB_REG(i2c_num))
// I2C master TX interrupt bitmap
#define I2C_LL_MASTER_TX_INT (I2C_ACK_ERR_INT_ENA_M|I2C_TIME_OUT_INT_ENA_M|I2C_TRANS_COMPLETE_INT_ENA_M|I2C_ARBITRATION_LOST_INT_ENA_M|I2C_END_DETECT_INT_ENA_M)
// I2C master RX interrupt bitmap
#define I2C_LL_MASTER_RX_INT (I2C_TIME_OUT_INT_ENA_M|I2C_TRANS_COMPLETE_INT_ENA_M|I2C_ARBITRATION_LOST_INT_ENA_M|I2C_END_DETECT_INT_ENA_M)
// I2C slave TX interrupt bitmap
#define I2C_LL_SLAVE_TX_INT (I2C_TXFIFO_EMPTY_INT_ENA_M)
// I2C slave RX interrupt bitmap
#define I2C_LL_SLAVE_RX_INT (I2C_RXFIFO_FULL_INT_ENA_M | I2C_TRANS_COMPLETE_INT_ENA_M)
/**
* @brief Calculate I2C bus frequency
*
* @param source_clk I2C source clock
* @param bus_freq I2C bus frequency
* @param clk_cal Pointer to accept the clock configuration
*
* @return None
*/
static inline void i2c_ll_cal_bus_clk(uint32_t source_clk, uint32_t bus_freq, i2c_clk_cal_t *clk_cal)
{
uint32_t half_cycle = source_clk / bus_freq / 2;
//SCL
clk_cal->scl_low = half_cycle;
// default, scl_wait_high < scl_high
clk_cal->scl_high = half_cycle / 2 + 2;
clk_cal->scl_wait_high = half_cycle - clk_cal->scl_high;
clk_cal->sda_hold = half_cycle / 2;
// scl_wait_high < sda_sample <= scl_high
clk_cal->sda_sample = half_cycle / 2 - 1;
clk_cal->setup = half_cycle;
clk_cal->hold = half_cycle;
//default we set the timeout value to 10 bus cycles
clk_cal->tout = half_cycle * 20;
}
/**
* @brief Configure the I2C bus timing related register.
*
* @param hw Beginning address of the peripheral registers
* @param bus_cfg Pointer to the data structure holding the register configuration.
*
* @return None
*/
static inline void i2c_ll_set_bus_timing(i2c_dev_t *hw, i2c_clk_cal_t *bus_cfg)
{
//scl period
hw->scl_low_period.period = bus_cfg->scl_low - 1;
hw->scl_high_period.period = bus_cfg->scl_high;
hw->scl_high_period.scl_wait_high_period = bus_cfg->scl_wait_high;
//sda sample
hw->sda_hold.time = bus_cfg->sda_hold;
hw->sda_sample.time = bus_cfg->sda_sample;
//setup
hw->scl_rstart_setup.time = bus_cfg->setup;
hw->scl_stop_setup.time = bus_cfg->setup;
//hold
hw->scl_start_hold.time = bus_cfg->hold - 1;
hw->scl_stop_hold.time = bus_cfg->hold;
hw->timeout.tout = bus_cfg->tout;
}
/**
* @brief Reset I2C txFIFO
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_txfifo_rst(i2c_dev_t *hw)
{
hw->fifo_conf.tx_fifo_rst = 1;
hw->fifo_conf.tx_fifo_rst = 0;
}
/**
* @brief Reset I2C rxFIFO
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_rxfifo_rst(i2c_dev_t *hw)
{
hw->fifo_conf.rx_fifo_rst = 1;
hw->fifo_conf.rx_fifo_rst = 0;
}
/**
* @brief Configure I2C SCL timing
*
* @param hw Beginning address of the peripheral registers
* @param hight_period The I2C SCL hight period (in APB cycle, hight_period > 2)
* @param low_period The I2C SCL low period (in APB cycle, low_period > 1)
*
* @return None.
*/
static inline void i2c_ll_set_scl_timing(i2c_dev_t *hw, int hight_period, int low_period)
{
hw->scl_low_period.period = low_period-1;
hw->scl_high_period.period = hight_period/2+2;
hw->scl_high_period.scl_wait_high_period = hight_period - hw->scl_high_period.period;
}
/**
* @brief Clear I2C interrupt status
*
* @param hw Beginning address of the peripheral registers
* @param mask Interrupt mask needs to be cleared
*
* @return None
*/
static inline void i2c_ll_clr_intsts_mask(i2c_dev_t *hw, uint32_t mask)
{
hw->int_clr.val = mask;
}
/**
* @brief Enable I2C interrupt
*
* @param hw Beginning address of the peripheral registers
* @param mask Interrupt mask needs to be enabled
*
* @return None
*/
static inline void i2c_ll_enable_intr_mask(i2c_dev_t *hw, uint32_t mask)
{
hw->int_ena.val |= mask;
}
/**
* @brief Disable I2C interrupt
*
* @param hw Beginning address of the peripheral registers
* @param mask Interrupt mask needs to be disabled
*
* @return None
*/
static inline void i2c_ll_disable_intr_mask(i2c_dev_t *hw, uint32_t mask)
{
hw->int_ena.val &= (~mask);
}
/**
* @brief Get I2C interrupt status
*
* @param hw Beginning address of the peripheral registers
*
* @return I2C interrupt status
*/
static inline uint32_t i2c_ll_get_intsts_mask(i2c_dev_t *hw)
{
return hw->int_status.val;
}
/**
* @brief Configure I2C memory access mode, FIFO mode or non-FIFO mode
*
* @param hw Beginning address of the peripheral registers
* @param fifo_mode_en Set true to enable FIFO access mode, else, set it false
*
* @return None
*/
static inline void i2c_ll_set_fifo_mode(i2c_dev_t *hw, bool fifo_mode_en)
{
hw->fifo_conf.nonfifo_en = fifo_mode_en ? 0 : 1;
}
/**
* @brief Configure I2C timeout
*
* @param hw Beginning address of the peripheral registers
* @param tout_num The I2C timeout value needs to be set (in APB cycle)
*
* @return None
*/
static inline void i2c_ll_set_tout(i2c_dev_t *hw, int tout)
{
hw->timeout.tout = tout;
}
/**
* @brief Configure I2C slave address
*
* @param hw Beginning address of the peripheral registers
* @param slave_addr I2C slave address needs to be set
* @param addr_10bit_en Set true to enable 10-bit slave address mode, set false to enable 7-bit address mode
*
* @return None
*/
static inline void i2c_ll_set_slave_addr(i2c_dev_t *hw, uint16_t slave_addr, bool addr_10bit_en)
{
hw->slave_addr.addr = slave_addr;
hw->slave_addr.en_10bit = addr_10bit_en;
}
/**
* @brief Write I2C hardware command register
*
* @param hw Beginning address of the peripheral registers
* @param cmd I2C hardware command
* @param cmd_idx The index of the command register, should be less than 16
*
* @return None
*/
static inline void i2c_ll_write_cmd_reg(i2c_dev_t *hw, i2c_hw_cmd_t cmd, int cmd_idx)
{
hw->command[cmd_idx].val = cmd.val;
}
/**
* @brief Configure I2C start timing
*
* @param hw Beginning address of the peripheral registers
* @param start_setup The start condition setup period (in APB cycle)
* @param start_hold The start condition hold period (in APB cycle)
*
* @return None
*/
static inline void i2c_ll_set_start_timing(i2c_dev_t *hw, int start_setup, int start_hold)
{
hw->scl_rstart_setup.time = start_setup;
hw->scl_start_hold.time = start_hold-1;
}
/**
* @brief Configure I2C stop timing
*
* @param hw Beginning address of the peripheral registers
* @param stop_setup The stop condition setup period (in APB cycle)
* @param stop_hold The stop condition hold period (in APB cycle)
*
* @return None
*/
static inline void i2c_ll_set_stop_timing(i2c_dev_t *hw, int stop_setup, int stop_hold)
{
hw->scl_stop_setup.time = stop_setup;
hw->scl_stop_hold.time = stop_hold;
}
/**
* @brief Configure I2C stop timing
*
* @param hw Beginning address of the peripheral registers
* @param sda_sample The SDA sample time (in APB cycle)
* @param sda_hold The SDA hold time (in APB cycle)
*
* @return None
*/
static inline void i2c_ll_set_sda_timing(i2c_dev_t *hw, int sda_sample, int sda_hold)
{
hw->sda_hold.time = sda_hold;
hw->sda_sample.time = sda_sample;
}
/**
* @brief Set I2C txFIFO empty threshold
*
* @param hw Beginning address of the peripheral registers
* @param empty_thr The txFIFO empty threshold
*
* @return None
*/
static inline void i2c_ll_set_txfifo_empty_thr(i2c_dev_t *hw, uint8_t empty_thr)
{
hw->fifo_conf.tx_fifo_empty_thrhd = empty_thr;
}
/**
* @brief Set I2C rxFIFO full threshold
*
* @param hw Beginning address of the peripheral registers
* @param full_thr The rxFIFO full threshold
*
* @return None
*/
static inline void i2c_ll_set_rxfifo_full_thr(i2c_dev_t *hw, uint8_t full_thr)
{
hw->fifo_conf.rx_fifo_full_thrhd = full_thr;
}
/**
* @brief Set the I2C data mode, LSB or MSB
*
* @param hw Beginning address of the peripheral registers
* @param tx_mode Tx data bit mode
* @param rx_mode Rx data bit mode
*
* @return None
*/
static inline void i2c_ll_set_data_mode(i2c_dev_t *hw, i2c_trans_mode_t tx_mode, i2c_trans_mode_t rx_mode)
{
hw->ctr.tx_lsb_first = tx_mode;
hw->ctr.rx_lsb_first = rx_mode;
}
/**
* @brief Get the I2C data mode
*
* @param hw Beginning address of the peripheral registers
* @param tx_mode Pointer to accept the received bytes mode
* @param rx_mode Pointer to accept the sended bytes mode
*
* @return None
*/
static inline void i2c_ll_get_data_mode(i2c_dev_t *hw, i2c_trans_mode_t *tx_mode, i2c_trans_mode_t *rx_mode)
{
*tx_mode = hw->ctr.tx_lsb_first;
*rx_mode = hw->ctr.rx_lsb_first;
}
/**
* @brief Get I2C sda timing configuration
*
* @param hw Beginning address of the peripheral registers
* @param sda_sample Pointer to accept the SDA sample timing configuration
* @param sda_hold Pointer to accept the SDA hold timing configuration
*
* @return None
*/
static inline void i2c_ll_get_sda_timing(i2c_dev_t *hw, int *sda_sample, int *sda_hold)
{
*sda_hold = hw->sda_hold.time;
*sda_sample = hw->sda_sample.time;
}
/**
* @brief Get the I2C hardware version
*
* @param hw Beginning address of the peripheral registers
*
* @return The I2C hardware version
*/
static inline uint32_t i2c_ll_get_hw_version(i2c_dev_t *hw)
{
return hw->date;
}
/**
* @brief Check if the I2C bus is busy
*
* @param hw Beginning address of the peripheral registers
*
* @return True if I2C state machine is busy, else false will be returned
*/
static inline bool i2c_ll_is_bus_busy(i2c_dev_t *hw)
{
return hw->status_reg.bus_busy;
}
/**
* @brief Check if I2C is master mode
*
* @param hw Beginning address of the peripheral registers
*
* @return True if I2C is master mode, else false will be returned
*/
static inline bool i2c_ll_is_master_mode(i2c_dev_t *hw)
{
return hw->ctr.ms_mode;
}
/**
* @brief Get the rxFIFO readable length
*
* @param hw Beginning address of the peripheral registers
*
* @return RxFIFO readable length
*/
static inline uint32_t i2c_ll_get_rxfifo_cnt(i2c_dev_t *hw)
{
return hw->status_reg.rx_fifo_cnt;
}
/**
* @brief Get I2C txFIFO writable length
*
* @param hw Beginning address of the peripheral registers
*
* @return TxFIFO writable length
*/
static inline uint32_t i2c_ll_get_txfifo_len(i2c_dev_t *hw)
{
return SOC_I2C_FIFO_LEN - hw->status_reg.tx_fifo_cnt;
}
/**
* @brief Get I2C timeout configuration
*
* @param hw Beginning address of the peripheral registers
*
* @return The I2C timeout value
*/
static inline uint32_t i2c_ll_get_tout(i2c_dev_t *hw)
{
return hw->timeout.tout;
}
/**
* @brief Start I2C transfer
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_trans_start(i2c_dev_t *hw)
{
hw->ctr.trans_start = 1;
}
/**
* @brief Get I2C start timing configuration
*
* @param hw Beginning address of the peripheral registers
* @param setup_time Pointer to accept the start condition setup period
* @param hold_time Pointer to accept the start condition hold period
*
* @return None
*/
static inline void i2c_ll_get_start_timing(i2c_dev_t *hw, int *setup_time, int *hold_time)
{
*setup_time = hw->scl_rstart_setup.time;
*hold_time = hw->scl_start_hold.time+1;
}
/**
* @brief Get I2C stop timing configuration
*
* @param hw Beginning address of the peripheral registers
* @param setup_time Pointer to accept the stop condition setup period
* @param hold_time Pointer to accept the stop condition hold period
*
* @return None
*/
static inline void i2c_ll_get_stop_timing(i2c_dev_t *hw, int *setup_time, int *hold_time)
{
*setup_time = hw->scl_stop_setup.time;
*hold_time = hw->scl_stop_hold.time;
}
/**
* @brief Get I2C SCL timing configuration
*
* @param hw Beginning address of the peripheral registers
* @param high_period Pointer to accept the SCL high period
* @param low_period Pointer to accept the SCL low period
*
* @return None
*/
static inline void i2c_ll_get_scl_timing(i2c_dev_t *hw, int *high_period, int *low_period)
{
*high_period = hw->scl_high_period.period + hw->scl_high_period.scl_wait_high_period;
*low_period = hw->scl_low_period.period + 1;
}
/**
* @brief Write the I2C hardware txFIFO
*
* @param hw Beginning address of the peripheral registers
* @param ptr Pointer to data buffer
* @param len Amount of data needs to be writen
*
* @return None.
*/
static inline void i2c_ll_write_txfifo(i2c_dev_t *hw, uint8_t *ptr, uint8_t len)
{
uint32_t fifo_addr = (hw == &I2C0) ? 0x6001301c : 0x6002701c;
for(int i = 0; i < len; i++) {
WRITE_PERI_REG(fifo_addr, ptr[i]);
}
}
/**
* @brief Read the I2C hardware rxFIFO
*
* @param hw Beginning address of the peripheral registers
* @param ptr Pointer to data buffer
* @param len Amount of data needs read
*
* @return None
*/
static inline void i2c_ll_read_rxfifo(i2c_dev_t *hw, uint8_t *ptr, uint8_t len)
{
uint32_t fifo_addr = (hw == &I2C0) ? 0x6001301c : 0x6002701c;
for(int i = 0; i < len; i++) {
ptr[i] = READ_PERI_REG(fifo_addr);
}
}
/**
* @brief Configure I2C hardware filter
*
* @param hw Beginning address of the peripheral registers
* @param filter_num If the glitch period on the line is less than this value, it can be filtered out
* If `filter_num == 0`, the filter will be disabled
*
* @return None
*/
static inline void i2c_ll_set_filter(i2c_dev_t *hw, uint8_t filter_num)
{
if(filter_num > 0) {
hw->scl_filter_cfg.thres = filter_num;
hw->sda_filter_cfg.thres = filter_num;
hw->scl_filter_cfg.en = 1;
hw->sda_filter_cfg.en = 1;
} else {
hw->scl_filter_cfg.en = 0;
hw->sda_filter_cfg.en = 0;
}
}
/**
* @brief Get I2C hardware filter configuration
*
* @param hw Beginning address of the peripheral registers
*
* @return The hardware filter configuration
*/
static inline uint8_t i2c_ll_get_filter(i2c_dev_t *hw)
{
return hw->sda_filter_cfg.thres;
}
/**
* @brief Enable I2C master TX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_enable_tx_it(i2c_dev_t *hw)
{
hw->int_clr.val = ~0;
hw->int_ena.val = I2C_LL_MASTER_TX_INT;
}
/**
* @brief Enable I2C master RX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_enable_rx_it(i2c_dev_t *hw)
{
hw->int_clr.val = ~0;
hw->int_ena.val = I2C_LL_MASTER_RX_INT;
}
/**
* @brief Disable I2C master TX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_disable_tx_it(i2c_dev_t *hw)
{
hw->int_ena.val &= (~I2C_LL_MASTER_TX_INT);
}
/**
* @brief Disable I2C master RX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_disable_rx_it(i2c_dev_t *hw)
{
hw->int_ena.val &= (~I2C_LL_MASTER_RX_INT);
}
/**
* @brief Clear I2C master TX interrupt status register
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_clr_tx_it(i2c_dev_t *hw)
{
hw->int_clr.val = I2C_LL_MASTER_TX_INT;
}
/**
* @brief Clear I2C master RX interrupt status register
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_clr_rx_it(i2c_dev_t *hw)
{
hw->int_clr.val = I2C_LL_MASTER_RX_INT;
}
/**
* @brief
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_enable_tx_it(i2c_dev_t *hw)
{
hw->int_ena.val |= I2C_LL_SLAVE_TX_INT;
}
/**
* @brief Enable I2C slave RX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_enable_rx_it(i2c_dev_t *hw)
{
hw->int_ena.val |= I2C_LL_SLAVE_RX_INT;
}
/**
* @brief Disable I2C slave TX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_disable_tx_it(i2c_dev_t *hw)
{
hw->int_ena.val &= (~I2C_LL_SLAVE_TX_INT);
}
/**
* @brief Disable I2C slave RX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_disable_rx_it(i2c_dev_t *hw)
{
hw->int_ena.val &= (~I2C_LL_SLAVE_RX_INT);
}
/**
* @brief Clear I2C slave TX interrupt status register
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_clr_tx_it(i2c_dev_t *hw)
{
hw->int_clr.val = I2C_LL_SLAVE_TX_INT;
}
/**
* @brief Clear I2C slave RX interrupt status register.
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_clr_rx_it(i2c_dev_t *hw)
{
hw->int_clr.val = I2C_LL_SLAVE_RX_INT;
}
/**
* @brief Reste I2C master FSM. When the master FSM is stuck, call this function to reset the FSM
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_fsm_rst(i2c_dev_t *hw)
{
hw->ctr.fsm_rst = 1;
}
/**
* @brief Clear I2C bus, when the slave is stuck in a deadlock and keeps pulling the bus low,
* master can controls the SCL bus to generate 9 CLKs.
*
* Note: The master cannot detect if deadlock happens, but when the scl_st_to interrupt is generated, a deadlock may occur.
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_clr_bus(i2c_dev_t *hw)
{
uint32_t reg_val = hw->scl_sp_conf.val;
hw->scl_sp_conf.scl_pd_en = 1;
hw->scl_sp_conf.sda_pd_en = 1;
hw->scl_sp_conf.scl_rst_slv_en = 1;
hw->scl_sp_conf.val = reg_val & 0xfe;
}
/**
* @brief Set I2C source clock
*
* @param hw Beginning address of the peripheral registers
* @param src_clk Source clock of the I2C
*
* @return None
*/
static inline void i2c_ll_set_source_clk(i2c_dev_t *hw, i2c_sclk_t src_clk)
{
hw->ctr.ref_always_on = src_clk;
}
/**
* @brief Get I2C master interrupt event
*
* @param hw Beginning address of the peripheral registers
* @param event Pointer to accept the interrupt event
*
* @return None
*/
static inline void i2c_ll_master_get_event(i2c_dev_t *hw, i2c_intr_event_t *event)
{
typeof(hw->int_status) int_sts = hw->int_status;
if (int_sts.arbitration_lost) {
*event = I2C_INTR_EVENT_ARBIT_LOST;
} else if (int_sts.ack_err) {
*event = I2C_INTR_EVENT_NACK;
} else if (int_sts.time_out) {
*event = I2C_INTR_EVENT_TOUT;
} else if (int_sts.end_detect) {
*event = I2C_INTR_EVENT_END_DET;
} else if (int_sts.trans_complete) {
*event = I2C_INTR_EVENT_TRANS_DONE;
} else {
*event = I2C_INTR_EVENT_ERR;
}
}
/**
* @brief Get I2C slave interrupt event
*
* @param hw Beginning address of the peripheral registers
* @param event Pointer to accept the interrupt event
*
* @return None
*/
static inline void i2c_ll_slave_get_event(i2c_dev_t *hw, i2c_intr_event_t *event)
{
typeof(hw->int_status) int_sts = hw->int_status;
if (int_sts.tx_fifo_empty) {
*event = I2C_INTR_EVENT_TXFIFO_EMPTY;
} else if (int_sts.trans_complete) {
*event = I2C_INTR_EVENT_TRANS_DONE;
} else if (int_sts.rx_fifo_full) {
*event = I2C_INTR_EVENT_RXFIFO_FULL;
} else {
*event = I2C_INTR_EVENT_ERR;
}
}
/**
* @brief Init I2C master
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_init(i2c_dev_t *hw)
{
typeof(hw->ctr) ctrl_reg;
ctrl_reg.val = 0;
ctrl_reg.ms_mode = 1;
ctrl_reg.sda_force_out = 1;
ctrl_reg.scl_force_out = 1;
//Disable REF tick;
ctrl_reg.ref_always_on = 1;
hw->ctr.val = ctrl_reg.val;
}
/**
* @brief Init I2C slave
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_init(i2c_dev_t *hw)
{
typeof(hw->ctr) ctrl_reg;
ctrl_reg.val = 0;
ctrl_reg.sda_force_out = 1;
ctrl_reg.scl_force_out = 1;
//Disable REF tick;
ctrl_reg.ref_always_on = 1;
hw->ctr.val = ctrl_reg.val;
hw->fifo_conf.fifo_addr_cfg_en = 0;
}

View File

@@ -0,0 +1,820 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The LL layer for ESP32-S2 I2S register operations
#pragma once
#include <stdbool.h>
#include "soc/i2s_periph.h"
#include "hal/i2s_types.h"
#ifdef __cplusplus
extern "C" {
#endif
// Get I2S hardware instance with giving i2s num
#define I2S_LL_GET_HW(num) (((num) == 0) ? (&I2S0) : NULL)
#define I2S_INTR_IN_SUC_EOF BIT(9)
#define I2S_INTR_OUT_EOF BIT(12)
#define I2S_INTR_IN_DSCR_ERR BIT(13)
#define I2S_INTR_OUT_DSCR_ERR BIT(14)
#define I2S_INTR_MAX (0xFFFFFFFF)
/**
* @brief Reset rx fifo
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_reset_rx_fifo(i2s_dev_t *hw)
{
hw->conf.rx_fifo_reset = 1;
hw->conf.rx_fifo_reset = 0;
}
/**
* @brief Reset tx fifo
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_reset_tx_fifo(i2s_dev_t *hw)
{
hw->conf.tx_fifo_reset = 1;
hw->conf.tx_fifo_reset = 0;
}
/**
* @brief Enable rx interrupt
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_enable_rx_intr(i2s_dev_t *hw)
{
hw->int_ena.in_suc_eof = 1;
hw->int_ena.in_dscr_err = 1;
}
/**
* @brief Disable rx interrupt
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_disable_rx_intr(i2s_dev_t *hw)
{
hw->int_ena.in_suc_eof = 0;
hw->int_ena.in_dscr_err = 0;
}
/**
* @brief Disable tx interrupt
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_disable_tx_intr(i2s_dev_t *hw)
{
hw->int_ena.out_eof = 0;
hw->int_ena.out_dscr_err = 0;
}
/**
* @brief Enable tx interrupt
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_enable_tx_intr(i2s_dev_t *hw)
{
hw->int_ena.out_eof = 1;
hw->int_ena.out_dscr_err = 1;
}
/**
* @brief Reset dma in
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_reset_dma_in(i2s_dev_t *hw)
{
hw->lc_conf.in_rst = 1;
hw->lc_conf.in_rst = 0;
}
/**
* @brief Reset dma out
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_reset_dma_out(i2s_dev_t *hw)
{
hw->lc_conf.out_rst = 1;
hw->lc_conf.out_rst = 0;
}
/**
* @brief Reset tx
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_reset_tx(i2s_dev_t *hw)
{
hw->conf.tx_reset = 1;
hw->conf.tx_reset = 0;
}
/**
* @brief Reset rx
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_reset_rx(i2s_dev_t *hw)
{
hw->conf.rx_reset = 1;
hw->conf.rx_reset = 0;
}
/**
* @brief Start out link
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_start_out_link(i2s_dev_t *hw)
{
hw->out_link.start = 1;
}
/**
* @brief Start tx
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_start_tx(i2s_dev_t *hw)
{
hw->conf.tx_start = 1;
}
/**
* @brief Start in link
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_start_in_link(i2s_dev_t *hw)
{
hw->in_link.start = 1;
}
/**
* @brief Start rx
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_start_rx(i2s_dev_t *hw)
{
hw->conf.rx_start = 1;
}
/**
* @brief Stop out link
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_stop_out_link(i2s_dev_t *hw)
{
hw->out_link.stop = 1;
}
/**
* @brief Stop tx
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_stop_tx(i2s_dev_t *hw)
{
hw->conf.tx_start = 0;
}
/**
* @brief Stop in link
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_stop_in_link(i2s_dev_t *hw)
{
hw->in_link.stop = 1;
}
/**
* @brief Stop rx
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_stop_rx(i2s_dev_t *hw)
{
hw->conf.rx_start = 0;
}
/**
* @brief Enable dma
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_enable_dma(i2s_dev_t *hw)
{
//Enable and configure DMA
typeof(hw->lc_conf) lc_conf;
lc_conf.val = 0;
lc_conf.out_eof_mode = 1;
hw->lc_conf.val = lc_conf.val;
}
/**
* @brief Get I2S interrupt status
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get interrupt status
*/
static inline void i2s_ll_get_intr_status(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->int_st.val;
}
/**
* @brief Clear I2S interrupt status
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to clear interrupt status
*/
static inline void i2s_ll_clear_intr_status(i2s_dev_t *hw, uint32_t val)
{
hw->int_clr.val = val;
}
/**
* @brief Get I2S out eof des address
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get out eof des address
*/
static inline void i2s_ll_get_out_eof_des_addr(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->out_eof_des_addr;
}
/**
* @brief Get I2S in eof des address
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get in eof des address
*/
static inline void i2s_ll_get_in_eof_des_addr(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->in_eof_des_addr;
}
/**
* @brief Get I2S tx fifo mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get tx fifo mode
*/
static inline void i2s_ll_get_tx_fifo_mod(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->fifo_conf.tx_fifo_mod;
}
/**
* @brief Set I2S tx fifo mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx fifo mode
*/
static inline void i2s_ll_set_tx_fifo_mod(i2s_dev_t *hw, uint32_t val)
{
hw->fifo_conf.tx_fifo_mod = val;
}
/**
* @brief Get I2S rx fifo mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get rx fifo mode
*/
static inline void i2s_ll_get_rx_fifo_mod(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->fifo_conf.rx_fifo_mod;
}
/**
* @brief Set I2S rx fifo mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx fifo mode
*/
static inline void i2s_ll_set_rx_fifo_mod(i2s_dev_t *hw, uint32_t val)
{
hw->fifo_conf.rx_fifo_mod = val;
}
/**
* @brief Set I2S tx chan mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx chan mode
*/
static inline void i2s_ll_set_tx_chan_mod(i2s_dev_t *hw, uint32_t val)
{
hw->conf_chan.tx_chan_mod = val;
}
/**
* @brief Set I2S rx chan mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx chan mode
*/
static inline void i2s_ll_set_rx_chan_mod(i2s_dev_t *hw, uint32_t val)
{
hw->conf_chan.rx_chan_mod = val;
}
/**
* @brief Set I2S out link address
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set out link address
*/
static inline void i2s_ll_set_out_link_addr(i2s_dev_t *hw, uint32_t val)
{
hw->out_link.addr = val;
}
/**
* @brief Set I2S in link address
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set in link address
*/
static inline void i2s_ll_set_in_link_addr(i2s_dev_t *hw, uint32_t val)
{
hw->in_link.addr = val;
}
/**
* @brief Set I2S rx eof num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx eof num
*/
static inline void i2s_ll_set_rx_eof_num(i2s_dev_t *hw, uint32_t val)
{
hw->rx_eof_num = val;
}
/**
* @brief Get I2S tx pdm fp
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get tx pdm fp
*/
static inline void i2s_ll_get_tx_pdm_fp(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->pdm_freq_conf.tx_pdm_fp;
}
/**
* @brief Get I2S tx pdm fs
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get tx pdm fs
*/
static inline void i2s_ll_get_tx_pdm_fs(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->pdm_freq_conf.tx_pdm_fs;
}
/**
* @brief Set I2S tx pdm fp
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx pdm fp
*/
static inline void i2s_ll_set_tx_pdm_fp(i2s_dev_t *hw, uint32_t val)
{
hw->pdm_freq_conf.tx_pdm_fp = val;
}
/**
* @brief Set I2S tx pdm fs
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx pdm fs
*/
static inline void i2s_ll_set_tx_pdm_fs(i2s_dev_t *hw, uint32_t val)
{
hw->pdm_freq_conf.tx_pdm_fs = val;
}
/**
* @brief Get I2S rx sinc dsr 16 en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get rx sinc dsr 16 en
*/
static inline void i2s_ll_get_rx_sinc_dsr_16_en(i2s_dev_t *hw, bool *val)
{
*val = hw->pdm_conf.rx_sinc_dsr_16_en;
}
/**
* @brief Set I2S clkm div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set clkm div num
*/
static inline void i2s_ll_set_clkm_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->clkm_conf.clkm_div_num = val;
}
/**
* @brief Set I2S clkm div b
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set clkm div b
*/
static inline void i2s_ll_set_clkm_div_b(i2s_dev_t *hw, uint32_t val)
{
hw->clkm_conf.clkm_div_b = val;
}
/**
* @brief Set I2S clkm div a
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set clkm div a
*/
static inline void i2s_ll_set_clkm_div_a(i2s_dev_t *hw, uint32_t val)
{
hw->clkm_conf.clkm_div_a = val;
}
/**
* @brief Set I2S tx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx bck div num
*/
static inline void i2s_ll_set_tx_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.tx_bck_div_num = val;
}
/**
* @brief Set I2S rx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx bck div num
*/
static inline void i2s_ll_set_rx_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.rx_bck_div_num = val;
}
/**
* @brief Set I2S clk sel
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set clk sel
*/
static inline void i2s_ll_set_clk_sel(i2s_dev_t *hw, uint32_t val)
{
hw->clkm_conf.clk_sel = (val == 1) ? 1 : 2;
}
/**
* @brief Set I2S tx bits mod
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx bits mod
*/
static inline void i2s_ll_set_tx_bits_mod(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.tx_bits_mod = val;
}
/**
* @brief Set I2S rx bits mod
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx bits mod
*/
static inline void i2s_ll_set_rx_bits_mod(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.rx_bits_mod = val;
}
/**
* @brief Set I2S rx sinc dsr 16 en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx sinc dsr 16 en
*/
static inline void i2s_ll_set_rx_sinc_dsr_16_en(i2s_dev_t *hw, bool val)
{
hw->pdm_conf.rx_sinc_dsr_16_en = val;
}
/**
* @brief Set I2S dscr en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set dscr en
*/
static inline void i2s_ll_set_dscr_en(i2s_dev_t *hw, bool val)
{
hw->fifo_conf.dscr_en = val;
}
/**
* @brief Set I2S lcd en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set lcd en
*/
static inline void i2s_ll_set_lcd_en(i2s_dev_t *hw, bool val)
{
hw->conf2.lcd_en = val;
}
/**
* @brief Set I2S camera en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set camera en
*/
static inline void i2s_ll_set_camera_en(i2s_dev_t *hw, bool val)
{
hw->conf2.camera_en = val;
}
/**
* @brief Set I2S pcm2pdm conv en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set pcm2pdm conv en
*/
static inline void i2s_ll_set_pcm2pdm_conv_en(i2s_dev_t *hw, bool val)
{
hw->pdm_conf.pcm2pdm_conv_en = val;
}
/**
* @brief Set I2S pdm2pcm conv en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set pdm2pcm conv en
*/
static inline void i2s_ll_set_pdm2pcm_conv_en(i2s_dev_t *hw, bool val)
{
hw->pdm_conf.pdm2pcm_conv_en = val;
}
/**
* @brief Set I2S rx pdm en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx pdm en
*/
static inline void i2s_ll_set_rx_pdm_en(i2s_dev_t *hw, bool val)
{
hw->pdm_conf.rx_pdm_en = val;
}
/**
* @brief Set I2S tx pdm en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx pdm en
*/
static inline void i2s_ll_set_tx_pdm_en(i2s_dev_t *hw, bool val)
{
hw->pdm_conf.tx_pdm_en = val;
}
/**
* @brief Set I2S tx msb shift
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx msb shift
*/
static inline void i2s_ll_set_tx_msb_shift(i2s_dev_t *hw, uint32_t val)
{
hw->conf.tx_msb_shift = val;
}
/**
* @brief Set I2S rx msb shift
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx msb shift
*/
static inline void i2s_ll_set_rx_msb_shift(i2s_dev_t *hw, uint32_t val)
{
hw->conf.rx_msb_shift = val;
}
/**
* @brief Set I2S tx short sync
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx short sync
*/
static inline void i2s_ll_set_tx_short_sync(i2s_dev_t *hw, uint32_t val)
{
hw->conf.tx_short_sync = val;
}
/**
* @brief Set I2S rx short sync
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx short sync
*/
static inline void i2s_ll_set_rx_short_sync(i2s_dev_t *hw, uint32_t val)
{
hw->conf.rx_short_sync = val;
}
/**
* @brief Set I2S tx fifo mod force en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx fifo mod force en
*/
static inline void i2s_ll_set_tx_fifo_mod_force_en(i2s_dev_t *hw, bool val)
{
hw->fifo_conf.tx_fifo_mod_force_en = val;
}
/**
* @brief Set I2S rx fifo mod force en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx fifo mod force en
*/
static inline void i2s_ll_set_rx_fifo_mod_force_en(i2s_dev_t *hw, bool val)
{
hw->fifo_conf.rx_fifo_mod_force_en = val;
}
/**
* @brief Set I2S tx right first
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx right first
*/
static inline void i2s_ll_set_tx_right_first(i2s_dev_t *hw, uint32_t val)
{
hw->conf.tx_right_first = val;
}
/**
* @brief Set I2S rx right first
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx right first
*/
static inline void i2s_ll_set_rx_right_first(i2s_dev_t *hw, uint32_t val)
{
hw->conf.rx_right_first = val;
}
/**
* @brief Set I2S tx slave mod
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx slave mod
*/
static inline void i2s_ll_set_tx_slave_mod(i2s_dev_t *hw, uint32_t val)
{
hw->conf.tx_slave_mod = val;
}
/**
* @brief Set I2S rx slave mod
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx slave mod
*/
static inline void i2s_ll_set_rx_slave_mod(i2s_dev_t *hw, uint32_t val)
{
hw->conf.rx_slave_mod = val;
}
/**
* @brief Get I2S tx msb right
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get tx msb right
*/
static inline void i2s_ll_get_tx_msb_right(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->conf.tx_msb_right;
}
/**
* @brief Get I2S rx msb right
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get rx msb right
*/
static inline void i2s_ll_get_rx_msb_right(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->conf.rx_msb_right;
}
/**
* @brief Set I2S tx msb right
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx msb right
*/
static inline void i2s_ll_set_tx_msb_right(i2s_dev_t *hw, uint32_t val)
{
hw->conf.tx_msb_right = val;
}
/**
* @brief Set I2S rx msb right
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx msb right
*/
static inline void i2s_ll_set_rx_msb_right(i2s_dev_t *hw, uint32_t val)
{
hw->conf.rx_msb_right = val;
}
/**
* @brief Set I2S tx mono
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx mono
*/
static inline void i2s_ll_set_tx_mono(i2s_dev_t *hw, uint32_t val)
{
hw->conf.tx_mono = val;
}
/**
* @brief Set I2S rx mono
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx mono
*/
static inline void i2s_ll_set_rx_mono(i2s_dev_t *hw, uint32_t val)
{
hw->conf.rx_mono = val;
}
/**
* @brief Set I2S tx sinc osr2
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx sinc osr2
*/
static inline void i2s_ll_set_tx_sinc_osr2(i2s_dev_t *hw, uint32_t val)
{
hw->pdm_conf.tx_sinc_osr2 = val;
}
/**
* @brief Set I2S sig loopback
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set sig loopback
*/
static inline void i2s_ll_set_sig_loopback(i2s_dev_t *hw, uint32_t val)
{
hw->conf.sig_loopback = val;
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,479 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The LL layer for LEDC register operations.
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#include "hal/ledc_types.h"
#include "soc/ledc_periph.h"
#define LEDC_LL_GET_HW() &LEDC
/**
* @brief Set LEDC low speed timer clock
*
* @param hw Beginning address of the peripheral registers
* @param slow_clk_sel LEDC low speed timer clock source
*
* @return None
*/
static inline void ledc_ll_set_slow_clk_sel(ledc_dev_t *hw, ledc_slow_clk_sel_t slow_clk_sel){
uint32_t clk_sel_val = 0;
if (slow_clk_sel == LEDC_SLOW_CLK_APB) {
clk_sel_val = 1;
} else if (slow_clk_sel == LEDC_SLOW_CLK_RTC8M) {
clk_sel_val = 2;
} else if (slow_clk_sel == LEDC_SLOW_CLK_XTAL) {
clk_sel_val = 3;
}
hw->conf.apb_clk_sel = clk_sel_val;
}
/**
* @brief Get LEDC low speed timer clock
*
* @param hw Beginning address of the peripheral registers
* @param slow_clk_sel LEDC low speed timer clock source
*
* @return None
*/
static inline void ledc_ll_get_slow_clk_sel(ledc_dev_t *hw, ledc_slow_clk_sel_t *slow_clk_sel){
uint32_t clk_sel_val = hw->conf.apb_clk_sel;
if (clk_sel_val == 1) {
*slow_clk_sel = LEDC_SLOW_CLK_APB;
} else if (clk_sel_val == 2) {
*slow_clk_sel = LEDC_SLOW_CLK_RTC8M;
} else if (clk_sel_val == 3) {
*slow_clk_sel = LEDC_SLOW_CLK_XTAL;
}
}
/**
* @brief Update LEDC low speed timer
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_ls_timer_update(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel){
hw->timer_group[speed_mode].timer[timer_sel].conf.low_speed_update = 1;
}
/**
* @brief Reset LEDC timer
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_timer_rst(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel){
hw->timer_group[speed_mode].timer[timer_sel].conf.rst = 1;
hw->timer_group[speed_mode].timer[timer_sel].conf.rst = 0;
}
/**
* @brief Pause LEDC timer
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_timer_pause(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel){
hw->timer_group[speed_mode].timer[timer_sel].conf.pause = 1;
}
/**
* @brief Resume LEDC timer
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_timer_resume(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel){
hw->timer_group[speed_mode].timer[timer_sel].conf.pause = 0;
}
/**
* @brief Set LEDC timer clock divider
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param clock_divider Timer clock divide value, the timer clock is divided from the selected clock source
*
* @return None
*/
static inline void ledc_ll_set_clock_divider(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider){
hw->timer_group[speed_mode].timer[timer_sel].conf.clock_divider = clock_divider;
}
/**
* @brief Get LEDC timer clock divider
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param clock_divider Timer clock divide value, the timer clock is divided from the selected clock source
*
* @return None
*/
static inline void ledc_ll_get_clock_divider(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t *clock_divider){
*clock_divider = hw->timer_group[speed_mode].timer[timer_sel].conf.clock_divider;
}
/**
* @brief Set LEDC timer clock source
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param clk_src Timer clock source
*
* @return None
*/
static inline void ledc_ll_set_clock_source(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, ledc_clk_src_t clk_src){
if (clk_src == LEDC_REF_TICK) {
//REF_TICK can only be used when APB is selected.
hw->timer_group[speed_mode].timer[timer_sel].conf.tick_sel = 1;
hw->conf.apb_clk_sel = 1;
} else {
hw->timer_group[speed_mode].timer[timer_sel].conf.tick_sel = 0;
}
}
/**
* @brief Get LEDC timer clock source
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param clk_src Pointer to accept the timer clock source
*
* @return None
*/
static inline void ledc_ll_get_clock_source(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, ledc_clk_src_t *clk_src){
if (hw->timer_group[speed_mode].timer[timer_sel].conf.tick_sel == 1) {
*clk_src = LEDC_REF_TICK;
} else {
*clk_src = LEDC_APB_CLK;
}
}
/**
* @brief Set LEDC duty resolution
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param duty_resolution Resolution of duty setting in number of bits. The range of duty values is [0, (2**duty_resolution)]
*
* @return None
*/
static inline void ledc_ll_set_duty_resolution(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t duty_resolution){
hw->timer_group[speed_mode].timer[timer_sel].conf.duty_resolution = duty_resolution;
}
/**
* @brief Get LEDC duty resolution
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param duty_resolution Pointer to accept the resolution of duty setting in number of bits.
*
* @return None
*/
static inline void ledc_ll_get_duty_resolution(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t *duty_resolution){
*duty_resolution = hw->timer_group[speed_mode].timer[timer_sel].conf.duty_resolution;
}
/**
* @brief Update channel configure when select low speed mode
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
*
* @return None
*/
static inline void ledc_ll_ls_channel_update(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num){
hw->channel_group[speed_mode].channel[channel_num].conf0.low_speed_update = 1;
}
/**
* @brief Get LEDC max duty
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param max_duty Pointer to accept the max duty
*
* @return None
*/
static inline void ledc_ll_get_max_duty(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t *max_duty){
uint32_t timer_sel = hw->channel_group[speed_mode].channel[channel_num].conf0.timer_sel;
*max_duty = (1 << (LEDC.timer_group[speed_mode].timer[timer_sel].conf.duty_resolution));
}
/**
* @brief Set LEDC hpoint value
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param hpoint_val LEDC hpoint value(max: 0xfffff)
*
* @return None
*/
static inline void ledc_ll_set_hpoint(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t hpoint_val){
hw->channel_group[speed_mode].channel[channel_num].hpoint.hpoint = hpoint_val;
}
/**
* @brief Get LEDC hpoint value
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param hpoint_val Pointer to accept the LEDC hpoint value(max: 0xfffff)
*
* @return None
*/
static inline void ledc_ll_get_hpoint(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t *hpoint_val){
*hpoint_val = hw->channel_group[speed_mode].channel[channel_num].hpoint.hpoint;
}
/**
* @brief Set LEDC the integer part of duty value
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_val LEDC duty value, the range of duty setting is [0, (2**duty_resolution)]
*
* @return None
*/
static inline void ledc_ll_set_duty_int_part(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t duty_val){
hw->channel_group[speed_mode].channel[channel_num].duty.duty = duty_val << 4;
}
/**
* @brief Get LEDC duty value
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_val Pointer to accept the LEDC duty value
*
* @return None
*/
static inline void ledc_ll_get_duty(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t *duty_val){
*duty_val = (hw->channel_group[speed_mode].channel[channel_num].duty_rd.duty_read >> 4);
}
/**
* @brief Set LEDC duty change direction
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_direction LEDC duty change direction, increase or decrease
*
* @return None
*/
static inline void ledc_ll_set_duty_direction(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, ledc_duty_direction_t duty_direction){
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_inc = duty_direction;
}
/**
* @brief Get LEDC duty change direction
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_direction Pointer to accept the LEDC duty change direction, increase or decrease
*
* @return None
*/
static inline void ledc_ll_get_duty_direction(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, ledc_duty_direction_t *duty_direction){
*duty_direction = hw->channel_group[speed_mode].channel[channel_num].conf1.duty_inc;
}
/**
* @brief Set the number of increased or decreased times
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_num The number of increased or decreased times
*
* @return None
*/
static inline void ledc_ll_set_duty_num(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t duty_num){
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_num = duty_num;
}
/**
* @brief Set the duty cycles of increase or decrease
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_cycle The duty cycles
*
* @return None
*/
static inline void ledc_ll_set_duty_cycle(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t duty_cycle){
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_cycle = duty_cycle;
}
/**
* @brief Set the step scale of increase or decrease
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_scale The step scale
*
* @return None
*/
static inline void ledc_ll_set_duty_scale(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t duty_scale){
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_scale = duty_scale;
}
/**
* @brief Set the output enable
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param sig_out_en The output enable status
*
* @return None
*/
static inline void ledc_ll_set_sig_out_en(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, bool sig_out_en){
hw->channel_group[speed_mode].channel[channel_num].conf0.sig_out_en = sig_out_en;
}
/**
* @brief Set the duty start
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_start The duty start
*
* @return None
*/
static inline void ledc_ll_set_duty_start(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, bool duty_start){
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_start = duty_start;
}
/**
* @brief Set output idle level
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param idle_level The output idle level
*
* @return None
*/
static inline void ledc_ll_set_idle_level(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t idle_level){
hw->channel_group[speed_mode].channel[channel_num].conf0.idle_lv = idle_level & 0x1;
}
/**
* @brief Set fade end interrupt enable
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param fade_end_intr_en The fade end interrupt enable status
*
* @return None
*/
static inline void ledc_ll_set_fade_end_intr(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, bool fade_end_intr_en){
uint32_t value = hw->int_ena.val;
uint32_t int_en_base = LEDC_DUTY_CHNG_END_LSCH0_INT_ENA_S;
hw->int_ena.val = fade_end_intr_en ? (value | BIT(int_en_base + channel_num)) : (value & (~(BIT(int_en_base + channel_num))));
}
/**
* @brief Get fade end interrupt status
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param intr_status The fade end interrupt status
*
* @return None
*/
static inline void ledc_ll_get_fade_end_intr_status(ledc_dev_t *hw, ledc_mode_t speed_mode, uint32_t *intr_status){
uint32_t value = hw->int_st.val;
uint32_t int_en_base = LEDC_DUTY_CHNG_END_LSCH0_INT_ENA_S;
*intr_status = (value >> int_en_base) & 0xff;
}
/**
* @brief Clear fade end interrupt status
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
*
* @return None
*/
static inline void ledc_ll_clear_fade_end_intr_status(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num){
uint32_t int_en_base = LEDC_DUTY_CHNG_END_LSCH0_INT_ENA_S;
hw->int_clr.val = BIT(int_en_base + channel_num);
}
/**
* @brief Set timer index of the specified channel
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_bind_channel_timer(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, ledc_timer_t timer_sel){
hw->channel_group[speed_mode].channel[channel_num].conf0.timer_sel = timer_sel;
}
/**
* @brief Get timer index of the specified channel
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param timer_sel Pointer to accept the LEDC timer index
*
* @return None
*/
static inline void ledc_ll_get_channel_timer(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, ledc_timer_t *timer_sel){
*timer_sel = hw->channel_group[speed_mode].channel[channel_num].conf0.timer_sel;
}

View File

@@ -0,0 +1,301 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The LL layer for ESP32-S2 PCNT register operations
#pragma once
#include "soc/pcnt_periph.h"
#include "hal/pcnt_types.h"
#ifdef __cplusplus
extern "C" {
#endif
// Get PCNT hardware instance with giving pcnt num
#define PCNT_LL_GET_HW(num) (((num) == 0) ? (&PCNT) : NULL)
/**
* @brief Set PCNT counter mode
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param channel PCNT channel number
* @param pos_mode Counter mode when detecting positive edge
* @param neg_mode Counter mode when detecting negative edge
* @param hctrl_mode Counter mode when control signal is high level
* @param lctrl_mode Counter mode when control signal is low level
*/
static inline void pcnt_ll_set_mode(pcnt_dev_t *hw, pcnt_unit_t unit, pcnt_channel_t channel, pcnt_count_mode_t pos_mode, pcnt_count_mode_t neg_mode, pcnt_ctrl_mode_t hctrl_mode, pcnt_ctrl_mode_t lctrl_mode)
{
typeof(hw->conf_unit[unit].conf0) conf0_reg = hw->conf_unit[unit].conf0;
if (channel == 0) {
conf0_reg.ch0_pos_mode = pos_mode;
conf0_reg.ch0_neg_mode = neg_mode;
conf0_reg.ch0_hctrl_mode = hctrl_mode;
conf0_reg.ch0_lctrl_mode = lctrl_mode;
} else {
conf0_reg.ch1_pos_mode = pos_mode;
conf0_reg.ch1_neg_mode = neg_mode;
conf0_reg.ch1_hctrl_mode = hctrl_mode;
conf0_reg.ch1_lctrl_mode = lctrl_mode;
}
hw->conf_unit[unit].conf0 = conf0_reg;
}
/**
* @brief Get pulse counter value
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit Pulse Counter unit number
* @param count Pointer to accept counter value
*/
static inline void pcnt_ll_get_counter_value(pcnt_dev_t *hw, pcnt_unit_t unit, int16_t *count)
{
*count = (int16_t) hw->cnt_unit[unit].cnt_val;
}
/**
* @brief Pause PCNT counter of PCNT unit
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
*/
static inline void pcnt_ll_counter_pause(pcnt_dev_t *hw, pcnt_unit_t unit)
{
hw->ctrl.val |= BIT(PCNT_CNT_PAUSE_U0_S + (unit * 2));
}
/**
* @brief Resume counting for PCNT counter
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number, select from pcnt_unit_t
*/
static inline void pcnt_ll_counter_resume(pcnt_dev_t *hw, pcnt_unit_t unit)
{
hw->ctrl.val &= (~(BIT(PCNT_CNT_PAUSE_U0_S + (unit * 2))));
}
/**
* @brief Clear and reset PCNT counter value to zero
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number, select from pcnt_unit_t
*/
static inline void pcnt_ll_counter_clear(pcnt_dev_t *hw, pcnt_unit_t unit)
{
uint32_t reset_bit = BIT(PCNT_PULSE_CNT_RST_U0_S + (unit * 2));
hw->ctrl.val |= reset_bit;
hw->ctrl.val &= ~reset_bit;
}
/**
* @brief Enable PCNT interrupt for PCNT unit
* @note
* Each Pulse counter unit has five watch point events that share the same interrupt.
* Configure events with pcnt_event_enable() and pcnt_event_disable()
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
*/
static inline void pcnt_ll_intr_enable(pcnt_dev_t *hw, pcnt_unit_t unit)
{
hw->int_ena.val |= BIT(PCNT_CNT_THR_EVENT_U0_INT_ENA_S + unit);
}
/**
* @brief Disable PCNT interrupt for PCNT unit
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
*/
static inline void pcnt_ll_intr_disable(pcnt_dev_t *hw, pcnt_unit_t unit)
{
hw->int_ena.val &= (~(BIT(PCNT_CNT_THR_EVENT_U0_INT_ENA_S + unit)));
}
/**
* @brief Get PCNT interrupt status
*
* @param hw Peripheral PCNT hardware instance address.
* @param status Pointer to accept value
*/
static inline void pcnt_ll_get_intr_status(pcnt_dev_t *hw, uint32_t *status)
{
*status = hw->int_st.val;
}
/**
* @brief Clear PCNT interrupt status
*
* @param hw Peripheral PCNT hardware instance address.
* @param status value to clear interrupt status
*/
static inline void pcnt_ll_clear_intr_status(pcnt_dev_t *hw, uint32_t status)
{
hw->int_clr.val = status;
}
/**
* @brief Enable PCNT event of PCNT unit
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param evt_type Watch point event type.
* All enabled events share the same interrupt (one interrupt per pulse counter unit).
*/
static inline void pcnt_ll_event_enable(pcnt_dev_t *hw, pcnt_unit_t unit, pcnt_evt_type_t evt_type)
{
if (evt_type == PCNT_EVT_L_LIM) {
hw->conf_unit[unit].conf0.thr_l_lim_en = 1;
} else if (evt_type == PCNT_EVT_H_LIM) {
hw->conf_unit[unit].conf0.thr_h_lim_en = 1;
} else if (evt_type == PCNT_EVT_THRES_0) {
hw->conf_unit[unit].conf0.thr_thres0_en = 1;
} else if (evt_type == PCNT_EVT_THRES_1) {
hw->conf_unit[unit].conf0.thr_thres1_en = 1;
} else if (evt_type == PCNT_EVT_ZERO) {
hw->conf_unit[unit].conf0.thr_zero_en = 1;
}
}
/**
* @brief Disable PCNT event of PCNT unit
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param evt_type Watch point event type.
* All enabled events share the same interrupt (one interrupt per pulse counter unit).
*/
static inline void pcnt_ll_event_disable(pcnt_dev_t *hw, pcnt_unit_t unit, pcnt_evt_type_t evt_type)
{
if (evt_type == PCNT_EVT_L_LIM) {
hw->conf_unit[unit].conf0.thr_l_lim_en = 0;
} else if (evt_type == PCNT_EVT_H_LIM) {
hw->conf_unit[unit].conf0.thr_h_lim_en = 0;
} else if (evt_type == PCNT_EVT_THRES_0) {
hw->conf_unit[unit].conf0.thr_thres0_en = 0;
} else if (evt_type == PCNT_EVT_THRES_1) {
hw->conf_unit[unit].conf0.thr_thres1_en = 0;
} else if (evt_type == PCNT_EVT_ZERO) {
hw->conf_unit[unit].conf0.thr_zero_en = 0;
}
}
/**
* @brief Set PCNT event value of PCNT unit
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param evt_type Watch point event type.
* All enabled events share the same interrupt (one interrupt per pulse counter unit).
*
* @param value Counter value for PCNT event
*/
static inline void pcnt_ll_set_event_value(pcnt_dev_t *hw, pcnt_unit_t unit, pcnt_evt_type_t evt_type, int16_t value)
{
if (evt_type == PCNT_EVT_L_LIM) {
hw->conf_unit[unit].conf2.cnt_l_lim = value;
} else if (evt_type == PCNT_EVT_H_LIM) {
hw->conf_unit[unit].conf2.cnt_h_lim = value;
} else if (evt_type == PCNT_EVT_THRES_0) {
hw->conf_unit[unit].conf1.cnt_thres0 = value;
} else if (evt_type == PCNT_EVT_THRES_1) {
hw->conf_unit[unit].conf1.cnt_thres1 = value;
}
}
/**
* @brief Get PCNT event value of PCNT unit
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param evt_type Watch point event type.
* All enabled events share the same interrupt (one interrupt per pulse counter unit).
* @param value Pointer to accept counter value for PCNT event
*/
static inline void pcnt_ll_get_event_value(pcnt_dev_t *hw, pcnt_unit_t unit, pcnt_evt_type_t evt_type, int16_t *value)
{
if (evt_type == PCNT_EVT_L_LIM) {
*value = (int16_t) hw->conf_unit[unit].conf2.cnt_l_lim;
} else if (evt_type == PCNT_EVT_H_LIM) {
*value = (int16_t) hw->conf_unit[unit].conf2.cnt_h_lim;
} else if (evt_type == PCNT_EVT_THRES_0) {
*value = (int16_t) hw->conf_unit[unit].conf1.cnt_thres0;
} else if (evt_type == PCNT_EVT_THRES_1) {
*value = (int16_t) hw->conf_unit[unit].conf1.cnt_thres1;
} else {
*value = 0;
}
}
/**
* @brief Set PCNT filter value
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param filter_val PCNT signal filter value, counter in APB_CLK cycles.
* Any pulses lasting shorter than this will be ignored when the filter is enabled.
* @note
* filter_val is a 10-bit value, so the maximum filter_val should be limited to 1023.
*/
static inline void pcnt_ll_set_filter_value(pcnt_dev_t *hw, pcnt_unit_t unit, uint16_t filter_val)
{
hw->conf_unit[unit].conf0.filter_thres = filter_val;
}
/**
* @brief Get PCNT filter value
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param filter_val Pointer to accept PCNT filter value.
*/
static inline void pcnt_ll_get_filter_value(pcnt_dev_t *hw, pcnt_unit_t unit, uint16_t *filter_val)
{
*filter_val = hw->conf_unit[unit].conf0.filter_thres;
}
/**
* @brief Enable PCNT input filter
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
*/
static inline void pcnt_ll_filter_enable(pcnt_dev_t *hw, pcnt_unit_t unit)
{
hw->conf_unit[unit].conf0.filter_en = 1;
}
/**
* @brief Disable PCNT input filter
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
*/
static inline void pcnt_ll_filter_disable(pcnt_dev_t *hw, pcnt_unit_t unit)
{
hw->conf_unit[unit].conf0.filter_en = 0;
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,290 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdbool.h>
#include "soc/rmt_struct.h"
#include "soc/rmt_caps.h"
static inline void rmt_ll_reset_counter_clock_div(rmt_dev_t *dev, uint32_t channel)
{
}
static inline void rmt_ll_reset_tx_pointer(rmt_dev_t *dev, uint32_t channel)
{
dev->conf_ch[channel].conf1.mem_rd_rst = 1;
dev->conf_ch[channel].conf1.mem_rd_rst = 0;
}
static inline void rmt_ll_reset_rx_pointer(rmt_dev_t *dev, uint32_t channel)
{
dev->conf_ch[channel].conf1.mem_wr_rst = 1;
dev->conf_ch[channel].conf1.mem_wr_rst = 0;
}
static inline void rmt_ll_start_tx(rmt_dev_t *dev, uint32_t channel)
{
dev->conf_ch[channel].conf1.tx_start = 1;
}
static inline void rmt_ll_stop_tx(rmt_dev_t *dev, uint32_t channel)
{
dev->conf_ch[channel].conf1.tx_stop = 1;
}
static inline void rmt_ll_enable_rx(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf1.rx_en = enable;
}
static inline void rmt_ll_power_down_mem(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->apb_conf.mem_force_pd = enable;
}
static inline bool rmt_ll_is_mem_power_down(rmt_dev_t *dev, uint32_t channel)
{
return dev->apb_conf.mem_force_pd;
}
static inline void rmt_ll_set_mem_blocks(rmt_dev_t *dev, uint32_t channel, uint8_t block_num)
{
dev->conf_ch[channel].conf0.mem_size = block_num;
}
static inline uint32_t rmt_ll_get_mem_blocks(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf0.mem_size;
}
static inline void rmt_ll_set_counter_clock_div(rmt_dev_t *dev, uint32_t channel, uint32_t div)
{
dev->conf_ch[channel].conf0.div_cnt = div;
}
static inline uint32_t rmt_ll_get_counter_clock_div(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf0.div_cnt;
}
static inline void rmt_ll_enable_tx_pingpong(rmt_dev_t *dev, bool enable)
{
dev->apb_conf.mem_tx_wrap_en = enable;
}
static inline void rmt_ll_enable_mem_access(rmt_dev_t *dev, bool enable)
{
dev->apb_conf.fifo_mask = enable;
}
static inline void rmt_ll_set_rx_idle_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres)
{
dev->conf_ch[channel].conf0.idle_thres = thres;
}
static inline uint32_t rmt_ll_get_rx_idle_thres(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf0.idle_thres;
}
static inline void rmt_ll_set_mem_owner(rmt_dev_t *dev, uint32_t channel, uint8_t owner)
{
dev->conf_ch[channel].conf1.mem_owner = owner;
}
static inline uint32_t rmt_ll_get_mem_owner(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.mem_owner;
}
static inline void rmt_ll_enable_tx_cyclic(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf1.tx_conti_mode = enable;
}
static inline bool rmt_ll_is_tx_cyclic_enabled(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.tx_conti_mode;
}
static inline void rmt_ll_enable_rx_filter(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf1.rx_filter_en = enable;
}
static inline void rmt_ll_set_rx_filter_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres)
{
dev->conf_ch[channel].conf1.rx_filter_thres = thres;
}
static inline void rmt_ll_set_counter_clock_src(rmt_dev_t *dev, uint32_t channel, uint8_t src)
{
dev->conf_ch[channel].conf1.ref_always_on = src;
}
static inline uint32_t rmt_ll_get_counter_clock_src(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.ref_always_on;
}
static inline void rmt_ll_enable_tx_idle(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf1.idle_out_en = enable;
}
static inline bool rmt_ll_is_tx_idle_enabled(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.idle_out_en;
}
static inline void rmt_ll_set_tx_idle_level(rmt_dev_t *dev, uint32_t channel, uint8_t level)
{
dev->conf_ch[channel].conf1.idle_out_lv = level;
}
static inline uint32_t rmt_ll_get_tx_idle_level(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.idle_out_lv;
}
static inline uint32_t rmt_ll_get_channel_status(rmt_dev_t *dev, uint32_t channel)
{
return dev->status_ch[channel].val;
}
static inline void rmt_ll_set_tx_limit(rmt_dev_t *dev, uint32_t channel, uint32_t limit)
{
dev->tx_lim_ch[channel].limit = limit;
}
static inline void rmt_ll_enable_tx_end_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->int_ena.val &= ~(1 << (channel * 3));
dev->int_ena.val |= (enable << (channel * 3));
}
static inline void rmt_ll_enable_rx_end_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->int_ena.val &= ~(1 << (channel * 3 + 1));
dev->int_ena.val |= (enable << (channel * 3 + 1));
}
static inline void rmt_ll_enable_err_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->int_ena.val &= ~(1 << (channel * 3 + 2));
dev->int_ena.val |= (enable << (channel * 3 + 2));
}
static inline void rmt_ll_enable_tx_thres_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->int_ena.val &= ~(1 << (channel + 12));
dev->int_ena.val |= (enable << (channel + 12));
}
static inline void rmt_ll_clear_tx_end_interrupt(rmt_dev_t *dev, uint32_t channel)
{
dev->int_clr.val = (1 << (channel * 3));
}
static inline void rmt_ll_clear_rx_end_interrupt(rmt_dev_t *dev, uint32_t channel)
{
dev->int_clr.val = (1 << (channel * 3 + 1));
}
static inline void rmt_ll_clear_err_interrupt(rmt_dev_t *dev, uint32_t channel)
{
dev->int_clr.val = (1 << (channel * 3 + 2));
}
static inline void rmt_ll_clear_tx_thres_interrupt(rmt_dev_t *dev, uint32_t channel)
{
dev->int_clr.val = (1 << (channel + 12));
}
static inline uint32_t rmt_ll_get_tx_end_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return ((status & 0x01) >> 0) | ((status & 0x08) >> 2) | ((status & 0x40) >> 4) | ((status & 0x200) >> 6);
}
static inline uint32_t rmt_ll_get_rx_end_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return ((status & 0x02) >> 1) | ((status & 0x10) >> 3) | ((status & 0x80) >> 5) | ((status & 0x400) >> 7);
}
static inline uint32_t rmt_ll_get_err_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return ((status & 0x04) >> 2) | ((status & 0x20) >> 4) | ((status & 0x100) >> 6) | ((status & 0x800) >> 8);;
}
static inline uint32_t rmt_ll_get_tx_thres_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return (status & 0xF000) >> 12;
}
static inline void rmt_ll_set_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks)
{
dev->carrier_duty_ch[channel].high = high_ticks;
dev->carrier_duty_ch[channel].low = low_ticks;
}
static inline void rmt_ll_get_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t *high_ticks, uint32_t *low_ticks)
{
*high_ticks = dev->carrier_duty_ch[channel].high;
*low_ticks = dev->carrier_duty_ch[channel].low;
}
static inline void rmt_ll_enable_tx_carrier(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf0.carrier_en = enable;
}
static inline void rmt_ll_set_carrier_to_level(rmt_dev_t *dev, uint32_t channel, uint8_t level)
{
dev->conf_ch[channel].conf0.carrier_out_lv = level;
}
static inline void rmt_ll_write_memory(rmt_mem_t *mem, uint32_t channel, const rmt_item32_t *data, uint32_t length, uint32_t off)
{
length = (off + length) > RMT_CHANNEL_MEM_WORDS ? (RMT_CHANNEL_MEM_WORDS - off) : length;
for (uint32_t i = 0; i < length; i++) {
mem->chan[channel].data32[i + off].val = data[i].val;
}
}
/************************************************************************************************
* Following Low Level APIs only used for backward compatible, will be deprecated in the future!
***********************************************************************************************/
static inline void rmt_ll_set_intr_enable_mask(uint32_t mask)
{
RMT.int_ena.val |= mask;
}
static inline void rmt_ll_clr_intr_enable_mask(uint32_t mask)
{
RMT.int_ena.val &= (~mask);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,349 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
#pragma once
#include <stdlib.h>
#include "soc/rtc_io_periph.h"
#include "hal/rtc_io_types.h"
#include "hal/gpio_types.h"
typedef enum {
RTCIO_FUNC_RTC = 0x0, /*!< The pin controled by RTC module. */
RTCIO_FUNC_DIGITAL = 0x1, /*!< The pin controlled by DIGITAL module. */
} rtcio_ll_func_t;
typedef enum {
RTCIO_WAKEUP_DISABLE = 0, /*!< Disable GPIO interrupt */
RTCIO_WAKEUP_LOW_LEVEL = 0x4, /*!< GPIO interrupt type : input low level trigger */
RTCIO_WAKEUP_HIGH_LEVEL = 0x5, /*!< GPIO interrupt type : input high level trigger */
} rtcio_ll_wake_type_t;
typedef enum {
RTCIO_OUTPUT_NORMAL = 0, /*!< RTCIO output mode is normal. */
RTCIO_OUTPUT_OD = 0x1, /*!< RTCIO output mode is open-drain. */
} rtcio_ll_out_mode_t;
/**
* @brief Select the rtcio function.
*
* @note The RTC function must be selected before the pad analog function is enabled.
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @param func Select pin function.
*/
static inline void rtcio_ll_function_select(int rtcio_num, rtcio_ll_func_t func)
{
if (func == RTCIO_FUNC_RTC) {
// 0: GPIO connected to digital GPIO module. 1: GPIO connected to analog RTC module.
SET_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, (rtc_io_desc[rtcio_num].mux));
//0:RTC FUNCTION 1,2,3:Reserved
SET_PERI_REG_BITS(rtc_io_desc[rtcio_num].reg, RTC_IO_TOUCH_PAD1_FUN_SEL_V, SOC_PIN_FUNC_RTC_IO, rtc_io_desc[rtcio_num].func);
} else if (func == RTCIO_FUNC_DIGITAL) {
CLEAR_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, (rtc_io_desc[rtcio_num].mux));
}
}
/**
* Enable rtcio output.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_output_enable(int rtcio_num)
{
RTCIO.enable_w1ts.w1ts = (1U << rtcio_num);
}
/**
* Disable rtcio output.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_output_disable(int rtcio_num)
{
RTCIO.enable_w1tc.w1tc = (1U << rtcio_num);
}
/**
* Set RTCIO output level.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @param level 0: output low; ~0: output high.
*/
static inline void rtcio_ll_set_level(int rtcio_num, uint32_t level)
{
if (level) {
RTCIO.out_w1ts.w1ts = (1U << rtcio_num);
} else {
RTCIO.out_w1tc.w1tc = (1U << rtcio_num);
}
}
/**
* Enable rtcio input.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_input_enable(int rtcio_num)
{
SET_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].ie);
}
/**
* Disable rtcio input.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_input_disable(int rtcio_num)
{
CLEAR_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].ie);
}
/**
* Get RTCIO input level.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @return 0: input low; ~0: input high.
*/
static inline uint32_t rtcio_ll_get_level(int rtcio_num)
{
return (uint32_t)(RTCIO.in_val.in >> rtcio_num) & 0x1;
}
/**
* @brief Set RTC GPIO pad drive capability
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @param strength Drive capability of the pad. Range: 0 ~ 3.
*/
static inline void rtcio_ll_set_drive_capability(int rtcio_num, uint32_t strength)
{
if (rtc_io_desc[rtcio_num].drv_v) {
SET_PERI_REG_BITS(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].drv_v, strength, rtc_io_desc[rtcio_num].drv_s);
}
}
/**
* @brief Get RTC GPIO pad drive capability.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @return Drive capability of the pad. Range: 0 ~ 3.
*/
static inline uint32_t rtcio_ll_get_drive_capability(int rtcio_num)
{
return GET_PERI_REG_BITS2(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].drv_v, rtc_io_desc[rtcio_num].drv_s);
}
/**
* @brief Set RTC GPIO pad output mode.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @return mode Output mode.
*/
static inline void rtcio_ll_output_mode_set(int rtcio_num, rtcio_ll_out_mode_t mode)
{
RTCIO.pin[rtcio_num].pad_driver = mode;
}
/**
* RTC GPIO pullup enable.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_pullup_enable(int rtcio_num)
{
if (rtc_io_desc[rtcio_num].pullup) {
SET_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].pullup);
}
}
/**
* RTC GPIO pullup disable.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_pullup_disable(int rtcio_num)
{
if (rtc_io_desc[rtcio_num].pullup) {
CLEAR_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].pullup);
}
}
/**
* RTC GPIO pulldown enable.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_pulldown_enable(int rtcio_num)
{
if (rtc_io_desc[rtcio_num].pulldown) {
SET_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].pulldown);
}
}
/**
* RTC GPIO pulldown disable.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_pulldown_disable(int rtcio_num)
{
if (rtc_io_desc[rtcio_num].pulldown) {
CLEAR_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].pulldown);
}
}
/**
* Enable force hold function for RTC IO pad.
*
* Enabling HOLD function will cause the pad to lock current status, such as,
* input/output enable, input/output value, function, drive strength values.
* This function is useful when going into light or deep sleep mode to prevent
* the pin configuration from changing.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_force_hold_enable(int rtcio_num)
{
SET_PERI_REG_MASK(RTC_CNTL_PAD_HOLD_REG, rtc_io_desc[rtcio_num].hold_force);
}
/**
* Disable hold function on an RTC IO pad
*
* @note If disable the pad hold, the status of pad maybe changed in sleep mode.
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_force_hold_disable(int rtcio_num)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_PAD_HOLD_REG, rtc_io_desc[rtcio_num].hold_force);
}
/**
* Enable force hold function for RTC IO pad.
*
* Enabling HOLD function will cause the pad to lock current status, such as,
* input/output enable, input/output value, function, drive strength values.
* This function is useful when going into light or deep sleep mode to prevent
* the pin configuration from changing.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_force_hold_all(void)
{
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PAD_FORCE_HOLD_M);
}
/**
* Disable hold function on an RTC IO pad
*
* @note If disable the pad hold, the status of pad maybe changed in sleep mode.
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_force_unhold_all(void)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PAD_FORCE_HOLD_M);
}
/**
* Enable wakeup function and set wakeup type from light sleep status for rtcio.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @param type Wakeup on high level or low level.
*/
static inline void rtcio_ll_wakeup_enable(int rtcio_num, rtcio_ll_wake_type_t type)
{
RTCIO.pin[rtcio_num].wakeup_enable = 0x1;
RTCIO.pin[rtcio_num].int_type = type;
}
/**
* Disable wakeup function from light sleep status for rtcio.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_wakeup_disable(int rtcio_num)
{
RTCIO.pin[rtcio_num].wakeup_enable = 0;
RTCIO.pin[rtcio_num].int_type = RTCIO_WAKEUP_DISABLE;
}
/**
* Enable rtc io output in deep sleep.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_enable_output_in_sleep(gpio_num_t gpio_num)
{
if (rtc_io_desc[gpio_num].slpoe) {
SET_PERI_REG_MASK(rtc_io_desc[gpio_num].reg, rtc_io_desc[gpio_num].slpoe);
}
}
/**
* Disable rtc io output in deep sleep.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_in_sleep_disable_output(gpio_num_t gpio_num)
{
if (rtc_io_desc[gpio_num].slpoe) {
CLEAR_PERI_REG_MASK(rtc_io_desc[gpio_num].reg, rtc_io_desc[gpio_num].slpoe);
}
}
/**
* Enable rtc io input in deep sleep.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_in_sleep_enable_input(gpio_num_t gpio_num)
{
SET_PERI_REG_MASK(rtc_io_desc[gpio_num].reg, rtc_io_desc[gpio_num].slpie);
}
/**
* Disable rtc io input in deep sleep.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_in_sleep_disable_input(gpio_num_t gpio_num)
{
CLEAR_PERI_REG_MASK(rtc_io_desc[gpio_num].reg, rtc_io_desc[gpio_num].slpie);
}
/**
* Enable rtc io keep another setting in deep sleep.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_enable_sleep_setting(gpio_num_t gpio_num)
{
SET_PERI_REG_MASK(rtc_io_desc[gpio_num].reg, rtc_io_desc[gpio_num].slpsel);
}
/**
* Disable rtc io keep another setting in deep sleep. (Default)
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_disable_sleep_setting(gpio_num_t gpio_num)
{
CLEAR_PERI_REG_MASK(rtc_io_desc[gpio_num].reg, rtc_io_desc[gpio_num].slpsel);
}

View File

@@ -0,0 +1,73 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The LL layer for ESP32-S2 SIGMADELTA register operations
#pragma once
#include <stdbool.h>
#include "soc/sigmadelta_periph.h"
#include "hal/sigmadelta_types.h"
#ifdef __cplusplus
extern "C" {
#endif
// Get SIGMADELTA hardware instance with giving sigmadelta num
#define SIGMADELTA_LL_GET_HW(num) (((num) == 0) ? (&SIGMADELTA) : NULL)
/**
* @brief Set Sigma-delta enable
*
* @param hw Peripheral SIGMADELTA hardware instance address.
* @param en Sigma-delta enable value
*/
static inline void sigmadelta_ll_set_en(gpio_sd_dev_t *hw, bool en)
{
hw->misc.function_clk_en = en;
}
/**
* @brief Set Sigma-delta channel duty.
*
* @param hw Peripheral SIGMADELTA hardware instance address.
* @param channel Sigma-delta channel number
* @param duty Sigma-delta duty of one channel, the value ranges from -128 to 127, recommended range is -90 ~ 90.
* The waveform is more like a random one in this range.
*/
static inline void sigmadelta_ll_set_duty(gpio_sd_dev_t *hw, sigmadelta_channel_t channel, int8_t duty)
{
hw->channel[channel].duty = duty;
}
/**
* @brief Set Sigma-delta channel's clock pre-scale value.
*
* @param hw Peripheral SIGMADELTA hardware instance address.
* @param channel Sigma-delta channel number
* @param prescale The divider of source clock, ranges from 0 to 255
*/
static inline void sigmadelta_ll_set_prescale(gpio_sd_dev_t *hw, sigmadelta_channel_t channel, uint8_t prescale)
{
hw->channel[channel].prescale = prescale;
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,91 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The Lowlevel layer for SPI Flash
#pragma once
#include "gpspi_flash_ll.h"
#include "spimem_flash_ll.h"
// For esp32s2, spimem is equivalent to traditional spi peripherals found
// in esp32. Let the spi flash clock reg definitions reflect this.
#define SPI_FLASH_LL_CLKREG_VAL_5MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_5MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_10MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_10MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_20MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_20MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_26MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_26MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_40MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_40MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_80MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_80MHZ}
#define spi_flash_ll_get_hw(host_id) (((host_id)<=SPI1_HOST ? (spi_dev_t*) spimem_flash_ll_get_hw(host_id) \
: gpspi_flash_ll_get_hw(host_id)))
typedef union {
gpspi_flash_ll_clock_reg_t gpspi;
spimem_flash_ll_clock_reg_t spimem;
} spi_flash_ll_clock_reg_t;
#ifdef GPSPI_BUILD
#define spi_flash_ll_reset(dev) gpspi_flash_ll_reset((spi_dev_t*)dev)
#define spi_flash_ll_cmd_is_done(dev) gpspi_flash_ll_cmd_is_done((spi_dev_t*)dev)
#define spi_flash_ll_get_buffer_data(dev, buffer, read_len) gpspi_flash_ll_get_buffer_data((spi_dev_t*)dev, buffer, read_len)
#define spi_flash_ll_set_buffer_data(dev, buffer, len) gpspi_flash_ll_set_buffer_data((spi_dev_t*)dev, buffer, len)
#define spi_flash_ll_user_start(dev) gpspi_flash_ll_user_start((spi_dev_t*)dev)
#define spi_flash_ll_host_idle(dev) gpspi_flash_ll_host_idle((spi_dev_t*)dev)
#define spi_flash_ll_read_phase(dev) gpspi_flash_ll_read_phase((spi_dev_t*)dev)
#define spi_flash_ll_set_cs_pin(dev, pin) gpspi_flash_ll_set_cs_pin((spi_dev_t*)dev, pin)
#define spi_flash_ll_set_read_mode(dev, read_mode) gpspi_flash_ll_set_read_mode((spi_dev_t*)dev, read_mode)
#define spi_flash_ll_set_clock(dev, clk) gpspi_flash_ll_set_clock((spi_dev_t*)dev, (gpspi_flash_ll_clock_reg_t*)clk)
#define spi_flash_ll_set_miso_bitlen(dev, bitlen) gpspi_flash_ll_set_miso_bitlen((spi_dev_t*)dev, bitlen)
#define spi_flash_ll_set_mosi_bitlen(dev, bitlen) gpspi_flash_ll_set_mosi_bitlen((spi_dev_t*)dev, bitlen)
#define spi_flash_ll_set_command8(dev, cmd) gpspi_flash_ll_set_command8((spi_dev_t*)dev, cmd)
#define spi_flash_ll_set_addr_bitlen(dev, bitlen) gpspi_flash_ll_set_addr_bitlen((spi_dev_t*)dev, bitlen)
#define spi_flash_ll_get_addr_bitlen(dev) gpspi_flash_ll_get_addr_bitlen((spi_dev_t*)dev)
#define spi_flash_ll_set_address(dev, addr) gpspi_flash_ll_set_address((spi_dev_t*)dev, addr)
#define spi_flash_ll_set_usr_address(dev, addr, bitlen) gpspi_flash_ll_set_usr_address((spi_dev_t*)dev, addr, bitlen)
#define spi_flash_ll_set_dummy(dev, dummy) gpspi_flash_ll_set_dummy((spi_dev_t*)dev, dummy)
#define spi_flash_ll_set_dummy_out(dev, en, lev) gpspi_flash_ll_set_dummy_out((spi_dev_t*)dev, en, lev)
#else
#define spi_flash_ll_reset(dev) spimem_flash_ll_reset((spi_mem_dev_t*)dev)
#define spi_flash_ll_cmd_is_done(dev) spimem_flash_ll_cmd_is_done((spi_mem_dev_t*)dev)
#define spi_flash_ll_erase_chip(dev) spimem_flash_ll_erase_chip((spi_mem_dev_t*)dev)
#define spi_flash_ll_erase_sector(dev) spimem_flash_ll_erase_sector((spi_mem_dev_t*)dev)
#define spi_flash_ll_erase_block(dev) spimem_flash_ll_erase_block((spi_mem_dev_t*)dev)
#define spi_flash_ll_set_write_protect(dev, wp) spimem_flash_ll_set_write_protect((spi_mem_dev_t*)dev, wp)
#define spi_flash_ll_get_buffer_data(dev, buffer, read_len) spimem_flash_ll_get_buffer_data((spi_mem_dev_t*)dev, buffer, read_len)
#define spi_flash_ll_set_buffer_data(dev, buffer, len) spimem_flash_ll_set_buffer_data((spi_mem_dev_t*)dev, buffer, len)
#define spi_flash_ll_program_page(dev, buffer, len) spimem_flash_ll_program_page((spi_mem_dev_t*)dev, buffer, len)
#define spi_flash_ll_user_start(dev) spimem_flash_ll_user_start((spi_mem_dev_t*)dev)
#define spi_flash_ll_host_idle(dev) spimem_flash_ll_host_idle((spi_mem_dev_t*)dev)
#define spi_flash_ll_read_phase(dev) spimem_flash_ll_read_phase((spi_mem_dev_t*)dev)
#define spi_flash_ll_set_cs_pin(dev, pin) spimem_flash_ll_set_cs_pin((spi_mem_dev_t*)dev, pin)
#define spi_flash_ll_set_read_mode(dev, read_mode) spimem_flash_ll_set_read_mode((spi_mem_dev_t*)dev, read_mode)
#define spi_flash_ll_set_clock(dev, clk) spimem_flash_ll_set_clock((spi_mem_dev_t*)dev, (spimem_flash_ll_clock_reg_t*)clk)
#define spi_flash_ll_set_miso_bitlen(dev, bitlen) spimem_flash_ll_set_miso_bitlen((spi_mem_dev_t*)dev, bitlen)
#define spi_flash_ll_set_mosi_bitlen(dev, bitlen) spimem_flash_ll_set_mosi_bitlen((spi_mem_dev_t*)dev, bitlen)
#define spi_flash_ll_set_command8(dev, cmd) spimem_flash_ll_set_command8((spi_mem_dev_t*)dev, cmd)
#define spi_flash_ll_set_addr_bitlen(dev, bitlen) spimem_flash_ll_set_addr_bitlen((spi_mem_dev_t*)dev, bitlen)
#define spi_flash_ll_get_addr_bitlen(dev) spimem_flash_ll_get_addr_bitlen((spi_mem_dev_t*) dev)
#define spi_flash_ll_set_address(dev, addr) spimem_flash_ll_set_address((spi_mem_dev_t*)dev, addr)
#define spi_flash_ll_set_usr_address(dev, addr, bitlen) spimem_flash_ll_set_address((spi_mem_dev_t*)dev, addr)
#define spi_flash_ll_set_dummy(dev, dummy) spimem_flash_ll_set_dummy((spi_mem_dev_t*)dev, dummy)
#define spi_flash_ll_set_dummy_out(dev, en, lev) spimem_flash_ll_set_dummy_out((spi_mem_dev_t*)dev, en, lev)
#endif

View File

@@ -0,0 +1,860 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The LL layer for ESP32-S2 SPI register operations
#pragma once
#include <stdlib.h> //for abs()
#include <string.h>
#include "hal/hal_defs.h"
#include "esp_types.h"
#include "soc/spi_periph.h"
#include "esp32s2/rom/lldesc.h"
/// Registers to reset during initialization. Don't use in app.
#define SPI_LL_RST_MASK (SPI_OUT_RST | SPI_IN_RST | SPI_AHBM_RST | SPI_AHBM_FIFO_RST)
/// Interrupt not used. Don't use in app.
#define SPI_LL_UNUSED_INT_MASK (SPI_INT_TRANS_DONE_EN | SPI_INT_WR_DMA_DONE_EN | SPI_INT_RD_DMA_DONE_EN | SPI_INT_WR_BUF_DONE_EN | SPI_INT_RD_BUF_DONE_EN)
/// Swap the bit order to its correct place to send
#define HAL_SPI_SWAP_DATA_TX(data, len) HAL_SWAP32((uint32_t)data<<(32-len))
#define SPI_LL_GET_HW(ID) ((ID)==0? ({abort();NULL;}):((ID)==1? &GPSPI2 : &GPSPI3))
/**
* The data structure holding calculated clock configuration. Since the
* calculation needs long time, it should be calculated during initialization and
* stored somewhere to be quickly used.
*/
typedef uint32_t spi_ll_clock_val_t;
/** IO modes supported by the master. */
typedef enum {
SPI_LL_IO_MODE_NORMAL = 0, ///< 1-bit mode for all phases
SPI_LL_IO_MODE_DIO, ///< 2-bit mode for address and data phases, 1-bit mode for command phase
SPI_LL_IO_MODE_DUAL, ///< 2-bit mode for data phases only, 1-bit mode for command and address phases
SPI_LL_IO_MODE_QIO, ///< 4-bit mode for address and data phases, 1-bit mode for command phase
SPI_LL_IO_MODE_QUAD, ///< 4-bit mode for data phases only, 1-bit mode for command and address phases
} spi_ll_io_mode_t;
/// Interrupt type for different working pattern
typedef enum {
SPI_LL_INT_TYPE_NORMAL = 0, ///< Typical pattern, only wait for trans done
SPI_LL_INT_TYPE_SEG = 1, ///< Wait for DMA signals
} spi_ll_slave_intr_type;
/*------------------------------------------------------------------------------
* Control
*----------------------------------------------------------------------------*/
/**
* Initialize SPI peripheral (master).
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_master_init(spi_dev_t *hw)
{
//Reset DMA
hw->dma_conf.val |= SPI_LL_RST_MASK;
hw->dma_out_link.start = 0;
hw->dma_in_link.start = 0;
hw->dma_conf.val &= ~SPI_LL_RST_MASK;
//Reset timing
hw->ctrl2.val = 0;
//use all 64 bytes of the buffer
hw->user.usr_miso_highpart = 0;
hw->user.usr_mosi_highpart = 0;
//Disable unneeded ints
hw->slave.val &= ~SPI_LL_UNUSED_INT_MASK;
//disable a feature may cause transaction to be too long
hw->user.usr_prep_hold = 0;
}
/**
* Initialize SPI peripheral (slave).
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_slave_init(spi_dev_t *hw)
{
//Configure slave
hw->clock.val = 0;
hw->user.val = 0;
hw->ctrl.val = 0;
hw->user.doutdin = 1; //we only support full duplex
hw->user.sio = 0;
hw->slave.slave_mode = 1;
hw->dma_conf.val |= SPI_LL_RST_MASK;
hw->dma_out_link.start = 0;
hw->dma_in_link.start = 0;
hw->dma_conf.val &= ~SPI_LL_RST_MASK;
hw->slave.soft_reset = 1;
hw->slave.soft_reset = 0;
//use all 64 bytes of the buffer
hw->user.usr_miso_highpart = 0;
hw->user.usr_mosi_highpart = 0;
//by default seg mode is disabled
hw->dma_conf.dma_continue = 0;
//Disable unneeded ints
hw->slave.val &= ~SPI_LL_UNUSED_INT_MASK;
hw->dma_int_ena.val = 0;
}
/**
* Reset TX and RX DMAs.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_reset_dma(spi_dev_t *hw)
{
//Reset DMA peripheral
hw->dma_conf.val |= SPI_LL_RST_MASK;
hw->dma_out_link.start = 0;
hw->dma_in_link.start = 0;
hw->dma_conf.val &= ~SPI_LL_RST_MASK;
hw->dma_conf.out_data_burst_en = 0;
hw->dma_conf.indscr_burst_en = 1;
hw->dma_conf.outdscr_burst_en = 1;
hw->dma_in_link.dma_rx_ena = 0;
assert(hw->dma_in_link.dma_rx_ena == 0);
}
/**
* Start RX DMA.
*
* @param hw Beginning address of the peripheral registers.
* @param addr Address of the beginning DMA descriptor.
*/
static inline void spi_ll_rxdma_start(spi_dev_t *hw, lldesc_t *addr)
{
hw->dma_in_link.addr = (int) addr & 0xFFFFF;
hw->dma_in_link.start = 1;
}
/**
* Start TX DMA.
*
* @param hw Beginning address of the peripheral registers.
* @param addr Address of the beginning DMA descriptor.
*/
static inline void spi_ll_txdma_start(spi_dev_t *hw, lldesc_t *addr)
{
hw->dma_out_link.addr = (int) addr & 0xFFFFF;
hw->dma_out_link.start = 1;
}
/**
* Write to SPI buffer.
*
* @param hw Beginning address of the peripheral registers.
* @param buffer_to_send Data address to copy to the buffer.
* @param bitlen Length to copy, in bits.
*/
static inline void spi_ll_write_buffer(spi_dev_t *hw, const uint8_t *buffer_to_send, size_t bitlen)
{
for (int x = 0; x < bitlen; x += 32) {
//Use memcpy to get around alignment issues for txdata
uint32_t word;
memcpy(&word, &buffer_to_send[x / 8], 4);
hw->data_buf[(x / 32)] = word;
}
}
/**
* Read from SPI buffer.
*
* @param hw Beginning address of the peripheral registers.
* @param buffer_to_rcv Address to copy buffer data to.
* @param bitlen Length to copy, in bits.
*/
static inline void spi_ll_read_buffer(spi_dev_t *hw, uint8_t *buffer_to_rcv, size_t bitlen)
{
for (int x = 0; x < bitlen; x += 32) {
//Do a memcpy to get around possible alignment issues in rx_buffer
uint32_t word = hw->data_buf[x / 32];
int len = bitlen - x;
if (len > 32) {
len = 32;
}
memcpy(&buffer_to_rcv[x / 8], &word, (len + 7) / 8);
}
}
/**
* Check whether user-defined transaction is done.
*
* @param hw Beginning address of the peripheral registers.
*
* @return true if transaction is done, otherwise false.
*/
static inline bool spi_ll_usr_is_done(spi_dev_t *hw)
{
return hw->slave.trans_done;
}
/**
* Trigger start of user-defined transaction.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_user_start(spi_dev_t *hw)
{
hw->cmd.usr = 1;
}
/**
* Get current running command bit-mask. (Preview)
*
* @param hw Beginning address of the peripheral registers.
*
* @return Bitmask of running command, see ``SPI_CMD_REG``. 0 if no in-flight command.
*/
static inline uint32_t spi_ll_get_running_cmd(spi_dev_t *hw)
{
return hw->cmd.val;
}
/**
* Disable the trans_done interrupt.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_disable_int(spi_dev_t *hw)
{
hw->slave.int_trans_done_en = 0;
}
/**
* Clear the trans_done interrupt.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_clear_int_stat(spi_dev_t *hw)
{
hw->slave.trans_done = 0;
hw->dma_int_clr.val = UINT32_MAX;
}
/**
* Set the trans_done interrupt.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_set_int_stat(spi_dev_t *hw)
{
hw->slave.trans_done = 1;
}
/**
* Enable the trans_done interrupt.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_enable_int(spi_dev_t *hw)
{
hw->slave.int_trans_done_en = 1;
}
/**
* Set different interrupt types for the slave.
*
* @param hw Beginning address of the peripheral registers.
* @param int_type Interrupt type
*/
static inline void spi_ll_slave_set_int_type(spi_dev_t *hw, spi_ll_slave_intr_type int_type)
{
switch (int_type) {
case SPI_LL_INT_TYPE_SEG:
hw->dma_int_ena.in_suc_eof = 1;
hw->dma_int_ena.out_total_eof = 1;
hw->slave.int_trans_done_en = 0;
break;
default:
hw->dma_int_ena.in_suc_eof = 0;
hw->dma_int_ena.out_total_eof = 0;
hw->slave.int_trans_done_en = 1;
}
}
/*------------------------------------------------------------------------------
* Configs: mode
*----------------------------------------------------------------------------*/
/**
* Enable/disable the postive-cs feature.
*
* @param hw Beginning address of the peripheral registers.
* @param cs One of the CS (0-2) to enable/disable the feature.
* @param pos_cs true to enable the feature, otherwise disable (default).
*/
static inline void spi_ll_master_set_pos_cs(spi_dev_t *hw, int cs, uint32_t pos_cs)
{
if (pos_cs) {
hw->misc.master_cs_pol |= (1 << cs);
} else {
hw->misc.master_cs_pol &= (1 << cs);
}
}
/**
* Enable/disable the LSBFIRST feature for TX data.
*
* @param hw Beginning address of the peripheral registers.
* @param lsbfirst true if LSB of TX data to be sent first, otherwise MSB is sent first (default).
*/
static inline void spi_ll_set_tx_lsbfirst(spi_dev_t *hw, bool lsbfirst)
{
hw->ctrl.wr_bit_order = lsbfirst;
}
/**
* Enable/disable the LSBFIRST feature for RX data.
*
* @param hw Beginning address of the peripheral registers.
* @param lsbfirst true if first bit received as LSB, otherwise as MSB (default).
*/
static inline void spi_ll_set_rx_lsbfirst(spi_dev_t *hw, bool lsbfirst)
{
hw->ctrl.rd_bit_order = lsbfirst;
}
/**
* Set SPI mode for the peripheral as master.
*
* @param hw Beginning address of the peripheral registers.
* @param mode SPI mode to work at, 0-3.
*/
static inline void spi_ll_master_set_mode(spi_dev_t *hw, uint8_t mode)
{
//Configure polarity
if (mode == 0) {
hw->misc.ck_idle_edge = 0;
hw->user.ck_out_edge = 0;
} else if (mode == 1) {
hw->misc.ck_idle_edge = 0;
hw->user.ck_out_edge = 1;
} else if (mode == 2) {
hw->misc.ck_idle_edge = 1;
hw->user.ck_out_edge = 1;
} else if (mode == 3) {
hw->misc.ck_idle_edge = 1;
hw->user.ck_out_edge = 0;
}
}
/**
* Set SPI mode for the peripheral as slave.
*
* @param hw Beginning address of the peripheral registers.
* @param mode SPI mode to work at, 0-3.
*/
static inline void spi_ll_slave_set_mode(spi_dev_t *hw, const int mode, bool dma_used)
{
if (mode == 0) {
hw->misc.ck_idle_edge = 0;
hw->user.rsck_i_edge = 0;
hw->user.tsck_i_edge = 0;
hw->ctrl1.clk_mode_13 = 0;
} else if (mode == 1) {
hw->misc.ck_idle_edge = 0;
hw->user.rsck_i_edge = 1;
hw->user.tsck_i_edge = 1;
hw->ctrl1.clk_mode_13 = 1;
} else if (mode == 2) {
hw->misc.ck_idle_edge = 1;
hw->user.rsck_i_edge = 1;
hw->user.tsck_i_edge = 1;
hw->ctrl1.clk_mode_13 = 0;
} else if (mode == 3) {
hw->misc.ck_idle_edge = 1;
hw->user.rsck_i_edge = 0;
hw->user.tsck_i_edge = 0;
hw->ctrl1.clk_mode_13 = 1;
}
hw->ctrl1.rsck_data_out = 0;
}
/**
* Set SPI to work in full duplex or half duplex mode.
*
* @param hw Beginning address of the peripheral registers.
* @param half_duplex true to work in half duplex mode, otherwise in full duplex mode.
*/
static inline void spi_ll_set_half_duplex(spi_dev_t *hw, bool half_duplex)
{
hw->user.doutdin = !half_duplex;
}
/**
* Set SPI to work in SIO mode or not.
*
* SIO is a mode which MOSI and MISO share a line. The device MUST work in half-duplexmode.
*
* @param hw Beginning address of the peripheral registers.
* @param sio_mode true to work in SIO mode, otherwise false.
*/
static inline void spi_ll_set_sio_mode(spi_dev_t *hw, int sio_mode)
{
hw->user.sio = sio_mode;
}
/**
* Configure the io mode for the master to work at.
*
* @param hw Beginning address of the peripheral registers.
* @param io_mode IO mode to work at, see ``spi_ll_io_mode_t``.
*/
static inline void spi_ll_master_set_io_mode(spi_dev_t *hw, spi_ll_io_mode_t io_mode)
{
if (io_mode == SPI_LL_IO_MODE_DIO || io_mode == SPI_LL_IO_MODE_DUAL) {
hw->ctrl.fcmd_dual= (io_mode == SPI_LL_IO_MODE_DIO) ? 1 : 0;
hw->ctrl.faddr_dual= (io_mode == SPI_LL_IO_MODE_DIO) ? 1 : 0;
hw->ctrl.fread_dual=1;
hw->user.fwrite_dual=1;
hw->ctrl.fcmd_quad = 0;
hw->ctrl.faddr_quad = 0;
hw->ctrl.fread_quad = 0;
hw->user.fwrite_quad = 0;
} else if (io_mode == SPI_LL_IO_MODE_QIO || io_mode == SPI_LL_IO_MODE_QUAD) {
hw->ctrl.fcmd_quad = (io_mode == SPI_LL_IO_MODE_QIO) ? 1 : 0;
hw->ctrl.faddr_quad = (io_mode == SPI_LL_IO_MODE_QIO) ? 1 : 0;
hw->ctrl.fread_quad=1;
hw->user.fwrite_quad=1;
hw->ctrl.fcmd_dual = 0;
hw->ctrl.faddr_dual = 0;
hw->ctrl.fread_dual = 0;
hw->user.fwrite_dual = 0;
} else {
hw->ctrl.fcmd_dual = 0;
hw->ctrl.faddr_dual = 0;
hw->ctrl.fread_dual = 0;
hw->user.fwrite_dual = 0;
hw->ctrl.fcmd_quad = 0;
hw->ctrl.faddr_quad = 0;
hw->ctrl.fread_quad = 0;
hw->user.fwrite_quad = 0;
}
}
/**
* Select one of the CS to use in current transaction.
*
* @param hw Beginning address of the peripheral registers.
* @param cs_id The cs to use, 0-2, otherwise none of them is used.
*/
static inline void spi_ll_master_select_cs(spi_dev_t *hw, int cs_id)
{
hw->misc.cs0_dis = (cs_id == 0) ? 0 : 1;
hw->misc.cs1_dis = (cs_id == 1) ? 0 : 1;
hw->misc.cs2_dis = (cs_id == 2) ? 0 : 1;
}
/*------------------------------------------------------------------------------
* Configs: parameters
*----------------------------------------------------------------------------*/
/**
* Set the clock for master by stored value.
*
* @param hw Beginning address of the peripheral registers.
* @param val stored clock configuration calculated before (by ``spi_ll_cal_clock``).
*/
static inline void spi_ll_master_set_clock_by_reg(spi_dev_t *hw, spi_ll_clock_val_t *val)
{
hw->clock.val = *(uint32_t *)val;
}
/**
* Get the frequency of given dividers. Don't use in app.
*
* @param fapb APB clock of the system.
* @param pre Pre devider.
* @param n main divider.
*
* @return Frequency of given dividers.
*/
static inline int spi_ll_freq_for_pre_n(int fapb, int pre, int n)
{
return (fapb / (pre * n));
}
/**
* Calculate the nearest frequency avaliable for master.
*
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param duty_cycle Duty cycle desired.
* @param out_reg Output address to store the calculated clock configurations for the return frequency.
*
* @return Actual (nearest) frequency.
*/
static inline int spi_ll_master_cal_clock(int fapb, int hz, int duty_cycle, spi_ll_clock_val_t *out_reg)
{
typeof(GPSPI2.clock) reg;
int eff_clk;
//In hw, n, h and l are 1-64, pre is 1-8K. Value written to register is one lower than used value.
if (hz > ((fapb / 4) * 3)) {
//Using Fapb directly will give us the best result here.
reg.clkcnt_l = 0;
reg.clkcnt_h = 0;
reg.clkcnt_n = 0;
reg.clkdiv_pre = 0;
reg.clk_equ_sysclk = 1;
eff_clk = fapb;
} else {
//For best duty cycle resolution, we want n to be as close to 32 as possible, but
//we also need a pre/n combo that gets us as close as possible to the intended freq.
//To do this, we bruteforce n and calculate the best pre to go along with that.
//If there's a choice between pre/n combos that give the same result, use the one
//with the higher n.
int pre, n, h, l;
int bestn = -1;
int bestpre = -1;
int besterr = 0;
int errval;
for (n = 2; n <= 64; n++) { //Start at 2: we need to be able to set h/l so we have at least one high and one low pulse.
//Effectively, this does pre=round((fapb/n)/hz).
pre = ((fapb / n) + (hz / 2)) / hz;
if (pre <= 0) {
pre = 1;
}
if (pre > 8192) {
pre = 8192;
}
errval = abs(spi_ll_freq_for_pre_n(fapb, pre, n) - hz);
if (bestn == -1 || errval <= besterr) {
besterr = errval;
bestn = n;
bestpre = pre;
}
}
n = bestn;
pre = bestpre;
l = n;
//This effectively does round((duty_cycle*n)/256)
h = (duty_cycle * n + 127) / 256;
if (h <= 0) {
h = 1;
}
reg.clk_equ_sysclk = 0;
reg.clkcnt_n = n - 1;
reg.clkdiv_pre = pre - 1;
reg.clkcnt_h = h - 1;
reg.clkcnt_l = l - 1;
eff_clk = spi_ll_freq_for_pre_n(fapb, pre, n);
}
if (out_reg != NULL) {
*(uint32_t *)out_reg = reg.val;
}
return eff_clk;
}
/**
* Calculate and set clock for SPI master according to desired parameters.
*
* This takes long, suggest to calculate the configuration during
* initialization by ``spi_ll_master_cal_clock`` and store the result, then
* configure the clock by stored value when used by
* ``spi_ll_msater_set_clock_by_reg``.
*
* @param hw Beginning address of the peripheral registers.
* @param fapb APB clock of the system.
* @param hz Frequncy desired.
* @param duty_cycle Duty cycle desired.
*
* @return Actual frequency that is used.
*/
static inline int spi_ll_master_set_clock(spi_dev_t *hw, int fapb, int hz, int duty_cycle)
{
spi_ll_clock_val_t reg_val;
int freq = spi_ll_master_cal_clock(fapb, hz, duty_cycle, &reg_val);
spi_ll_master_set_clock_by_reg(hw, &reg_val);
return freq;
}
/**
* Set the mosi delay after the output edge to the signal. (Preview)
*
* The delay mode/num is a Espressif conception, may change in the new chips.
*
* @param hw Beginning address of the peripheral registers.
* @param delay_mode Delay mode, see TRM.
* @param delay_num APB clocks to delay.
*/
static inline void spi_ll_set_mosi_delay(spi_dev_t *hw, int delay_mode, int delay_num)
{
//TODO: this doesn't make sense
hw->dout_num.dout0_num = 0;
hw->dout_num.dout1_num = 0;
}
/**
* Set the miso delay applied to the input signal before the internal peripheral. (Preview)
*
* The delay mode/num is a Espressif conception, may change in the new chips.
*
* @param hw Beginning address of the peripheral registers.
* @param delay_mode Delay mode, see TRM.
* @param delay_num APB clocks to delay.
*/
static inline void spi_ll_set_miso_delay(spi_dev_t *hw, int delay_mode, int delay_num)
{
//TODO: this doesn't make sense
hw->din_num.din0_num = 1;
hw->din_num.din1_num = 1;
}
/**
* Set dummy clocks to output before RX phase (master), or clocks to skip
* before the data phase and after the address phase (slave).
*
* Note this phase is also used to compensate RX timing in half duplex mode.
*
* @param hw Beginning address of the peripheral registers.
* @param dummy_n Dummy cycles used. 0 to disable the dummy phase.
*/
static inline void spi_ll_set_dummy(spi_dev_t *hw, int dummy_n)
{
hw->user.usr_dummy = dummy_n ? 1 : 0;
hw->user1.usr_dummy_cyclelen = dummy_n - 1;
}
/**
* Set the delay of SPI clocks before the CS inactive edge after the last SPI clock.
*
* @param hw Beginning address of the peripheral registers.
* @param hold Delay of SPI clocks after the last clock, 0 to disable the hold phase.
*/
static inline void spi_ll_master_set_cs_hold(spi_dev_t *hw, int hold)
{
hw->ctrl2.cs_hold_time = hold - 1;
hw->user.cs_hold = hold ? 1 : 0;
}
/**
* Set the delay of SPI clocks before the first SPI clock after the CS active edge.
*
* Note ESP32 doesn't support to use this feature when command/address phases
* are used in full duplex mode.
*
* @param hw Beginning address of the peripheral registers.
* @param setup Delay of SPI clocks after the CS active edge, 0 to disable the setup phase.
*/
static inline void spi_ll_master_set_cs_setup(spi_dev_t *hw, uint8_t setup)
{
hw->ctrl2.cs_setup_time = setup - 1;
hw->user.cs_setup = setup ? 1 : 0;
}
/**
* Enable/disable the segment transfer feature for the slave.
*
* @param hw Beginning address of the peripheral registers.
* @param en true to enable, false to disable.
*/
static inline void spi_ll_slave_set_seg_en(spi_dev_t *hw, bool en)
{
hw->dma_conf.dma_seg_trans_en = en;
}
/*------------------------------------------------------------------------------
* Configs: data
*----------------------------------------------------------------------------*/
/**
* Set the input length (master).
*
* @param hw Beginning address of the peripheral registers.
* @param bitlen input length, in bits.
*/
static inline void spi_ll_set_miso_bitlen(spi_dev_t *hw, size_t bitlen)
{
hw->miso_dlen.usr_miso_bit_len = bitlen - 1;
}
/**
* Set the output length (master).
*
* @param hw Beginning address of the peripheral registers.
* @param bitlen output length, in bits.
*/
static inline void spi_ll_set_mosi_bitlen(spi_dev_t *hw, size_t bitlen)
{
hw->mosi_dlen.usr_mosi_bit_len = bitlen - 1;
}
/**
* Set the maximum input length (slave).
*
* @param hw Beginning address of the peripheral registers.
* @param bitlen input length, in bits.
*/
static inline void spi_ll_slave_set_rx_bitlen(spi_dev_t *hw, size_t bitlen)
{
spi_ll_set_miso_bitlen(hw, bitlen);
}
/**
* Set the maximum output length (slave).
*
* @param hw Beginning address of the peripheral registers.
* @param bitlen output length, in bits.
*/
static inline void spi_ll_slave_set_tx_bitlen(spi_dev_t *hw, size_t bitlen)
{
spi_ll_set_miso_bitlen(hw, bitlen);
}
/**
* Set the length of command phase.
*
* When in 4-bit mode, the SPI cycles of the phase will be shorter. E.g. 16-bit
* command phases takes 4 cycles in 4-bit mode.
*
* @param hw Beginning address of the peripheral registers.
* @param bitlen Length of command phase, in bits. 0 to disable the command phase.
*/
static inline void spi_ll_set_command_bitlen(spi_dev_t *hw, int bitlen)
{
hw->user2.usr_command_bitlen = bitlen - 1;
hw->user.usr_command = bitlen ? 1 : 0;
}
/**
* Set the length of address phase.
*
* When in 4-bit mode, the SPI cycles of the phase will be shorter. E.g. 16-bit
* address phases takes 4 cycles in 4-bit mode.
*
* @param hw Beginning address of the peripheral registers.
* @param bitlen Length of address phase, in bits. 0 to disable the address phase.
*/
static inline void spi_ll_set_addr_bitlen(spi_dev_t *hw, int bitlen)
{
hw->user1.usr_addr_bitlen = bitlen - 1;
hw->user.usr_addr = bitlen ? 1 : 0;
}
/**
* Set the address value in an intuitive way.
*
* The length and lsbfirst is required to shift and swap the address to the right place.
*
* @param hw Beginning address of the peripheral registers.
* @param address Address to set
* @param addrlen Length of the address phase
* @param lsbfirst whether the LSB first feature is enabled.
*/
static inline void spi_ll_set_address(spi_dev_t *hw, uint64_t addr, int addrlen, uint32_t lsbfirst)
{
if (lsbfirst) {
/* The output address start from the LSB of the highest byte, i.e.
* addr[24] -> addr[31]
* ...
* addr[0] -> addr[7]
* So swap the byte order to let the LSB sent first.
*/
addr = HAL_SWAP32(addr);
//otherwise only addr register is sent
hw->addr = addr;
} else {
// shift the address to MSB of addr register.
// output address will be sent from MSB to LSB of addr register
hw->addr = addr << (32 - addrlen);
}
}
/**
* Set the command value in an intuitive way.
*
* The length and lsbfirst is required to shift and swap the command to the right place.
*
* @param hw Beginning command of the peripheral registers.
* @param command Command to set
* @param addrlen Length of the command phase
* @param lsbfirst whether the LSB first feature is enabled.
*/
static inline void spi_ll_set_command(spi_dev_t *hw, uint16_t cmd, int cmdlen, bool lsbfirst)
{
if (lsbfirst) {
// The output command start from bit0 to bit 15, kept as is.
hw->user2.usr_command_value = cmd;
} else {
/* Output command will be sent from bit 7 to 0 of command_value, and
* then bit 15 to 8 of the same register field. Shift and swap to send
* more straightly.
*/
hw->user2.usr_command_value = HAL_SPI_SWAP_DATA_TX(cmd, cmdlen);
}
}
/**
* Enable/disable the RX data phase.
*
* @param hw Beginning address of the peripheral registers.
* @param enable true if RX phase exist, otherwise false.
*/
static inline void spi_ll_enable_miso(spi_dev_t *hw, int enable)
{
hw->user.usr_miso = enable;
}
/**
* Enable/disable the TX data phase.
*
* @param hw Beginning address of the peripheral registers.
* @param enable true if TX phase exist, otherwise false.
*/
static inline void spi_ll_enable_mosi(spi_dev_t *hw, int enable)
{
hw->user.usr_mosi = enable;
}
/**
* Reset the slave peripheral before next transaction.
*
* @param hw Beginning address of the peripheral registers.
*/
static inline void spi_ll_slave_reset(spi_dev_t *hw)
{
hw->slave.soft_reset = 1;
hw->slave.soft_reset = 0;
}
/**
* Get the received bit length of the slave.
*
* @param hw Beginning address of the peripheral registers.
*
* @return Received bits of the slave.
*/
static inline uint32_t spi_ll_slave_get_rcv_bitlen(spi_dev_t *hw)
{
return hw->slv_rd_byte.data_bytelen * 8;
}
#undef SPI_LL_RST_MASK
#undef SPI_LL_UNUSED_INT_MASK

View File

@@ -0,0 +1,379 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The Lowlevel layer for SPI Flash
#pragma once
#include <stdlib.h>
#include <sys/param.h> // For MIN/MAX
#include <stdbool.h>
#include <string.h>
#include "soc/spi_periph.h"
#include "hal/spi_types.h"
#include "hal/spi_flash_types.h"
#define spimem_flash_ll_get_hw(host_id) (((host_id)==SPI1_HOST ? &SPIMEM1 : NULL ))
typedef typeof(SPIMEM1.clock) spimem_flash_ll_clock_reg_t;
//Supported clock register values
#define SPIMEM_FLASH_LL_CLKREG_VAL_5MHZ ((spimem_flash_ll_clock_reg_t){.val=0x000F070F}) ///< Clock set to 5 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_10MHZ ((spimem_flash_ll_clock_reg_t){.val=0x00070307}) ///< Clock set to 10 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_20MHZ ((spimem_flash_ll_clock_reg_t){.val=0x00030103}) ///< Clock set to 20 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_26MHZ ((spimem_flash_ll_clock_reg_t){.val=0x00020002}) ///< Clock set to 26 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_40MHZ ((spimem_flash_ll_clock_reg_t){.val=0x00010001}) ///< Clock set to 40 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_80MHZ ((spimem_flash_ll_clock_reg_t){.val=0x80000000}) ///< Clock set to 80 MHz
/*------------------------------------------------------------------------------
* Control
*----------------------------------------------------------------------------*/
/**
* Reset peripheral registers before configuration and starting control
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_reset(spi_mem_dev_t *dev)
{
dev->user.val = 0;
dev->ctrl.val = 0;
}
/**
* Check whether the previous operation is done.
*
* @param dev Beginning address of the peripheral registers.
*
* @return true if last command is done, otherwise false.
*/
static inline bool spimem_flash_ll_cmd_is_done(const spi_mem_dev_t *dev)
{
return (dev->cmd.val == 0);
}
/**
* Erase the flash chip.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_erase_chip(spi_mem_dev_t *dev)
{
dev->cmd.flash_ce = 1;
}
/**
* Erase the sector, the address should be set by spimem_flash_ll_set_address.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_erase_sector(spi_mem_dev_t *dev)
{
dev->ctrl.val = 0;
dev->cmd.flash_se = 1;
}
/**
* Erase the block, the address should be set by spimem_flash_ll_set_address.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_erase_block(spi_mem_dev_t *dev)
{
dev->cmd.flash_be = 1;
}
/**
* Enable/disable write protection for the flash chip.
*
* @param dev Beginning address of the peripheral registers.
* @param wp true to enable the protection, false to disable (write enable).
*/
static inline void spimem_flash_ll_set_write_protect(spi_mem_dev_t *dev, bool wp)
{
if (wp) {
dev->cmd.flash_wrdi = 1;
} else {
dev->cmd.flash_wren = 1;
}
}
/**
* Get the read data from the buffer after ``spimem_flash_ll_read`` is done.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer to hold the output data
* @param read_len Length to get out of the buffer
*/
static inline void spimem_flash_ll_get_buffer_data(spi_mem_dev_t *dev, void *buffer, uint32_t read_len)
{
if (((intptr_t)buffer % 4 == 0) && (read_len % 4 == 0)) {
// If everything is word-aligned, do a faster memcpy
memcpy(buffer, (void *)dev->data_buf, read_len);
} else {
// Otherwise, slow(er) path copies word by word
int copy_len = read_len;
for (int i = 0; i < (read_len + 3) / 4; i++) {
int word_len = MIN(sizeof(uint32_t), copy_len);
uint32_t word = dev->data_buf[i];
memcpy(buffer, &word, word_len);
buffer = (void *)((intptr_t)buffer + word_len);
copy_len -= word_len;
}
}
}
/**
* Set the data to be written in the data buffer.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer holding the data
* @param length Length of data in bytes.
*/
static inline void spimem_flash_ll_set_buffer_data(spi_mem_dev_t *dev, const void *buffer, uint32_t length)
{
// Load data registers, word at a time
int num_words = (length + 3) / 4;
for (int i = 0; i < num_words; i++) {
uint32_t word = 0;
uint32_t word_len = MIN(length, sizeof(word));
memcpy(&word, buffer, word_len);
dev->data_buf[i] = word;
length -= word_len;
buffer = (void *)((intptr_t)buffer + word_len);
}
}
/**
* Program a page of the flash chip. Call ``spimem_flash_ll_set_address`` before
* this to set the address to program.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer holding the data to program
* @param length Length to program.
*/
static inline void spimem_flash_ll_program_page(spi_mem_dev_t *dev, const void *buffer, uint32_t length)
{
dev->user.usr_dummy = 0;
spimem_flash_ll_set_buffer_data(dev, buffer, length);
dev->cmd.flash_pp = 1;
}
/**
* Trigger a user defined transaction. All phases, including command, address, dummy, and the data phases,
* should be configured before this is called.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_user_start(spi_mem_dev_t *dev)
{
dev->cmd.usr = 1;
}
/**
* Check whether the host is idle to perform new commands.
*
* @param dev Beginning address of the peripheral registers.
*
* @return true if the host is idle, otherwise false
*/
static inline bool spimem_flash_ll_host_idle(const spi_mem_dev_t *dev)
{
return dev->fsm.st != 0;
}
/**
* Set phases for user-defined transaction to read
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_read_phase(spi_mem_dev_t *dev)
{
typeof (dev->user) user = {
.usr_command = 1,
.usr_mosi = 0,
.usr_miso = 1,
.usr_addr = 1,
};
dev->user = user;
}
/*------------------------------------------------------------------------------
* Configs
*----------------------------------------------------------------------------*/
/**
* Select which pin to use for the flash
*
* @param dev Beginning address of the peripheral registers.
* @param pin Pin ID to use, 0-2. Set to other values to disable all the CS pins.
*/
static inline void spimem_flash_ll_set_cs_pin(spi_mem_dev_t *dev, int pin)
{
dev->misc.cs0_dis = (pin == 0) ? 0 : 1;
dev->misc.cs1_dis = (pin == 1) ? 0 : 1;
}
/**
* Set the read io mode.
*
* @param dev Beginning address of the peripheral registers.
* @param read_mode I/O mode to use in the following transactions.
*/
static inline void spimem_flash_ll_set_read_mode(spi_mem_dev_t *dev, esp_flash_io_mode_t read_mode)
{
typeof (dev->ctrl) ctrl = dev->ctrl;
ctrl.val &= ~(SPI_MEM_FREAD_QIO_M | SPI_MEM_FREAD_QUAD_M | SPI_MEM_FREAD_DIO_M | SPI_MEM_FREAD_DUAL_M);
ctrl.val |= SPI_MEM_FASTRD_MODE_M;
switch (read_mode) {
case SPI_FLASH_FASTRD:
//the default option
break;
case SPI_FLASH_QIO:
ctrl.fread_qio = 1;
break;
case SPI_FLASH_QOUT:
ctrl.fread_quad = 1;
break;
case SPI_FLASH_DIO:
ctrl.fread_dio = 1;
break;
case SPI_FLASH_DOUT:
ctrl.fread_dual = 1;
break;
case SPI_FLASH_SLOWRD:
ctrl.fastrd_mode = 0;
break;
default:
abort();
}
dev->ctrl = ctrl;
}
/**
* Set clock frequency to work at.
*
* @param dev Beginning address of the peripheral registers.
* @param clock_val pointer to the clock value to set
*/
static inline void spimem_flash_ll_set_clock(spi_mem_dev_t *dev, spimem_flash_ll_clock_reg_t *clock_val)
{
dev->clock = *clock_val;
}
/**
* Set the input length, in bits.
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of input, in bits.
*/
static inline void spimem_flash_ll_set_miso_bitlen(spi_mem_dev_t *dev, uint32_t bitlen)
{
dev->user.usr_miso = bitlen > 0;
dev->miso_dlen.usr_miso_bit_len = bitlen ? (bitlen - 1) : 0;
}
/**
* Set the output length, in bits (not including command, address and dummy
* phases)
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of output, in bits.
*/
static inline void spimem_flash_ll_set_mosi_bitlen(spi_mem_dev_t *dev, uint32_t bitlen)
{
dev->user.usr_mosi = bitlen > 0;
dev->mosi_dlen.usr_mosi_bit_len = bitlen ? (bitlen - 1) : 0;
}
/**
* Set the command with fixed length (8 bits).
*
* @param dev Beginning address of the peripheral registers.
* @param command Command to send
*/
static inline void spimem_flash_ll_set_command8(spi_mem_dev_t *dev, uint8_t command)
{
dev->user.usr_command = 1;
typeof(dev->user2) user2 = {
.usr_command_value = command,
.usr_command_bitlen = (8 - 1),
};
dev->user2 = user2;
}
/**
* Get the address length that is set in register, in bits.
*
* @param dev Beginning address of the peripheral registers.
*
*/
static inline int spimem_flash_ll_get_addr_bitlen(spi_mem_dev_t *dev)
{
return dev->user.usr_addr ? dev->user1.usr_addr_bitlen + 1 : 0;
}
/**
* Set the address length to send, in bits. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of the address, in bits
*/
static inline void spimem_flash_ll_set_addr_bitlen(spi_mem_dev_t *dev, uint32_t bitlen)
{
dev->user1.usr_addr_bitlen = (bitlen - 1);
dev->user.usr_addr = bitlen ? 1 : 0;
}
/**
* Set the address to send. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param addr Address to send
*/
static inline void spimem_flash_ll_set_address(spi_mem_dev_t *dev, uint32_t addr)
{
dev->addr = addr;
}
/**
* Set the length of dummy cycles.
*
* @param dev Beginning address of the peripheral registers.
* @param dummy_n Cycles of dummy phases
*/
static inline void spimem_flash_ll_set_dummy(spi_mem_dev_t *dev, uint32_t dummy_n)
{
dev->user.usr_dummy = dummy_n ? 1 : 0;
dev->user1.usr_dummy_cyclelen = dummy_n - 1;
}
/**
* Set D/Q output level during dummy phase
*
* @param dev Beginning address of the peripheral registers.
* @param out_en whether to enable IO output for dummy phase
* @param out_level dummy output level
*/
static inline void spimem_flash_ll_set_dummy_out(spi_mem_dev_t *dev, uint32_t out_en, uint32_t out_lev)
{
dev->ctrl.fdummy_out = out_en;
dev->ctrl.q_pol = out_lev;
dev->ctrl.d_pol = out_lev;
}

View File

@@ -0,0 +1,564 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The LL layer for Timer Group register operations.
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdlib.h>
#include "hal/timer_types.h"
#include "soc/timer_periph.h"
_Static_assert(TIMER_INTR_T0 == TIMG_T0_INT_CLR, "Add mapping to LL interrupt handling, since it's no longer naturally compatible with the timer_intr_t");
_Static_assert(TIMER_INTR_T1 == TIMG_T1_INT_CLR, "Add mapping to LL interrupt handling, since it's no longer naturally compatible with the timer_intr_t");
_Static_assert(TIMER_INTR_WDT == TIMG_WDT_INT_CLR, "Add mapping to LL interrupt handling, since it's no longer naturally compatible with the timer_intr_t");
typedef struct {
timg_dev_t *dev;
timer_idx_t idx;
} timer_ll_context_t;
// Get timer group instance with giving group number
#define TIMER_LL_GET_HW(num) ((num == 0) ? (&TIMERG0) : (&TIMERG1))
/**
* @brief Set timer clock prescale value
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param divider Prescale value
*
* @return None
*/
static inline void timer_ll_set_divider(timg_dev_t *hw, timer_idx_t timer_num, uint16_t divider)
{
int timer_en = hw->hw_timer[timer_num].config.enable;
hw->hw_timer[timer_num].config.enable = 0;
hw->hw_timer[timer_num].config.divider = divider;
hw->hw_timer[timer_num].config.enable = timer_en;
}
/**
* @brief Get timer clock prescale value
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param divider Pointer to accept the prescale value
*
* @return None
*/
static inline void timer_ll_get_divider(timg_dev_t *hw, timer_idx_t timer_num, uint16_t *divider)
{
*divider = hw->hw_timer[timer_num].config.divider;
}
/**
* @brief Load counter value into time-base counter
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param load_val Counter value
*
* @return None
*/
static inline void timer_ll_set_counter_value(timg_dev_t *hw, timer_idx_t timer_num, uint64_t load_val)
{
hw->hw_timer[timer_num].load_high = (uint32_t) (load_val >> 32);
hw->hw_timer[timer_num].load_low = (uint32_t) load_val;
hw->hw_timer[timer_num].reload = 1;
}
/**
* @brief Get counter value from time-base counter
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param timer_val Pointer to accept the counter value
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_get_counter_value(timg_dev_t *hw, timer_idx_t timer_num, uint64_t *timer_val)
{
hw->hw_timer[timer_num].update.update = 1;
*timer_val = ((uint64_t) hw->hw_timer[timer_num].cnt_high << 32) | (hw->hw_timer[timer_num].cnt_low);
}
/**
* @brief Set counter mode, include increment mode and decrement mode.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param increase_en True to increment mode, fasle to decrement mode
*
* @return None
*/
static inline void timer_ll_set_counter_increase(timg_dev_t *hw, timer_idx_t timer_num, bool increase_en)
{
hw->hw_timer[timer_num].config.increase = increase_en;
}
/**
* @brief Get counter mode, include increment mode and decrement mode.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return
* - true Increment mode
* - false Decrement mode
*/
static inline bool timer_ll_get_counter_increase(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.increase;
}
/**
* @brief Set counter status, enable or disable counter.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param counter_en True to enable counter, false to disable counter
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_set_counter_enable(timg_dev_t *hw, timer_idx_t timer_num, bool counter_en)
{
hw->hw_timer[timer_num].config.enable = counter_en;
}
/**
* @brief Get counter status.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return
* - true Enable counter
* - false Disable conuter
*/
static inline bool timer_ll_get_counter_enable(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.enable;
}
/**
* @brief Set auto reload mode.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param auto_reload_en True to enable auto reload mode, flase to disable auto reload mode
*
* @return None
*/
static inline void timer_ll_set_auto_reload(timg_dev_t *hw, timer_idx_t timer_num, bool auto_reload_en)
{
hw->hw_timer[timer_num].config.autoreload = auto_reload_en;
}
/**
* @brief Get auto reload mode.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return
* - true Enable auto reload mode
* - false Disable auto reload mode
*/
FORCE_INLINE_ATTR bool timer_ll_get_auto_reload(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.autoreload;
}
/**
* @brief Set the counter value to trigger the alarm.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param alarm_value Counter value to trigger the alarm
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_set_alarm_value(timg_dev_t *hw, timer_idx_t timer_num, uint64_t alarm_value)
{
hw->hw_timer[timer_num].alarm_high = (uint32_t) (alarm_value >> 32);
hw->hw_timer[timer_num].alarm_low = (uint32_t) alarm_value;
}
/**
* @brief Get the counter value to trigger the alarm.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param alarm_value Pointer to accept the counter value to trigger the alarm
*
* @return None
*/
static inline void timer_ll_get_alarm_value(timg_dev_t *hw, timer_idx_t timer_num, uint64_t *alarm_value)
{
*alarm_value = ((uint64_t) hw->hw_timer[timer_num].alarm_high << 32) | (hw->hw_timer[timer_num].alarm_low);
}
/**
* @brief Set the alarm status, enable or disable the alarm.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param alarm_en True to enable alarm, false to disable alarm
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_set_alarm_enable(timg_dev_t *hw, timer_idx_t timer_num, bool alarm_en)
{
hw->hw_timer[timer_num].config.alarm_en = alarm_en;
}
/**
* @brief Get the alarm status.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return
* - true Enable alarm
* - false Disable alarm
*/
static inline bool timer_ll_get_alarm_enable(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.alarm_en;
}
/**
* @brief Enable timer interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_intr_enable(timg_dev_t *hw, timer_idx_t timer_num)
{
hw->int_ena.val |= BIT(timer_num);
}
/**
* @brief Disable timer interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_intr_disable(timg_dev_t *hw, timer_idx_t timer_num)
{
hw->int_ena.val &= (~BIT(timer_num));
}
/**
* @brief Disable timer interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_clear_intr_status(timg_dev_t *hw, timer_idx_t timer_num)
{
hw->int_clr.val |= BIT(timer_num);
}
/**
* @brief Get interrupt status.
*
* @param hw Beginning address of the peripheral registers.
* @param intr_status Interrupt status
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_get_intr_status(timg_dev_t *hw, uint32_t *intr_status)
{
*intr_status = hw->int_st.val;
}
/**
* @brief Get interrupt raw status.
*
* @param group_num Timer group number, 0 for TIMERG0 or 1 for TIMERG1
* @param intr_raw_status Interrupt raw status
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_get_intr_raw_status(timer_group_t group_num, uint32_t *intr_raw_status)
{
timg_dev_t *hw = TIMER_LL_GET_HW(group_num);
*intr_raw_status = hw->int_raw.val;
}
/**
* @brief Set the level interrupt status, enable or disable the level interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param level_int_en True to enable level interrupt, false to disable level interrupt
*
* @return None
*/
static inline void timer_ll_set_level_int_enable(timg_dev_t *hw, timer_idx_t timer_num, bool level_int_en)
{
hw->hw_timer[timer_num].config.level_int_en = level_int_en;
}
/**
* @brief Get the level interrupt status.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return
* - true Enable level interrupt
* - false Disable level interrupt
*/
static inline bool timer_ll_get_level_int_enable(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.level_int_en;
}
/**
* @brief Set the edge interrupt status, enable or disable the edge interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param edge_int_en True to enable edge interrupt, false to disable edge interrupt
*
* @return None
*/
static inline void timer_ll_set_edge_int_enable(timg_dev_t *hw, timer_idx_t timer_num, bool edge_int_en)
{
hw->hw_timer[timer_num].config.edge_int_en = edge_int_en;
}
/**
* @brief Get the edge interrupt status.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return
* - true Enable edge interrupt
* - false Disable edge interrupt
*/
static inline bool timer_ll_get_edge_int_enable(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.edge_int_en;
}
/**
* @brief Get interrupt status register address.
*
* @param hw Beginning address of the peripheral registers.
* @param intr_status_reg Interrupt status register address
*
* @return None
*/
static inline void timer_ll_get_intr_status_reg(timg_dev_t *hw, uint32_t *intr_status_reg)
{
*intr_status_reg = (uint32_t)&(hw->int_st.val);
}
/**
* @brief Set clock source.
*
* @param hal Context of the HAL layer
* @param use_xtal_en True to use XTAL clock, flase to use APB clock
*
* @return None
*/
static inline void timer_ll_set_use_xtal(timg_dev_t *hw, timer_idx_t timer_num, bool use_xtal_en)
{
hw->hw_timer[timer_num].config.use_xtal = use_xtal_en;
}
/**
* @brief Get clock source.
*
* @param hal Context of the HAL layer
*
* @return
* - true Use XTAL clock
* - false Use APB clock
*/
static inline bool timer_ll_get_use_xtal(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.use_xtal;
}
/* WDT operations */
/**
* @brief Unlock/lock the WDT register in case of mis-operations.
*
* @param hw Beginning address of the peripheral registers.
* @param protect true to lock, false to unlock before operations.
*/
FORCE_INLINE_ATTR void timer_ll_wdt_set_protect(timg_dev_t* hw, bool protect)
{
hw->wdt_wprotect=(protect? 0: TIMG_WDT_WKEY_VALUE);
}
/**
* @brief Initialize WDT.
*
* @param hw Beginning address of the peripheral registers.
*
* @note Call `timer_ll_wdt_set_protect` first
*/
FORCE_INLINE_ATTR void timer_ll_wdt_init(timg_dev_t* hw)
{
hw->wdt_config0.sys_reset_length=7; //3.2uS
hw->wdt_config0.cpu_reset_length=7; //3.2uS
//currently only level interrupt is supported
hw->wdt_config0.level_int_en = 1;
hw->wdt_config0.edge_int_en = 0;
}
/**
* @brief Set the WDT tick time.
*
* @param hw Beginning address of the peripheral registers.
* @param tick_time_us Tick time.
*/
FORCE_INLINE_ATTR void timer_ll_wdt_set_tick(timg_dev_t* hw, int tick_time_us)
{
hw->wdt_config1.clk_prescale=80*tick_time_us;
}
/**
* @brief Feed the WDT.
*
* @param hw Beginning address of the peripheral registers.
*/
FORCE_INLINE_ATTR void timer_ll_wdt_feed(timg_dev_t* hw)
{
hw->wdt_feed = 1;
}
/**
* @brief Set the WDT timeout.
*
* @param hw Beginning address of the peripheral registers.
* @param stage Stage number of WDT.
* @param timeout_Tick tick threshold of timeout.
*/
FORCE_INLINE_ATTR void timer_ll_wdt_set_timeout(timg_dev_t* hw, int stage, uint32_t timeout_tick)
{
switch (stage) {
case 0:
hw->wdt_config2=timeout_tick;
break;
case 1:
hw->wdt_config3=timeout_tick;
break;
case 2:
hw->wdt_config4=timeout_tick;
break;
case 3:
hw->wdt_config5=timeout_tick;
break;
default:
abort();
}
}
_Static_assert(TIMER_WDT_OFF == TIMG_WDT_STG_SEL_OFF, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with the timer_wdt_behavior_t");
_Static_assert(TIMER_WDT_INT == TIMG_WDT_STG_SEL_INT, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with the timer_wdt_behavior_t");
_Static_assert(TIMER_WDT_RESET_CPU == TIMG_WDT_STG_SEL_RESET_CPU, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with the timer_wdt_behavior_t");
_Static_assert(TIMER_WDT_RESET_SYSTEM == TIMG_WDT_STG_SEL_RESET_SYSTEM, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with the timer_wdt_behavior_t");
/**
* @brief Set the WDT timeout behavior.
*
* @param hw Beginning address of the peripheral registers.
* @param stage Stage number of WDT.
* @param behavior Behavior of WDT, please see enum timer_wdt_behavior_t.
*/
FORCE_INLINE_ATTR void timer_ll_wdt_set_timeout_behavior(timg_dev_t* hw, int stage, timer_wdt_behavior_t behavior)
{
switch (stage) {
case 0:
hw->wdt_config0.stg0 = behavior;
break;
case 1:
hw->wdt_config0.stg1 = behavior;
break;
case 2:
hw->wdt_config0.stg2 = behavior;
break;
case 3:
hw->wdt_config0.stg3 = behavior;
break;
default:
abort();
}
}
/**
* @brief Enable/Disable the WDT enable.
*
* @param hw Beginning address of the peripheral registers.
* @param enable True to enable WDT, false to disable WDT.
*/
FORCE_INLINE_ATTR void timer_ll_wdt_set_enable(timg_dev_t* hw, bool enable)
{
hw->wdt_config0.en = enable;
}
/**
* @brief Enable/Disable the WDT flashboot mode.
*
* @param hw Beginning address of the peripheral registers.
* @param enable True to enable WDT flashboot mode, false to disable WDT flashboot mode.
*/
FORCE_INLINE_ATTR void timer_ll_wdt_flashboot_en(timg_dev_t* hw, bool enable)
{
hw->wdt_config0.flashboot_mod_en = enable;
}
/**
* @brief Clear the WDT interrupt status.
*
* @param hw Beginning address of the peripheral registers.
*/
FORCE_INLINE_ATTR void timer_ll_wdt_clear_intr_status(timg_dev_t* hw)
{
hw->int_clr.wdt = 1;
}
/**
* @brief Enable the WDT interrupt.
*
* @param hw Beginning address of the peripheral registers.
*/
FORCE_INLINE_ATTR void timer_ll_wdt_enable_intr(timg_dev_t* hw)
{
hw->int_ena.wdt = 1;
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,572 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The HAL layer for touch sensor (esp32s2 specific part)
#pragma once
#include "hal/touch_sensor_ll.h"
#include "hal/touch_sensor_types.h"
/**
* Reset the whole of touch module.
*
* @note Call this funtion after `touch_pad_fsm_stop`,
*/
#define touch_hal_reset() touch_ll_reset()
/**
* Set touch sensor measurement time.
*
* @param meas_time The duration of the touch sensor measurement.
* t_meas = meas_time / (8MHz), the maximum measure time is 0xffff / 8M = 8.19 ms.
*/
#define touch_hal_set_meas_times(meas_time) touch_ll_set_meas_times(meas_time)
/**
* Get touch sensor times of charge and discharge.
*
* @param meas_times Pointer to accept times count of charge and discharge.
*/
#define touch_hal_get_measure_times(meas_time) touch_ll_get_measure_times(meas_time)
/**
* Set connection type of touch channel in idle status.
* When a channel is in measurement mode, other initialized channels are in idle mode.
* The touch channel is generally adjacent to the trace, so the connection state of the idle channel
* affects the stability and sensitivity of the test channel.
* The `CONN_HIGHZ`(high resistance) setting increases the sensitivity of touch channels.
* The `CONN_GND`(grounding) setting increases the stability of touch channels.
*
* @param type Select idle channel connect to high resistance state or ground.
*/
#define touch_hal_set_inactive_connect(type) touch_ll_set_inactive_connect(type)
/**
* Set connection type of touch channel in idle status.
* When a channel is in measurement mode, other initialized channels are in idle mode.
* The touch channel is generally adjacent to the trace, so the connection state of the idle channel
* affects the stability and sensitivity of the test channel.
* The `CONN_HIGHZ`(high resistance) setting increases the sensitivity of touch channels.
* The `CONN_GND`(grounding) setting increases the stability of touch channels.
*
* @param type Select idle channel connect to high resistance state or ground.
*/
#define touch_hal_get_inactive_connect(type) touch_ll_get_inactive_connect(type)
/**
* Get the current measure channel. Touch sensor measurement is cyclic scan mode.
*
* @return
* - touch channel number
*/
#define touch_hal_get_current_meas_channel() touch_ll_get_current_meas_channel()
/**
* Enable touch sensor interrupt by bitmask.
*
* @param type interrupt type
*/
#define touch_hal_intr_enable(int_mask) touch_ll_intr_enable(int_mask)
/**
* Disable touch sensor interrupt by bitmask.
*
* @param type interrupt type
*/
#define touch_hal_intr_disable(int_mask) touch_ll_intr_disable(int_mask)
/**
* Get the bitmask of touch sensor interrupt status.
*
* @return type interrupt type
*/
#define touch_hal_read_intr_status_mask() touch_ll_read_intr_status_mask()
/************************ Filter register setting ************************/
/**
* Set parameter of touch sensor filter and detection algorithm.
* For more details on the detection algorithm, please refer to the application documentation.
*
* @param filter_info select filter type and threshold of detection algorithm
*/
void touch_hal_filter_set_config(const touch_filter_config_t *filter_info);
/**
* Get parameter of touch sensor filter and detection algorithm.
* For more details on the detection algorithm, please refer to the application documentation.
*
* @param filter_info select filter type and threshold of detection algorithm
*/
void touch_hal_filter_get_config(touch_filter_config_t *filter_info);
/**
* Get baseline value of touch sensor.
*
* @note After initialization, the baseline value is the maximum during the first measurement period.
* @param touch_num touch pad index
* @param touch_value pointer to accept touch sensor value
*/
#define touch_hal_filter_read_baseline(touch_num, basedata) touch_ll_filter_read_baseline(touch_num, basedata)
/**
* Force reset baseline to raw data of touch sensor.
*
* @param touch_num touch pad index
* - TOUCH_PAD_MAX Reset basaline of all channels.
*/
#define touch_hal_filter_reset_baseline(touch_num) touch_ll_filter_reset_baseline(touch_num)
/**
* Set filter mode. The input to the filter is raw data and the output is the baseline value.
* Larger filter coefficients increase the stability of the baseline.
*
* @param mode Filter mode type. Refer to `touch_filter_mode_t`.
*/
#define touch_hal_filter_set_filter_mode(mode) touch_ll_filter_set_filter_mode(mode)
/**
* Get filter mode. The input to the filter is raw data and the output is the baseline value.
*
* @param mode Filter mode type. Refer to `touch_filter_mode_t`.
*/
#define touch_hal_filter_get_filter_mode(mode) touch_ll_filter_get_filter_mode(mode)
/**
* Set debounce count, such as `n`. If the measured values continue to exceed
* the threshold for `n` times, it is determined that the touch sensor state changes.
*
* @param dbc_cnt Debounce count value.
*/
#define touch_hal_filter_set_debounce(dbc_cnt) touch_ll_filter_set_debounce(dbc_cnt)
/**
* Get debounce count.
*
* @param dbc_cnt Debounce count value.
*/
#define touch_hal_filter_get_debounce(dbc_cnt) touch_ll_filter_get_debounce(dbc_cnt)
/**
* Set hysteresis threshold coefficient. hysteresis = hysteresis_thr * touch_threshold.
* If (raw data - baseline) > (touch threshold + hysteresis), the touch channel be touched.
* If (raw data - baseline) < (touch threshold - hysteresis), the touch channel be released.
* Range: 0 ~ 3. The coefficient is 0: 1/8; 1: 3/32; 2: 1/16; 3: 1/32
*
* @param hys_thr hysteresis coefficient.
*/
#define touch_hal_filter_set_hysteresis(hys_thr) touch_ll_filter_set_hysteresis(hys_thr)
/**
* Get hysteresis threshold coefficient. hysteresis = hysteresis_thr * touch_threshold.
* If (raw data - baseline) > (touch threshold + hysteresis), the touch channel be touched.
* If (raw data - baseline) < (touch threshold - hysteresis), the touch channel be released.
* Range: 0 ~ 3. The coefficient is 0: 1/8; 1: 3/32; 2: 1/16; 3: 1/32
*
* @param hys_thr hysteresis coefficient.
*/
#define touch_hal_filter_get_hysteresis(hys_thr) touch_ll_filter_get_hysteresis(hys_thr)
/**
* Set noise threshold coefficient. noise = noise_thr * touch threshold.
* If (raw data - baseline) > (noise), the baseline stop updating.
* If (raw data - baseline) < (noise), the baseline start updating.
* Range: 0 ~ 3. The coefficient is 0: 1/2; 1: 3/8; 2: 1/4; 3: 1/8;
*
* @param hys_thr Noise threshold coefficient.
*/
#define touch_hal_filter_set_noise_thres(noise_thr) touch_ll_filter_set_noise_thres(noise_thr)
/**
* Get noise threshold coefficient. noise = noise_thr * touch threshold.
* If (raw data - baseline) > (noise), the baseline stop updating.
* If (raw data - baseline) < (noise), the baseline start updating.
* Range: 0 ~ 3. The coefficient is 0: 1/2; 1: 3/8; 2: 1/4; 3: 1/8;
*
* @param noise_thr Noise threshold coefficient.
*/
#define touch_hal_filter_get_noise_thres(noise_thr) touch_ll_filter_get_noise_thres(noise_thr)
/**
* Set negative noise threshold coefficient. negative noise = noise_neg_thr * touch threshold.
* If (baseline - raw data) > (negative noise), the baseline restart reset process(refer to `baseline_reset`).
* If (baseline - raw data) < (negative noise), the baseline stop reset process(refer to `baseline_reset`).
* Range: 0 ~ 3. The coefficient is 0: 1/2; 1: 3/8; 2: 1/4; 3: 1/8;
*
* @param noise_thr Negative threshold coefficient.
*/
#define touch_hal_filter_set_neg_noise_thres(noise_thr) touch_ll_filter_set_neg_noise_thres(noise_thr)
/**
* Get negative noise threshold coefficient. negative noise = noise_neg_thr * touch threshold.
* If (baseline - raw data) > (negative noise), the baseline restart reset process(refer to `baseline_reset`).
* If (baseline - raw data) < (negative noise), the baseline stop reset process(refer to `baseline_reset`).
* Range: 0 ~ 3. The coefficient is 0: 1/2; 1: 3/8; 2: 1/4; 3: 1/8;
*
* @param noise_thr Negative noise threshold coefficient.
*/
#define touch_hal_filter_get_neg_noise_thres(noise_thr) touch_ll_filter_get_neg_noise_thres(noise_thr)
/**
* Set the cumulative number of baseline reset processes. such as `n`. If the measured values continue to exceed
* the negative noise threshold for `n` times, the baseline reset to raw data.
* Range: 0 ~ 15
*
* @param reset_cnt The cumulative number of baseline reset processes.
*/
#define touch_hal_filter_set_baseline_reset(reset_cnt) touch_ll_filter_set_baseline_reset(reset_cnt)
/**
* Get the cumulative number of baseline reset processes. such as `n`. If the measured values continue to exceed
* the negative noise threshold for `n` times, the baseline reset to raw data.
* Range: 0 ~ 15
*
* @param reset_cnt The cumulative number of baseline reset processes.
*/
#define touch_hal_filter_get_baseline_reset(reset_cnt) touch_ll_filter_get_baseline_reset(reset_cnt)
/**
* Set jitter filter step size.
* If filter mode is jitter, should set filter step for jitter.
* Range: 0 ~ 15
*
* @param step The step size of the data change when the baseline is updated.
*/
#define touch_hal_filter_set_jitter_step(step) touch_ll_filter_set_jitter_step(step)
/**
* Get jitter filter step size.
* If filter mode is jitter, should set filter step for jitter.
* Range: 0 ~ 15
*
* @param step The step size of the data change when the baseline is updated.
*/
#define touch_hal_filter_get_jitter_step(step) touch_ll_filter_get_jitter_step(step)
/**
* Enable touch sensor filter and detection algorithm.
* For more details on the detection algorithm, please refer to the application documentation.
*/
#define touch_hal_filter_enable() touch_ll_filter_enable()
/**
* Disable touch sensor filter and detection algorithm.
* For more details on the detection algorithm, please refer to the application documentation.
*/
#define touch_hal_filter_disable() touch_ll_filter_disable()
/************************ Denoise register setting ************************/
/**
* set parameter of denoise pad (TOUCH_PAD_NUM0).
* T0 is an internal channel that does not have a corresponding external GPIO.
* T0 will work simultaneously with the measured channel Tn. Finally, the actual
* measured value of Tn is the value after subtracting lower bits of T0.
* This denoise function filters out interference introduced on all channels,
* such as noise introduced by the power supply and external EMI.
*
* @param denoise parameter of denoise
*/
void touch_hal_denoise_set_config(const touch_pad_denoise_t *denoise);
/**
* @brief get parameter of denoise pad (TOUCH_PAD_NUM0).
*
* @param denoise Pointer to parameter of denoise
*/
void touch_hal_denoise_get_config(touch_pad_denoise_t *denoise);
/**
* Enable denoise function.
* T0 is an internal channel that does not have a corresponding external GPIO.
* T0 will work simultaneously with the measured channel Tn. Finally, the actual
* measured value of Tn is the value after subtracting lower bits of T0.
* This denoise function filters out interference introduced on all channels,
* such as noise introduced by the power supply and external EMI.
*/
void touch_hal_denoise_enable(void);
/**
* Enable denoise function.
* T0 is an internal channel that does not have a corresponding external GPIO.
* T0 will work simultaneously with the measured channel Tn. Finally, the actual
* measured value of Tn is the value after subtracting lower bits of T0.
* This denoise function filters out interference introduced on all channels,
* such as noise introduced by the power supply and external EMI.
*/
#define touch_hal_denoise_disable() touch_ll_denoise_disable()
/**
* Set internal reference capacitance of denoise channel.
* Select the appropriate internal reference capacitance value so that
* the reading of denoise channel is closest to the reading of the channel being measured.
*
* @param cap_level Capacitance level.
*/
#define touch_hal_denoise_set_cap_level(cap_level) touch_ll_denoise_set_cap_level(cap_level)
/**
* Get internal reference capacitance of denoise channel.
* Select the appropriate internal reference capacitance value so that
* the reading of denoise channel is closest to the reading of the channel being measured.
*
* @param cap_level Capacitance level.
*/
#define touch_hal_denoise_get_cap_level(cap_level) touch_ll_denoise_get_cap_level(cap_level)
/**
* Set denoise range of denoise channel.
* Determined by measuring the noise amplitude of the denoise channel.
*
* @param grade Denoise range of denoise channel.
*/
#define touch_hal_denoise_set_grade(grade) touch_ll_denoise_set_grade(grade)
/**
* Set denoise range of denoise channel.
* Determined by measuring the noise amplitude of the denoise channel.
*
* @param grade Denoise range of denoise channel.
*/
#define touch_hal_denoise_get_grade(grade) touch_ll_denoise_get_grade(grade)
/**
* Read denoise measure value (TOUCH_PAD_NUM0).
*
* @param denoise value of denoise.
*/
#define touch_hal_denoise_read_data(data) touch_ll_denoise_read_data(data)
/************************ Waterproof register setting ************************/
/**
* Set touch channel use for guard pad.
*
* @param pad_num Touch sensor channel number.
*/
#define touch_hal_waterproof_set_guard_pad(pad_num) touch_ll_waterproof_set_guard_pad(pad_num)
/**
* Get touch channel use for guard pad.
*
* @param pad_num Touch sensor channel number.
*/
#define touch_hal_waterproof_get_guard_pad(pad_num) touch_ll_waterproof_get_guard_pad(pad_num)
/**
* Set max equivalent capacitance for sheild channel.
* The equivalent capacitance of the shielded channel can be calculated
* from the reading of denoise channel.
*
* @param pad_num Touch sensor channel number.
*/
#define touch_hal_waterproof_set_sheild_driver(driver_level) touch_ll_waterproof_set_sheild_driver(driver_level)
/**
* Get max equivalent capacitance for sheild channel.
* The equivalent capacitance of the shielded channel can be calculated
* from the reading of denoise channel.
*
* @param pad_num Touch sensor channel number.
*/
#define touch_hal_waterproof_get_sheild_driver(driver_level) touch_ll_waterproof_get_sheild_driver(driver_level)
/**
* Set parameter of waterproof function.
* The waterproof function includes a shielded channel (TOUCH_PAD_NUM14) and a guard channel.
* The shielded channel outputs the same signal as the channel being measured.
* It is generally designed as a grid and is placed around the touch buttons.
* The shielded channel does not follow the measurement signal of the protection channel.
* So that the guard channel can detect a large area of water.
*
* @param waterproof parameter of waterproof
*/
void touch_hal_waterproof_set_config(const touch_pad_waterproof_t *waterproof);
/**
* Get parameter of waterproof function.
*
* @param waterproof parameter of waterproof.
*/
void touch_hal_waterproof_get_config(touch_pad_waterproof_t *waterproof);
/**
* Enable parameter of waterproof function.
* The waterproof function includes a shielded channel (TOUCH_PAD_NUM14) and a guard channel.
* The shielded channel outputs the same signal as the channel being measured.
* It is generally designed as a grid and is placed around the touch buttons.
* The shielded channel does not follow the measurement signal of the protection channel.
* So that the guard channel can detect a large area of water.
*/
void touch_hal_waterproof_enable(void);
/**
* Disable parameter of waterproof function.
* The waterproof function includes a shielded channel (TOUCH_PAD_NUM14) and a guard channel.
* The shielded channel outputs the same signal as the channel being measured.
* It is generally designed as a grid and is placed around the touch buttons.
* The shielded channel does not follow the measurement signal of the protection channel.
* So that the guard channel can detect a large area of water.
*/
#define touch_hal_waterproof_disable() touch_ll_waterproof_disable()
/************************ Proximity register setting ************************/
/**
* Set parameter of proximity channel. Three proximity sensing channels can be set.
* The proximity sensor measurement is the accumulation of touch channel measurements.
*
* @note If stop the proximity function for the channel, point this proximity channel to `TOUCH_PAD_NUM0`.
* @param proximity parameter of proximity
*/
void touch_hal_proximity_set_config(const touch_pad_proximity_t *proximity);
/**
* Get parameter of proximity channel. Three proximity sensing channels can be set.
* The proximity sensor measurement is the accumulation of touch channel measurements.
*
* @param proximity parameter of proximity.
*/
void touch_hal_proximity_get_config(touch_pad_proximity_t *proximity);
/**
* Set touch channel number for proximity pad.
* If disable the proximity pad, point this pad to `TOUCH_PAD_NUM0`
*
* @param prox_pad The array of three proximity pads.
*/
#define touch_hal_proximity_set_channel_num(prox_pad) touch_ll_proximity_set_channel_num(prox_pad)
/**
* Get touch channel number for proximity pad.
* If disable the proximity pad, point this pad to `TOUCH_PAD_NUM0`
*
* @param prox_pad The array of three proximity pads.
*/
#define touch_hal_proximity_get_channel_num(prox_pad) touch_ll_proximity_get_channel_num(prox_pad)
/**
* Set cumulative measurement times for proximity pad.
*
* @param times The cumulative number of measurement cycles.
*/
#define touch_hal_proximity_set_meas_times(times) touch_ll_proximity_set_meas_times(times)
/**
* Get cumulative measurement times for proximity pad.
*
* @param times The cumulative number of measurement cycles.
*/
#define touch_hal_proximity_get_meas_times(times) touch_ll_proximity_get_meas_times(times)
/**
* Read current cumulative measurement times for proximity pad.
*
* @param times The cumulative number of measurement cycles.
*/
#define touch_hal_proximity_read_meas_cnt(touch_num, cnt) touch_ll_proximity_read_meas_cnt(touch_num, cnt)
/**
* Check if the touch sensor channel is the proximity pad.
*
* @param touch_num The touch sensor channel number.
*/
#define touch_hal_proximity_pad_check(touch_num) touch_ll_proximity_pad_check(touch_num)
/************** sleep pad setting ***********************/
/**
* Set parameter of touch sensor in sleep mode.
* In order to achieve low power consumption in sleep mode, other circuits except the RTC part of the register are in a power-off state.
* Only one touch channel is supported in the sleep state, which can be used as a wake-up function.
* If in non-sleep mode, the sleep parameters do not work.
*
* @param slp_config touch pad config.
*/
void touch_hal_sleep_channel_config(const touch_pad_sleep_channel_t *slp_config);
/**
* Set touch channel number for sleep pad.
*
* @note Only one touch sensor channel is supported in deep sleep mode.
* @param touch_num Touch sensor channel number.
*/
#define touch_hal_sleep_set_channel_num(touch_num) touch_ll_sleep_set_channel_num(touch_num)
/**
* Get touch channel number for sleep pad.
*
* @note Only one touch sensor channel is supported in deep sleep mode.
* @param touch_num Touch sensor channel number.
*/
#define touch_hal_sleep_get_channel_num(touch_num) touch_ll_sleep_get_channel_num(touch_num)
/**
* Set the trigger threshold of touch sensor in deep sleep.
* The threshold determines the sensitivity of the touch sensor.
* The threshold is the original value of the trigger state minus the baseline value.
*
* @note The threshold at sleep is the same as the threshold before sleep.
*/
#define touch_hal_sleep_set_threshold(touch_thres) touch_ll_sleep_set_threshold(touch_thres)
/**
* Get the trigger threshold of touch sensor in deep sleep.
* The threshold determines the sensitivity of the touch sensor.
* The threshold is the original value of the trigger state minus the baseline value.
*
* @note The threshold at sleep is the same as the threshold before sleep.
*/
#define touch_hal_sleep_get_threshold(touch_thres) touch_ll_sleep_get_threshold(touch_thres)
/**
* Enable proximity function for sleep pad.
*/
#define touch_hal_sleep_enable_approach() touch_ll_sleep_enable_approach()
/**
* Disable proximity function for sleep pad.
*/
#define touch_hal_sleep_disable_approach() touch_ll_sleep_disable_approach()
/**
* Read baseline of touch sensor for sleep pad.
*
* @param baseline Pointer to accept touch sensor baseline value.
*/
#define touch_hal_sleep_read_baseline(baseline) touch_ll_sleep_read_baseline(baseline)
/**
* Read debounce of touch sensor for sleep pad.
*
* @param debounce Pointer to accept touch sensor debounce value.
*/
#define touch_hal_sleep_read_debounce(debounce) touch_ll_sleep_read_debounce(debounce)
/**
* Read proximity count of touch sensor for sleep pad.
* @param proximity_cnt Pointer to accept touch sensor proximity count value.
*/
#define touch_hal_sleep_read_proximity_cnt(approach_cnt) touch_ll_sleep_read_proximity_cnt(approach_cnt)
/**
* Get the touch pad which caused wakeup from deep sleep.
*
* @param pad_num pointer to touch pad which caused wakeup.
*/
#define touch_hal_get_wakeup_status(pad_num) touch_ll_get_wakeup_status(pad_num)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,769 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The LL layer for UART register operations.
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#include "hal/uart_types.h"
#include "soc/uart_periph.h"
// The default fifo depth
#define UART_LL_FIFO_DEF_LEN (UART_FIFO_LEN)
// Get UART hardware instance with giving uart num
#define UART_LL_GET_HW(num) (((num) == 0) ? (&UART0) : (&UART1))
// Define UART interrupts
typedef enum {
UART_INTR_RXFIFO_FULL = (0x1<<0),
UART_INTR_TXFIFO_EMPTY = (0x1<<1),
UART_INTR_PARITY_ERR = (0x1<<2),
UART_INTR_FRAM_ERR = (0x1<<3),
UART_INTR_RXFIFO_OVF = (0x1<<4),
UART_INTR_DSR_CHG = (0x1<<5),
UART_INTR_CTS_CHG = (0x1<<6),
UART_INTR_BRK_DET = (0x1<<7),
UART_INTR_RXFIFO_TOUT = (0x1<<8),
UART_INTR_SW_XON = (0x1<<9),
UART_INTR_SW_XOFF = (0x1<<10),
UART_INTR_GLITCH_DET = (0x1<<11),
UART_INTR_TX_BRK_DONE = (0x1<<12),
UART_INTR_TX_BRK_IDLE = (0x1<<13),
UART_INTR_TX_DONE = (0x1<<14),
UART_INTR_RS485_PARITY_ERR = (0x1<<15),
UART_INTR_RS485_FRM_ERR = (0x1<<16),
UART_INTR_RS485_CLASH = (0x1<<17),
UART_INTR_CMD_CHAR_DET = (0x1<<18),
} uart_intr_t;
/**
* @brief Configure the baud-rate.
*
* @param hw Beginning address of the peripheral registers.
* @param baud The baud rate to be set. When the source clock is APB, the max baud rate is `UART_LL_BITRATE_MAX`
* @param source_clk The UART source clock. The source clock can be APB clock or REF_TICK.
* If the source clock is REF_TICK, the UART can still work when the APB changes.
*
* @return None
*/
static inline void uart_ll_set_baudrate(uart_dev_t *hw, uart_sclk_t source_clk, uint32_t baud)
{
uint32_t sclk_freq = (source_clk == UART_SCLK_APB) ? APB_CLK_FREQ : REF_CLK_FREQ;
uint32_t clk_div = ((sclk_freq) << 4) / baud;
// The baud rate configuration register is divided into
// an integer part and a fractional part.
hw->clk_div.div_int = clk_div >> 4;
hw->clk_div.div_frag = clk_div & 0xf;
// Configure the UART source clock.
hw->conf0.tick_ref_always_on = (source_clk == UART_SCLK_APB);
}
/**
* @brief Get the current baud-rate.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The current baudrate
*/
static inline uint32_t uart_ll_get_baudrate(uart_dev_t *hw)
{
uint32_t src_clk = hw->conf0.tick_ref_always_on ? APB_CLK_FREQ : REF_CLK_FREQ;
typeof(hw->clk_div) div_reg = hw->clk_div;
return ((src_clk << 4)) / ((div_reg.div_int << 4) | div_reg.div_frag);
}
/**
* @brief Enable the UART interrupt based on the given mask.
*
* @param hw Beginning address of the peripheral registers.
* @param mask The bitmap of the interrupts need to be enabled.
*
* @return None
*/
static inline void uart_ll_ena_intr_mask(uart_dev_t *hw, uint32_t mask)
{
hw->int_ena.val |= mask;
}
/**
* @brief Disable the UART interrupt based on the given mask.
*
* @param hw Beginning address of the peripheral registers.
* @param mask The bitmap of the interrupts need to be disabled.
*
* @return None
*/
static inline void uart_ll_disable_intr_mask(uart_dev_t *hw, uint32_t mask)
{
hw->int_ena.val &= (~mask);
}
/**
* @brief Get the UART interrupt status.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The UART interrupt status.
*/
static inline uint32_t uart_ll_get_intsts_mask(uart_dev_t *hw)
{
return hw->int_st.val;
}
/**
* @brief Clear the UART interrupt status based on the given mask.
*
* @param hw Beginning address of the peripheral registers.
* @param mask The bitmap of the interrupts need to be cleared.
*
* @return None
*/
static inline void uart_ll_clr_intsts_mask(uart_dev_t *hw, uint32_t mask)
{
hw->int_clr.val = mask;
}
/**
* @brief Get status of enabled interrupt.
*
* @param hw Beginning address of the peripheral registers.
*
* @return interrupt enable value
*/
static inline uint32_t uart_ll_get_intr_ena_status(uart_dev_t *hw)
{
return hw->int_ena.val;
}
/**
* @brief Read the UART rxfifo.
*
* @param hw Beginning address of the peripheral registers.
* @param buf The data buffer. The buffer size should be large than 128 byts.
* @param rd_len The data length needs to be read.
*
* @return None.
*/
static inline void uart_ll_read_rxfifo(uart_dev_t *hw, uint8_t *buf, uint32_t rd_len)
{
//Get the UART fifo addr, ESP32-S2 have 2 UART
uint32_t fifo_addr = (hw == &UART0) ? UART_FIFO_AHB_REG(0) : UART_FIFO_AHB_REG(1);
for(int i = 0; i < rd_len; i++) {
buf[i] = READ_PERI_REG(fifo_addr);
}
}
/**
* @brief Write byte to the UART txfifo.
*
* @param hw Beginning address of the peripheral registers.
* @param buf The data buffer.
* @param wr_len The data length needs to be writen.
*
* @return None
*/
static inline void uart_ll_write_txfifo(uart_dev_t *hw, const uint8_t *buf, uint32_t wr_len)
{
//Get the UART fifo addr, ESP32-S2 have 2 UART
uint32_t fifo_addr = (hw == &UART0) ? UART_FIFO_AHB_REG(0) : UART_FIFO_AHB_REG(1);
for(int i = 0; i < wr_len; i++) {
WRITE_PERI_REG(fifo_addr, buf[i]);
}
}
/**
* @brief Reset the UART hw rxfifo.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None
*/
static inline void uart_ll_rxfifo_rst(uart_dev_t *hw)
{
hw->conf0.rxfifo_rst = 1;
hw->conf0.rxfifo_rst = 0;
}
/**
* @brief Reset the UART hw txfifo.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None
*/
static inline void uart_ll_txfifo_rst(uart_dev_t *hw)
{
hw->conf0.txfifo_rst = 1;
hw->conf0.txfifo_rst = 0;
}
/**
* @brief Get the length of readable data in UART rxfifo.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The readable data length in rxfifo.
*/
static inline uint32_t uart_ll_get_rxfifo_len(uart_dev_t *hw)
{
return hw->status.rxfifo_cnt;
}
/**
* @brief Get the writable data length of UART txfifo.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The data length of txfifo can be written.
*/
static inline uint32_t uart_ll_get_txfifo_len(uart_dev_t *hw)
{
return UART_LL_FIFO_DEF_LEN - hw->status.txfifo_cnt;
}
/**
* @brief Configure the UART stop bit.
*
* @param hw Beginning address of the peripheral registers.
* @param stop_bit The stop bit number to be set.
*
* @return None.
*/
static inline void uart_ll_set_stop_bits(uart_dev_t *hw, uart_stop_bits_t stop_bit)
{
hw->conf0.stop_bit_num = stop_bit;
}
/**
* @brief Get the configuration of the UART stop bit.
*
* @param hw Beginning address of the peripheral registers.
* @param stop_bit The pointer to accept the stop bit configuration
*
* @return None.
*/
static inline void uart_ll_get_stop_bits(uart_dev_t *hw, uart_stop_bits_t *stop_bit)
{
*stop_bit = hw->conf0.stop_bit_num;
}
/**
* @brief Configure the UART parity check mode.
*
* @param hw Beginning address of the peripheral registers.
* @param parity_mode The parity check mode to be set.
*
* @return None.
*/
static inline void uart_ll_set_parity(uart_dev_t *hw, uart_parity_t parity_mode)
{
if(parity_mode != UART_PARITY_DISABLE) {
hw->conf0.parity = parity_mode & 0x1;
}
hw->conf0.parity_en = (parity_mode >> 1) & 0x1;
}
/**
* @brief Get the UART parity check mode configuration.
*
* @param hw Beginning address of the peripheral registers.
* @param parity_mode The pointer to accept the parity check mode configuration.
*
* @return None.
*/
static inline void uart_ll_get_parity(uart_dev_t *hw, uart_parity_t *parity_mode)
{
if(hw->conf0.parity_en) {
*parity_mode = 0X2 | hw->conf0.parity;
} else {
*parity_mode = UART_PARITY_DISABLE;
}
}
/**
* @brief Set the UART rxfifo full threshold value. When the data in rxfifo is more than the threshold value,
* it will produce rxfifo_full_int_raw interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param full_thrhd The full threshold value of the rxfifo. `full_thrhd` should be less than `UART_LL_FIFO_DEF_LEN`.
*
* @return None.
*/
static inline void uart_ll_set_rxfifo_full_thr(uart_dev_t *hw, uint16_t full_thrhd)
{
hw->conf1.rxfifo_full_thrhd = full_thrhd;
}
/**
* @brief Set the txfifo empty threshold. when the data length in txfifo is less than threshold value,
* it will produce txfifo_empty_int_raw interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param empty_thrhd The empty threshold of txfifo.
*
* @return None.
*/
static inline void uart_ll_set_txfifo_empty_thr(uart_dev_t *hw, uint16_t empty_thrhd)
{
hw->conf1.txfifo_empty_thrhd = empty_thrhd;
}
/**
* @brief Set the UART rx-idle threshold value. when receiver takes more time than rx_idle_thrhd to receive a byte data,
* it will produce frame end signal for uhci to stop receiving data.
*
* @param hw Beginning address of the peripheral registers.
* @param rx_idle_thr The rx-idle threshold to be set.
*
* @return None.
*/
static inline void uart_ll_set_rx_idle_thr(uart_dev_t *hw, uint32_t rx_idle_thr)
{
hw->idle_conf.rx_idle_thrhd = rx_idle_thr;
}
/**
* @brief Configure the duration time between transfers.
*
* @param hw Beginning address of the peripheral registers.
* @param idle_num the duration time between transfers.
*
* @return None.
*/
static inline void uart_ll_set_tx_idle_num(uart_dev_t *hw, uint32_t idle_num)
{
hw->idle_conf.tx_idle_num = idle_num;
}
/**
* @brief Configure the timeout value for receiver receiving a byte, and enable rx timeout function.
*
* @param hw Beginning address of the peripheral registers.
* @param tout_thr The timeout value. The rx timeout function will be disabled if `tout_thr == 0`.
*
* @return None.
*/
static inline void uart_ll_set_rx_tout(uart_dev_t *hw, uint8_t tout_thr)
{
if(tout_thr > 0) {
hw->mem_conf.rx_tout_thrhd = tout_thr;
hw->conf1.rx_tout_en = 1;
} else {
hw->conf1.rx_tout_en = 0;
}
}
/**
* @brief Configure the transmiter to send break chars.
*
* @param hw Beginning address of the peripheral registers.
* @param break_num The number of the break chars need to be send.
*
* @return None.
*/
static inline void uart_ll_tx_break(uart_dev_t *hw, uint32_t break_num)
{
if(break_num > 0) {
hw->idle_conf.tx_brk_num = break_num;
hw->conf0.txd_brk = 1;
} else {
hw->conf0.txd_brk = 0;
}
}
/**
* @brief Configure the UART hardware flow control.
*
* @param hw Beginning address of the peripheral registers.
* @param flow_ctrl The hw flow control configuration.
* @param rx_thrs The rx flow control signal will be active if the data length in rxfifo is more than this value.
*
* @return None.
*/
static inline void uart_ll_set_hw_flow_ctrl(uart_dev_t *hw, uart_hw_flowcontrol_t flow_ctrl, uint32_t rx_thrs)
{
//only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
hw->mem_conf.rx_flow_thrhd = rx_thrs;
hw->conf1.rx_flow_en = 1;
} else {
hw->conf1.rx_flow_en = 0;
}
if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
hw->conf0.tx_flow_en = 1;
} else {
hw->conf0.tx_flow_en = 0;
}
}
/**
* @brief Configure the hardware flow control.
*
* @param hw Beginning address of the peripheral registers.
* @param flow_ctrl A pointer to accept the hw flow control configuration.
*
* @return None.
*/
static inline void uart_ll_get_hw_flow_ctrl(uart_dev_t *hw, uart_hw_flowcontrol_t *flow_ctrl)
{
*flow_ctrl = UART_HW_FLOWCTRL_DISABLE;
if(hw->conf1.rx_flow_en) {
*flow_ctrl |= UART_HW_FLOWCTRL_RTS;
}
if(hw->conf0.tx_flow_en) {
*flow_ctrl |= UART_HW_FLOWCTRL_CTS;
}
}
/**
* @brief Configure the software flow control.
*
* @param hw Beginning address of the peripheral registers.
* @param flow_ctrl The UART sofware flow control settings.
* @param sw_flow_ctrl_en Set true to enable software flow control, otherwise set it false.
*
* @return None.
*/
static inline void uart_ll_set_sw_flow_ctrl(uart_dev_t *hw, uart_sw_flowctrl_t *flow_ctrl, bool sw_flow_ctrl_en)
{
if(sw_flow_ctrl_en) {
hw->flow_conf.xonoff_del = 1;
hw->flow_conf.sw_flow_con_en = 1;
hw->swfc_conf1.xon_threshold = flow_ctrl->xon_thrd;
hw->swfc_conf0.xoff_threshold = flow_ctrl->xoff_thrd;
hw->swfc_conf1.xon_char = flow_ctrl->xon_char;
hw->swfc_conf0.xoff_char = flow_ctrl->xoff_char;
} else {
hw->flow_conf.sw_flow_con_en = 0;
hw->flow_conf.xonoff_del = 0;
}
}
/**
* @brief Configure the AT cmd char. When the receiver receives a continuous AT cmd char, it will produce at_cmd_char_det interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param cmd_char The AT cmd char configuration.The configuration member is:
* - cmd_char The AT cmd character
* - char_num The number of received AT cmd char must be equal to or greater than this value
* - gap_tout The interval between each AT cmd char, when the duration is less than this value, it will not take this data as AT cmd char
* - pre_idle The idle time before the first AT cmd char, when the duration is less than this value, it will not take the previous data as the last AT cmd char
* - post_idle The idle time after the last AT cmd char, when the duration is less than this value, it will not take this data as the first AT cmd char
*
* @return None.
*/
static inline void uart_ll_set_at_cmd_char(uart_dev_t *hw, uart_at_cmd_t *cmd_char)
{
hw->at_cmd_char.data = cmd_char->cmd_char;
hw->at_cmd_char.char_num = cmd_char->char_num;
hw->at_cmd_postcnt.post_idle_num = cmd_char->post_idle;
hw->at_cmd_precnt.pre_idle_num = cmd_char->pre_idle;
hw->at_cmd_gaptout.rx_gap_tout = cmd_char->gap_tout;
}
/**
* @brief Set the UART data bit mode.
*
* @param hw Beginning address of the peripheral registers.
* @param data_bit The data bit mode to be set.
*
* @return None.
*/
static inline void uart_ll_set_data_bit_num(uart_dev_t *hw, uart_word_length_t data_bit)
{
hw->conf0.bit_num = data_bit;
}
/**
* @brief Get the UART source clock.
*
* @param hw Beginning address of the peripheral registers.
* @param source_clk The pointer to accept the UART source clock configuration.
*
* @return None.
*/
static inline void uart_ll_get_sclk(uart_dev_t *hw, uart_sclk_t* source_clk)
{
*source_clk = hw->conf0.tick_ref_always_on ? UART_SCLK_APB : UART_SCLK_REF_TICK;
}
/**
* @brief Set the rts active level.
*
* @param hw Beginning address of the peripheral registers.
* @param level The rts active level, 0 or 1.
*
* @return None.
*/
static inline void uart_ll_set_rts_active_level(uart_dev_t *hw, int level)
{
hw->conf0.sw_rts = level & 0x1;
}
/**
* @brief Set the dtr active level.
*
* @param hw Beginning address of the peripheral registers.
* @param level The dtr active level, 0 or 1.
*
* @return None.
*/
static inline void uart_ll_set_dtr_active_level(uart_dev_t *hw, int level)
{
hw->conf0.sw_dtr = level & 0x1;
}
/**
* @brief Set the UART wakeup threshold.
*
* @param hw Beginning address of the peripheral registers.
* @param wakeup_thrd The wakeup threshold value to be set. When the input rx edge changes more than this value,
* the UART will active from light sleeping mode.
*
* @return None.
*/
static inline void uart_ll_set_wakeup_thrd(uart_dev_t *hw, uint32_t wakeup_thrd)
{
hw->sleep_conf.active_threshold = wakeup_thrd - SOC_UART_MIN_WAKEUP_THRESH;
}
/**
* @brief Configure the UART work in normal mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_normal(uart_dev_t *hw)
{
hw->rs485_conf.en = 0;
hw->rs485_conf.tx_rx_en = 0;
hw->rs485_conf.rx_busy_tx_en = 0;
hw->conf0.irda_en = 0;
}
/**
* @brief Configure the UART work in rs485_app_ctrl mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_rs485_app_ctrl(uart_dev_t *hw)
{
// Application software control, remove echo
hw->rs485_conf.rx_busy_tx_en = 1;
hw->conf0.irda_en = 0;
hw->conf0.sw_rts = 0;
hw->conf0.irda_en = 0;
hw->rs485_conf.en = 1;
}
/**
* @brief Configure the UART work in rs485_half_duplex mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_rs485_half_duplex(uart_dev_t *hw)
{
// Enable receiver, sw_rts = 1 generates low level on RTS pin
hw->conf0.sw_rts = 1;
// Must be set to 0 to automatically remove echo
hw->rs485_conf.tx_rx_en = 0;
// This is to void collision
hw->rs485_conf.rx_busy_tx_en = 1;
hw->conf0.irda_en = 0;
hw->rs485_conf.en = 1;
}
/**
* @brief Configure the UART work in collision_detect mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_collision_detect(uart_dev_t *hw)
{
hw->conf0.irda_en = 0;
// Transmitters output signal loop back to the receivers input signal
hw->rs485_conf.tx_rx_en = 1 ;
// Transmitter should send data when the receiver is busy
hw->rs485_conf.rx_busy_tx_en = 1;
hw->conf0.sw_rts = 0;
hw->rs485_conf.en = 1;
}
/**
* @brief Configure the UART work in irda mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_irda(uart_dev_t *hw)
{
hw->rs485_conf.en = 0;
hw->rs485_conf.tx_rx_en = 0;
hw->rs485_conf.rx_busy_tx_en = 0;
hw->conf0.sw_rts = 0;
hw->conf0.irda_en = 1;
}
/**
* @brief Set uart mode.
*
* @param hw Beginning address of the peripheral registers.
* @param mode The UART mode to be set.
*
* @return None.
*/
static inline void uart_ll_set_mode(uart_dev_t *hw, uart_mode_t mode)
{
switch (mode) {
default:
case UART_MODE_UART:
uart_ll_set_mode_normal(hw);
break;
case UART_MODE_RS485_COLLISION_DETECT:
uart_ll_set_mode_collision_detect(hw);
break;
case UART_MODE_RS485_APP_CTRL:
uart_ll_set_mode_rs485_app_ctrl(hw);
break;
case UART_MODE_RS485_HALF_DUPLEX:
uart_ll_set_mode_rs485_half_duplex(hw);
break;
case UART_MODE_IRDA:
uart_ll_set_mode_irda(hw);
break;
}
}
/**
* @brief Get the UART AT cmd char configuration.
*
* @param hw Beginning address of the peripheral registers.
* @param cmd_char The Pointer to accept value of UART AT cmd char.
* @param char_num Pointer to accept the repeat number of UART AT cmd char.
*
* @return None.
*/
static inline void uart_ll_get_at_cmd_char(uart_dev_t *hw, uint8_t *cmd_char, uint8_t *char_num)
{
*cmd_char = hw->at_cmd_char.data;
*char_num = hw->at_cmd_char.char_num;
}
/**
* @brief Get the UART wakeup threshold value.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The UART wakeup threshold value.
*/
static inline uint32_t uart_ll_get_wakeup_thrd(uart_dev_t *hw)
{
return hw->sleep_conf.active_threshold + SOC_UART_MIN_WAKEUP_THRESH;
}
/**
* @brief Get the UART data bit configuration.
*
* @param hw Beginning address of the peripheral registers.
* @param data_bit The pointer to accept the UART data bit configuration.
*
* @return The bit mode.
*/
static inline void uart_ll_get_data_bit_num(uart_dev_t *hw, uart_word_length_t *data_bit)
{
*data_bit = hw->conf0.bit_num;
}
/**
* @brief Check if the UART sending state machine is in the IDLE state.
*
* @param hw Beginning address of the peripheral registers.
*
* @return True if the state machine is in the IDLE state, otherwise false is returned.
*/
static inline bool uart_ll_is_tx_idle(uart_dev_t *hw)
{
return ((hw->status.txfifo_cnt == 0) && (hw->fsm_status.st_utx_out == 0));
}
/**
* @brief Check if the UART rts flow control is enabled.
*
* @param hw Beginning address of the peripheral registers.
*
* @return True if hw rts flow control is enabled, otherwise false is returned.
*/
static inline bool uart_ll_is_hw_rts_en(uart_dev_t *hw)
{
return hw->conf1.rx_flow_en;
}
/**
* @brief Check if the UART cts flow control is enabled.
*
* @param hw Beginning address of the peripheral registers.
*
* @return True if hw cts flow control is enabled, otherwise false is returned.
*/
static inline bool uart_ll_is_hw_cts_en(uart_dev_t *hw)
{
return hw->conf0.tx_flow_en;
}
/**
* @brief Configure TX signal loop back to RX module, just for the testing purposes
*
* @param hw Beginning address of the peripheral registers.
* @param loop_back_en Set ture to enable the loop back function, else set it false.
*
* @return None
*/
static inline void uart_ll_set_loop_back(uart_dev_t *hw, bool loop_back_en)
{
hw->conf0.loopback = loop_back_en;
}
/**
* @brief Inverse the UART signal with the given mask.
*
* @param hw Beginning address of the peripheral registers.
* @param inv_mask The UART signal bitmap needs to be inversed.
* Use the ORred mask of `uart_signal_inv_t`;
*
* @return None.
*/
static inline void uart_ll_inverse_signal(uart_dev_t *hw, uint32_t inv_mask)
{
typeof(hw->conf0) conf0_reg = hw->conf0;
conf0_reg.irda_tx_inv |= (inv_mask & UART_SIGNAL_IRDA_TX_INV) ? 1 : 0;
conf0_reg.irda_rx_inv |= (inv_mask & UART_SIGNAL_IRDA_RX_INV) ? 1 : 0;
conf0_reg.rxd_inv |= (inv_mask & UART_SIGNAL_RXD_INV) ? 1 : 0;
conf0_reg.cts_inv |= (inv_mask & UART_SIGNAL_CTS_INV) ? 1 : 0;
conf0_reg.dsr_inv |= (inv_mask & UART_SIGNAL_DSR_INV) ? 1 : 0;
conf0_reg.txd_inv |= (inv_mask & UART_SIGNAL_TXD_INV) ? 1 : 0;
conf0_reg.rts_inv |= (inv_mask & UART_SIGNAL_RTS_INV) ? 1 : 0;
conf0_reg.dtr_inv |= (inv_mask & UART_SIGNAL_DTR_INV) ? 1 : 0;
hw->conf0.val = conf0_reg.val;
}

View File

@@ -0,0 +1,60 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "soc/soc.h"
#include "soc/system_reg.h"
#include "esp32s2/rom/gpio.h"
#include "soc/gpio_sig_map.h"
#include "soc/usb_periph.h"
void gpio_pad_input_enable(uint32_t pin);
static inline void usb_ll_init(bool external_phy)
{
REG_SET_BIT(DPORT_PERIP_CLK_EN0_REG, DPORT_USB_CLK_EN);
REG_CLR_BIT(DPORT_PERIP_RST_EN0_REG, DPORT_USB_RST);
if (external_phy) {
REG_SET_BIT(DR_REG_USB_WRAP_BASE, BIT(18)); //set usb_pad_enable
REG_SET_BIT(DR_REG_USB_WRAP_BASE, BIT(2)); // set reg_phy_sel (external phy)
gpio_output_set_high(0x10, 0, 0x1E, 0xE);
} else {
REG_SET_BIT(DR_REG_USB_WRAP_BASE, BIT(18)); //set usb_pad_enable
REG_CLR_BIT(DR_REG_USB_WRAP_BASE, BIT(2)); // clear reg_phy_sel (internal phy)
//drive strength needs to be 3 for full speed
REG_SET_FIELD(GPIO_PIN19_REG, GPIO_PIN19_PAD_DRIVER, 3);
REG_SET_FIELD(GPIO_PIN20_REG, GPIO_PIN20_PAD_DRIVER, 3);
}
int i = 0;
while (usb_periph_iopins[i].pin != -1) {
if ((external_phy) || (usb_periph_iopins[i].ext_phy_only == 0)) {
gpio_pad_select_gpio(usb_periph_iopins[i].pin);
if (usb_periph_iopins[i].is_output) {
gpio_matrix_out(usb_periph_iopins[i].pin, usb_periph_iopins[i].func, false, false);
} else {
gpio_matrix_in(usb_periph_iopins[i].pin, usb_periph_iopins[i].func, false);
gpio_pad_input_enable(usb_periph_iopins[i].pin);
}
gpio_pad_unhold(usb_periph_iopins[i].pin);
}
i++;
}
REG_SET_BIT(DR_REG_USB_WRAP_BASE, BIT(12)); //pull override
REG_SET_BIT(DR_REG_USB_WRAP_BASE, BIT(13)); //dp pullup
REG_CLR_BIT(DR_REG_USB_WRAP_BASE, BIT(14)); //dp pulldwn
REG_CLR_BIT(DR_REG_USB_WRAP_BASE, BIT(15)); //dm pullup
REG_CLR_BIT(DR_REG_USB_WRAP_BASE, BIT(16)); //dm pulldown
}

View File

@@ -0,0 +1,680 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include <assert.h>
#include "sdkconfig.h"
#include "esp32s2/rom/ets_sys.h"
#include "esp32s2/rom/rtc.h"
#include "esp32s2/rom/uart.h"
#include "esp32s2/rom/gpio.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc_io_reg.h"
#include "soc/sens_reg.h"
#include "soc/dport_reg.h"
#include "soc/efuse_reg.h"
#include "soc/syscon_reg.h"
#include "i2c_rtc_clk.h"
#include "soc_log.h"
#include "sdkconfig.h"
#include "xtensa/core-macros.h"
static const char *TAG = "rtc_clk";
/* PLL currently enabled, if any */
typedef enum {
RTC_PLL_NONE,
RTC_PLL_320M,
RTC_PLL_480M
} rtc_pll_t;
static rtc_pll_t s_cur_pll = RTC_PLL_NONE;
/* Current CPU frequency; saved in a variable for faster freq. switching */
static rtc_cpu_freq_t s_cur_freq = RTC_CPU_FREQ_XTAL;
void rtc_clk_32k_enable_internal(x32k_config_t cfg)
{
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DAC_XTAL_32K, cfg.dac);
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DRES_XTAL_32K, cfg.dres);
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DGM_XTAL_32K, cfg.dgm);
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DBUF_XTAL_32K, cfg.dbuf);
SET_PERI_REG_MASK(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_XPD_XTAL_32K);
}
void rtc_clk_32k_enable(bool enable)
{
if (enable) {
x32k_config_t cfg = X32K_CONFIG_DEFAULT();
rtc_clk_32k_enable_internal(cfg);
} else {
SET_PERI_REG_MASK(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_XTAL32K_XPD_FORCE);
CLEAR_PERI_REG_MASK(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_XPD_XTAL_32K);
}
}
void rtc_clk_32k_bootstrap(uint32_t cycle)
{
}
bool rtc_clk_32k_enabled(void)
{
uint32_t xtal_conf = READ_PERI_REG(RTC_CNTL_EXT_XTL_CONF_REG);
/* If xtal xpd is controlled by software */
bool xtal_xpd_sw = (xtal_conf & RTC_CNTL_XTAL32K_XPD_FORCE) >> RTC_CNTL_XTAL32K_XPD_FORCE_S;
/* If xtal xpd software control is on */
bool xtal_xpd_st = (xtal_conf & RTC_CNTL_XPD_XTAL_32K) >> RTC_CNTL_XPD_XTAL_32K_S;
if (xtal_xpd_sw & !xtal_xpd_st) {
return false;
} else {
return true;
}
}
void rtc_clk_8m_enable(bool clk_8m_en, bool d256_en)
{
if (clk_8m_en) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
/* no need to wait once enabled by software */
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CK8M_ENABLE_WAIT_DEFAULT);
ets_delay_us(DELAY_8M_ENABLE);
} else {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CNTL_CK8M_WAIT_DEFAULT);
}
/* d256 should be independent configured with 8M
* Maybe we can split this function into 8m and dmd256
*/
if (d256_en) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
} else {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
}
}
bool rtc_clk_8m_enabled(void)
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M) == 0;
}
bool rtc_clk_8md256_enabled(void)
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV) == 0;
}
void rtc_clk_apll_enable(bool enable, uint32_t sdm0, uint32_t sdm1, uint32_t sdm2, uint32_t o_div)
{
REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD, enable ? 0 : 1);
REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PU, enable ? 1 : 0);
/* BIAS I2C not exist any more, but not sure how to get the same effect yet...
* if (!enable &&
* REG_GET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_SOC_CLK_SEL) != DPORT_SOC_CLK_SEL_PLL) {
* REG_SET_BIT(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
* } else {
* REG_CLR_BIT(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
* }
*/
if (enable) {
/* no need to differentiate ECO chip any more
uint8_t sdm_stop_val_2 = APLL_SDM_STOP_VAL_2_REV1;
uint32_t is_rev0 = (GET_PERI_REG_BITS2(EFUSE_BLK0_RDATA3_REG, 1, 15) == 0);
if (is_rev0) {
sdm0 = 0;
sdm1 = 0;
sdm_stop_val_2 = APLL_SDM_STOP_VAL_2_REV0;
}
*/
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM2, sdm2);
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM0, sdm0);
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM1, sdm1);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_SDM_STOP, APLL_SDM_STOP_VAL_1);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_SDM_STOP, APLL_SDM_STOP_VAL_2_REV1);
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_OR_OUTPUT_DIV, o_div);
/* calibration */
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_1);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_2);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_3);
/* wait for calibration end */
while (!(I2C_READREG_MASK_RTC(I2C_APLL, I2C_APLL_OR_CAL_END))) {
/* use ets_delay_us so the RTC bus doesn't get flooded */
ets_delay_us(1);
}
}
}
void rtc_clk_set_xtal_wait(void)
{
/*
the `xtal_wait` time need 1ms, so we need calibrate slow clk period,
and `RTC_CNTL_XTL_BUF_WAIT` depend on it.
*/
rtc_slow_freq_t slow_clk_freq = rtc_clk_slow_freq_get();
rtc_slow_freq_t rtc_slow_freq_x32k = RTC_SLOW_FREQ_32K_XTAL;
rtc_slow_freq_t rtc_slow_freq_8MD256 = RTC_SLOW_FREQ_8MD256;
rtc_cal_sel_t cal_clk = RTC_CAL_RTC_MUX;
if (slow_clk_freq == (rtc_slow_freq_x32k)) {
cal_clk = RTC_CAL_32K_XTAL;
} else if (slow_clk_freq == rtc_slow_freq_8MD256) {
cal_clk = RTC_CAL_8MD256;
}
uint32_t slow_clk_period = rtc_clk_cal(cal_clk, 2000);
uint32_t xtal_wait_1ms = 100;
if (slow_clk_period) {
xtal_wait_1ms = (1000 << RTC_CLK_CAL_FRACT) / slow_clk_period;
}
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_XTL_BUF_WAIT, xtal_wait_1ms);
}
void rtc_clk_slow_freq_set(rtc_slow_freq_t slow_freq)
{
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, slow_freq);
/* Why we need to connect this clock to digital?
* Or maybe this clock should be connected to digital when xtal 32k clock is enabled instead?
*/
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN,
(slow_freq == RTC_SLOW_FREQ_32K_XTAL) ? 1 : 0);
/* The clk_8m_d256 will be closed when rtc_state in SLEEP,
so if the slow_clk is 8md256, clk_8m must be force power on
*/
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_FORCE_PU, (slow_freq == RTC_SLOW_FREQ_8MD256) ? 1 : 0);
rtc_clk_set_xtal_wait();
ets_delay_us(DELAY_SLOW_CLK_SWITCH);
}
rtc_slow_freq_t rtc_clk_slow_freq_get(void)
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL);
}
uint32_t rtc_clk_slow_freq_get_hz(void)
{
switch (rtc_clk_slow_freq_get()) {
case RTC_SLOW_FREQ_RTC: return RTC_SLOW_CLK_FREQ_90K;
case RTC_SLOW_FREQ_32K_XTAL: return RTC_SLOW_CLK_FREQ_32K;
case RTC_SLOW_FREQ_8MD256: return RTC_SLOW_CLK_FREQ_8MD256;
}
return 0;
}
void rtc_clk_fast_freq_set(rtc_fast_freq_t fast_freq)
{
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL, fast_freq);
ets_delay_us(DELAY_FAST_CLK_SWITCH);
}
rtc_fast_freq_t rtc_clk_fast_freq_get(void)
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL);
}
/* In 7.2.2, cpu can run at 80M/160M/240M if PLL is 480M
* pll can run 80M/160M is PLL is 320M
*/
#define DR_REG_I2C_MST_BASE 0x3f40E000
#define I2C_MST_ANA_STATE_REG (DR_REG_I2C_MST_BASE + 0x040)
#define I2C_MST_BBPLL_CAL_END (BIT(24))
#define I2C_MST_BBPLL_CAL_END_M (BIT(24))
#define I2C_MST_BBPLL_CAL_END_V 0x1
#define I2C_MST_BBPLL_CAL_END_S 24
void rtc_clk_bbpll_set(rtc_xtal_freq_t xtal_freq, rtc_pll_t pll_freq)
{
uint8_t div_ref;
uint8_t div7_0;
uint8_t dr1;
uint8_t dr3;
uint8_t dchgp;
uint8_t dcur;
assert(xtal_freq == RTC_XTAL_FREQ_40M);
if (pll_freq == RTC_PLL_480M) {
/* Raise the voltage, if needed */
/* move to 240M logic */
//REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_80M_160M);
/* Set this register to let digital know pll is 480M */
SET_PERI_REG_MASK(DPORT_CPU_PER_CONF_REG, DPORT_PLL_FREQ_SEL);
/* Configure 480M PLL */
div_ref = 0;
div7_0 = 8;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 4;
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_MODE_HF, 0x6B);
} else {
/* Raise the voltage */
//REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_240M);
//ets_delay_us(DELAY_PLL_DBIAS_RAISE);
CLEAR_PERI_REG_MASK(DPORT_CPU_PER_CONF_REG, DPORT_PLL_FREQ_SEL);
/* Configure 480M PLL */
div_ref = 0;
div7_0 = 4;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 5;
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_MODE_HF, 0x69);
}
uint8_t i2c_bbpll_lref = (dchgp << I2C_BBPLL_OC_DCHGP_LSB) | (div_ref);
uint8_t i2c_bbpll_div_7_0 = div7_0;
uint8_t i2c_bbpll_dcur = (2 << I2C_BBPLL_OC_DLREF_SEL_LSB ) | (1 << I2C_BBPLL_OC_DHREF_SEL_LSB) | dcur;
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_REF_DIV, i2c_bbpll_lref);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0);
I2C_WRITEREG_MASK_RTC(I2C_BBPLL, I2C_BBPLL_OC_DR1, dr1);
I2C_WRITEREG_MASK_RTC(I2C_BBPLL, I2C_BBPLL_OC_DR3, dr3);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_DCUR, i2c_bbpll_dcur);
// Enable calibration by software
I2C_WRITEREG_MASK_RTC(I2C_BBPLL, I2C_BBPLL_IR_CAL_ENX_CAP, 1);
for (int ext_cap = 0; ext_cap < 16; ext_cap++) {
uint8_t cal_result;
I2C_WRITEREG_MASK_RTC(I2C_BBPLL, I2C_BBPLL_IR_CAL_EXT_CAP, ext_cap);
cal_result = I2C_READREG_MASK_RTC(I2C_BBPLL, I2C_BBPLL_OR_CAL_CAP);
if (cal_result == 0) {
break;
}
if (ext_cap == 15) {
SOC_LOGE(TAG, "BBPLL SOFTWARE CAL FAIL");
}
}
/* this delay is replaced by polling Pll calibration end flag
* uint32_t delay_pll_en = (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_RTC) ?
* DELAY_PLL_ENABLE_WITH_150K : DELAY_PLL_ENABLE_WITH_32K;
* ets_delay_us(delay_pll_en);
*/
/* this calibration didn't work on 480M
need to test exact delay according to 320M
while (!GET_PERI_REG_MASK(I2C_MST_ANA_STATE_REG, I2C_MST_BBPLL_CAL_END)) {
ets_delay_us(1);
}
*/
}
/**
* Switch to XTAL frequency. Does not disable the PLL.
*/
static void rtc_clk_cpu_freq_to_xtal(void)
{
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
ets_update_cpu_frequency(xtal_freq);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_XTAL);
REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_PRE_DIV_CNT, 0);
REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_SOC_CLK_SEL, 0);
/* Why we need to do this ? */
//DPORT_REG_WRITE(DPORT_CPU_PER_CONF_REG, 0); // clear DPORT_CPUPERIOD_SEL
rtc_clk_apb_freq_update(xtal_freq * MHZ);
s_cur_freq = RTC_CPU_FREQ_XTAL;
s_cur_pll = RTC_PLL_NONE;
}
/**
* Switch to one of PLL-based frequencies. Current frequency can be XTAL or PLL.
* PLL must already be enabled.
* If switching between frequencies derived from different PLLs (320M and 480M),
* fall back to rtc_clk_cpu_freq_set.
* @param cpu_freq new CPU frequency
*/
static void rtc_clk_cpu_freq_to_pll(rtc_cpu_freq_t cpu_freq)
{
int freq = 0;
if ((s_cur_pll == RTC_PLL_NONE) || ((s_cur_pll == RTC_PLL_320M) && (cpu_freq == RTC_CPU_FREQ_240M))) {
/*
* if switch from non-pll or switch from PLL 320M to 480M
* need to switch PLLs, fall back to full implementation
*/
rtc_clk_cpu_freq_set(cpu_freq);
return;
}
if ((cpu_freq == RTC_CPU_FREQ_80M) || (cpu_freq == RTC_CPU_320M_80M)) {
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_80M_160M);
DPORT_REG_WRITE(DPORT_CPU_PER_CONF_REG, 0);
freq = 80;
} else if ((cpu_freq == RTC_CPU_FREQ_160M) || (cpu_freq == RTC_CPU_320M_160M)) {
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_80M_160M);
DPORT_REG_WRITE(DPORT_CPU_PER_CONF_REG, 1);
freq = 160;
} else if (cpu_freq == RTC_CPU_FREQ_240M) {
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_240M);
DPORT_REG_WRITE(DPORT_CPU_PER_CONF_REG, 2);
freq = 240;
}
// REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_SOC_CLK_SEL, DPORT_SOC_CLK_SEL_PLL);
rtc_clk_apb_freq_update(80 * MHZ);
ets_update_cpu_frequency(freq);
s_cur_freq = cpu_freq;
}
void rtc_clk_cpu_freq_set_fast(rtc_cpu_freq_t cpu_freq)
{
if (cpu_freq == s_cur_freq) {
return;
} else if (cpu_freq == RTC_CPU_FREQ_2M || s_cur_freq == RTC_CPU_FREQ_2M) {
/* fall back to full implementation if switch to/from 2M is needed */
rtc_clk_cpu_freq_set(cpu_freq);
} else if (cpu_freq == RTC_CPU_FREQ_XTAL) {
rtc_clk_cpu_freq_to_xtal();
} else if (cpu_freq > RTC_CPU_FREQ_XTAL) {
rtc_clk_cpu_freq_to_pll(cpu_freq);
/* Not neccessary any more */
//rtc_clk_wait_for_slow_cycle();
}
}
void rtc_clk_cpu_freq_set(rtc_cpu_freq_t cpu_freq)
{
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
/* Switch CPU to XTAL frequency first */
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_XTAL);
REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_SOC_CLK_SEL, 0);
REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_PRE_DIV_CNT, 0);
ets_update_cpu_frequency(xtal_freq);
/* Frequency switch is synchronized to SLOW_CLK cycle. Wait until the switch
* is complete before disabling the PLL.
*/
/* register SOC_CLK_SEL is moved to APB domain, so this delay is not neccessary any more */
//rtc_clk_wait_for_slow_cycle();
DPORT_REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, 0);
/* BBPLL force power down won't affect force power up setting */
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
RTC_CNTL_BB_I2C_FORCE_PD | RTC_CNTL_BBPLL_FORCE_PD |
RTC_CNTL_BBPLL_I2C_FORCE_PD);
s_cur_pll = RTC_PLL_NONE;
rtc_clk_apb_freq_update(xtal_freq * MHZ);
/* is APLL under force power down? */
/* may need equivalent function
uint32_t apll_fpd = REG_GET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD);
* if (apll_fpd) {
* SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
* }
*/
/* now switch to the desired frequency */
if (cpu_freq == RTC_CPU_FREQ_XTAL) {
/* already at XTAL, nothing to do */
} else if (cpu_freq == RTC_CPU_FREQ_2M) {
/* set up divider to produce 2MHz from XTAL */
REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_PRE_DIV_CNT, (xtal_freq / 2) - 1);
ets_update_cpu_frequency(2);
rtc_clk_apb_freq_update(2 * MHZ);
/* lower the voltage */
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_2M);
} else {
/* use PLL as clock source */
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
RTC_CNTL_BB_I2C_FORCE_PD |
RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD);
if (cpu_freq > RTC_CPU_FREQ_2M) {
rtc_clk_bbpll_set(xtal_freq, RTC_PLL_320M);
s_cur_pll = RTC_PLL_320M;
} else {
rtc_clk_bbpll_set(xtal_freq, RTC_PLL_480M);
s_cur_pll = RTC_PLL_480M;
}
if ((cpu_freq == RTC_CPU_FREQ_80M) || (cpu_freq == RTC_CPU_320M_80M)) {
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_80M_160M);
DPORT_REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, 0);
ets_update_cpu_frequency(80);
} else if ((cpu_freq == RTC_CPU_FREQ_160M) || (cpu_freq == RTC_CPU_320M_160M)) {
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_80M_160M);
DPORT_REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, 1);
ets_update_cpu_frequency(160);
} else if (cpu_freq == RTC_CPU_FREQ_240M) {
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_240M);
DPORT_REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, 2);
ets_update_cpu_frequency(240);
}
REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_SOC_CLK_SEL, 1);
//rtc_clk_wait_for_slow_cycle();
rtc_clk_apb_freq_update(80 * MHZ);
}
s_cur_freq = cpu_freq;
}
rtc_cpu_freq_t rtc_clk_cpu_freq_get(void)
{
uint32_t soc_clk_sel = REG_GET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_SOC_CLK_SEL);
switch (soc_clk_sel) {
case 0: {
uint32_t pre_div = REG_GET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_PRE_DIV_CNT);
if (pre_div == 0) {
return RTC_CPU_FREQ_XTAL;
} else if (pre_div == 1) {
return RTC_CPU_FREQ_XTAL_DIV2;
} else if (pre_div == rtc_clk_xtal_freq_get() / 2 - 1) {
return RTC_CPU_FREQ_2M;
} else {
assert(false && "unsupported frequency");
}
break;
}
case 1: {
uint32_t cpuperiod_sel = DPORT_REG_GET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL);
uint32_t pllfreq_sel = DPORT_REG_GET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_PLL_FREQ_SEL);
if (cpuperiod_sel == 0) {
if (pllfreq_sel == 1) {
return RTC_CPU_FREQ_80M;
} else {
return RTC_CPU_320M_80M;
}
} else if (cpuperiod_sel == 1) {
if (pllfreq_sel == 1) {
return RTC_CPU_FREQ_160M;
} else {
return RTC_CPU_320M_160M;
}
} else if (cpuperiod_sel == 2) {
return RTC_CPU_FREQ_240M;
} else {
assert(false && "unsupported frequency");
}
break;
}
case 2:
case 3:
default:
assert(false && "unsupported frequency");
}
return 0;
}
uint32_t rtc_clk_cpu_freq_value(rtc_cpu_freq_t cpu_freq)
{
switch (cpu_freq) {
case RTC_CPU_FREQ_XTAL:
return ((uint32_t) rtc_clk_xtal_freq_get()) * MHZ;
case RTC_CPU_FREQ_XTAL_DIV2:
return ((uint32_t) rtc_clk_xtal_freq_get()) / 2 * MHZ;
case RTC_CPU_FREQ_2M:
return 2 * MHZ;
case RTC_CPU_FREQ_80M:
return 80 * MHZ;
case RTC_CPU_FREQ_160M:
return 160 * MHZ;
case RTC_CPU_FREQ_240M:
return 240 * MHZ;
case RTC_CPU_320M_80M:
return 80 * MHZ;
case RTC_CPU_320M_160M:
return 160 * MHZ;
default:
assert(false && "invalid rtc_cpu_freq_t value");
return 0;
}
}
bool rtc_clk_cpu_freq_from_mhz(int mhz, rtc_cpu_freq_t *out_val)
{
if (mhz == 240) {
*out_val = RTC_CPU_FREQ_240M;
} else if (mhz == 160) {
*out_val = RTC_CPU_FREQ_160M;
} else if (mhz == 80) {
*out_val = RTC_CPU_FREQ_80M;
} else if (mhz == (int) rtc_clk_xtal_freq_get()) {
*out_val = RTC_CPU_FREQ_XTAL;
} else if (mhz == (int) rtc_clk_xtal_freq_get() / 2) {
*out_val = RTC_CPU_FREQ_XTAL_DIV2;
} else if (mhz == 2) {
*out_val = RTC_CPU_FREQ_2M;
} else {
return false;
}
return true;
}
/* Values of RTC_XTAL_FREQ_REG and RTC_APB_FREQ_REG are stored as two copies in
* lower and upper 16-bit halves. These are the routines to work with such a
* representation.
*/
static bool clk_val_is_valid(uint32_t val)
{
return (val & 0xffff) == ((val >> 16) & 0xffff) &&
val != 0 &&
val != UINT32_MAX;
}
static uint32_t reg_val_to_clk_val(uint32_t val)
{
return val & UINT16_MAX;
}
static uint32_t clk_val_to_reg_val(uint32_t val)
{
return (val & UINT16_MAX) | ((val & UINT16_MAX) << 16);
}
rtc_xtal_freq_t rtc_clk_xtal_freq_get(void)
{
uint32_t xtal_freq_reg = READ_PERI_REG(RTC_XTAL_FREQ_REG);
if (!clk_val_is_valid(xtal_freq_reg)) {
SOC_LOGW(TAG, "invalid RTC_XTAL_FREQ_REG value: 0x%08x", xtal_freq_reg);
return RTC_XTAL_FREQ_40M;
}
return reg_val_to_clk_val(xtal_freq_reg);
}
void rtc_clk_xtal_freq_update(rtc_xtal_freq_t xtal_freq)
{
WRITE_PERI_REG(RTC_XTAL_FREQ_REG, clk_val_to_reg_val(xtal_freq));
}
void rtc_clk_apb_freq_update(uint32_t apb_freq)
{
WRITE_PERI_REG(RTC_APB_FREQ_REG, clk_val_to_reg_val(apb_freq >> 12));
}
uint32_t rtc_clk_apb_freq_get(void)
{
uint32_t freq_hz = reg_val_to_clk_val(READ_PERI_REG(RTC_APB_FREQ_REG)) << 12;
// round to the nearest MHz
freq_hz += MHZ / 2;
uint32_t remainder = freq_hz % MHZ;
return freq_hz - remainder;
}
void rtc_clk_divider_set(uint32_t div)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV_VLD);
REG_SET_FIELD(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV, div);
SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV_VLD);
}
void rtc_clk_8m_divider_set(uint32_t div)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL_VLD);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, div);
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL_VLD);
}
void rtc_clk_init(rtc_clk_config_t cfg)
{
rtc_cpu_freq_t cpu_source_before = rtc_clk_cpu_freq_get();
/* If we get a TG WDT system reset while running at 240MHz,
* DPORT_CPUPERIOD_SEL register will be reset to 0 resulting in 120MHz
* APB and CPU frequencies after reset. This will cause issues with XTAL
* frequency estimation, so we switch to XTAL frequency first.
*
* Ideally we would only do this if SYSCON_SOC_CLK_SEL == PLL and
* PLL is configured for 480M, but it takes less time to switch to 40M and
* run the following code than querying the PLL does.
*/
if (REG_GET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_SOC_CLK_SEL) == 1) {
rtc_clk_cpu_freq_set(RTC_CPU_FREQ_XTAL);
}
/* Set tuning parameters for 8M and 150k clocks.
* Note: this doesn't attempt to set the clocks to precise frequencies.
* Instead, we calibrate these clocks against XTAL frequency later, when necessary.
* - SCK_DCAP value controls tuning of 150k clock.
* The higher the value of DCAP is, the lower is the frequency.
* - CK8M_DFREQ value controls tuning of 8M clock.
* CLK_8M_DFREQ constant gives the best temperature characteristics.
*/
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_SCK_DCAP, cfg.slow_clk_dcap);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DFREQ, cfg.clk_8m_dfreq);
/* Configure 150k clock division */
rtc_clk_divider_set(cfg.clk_rtc_clk_div);
/* Configure 8M clock division */
rtc_clk_8m_divider_set(cfg.clk_8m_clk_div);
/* Enable the internal bus used to configure PLLs */
SET_PERI_REG_BITS(ANA_CONFIG_REG, ANA_CONFIG_M, ANA_CONFIG_M, ANA_CONFIG_S);
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_APLL_M | I2C_BBPLL_M);
rtc_xtal_freq_t xtal_freq = cfg.xtal_freq;
uart_tx_wait_idle(0);
rtc_clk_xtal_freq_update(xtal_freq);
rtc_clk_apb_freq_update(xtal_freq * MHZ);
/* Set CPU frequency */
rtc_clk_cpu_freq_set(cfg.cpu_freq);
/* Re-calculate the ccount to make time calculation correct. */
uint32_t freq_before = rtc_clk_cpu_freq_value(cpu_source_before) / MHZ;
uint32_t freq_after = rtc_clk_cpu_freq_value(cfg.cpu_freq) / MHZ;
XTHAL_SET_CCOUNT( XTHAL_GET_CCOUNT() * freq_after / freq_before );
/* Slow & fast clocks setup */
if (cfg.slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
rtc_clk_32k_enable(true);
}
if (cfg.fast_freq == RTC_FAST_FREQ_8M) {
bool need_8md256 = cfg.slow_freq == RTC_SLOW_FREQ_8MD256;
rtc_clk_8m_enable(true, need_8md256);
}
rtc_clk_fast_freq_set(cfg.fast_freq);
rtc_clk_slow_freq_set(cfg.slow_freq);
}
/* Name used in libphy.a:phy_chip_v7.o
* TODO: update the library to use rtc_clk_xtal_freq_get
*/
rtc_xtal_freq_t rtc_get_xtal(void) __attribute__((alias("rtc_clk_xtal_freq_get")));

View File

@@ -0,0 +1,200 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/dport_reg.h"
#include "soc/efuse_periph.h"
#include "soc/gpio_reg.h"
#include "soc/spi_mem_reg.h"
#include "soc/extmem_reg.h"
#include "i2c_rtc_clk.h"
void rtc_init(rtc_config_t cfg)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PVTMON_PU);
rtc_clk_set_xtal_wait();
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_PLL_BUF_WAIT, cfg.pll_wait);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, cfg.ck8m_wait);
/* Moved from rtc sleep to rtc init to save sleep function running time */
// set shortest possible sleep time limit
REG_SET_FIELD(RTC_CNTL_TIMER5_REG, RTC_CNTL_MIN_SLP_VAL, RTC_CNTL_MIN_SLP_VAL_MIN);
/* This power domian removed
* set rom&ram timer
* REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_ROM_RAM_POWERUP_TIMER, ROM_RAM_POWERUP_CYCLES);
* REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_ROM_RAM_WAIT_TIMER, ROM_RAM_WAIT_CYCLES);
*/
// set wifi timer
rtc_init_config_t rtc_init_cfg = RTC_INIT_CONFIG_DEFAULT();
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_WIFI_POWERUP_TIMER, rtc_init_cfg.wifi_powerup_cycles);
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_WIFI_WAIT_TIMER, rtc_init_cfg.wifi_wait_cycles);
// set rtc peri timer
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_POWERUP_TIMER, rtc_init_cfg.rtc_powerup_cycles);
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_WAIT_TIMER, rtc_init_cfg.rtc_wait_cycles);
// set digital wrap timer
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_DG_WRAP_POWERUP_TIMER, rtc_init_cfg.dg_wrap_powerup_cycles);
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_DG_WRAP_WAIT_TIMER, rtc_init_cfg.dg_wrap_wait_cycles);
// set rtc memory timer
REG_SET_FIELD(RTC_CNTL_TIMER5_REG, RTC_CNTL_RTCMEM_POWERUP_TIMER, rtc_init_cfg.rtc_mem_powerup_cycles);
REG_SET_FIELD(RTC_CNTL_TIMER5_REG, RTC_CNTL_RTCMEM_WAIT_TIMER, rtc_init_cfg.rtc_mem_wait_cycles);
SET_PERI_REG_MASK(RTC_CNTL_BIAS_CONF_REG,
RTC_CNTL_DEC_HEARTBEAT_WIDTH | RTC_CNTL_INC_HEARTBEAT_PERIOD);
/* Reset RTC bias to default value (needed if waking up from deep sleep) */
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DBIAS_WAK, RTC_CNTL_DBIAS_1V10);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DBIAS_SLP, RTC_CNTL_DBIAS_1V10);
if (cfg.clkctl_init) {
//clear CMMU clock force on
CLEAR_PERI_REG_MASK(EXTMEM_PRO_CACHE_MMU_POWER_CTRL_REG, EXTMEM_PRO_CACHE_MMU_MEM_FORCE_ON);
//clear rom clock force on
REG_SET_FIELD(DPORT_ROM_CTRL_0_REG, DPORT_ROM_FO, 0);
//clear sram clock force on
REG_SET_FIELD(DPORT_SRAM_CTRL_0_REG, DPORT_SRAM_FO, 0);
//clear tag clock force on
CLEAR_PERI_REG_MASK(EXTMEM_PRO_DCACHE_TAG_POWER_CTRL_REG, EXTMEM_PRO_DCACHE_TAG_MEM_FORCE_ON);
CLEAR_PERI_REG_MASK(EXTMEM_PRO_ICACHE_TAG_POWER_CTRL_REG, EXTMEM_PRO_ICACHE_TAG_MEM_FORCE_ON);
//clear register clock force on
CLEAR_PERI_REG_MASK(SPI_MEM_CLOCK_GATE_REG(0), SPI_MEM_CLK_EN);
CLEAR_PERI_REG_MASK(SPI_MEM_CLOCK_GATE_REG(1), SPI_MEM_CLK_EN);
}
if (cfg.pwrctl_init) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_FORCE_PU);
//cancel xtal force pu if no need to force power up
//cannot cancel xtal force pu if pll is force power on
if (!(cfg.xtal_fpu | cfg.bbpll_fpu)) {
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_XTL_FORCE_PU);
} else {
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_XTL_FORCE_PU);
}
// CLEAR APLL close
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD);
//cancel bbpll force pu if setting no force power up
if (!cfg.bbpll_fpu) {
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_I2C_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PU);
} else {
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_I2C_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PU);
}
//cancel RTC REG force PU
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_REGULATOR_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_DBOOST_FORCE_PU);
//combine two rtc memory options
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FORCE_NOISO);
if (cfg.rtc_dboost_fpd) {
SET_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_DBOOST_FORCE_PD);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_DBOOST_FORCE_PD);
}
//cancel sar i2c pd force
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG,RTC_CNTL_SAR_I2C_FORCE_PD);
//cancel digital pu force
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FORCE_PU);
//cannel i2c_reset_protect pd force
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG,RTC_CNTL_I2C_RESET_POR_FORCE_PD);
/* If this mask is enabled, all soc memories cannot enter power down mode */
/* We should control soc memory power down mode from RTC, so we will not touch this register any more */
CLEAR_PERI_REG_MASK(DPORT_MEM_PD_MASK_REG, DPORT_LSLP_MEM_PD_MASK);
/* If this pd_cfg is set to 1, all memory won't enter low power mode during light sleep */
/* If this pd_cfg is set to 0, all memory will enter low power mode during light sleep */
rtc_sleep_pd_config_t pd_cfg = RTC_SLEEP_PD_CONFIG_ALL(0);
rtc_sleep_pd(pd_cfg);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_WRAP_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_FORCE_PU);
// ROM_RAM power domain is removed
// CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_CPU_ROM_RAM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_WRAP_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_WIFI_FORCE_NOISO);
// CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_CPU_ROM_RAM_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FORCE_NOISO);
//cancel digital PADS force no iso
if (cfg.cpu_waiti_clk_gate) {
CLEAR_PERI_REG_MASK(DPORT_CPU_PER_CONF_REG, DPORT_CPU_WAIT_MODE_FORCE_ON);
} else {
SET_PERI_REG_MASK(DPORT_CPU_PER_CONF_REG, DPORT_CPU_WAIT_MODE_FORCE_ON);
}
/*if DPORT_CPU_WAIT_MODE_FORCE_ON == 0 , the cpu clk will be closed when cpu enter WAITI mode*/
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_UNHOLD);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_NOISO);
}
}
rtc_vddsdio_config_t rtc_vddsdio_get_config(void)
{
rtc_vddsdio_config_t result;
uint32_t sdio_conf_reg = REG_READ(RTC_CNTL_SDIO_CONF_REG);
result.drefh = (sdio_conf_reg & RTC_CNTL_DREFH_SDIO_M) >> RTC_CNTL_DREFH_SDIO_S;
result.drefm = (sdio_conf_reg & RTC_CNTL_DREFM_SDIO_M) >> RTC_CNTL_DREFM_SDIO_S;
result.drefl = (sdio_conf_reg & RTC_CNTL_DREFL_SDIO_M) >> RTC_CNTL_DREFL_SDIO_S;
if (sdio_conf_reg & RTC_CNTL_SDIO_FORCE) {
// Get configuration from RTC
result.force = 1;
result.enable = (sdio_conf_reg & RTC_CNTL_XPD_SDIO_REG_M) >> RTC_CNTL_XPD_SDIO_REG_S;
result.tieh = (sdio_conf_reg & RTC_CNTL_SDIO_TIEH_M) >> RTC_CNTL_SDIO_TIEH_S;
return result;
} else {
result.force = 0;
}
#if 0 // ToDo: re-enable the commented codes
uint32_t efuse_reg = REG_READ(EFUSE_RD_REPEAT_DATA1_REG);
if (efuse_reg & EFUSE_SDIO_FORCE) {
// Get configuration from EFUSE
result.enable = (efuse_reg & EFUSE_SDIO_XPD_M) >> EFUSE_SDIO_XPD_S;
result.tieh = (efuse_reg & EFUSE_SDIO_TIEH_M) >> EFUSE_SDIO_TIEH_S;
result.drefm = (efuse_reg & EFUSE_SDIO_DREFM_M) >> EFUSE_SDIO_DREFM_S;
result.drefl = (efuse_reg & EFUSE_SDIO_DREFL_M) >> EFUSE_SDIO_DREFL_S;
efuse_reg = REG_READ(EFUSE_RD_REPEAT_DATA0_REG);
result.drefh = (efuse_reg & EFUSE_SDIO_DREFH_M) >> EFUSE_SDIO_DREFH_S;
return result;
}
#endif
// Otherwise, VDD_SDIO is controlled by bootstrapping pin
uint32_t strap_reg = REG_READ(GPIO_STRAP_REG);
result.tieh = (strap_reg & BIT(5)) ? RTC_VDDSDIO_TIEH_1_8V : RTC_VDDSDIO_TIEH_3_3V;
result.enable = 1;
return result;
}
void rtc_vddsdio_set_config(rtc_vddsdio_config_t config)
{
uint32_t val = 0;
val |= (config.force << RTC_CNTL_SDIO_FORCE_S);
val |= (config.enable << RTC_CNTL_XPD_SDIO_REG_S);
val |= (config.drefh << RTC_CNTL_DREFH_SDIO_S);
val |= (config.drefm << RTC_CNTL_DREFM_SDIO_S);
val |= (config.drefl << RTC_CNTL_DREFL_SDIO_S);
val |= (config.tieh << RTC_CNTL_SDIO_TIEH_S);
val |= RTC_CNTL_SDIO_PD_EN;
REG_WRITE(RTC_CNTL_SDIO_CONF_REG, val);
}

View File

@@ -0,0 +1,67 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <assert.h>
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/apb_ctrl_reg.h"
typedef enum {
PM_LIGHT_SLEEP = BIT(2), /*!< WiFi PD, memory in light sleep */
} pm_sleep_mode_t;
typedef enum{
PM_SW_NOREJECT = 0,
PM_SW_REJECT = 1
} pm_sw_reject_t;
/* These MAC-related functions are defined in the closed source part of
* RTC library
*/
extern void pm_mac_init(void);
extern int pm_check_mac_idle(void);
extern void pm_mac_deinit(void);
/* This sleep-related function is called from the closed source part of RTC
* library.
*/
pm_sw_reject_t pm_set_sleep_mode(pm_sleep_mode_t sleep_mode, void(*pmac_save_params)(void))
{
(void) pmac_save_params; /* unused */
pm_mac_deinit();
if (pm_check_mac_idle()) {
pm_mac_init();
return PM_SW_REJECT;
}
rtc_sleep_config_t cfg = { 0 };
switch (sleep_mode) {
case PM_LIGHT_SLEEP:
cfg.wifi_pd_en = 1;
cfg.dig_dbias_wak = 4;
cfg.dig_dbias_slp = 0;
cfg.rtc_dbias_wak = 0;
cfg.rtc_dbias_slp = 0;
rtc_sleep_init(cfg);
break;
default:
assert(0 && "unsupported sleep mode");
}
return PM_SW_NOREJECT;
}

View File

@@ -0,0 +1,156 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/apb_ctrl_reg.h"
#include "soc/dport_reg.h"
#include "soc/rtc.h"
#include "soc/i2s_reg.h"
#include "soc/timer_group_reg.h"
#include "soc/bb_reg.h"
#include "soc/nrx_reg.h"
#include "soc/fe_reg.h"
#include "soc/rtc.h"
#include "esp32s2/rom/ets_sys.h"
/**
* Configure whether certain peripherals are powered down in deep sleep
* @param cfg power down flags as rtc_sleep_pd_config_t structure
*/
void rtc_sleep_pd(rtc_sleep_pd_config_t cfg)
{
REG_SET_FIELD(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_LSLP_MEM_FORCE_PU, cfg.dig_fpu);
REG_SET_FIELD(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_LPU, cfg.rtc_fpu);
REG_SET_FIELD(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_LPU, cfg.rtc_fpu);
REG_SET_FIELD(I2S_PD_CONF_REG(0), I2S_PLC_MEM_FORCE_PU, cfg.i2s_fpu);
REG_SET_FIELD(I2S_PD_CONF_REG(0), I2S_FIFO_FORCE_PU, cfg.i2s_fpu);
REG_SET_FIELD(APB_CTRL_FRONT_END_MEM_PD_REG, APB_CTRL_DC_MEM_FORCE_PU, cfg.fe_fpu);
REG_SET_FIELD(APB_CTRL_FRONT_END_MEM_PD_REG, APB_CTRL_PBUS_MEM_FORCE_PU, cfg.fe_fpu);
REG_SET_FIELD(APB_CTRL_FRONT_END_MEM_PD_REG, APB_CTRL_AGC_MEM_FORCE_PU, cfg.fe_fpu);
REG_SET_FIELD(BBPD_CTRL, BB_FFT_FORCE_PU, cfg.bb_fpu);
REG_SET_FIELD(BBPD_CTRL, BB_DC_EST_FORCE_PU, cfg.bb_fpu);
REG_SET_FIELD(NRXPD_CTRL, NRX_RX_ROT_FORCE_PU, cfg.nrx_fpu);
REG_SET_FIELD(NRXPD_CTRL, NRX_VIT_FORCE_PU, cfg.nrx_fpu);
REG_SET_FIELD(NRXPD_CTRL, NRX_DEMAP_FORCE_PU, cfg.nrx_fpu);
REG_SET_FIELD(FE_GEN_CTRL, FE_IQ_EST_FORCE_PU, cfg.fe_fpu);
REG_SET_FIELD(FE2_TX_INTERP_CTRL, FE2_TX_INF_FORCE_PU, cfg.fe_fpu);
}
void rtc_sleep_init(rtc_sleep_config_t cfg)
{
if (cfg.lslp_mem_inf_fpu) {
rtc_sleep_pd_config_t pd_cfg = RTC_SLEEP_PD_CONFIG_ALL(1);
rtc_sleep_pd(pd_cfg);
}
if (cfg.rtc_mem_inf_follow_cpu) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FOLW_CPU);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_MEM_FOLW_CPU);
}
if (cfg.rtc_fastmem_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_PD_EN);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_NOISO);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_PD_EN);
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_NOISO);
}
if (cfg.rtc_slowmem_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_PD_EN);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_NOISO);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_PD_EN);
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_SLOWMEM_FORCE_NOISO);
}
if (cfg.rtc_peri_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PD_EN);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PD_EN);
}
if (cfg.wifi_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_PD_EN);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_PD_EN);
}
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_DBG_ATTEN_MONITOR, RTC_CNTL_DBG_ATTEN_MONITOR_DEFAULT);
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_BIAS_SLEEP_MONITOR, RTC_CNTL_BIASSLP_MONITOR_DEFAULT);
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_BIAS_SLEEP_DEEP_SLP, RTC_CNTL_BIASSLP_SLEEP_DEFAULT);
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_PD_CUR_MONITOR, RTC_CNTL_PD_CUR_MONITOR_DEFAULT);
if (cfg.deep_slp) {
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_DBG_ATTEN_DEEP_SLP, RTC_CNTL_DBG_ATTEN_DEEPSLEEP_DEFAULT);
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_WRAP_PD_EN);
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG,
RTC_CNTL_CKGEN_I2C_PU | RTC_CNTL_PLL_I2C_PU |
RTC_CNTL_RFRX_PBUS_PU | RTC_CNTL_TXRF_I2C_PU);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_WRAP_PD_EN);
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_DBG_ATTEN_DEEP_SLP, RTC_CNTL_DBG_ATTEN_LIGHTSLEEP_DEFAULT);
}
/* enable VDDSDIO control by state machine */
REG_CLR_BIT(RTC_CNTL_SDIO_CONF_REG, RTC_CNTL_SDIO_FORCE);
REG_SET_FIELD(RTC_CNTL_SDIO_CONF_REG, RTC_CNTL_SDIO_PD_EN, cfg.vddsdio_pd_en);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DBIAS_SLP, cfg.rtc_dbias_slp);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DBIAS_WAK, cfg.rtc_dbias_wak);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, cfg.dig_dbias_wak);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_SLP, cfg.dig_dbias_slp);
REG_SET_FIELD(RTC_CNTL_SLP_REJECT_CONF_REG, RTC_CNTL_DEEP_SLP_REJECT_EN, cfg.deep_slp_reject);
REG_SET_FIELD(RTC_CNTL_SLP_REJECT_CONF_REG, RTC_CNTL_LIGHT_SLP_REJECT_EN, cfg.light_slp_reject);
}
void rtc_sleep_set_wakeup_time(uint64_t t)
{
WRITE_PERI_REG(RTC_CNTL_SLP_TIMER0_REG, t & UINT32_MAX);
WRITE_PERI_REG(RTC_CNTL_SLP_TIMER1_REG, t >> 32);
}
uint32_t rtc_sleep_start(uint32_t wakeup_opt, uint32_t reject_opt, uint32_t lslp_mem_inf_fpu)
{
REG_SET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_ENA, wakeup_opt);
REG_SET_FIELD(RTC_CNTL_SLP_REJECT_CONF_REG, RTC_CNTL_SLEEP_REJECT_ENA, reject_opt);
/* Start entry into sleep mode */
SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_SLEEP_EN);
while (GET_PERI_REG_MASK(RTC_CNTL_INT_RAW_REG,
RTC_CNTL_SLP_REJECT_INT_RAW | RTC_CNTL_SLP_WAKEUP_INT_RAW) == 0) {
;
}
/* In deep sleep mode, we never get here */
uint32_t reject = REG_GET_FIELD(RTC_CNTL_INT_RAW_REG, RTC_CNTL_SLP_REJECT_INT_RAW);
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG,
RTC_CNTL_SLP_REJECT_INT_CLR | RTC_CNTL_SLP_WAKEUP_INT_CLR);
/* restore config if it is a light sleep */
if (lslp_mem_inf_fpu) {
rtc_sleep_pd_config_t pd_cfg = RTC_SLEEP_PD_CONFIG_ALL(0);
rtc_sleep_pd(pd_cfg);
}
return reject;
}

View File

@@ -0,0 +1,174 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "esp32s2/rom/ets_sys.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/timer_group_reg.h"
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
* This feature counts the number of XTAL clock cycles within a given number of
* RTC_SLOW_CLK cycles.
*
* Slow clock calibration feature has two modes of operation: one-off and cycling.
* In cycling mode (which is enabled by default on SoC reset), counting of XTAL
* cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
* using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
* once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
* enabled using TIMG_RTC_CALI_START bit.
*/
/**
* @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio
* @param cal_clk which clock to calibrate
* @param slowclk_cycles number of slow clock cycles to count
* @return number of XTAL clock cycles within the given number of slow clock cycles
*/
uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
{
/* Enable requested clock (150k clock is always on) */
int dig_32k_xtal_state = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_state) {
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, 1);
}
if (cal_clk == RTC_CAL_8MD256) {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
}
/* Prepare calibration */
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk);
/* There may be another calibration process already running during we call this function,
* so we should wait the last process is done.
*/
if (!GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING)) {
while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY));
}
}
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING);
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles);
/* Figure out how long to wait for calibration to finish */
/* Set timeout reg and expect time delay*/
uint32_t expected_freq;
if (cal_clk == RTC_CAL_32K_XTAL) {
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_X32K_CAL_TIMEOUT_THRES(slowclk_cycles));
expected_freq = RTC_SLOW_CLK_FREQ_32K;
} else if (cal_clk == RTC_CAL_8MD256) {
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_8MD256_CAL_TIMEOUT_THRES(slowclk_cycles));
expected_freq = RTC_SLOW_CLK_FREQ_8MD256;
} else {
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_150K_CAL_TIMEOUT_THRES(slowclk_cycles));
expected_freq = RTC_SLOW_CLK_FREQ_90K;
}
uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq);
/* Start calibration */
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
/* Wait for calibration to finish up to another us_time_estimate */
ets_delay_us(us_time_estimate);
uint32_t cal_val;
while (true) {
if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)) {
cal_val = REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE);
break;
}
if (GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
cal_val = 0;
break;
}
}
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, dig_32k_xtal_state);
if (cal_clk == RTC_CAL_8MD256) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
}
return cal_val;
}
uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
{
uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
uint64_t ratio_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT)) / slowclk_cycles;
uint32_t ratio = (uint32_t)(ratio_64 & UINT32_MAX);
return ratio;
}
uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
{
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider;
uint32_t period = (uint32_t)(period_64 & UINT32_MAX);
return period;
}
uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
{
/* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days.
* TODO: fix overflow.
*/
return (time_in_us << RTC_CLK_CAL_FRACT) / period;
}
uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
{
return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT;
}
uint64_t rtc_time_get(void)
{
SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE);
#if 0 // ToDo: Re-enable it in the future
while (GET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_VALID) == 0) {
ets_delay_us(1); // might take 1 RTC slowclk period, don't flood RTC bus
}
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_TIME_VALID_INT_CLR);
#endif
uint64_t t = READ_PERI_REG(RTC_CNTL_TIME0_REG);
t |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME1_REG)) << 32;
return t;
}
uint64_t rtc_light_slp_time_get(void)
{
uint64_t t_wake = READ_PERI_REG(RTC_CNTL_TIME_LOW0_REG);
t_wake |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH0_REG)) << 32;
uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
return (t_wake - t_slp);
}
uint64_t rtc_deep_slp_time_get(void)
{
uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
uint64_t t_wake = rtc_time_get();
return (t_wake - t_slp);
}
void rtc_clk_wait_for_slow_cycle(void) //This function may not by useful any more
{
SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE);
while (GET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE)) {
ets_delay_us(1);
}
}

View File

@@ -0,0 +1,152 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "soc/rtc_wdt.h"
#include "soc/rtc.h"
#include "soc/efuse_periph.h"
bool rtc_wdt_get_protect_status(void)
{
return READ_PERI_REG(RTC_CNTL_WDTWPROTECT_REG) != RTC_CNTL_WDT_WKEY_VALUE;
}
void rtc_wdt_protect_off(void)
{
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, RTC_CNTL_WDT_WKEY_VALUE);
}
void rtc_wdt_protect_on(void)
{
WRITE_PERI_REG(RTC_CNTL_WDTWPROTECT_REG, 0);
}
void rtc_wdt_enable(void)
{
REG_SET_BIT(RTC_CNTL_WDTFEED_REG, RTC_CNTL_WDT_FEED);
SET_PERI_REG_MASK(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN | RTC_CNTL_WDT_PAUSE_IN_SLP);
}
void rtc_wdt_flashboot_mode_enable(void)
{
REG_SET_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN);
}
void rtc_wdt_disable(void)
{
bool protect = rtc_wdt_get_protect_status();
if (protect) {
rtc_wdt_protect_off();
}
REG_SET_BIT(RTC_CNTL_WDTFEED_REG, RTC_CNTL_WDT_FEED);
rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_OFF);
rtc_wdt_set_stage(RTC_WDT_STAGE1, RTC_WDT_STAGE_ACTION_OFF);
rtc_wdt_set_stage(RTC_WDT_STAGE2, RTC_WDT_STAGE_ACTION_OFF);
rtc_wdt_set_stage(RTC_WDT_STAGE3, RTC_WDT_STAGE_ACTION_OFF);
REG_CLR_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN);
REG_CLR_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN);
if (protect) {
rtc_wdt_protect_on();
}
}
void rtc_wdt_feed(void)
{
bool protect = rtc_wdt_get_protect_status();
if (protect) {
rtc_wdt_protect_off();
}
REG_SET_BIT(RTC_CNTL_WDTFEED_REG, RTC_CNTL_WDT_FEED);
if (protect) {
rtc_wdt_protect_on();
}
}
static uint32_t get_addr_reg(rtc_wdt_stage_t stage)
{
uint32_t reg;
if (stage == RTC_WDT_STAGE0) {
reg = RTC_CNTL_WDTCONFIG1_REG;
} else if (stage == RTC_WDT_STAGE1) {
reg = RTC_CNTL_WDTCONFIG2_REG;
} else if (stage == RTC_WDT_STAGE2) {
reg = RTC_CNTL_WDTCONFIG3_REG;
} else {
reg = RTC_CNTL_WDTCONFIG4_REG;
}
return reg;
}
esp_err_t rtc_wdt_set_time(rtc_wdt_stage_t stage, unsigned int timeout_ms)
{
if (stage > 3) {
return ESP_ERR_INVALID_ARG;
}
uint32_t timeout = (uint32_t) ((uint64_t) rtc_clk_slow_freq_get_hz() * timeout_ms / 1000);
if (stage == RTC_WDT_STAGE0) {
timeout = timeout >> (1 + REG_GET_FIELD(EFUSE_RD_REPEAT_DATA1_REG, EFUSE_WDT_DELAY_SEL));
}
WRITE_PERI_REG(get_addr_reg(stage), timeout);
return ESP_OK;
}
esp_err_t rtc_wdt_get_timeout(rtc_wdt_stage_t stage, unsigned int* timeout_ms)
{
if (stage > 3) {
return ESP_ERR_INVALID_ARG;
}
uint32_t time_tick;
time_tick = READ_PERI_REG(get_addr_reg(stage));
*timeout_ms = time_tick * 1000 / rtc_clk_slow_freq_get_hz();
return ESP_OK;
}
esp_err_t rtc_wdt_set_stage(rtc_wdt_stage_t stage, rtc_wdt_stage_action_t stage_sel)
{
if (stage > 3 || stage_sel > 4) {
return ESP_ERR_INVALID_ARG;
}
if (stage == RTC_WDT_STAGE0) {
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG0, stage_sel);
} else if (stage == RTC_WDT_STAGE1) {
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG1, stage_sel);
} else if (stage == RTC_WDT_STAGE2) {
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG2, stage_sel);
} else {
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_STG3, stage_sel);
}
return ESP_OK;
}
esp_err_t rtc_wdt_set_length_of_reset_signal(rtc_wdt_reset_sig_t reset_src, rtc_wdt_length_sig_t reset_signal_length)
{
if (reset_src > 1 || reset_signal_length > 7) {
return ESP_ERR_INVALID_ARG;
}
if (reset_src == 0) {
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_SYS_RESET_LENGTH, reset_signal_length);
} else {
REG_SET_FIELD(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_CPU_RESET_LENGTH, reset_signal_length);
}
return ESP_OK;
}
bool rtc_wdt_is_on(void)
{
return (REG_GET_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_EN) != 0) || (REG_GET_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN) != 0);
}

View File

@@ -0,0 +1,138 @@
// Copyright 2010-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef BOOTLOADER_BUILD
#include <stdlib.h>
#include <stdint.h>
#include "sdkconfig.h"
#include "soc/soc.h"
#include "soc/soc_memory_layout.h"
#include "esp_heap_caps.h"
/* Memory layout for ESP32 SoC */
/*
Memory type descriptors. These describe the capabilities of a type of memory in the SoC. Each type of memory
map consist of one or more regions in the address space.
Each type contains an array of prioritised capabilities; types with later entries are only taken if earlier
ones can't fulfill the memory request.
The prioritised capabilities work roughly like this:
- For a normal malloc (MALLOC_CAP_DEFAULT), give away the DRAM-only memory first, then pass off any dual-use IRAM regions,
finally eat into the application memory.
- For a malloc where 32-bit-aligned-only access is okay, first allocate IRAM, then DRAM, finally application IRAM.
- Application mallocs (PIDx) will allocate IRAM first, if possible, then DRAM.
- Most other malloc caps only fit in one region anyway.
*/
const soc_memory_type_desc_t soc_memory_types[] = {
//Type 0: DRAM
{ "DRAM", { MALLOC_CAP_8BIT|MALLOC_CAP_DEFAULT, MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA|MALLOC_CAP_32BIT, 0 }, false, false},
// Type 1: DRAM used for startup stacks
{ "DRAM", { MALLOC_CAP_8BIT|MALLOC_CAP_DEFAULT, MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA|MALLOC_CAP_32BIT, 0 }, false, true},
//Type 2: DRAM which has an alias on the I-port
{ "D/IRAM", { 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL|MALLOC_CAP_DEFAULT, MALLOC_CAP_32BIT|MALLOC_CAP_EXEC }, true, false},
//Type 3: IRAM
//In ESP32S2, All IRAM region are available by D-port (D/IRAM).
{ "IRAM", { MALLOC_CAP_EXEC|MALLOC_CAP_32BIT|MALLOC_CAP_INTERNAL, 0, 0 }, false, false},
//Type 4: SPI SRAM data
//TODO, in fact, part of them support EDMA, to be supported.
{ "SPIRAM", { MALLOC_CAP_SPIRAM|MALLOC_CAP_DEFAULT, 0, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}, false, false},
};
const size_t soc_memory_type_count = sizeof(soc_memory_types)/sizeof(soc_memory_type_desc_t);
/*
Region descriptors. These describe all regions of memory available, and map them to a type in the above type.
Because of requirements in the coalescing code which merges adjacent regions, this list should always be sorted
from low to high start address.
*/
const soc_memory_region_t soc_memory_regions[] = {
#ifdef CONFIG_SPIRAM
{ SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW, 4, 0}, //SPI SRAM, if available
#endif
#if CONFIG_ESP32S2_INSTRUCTION_CACHE_8KB
#if CONFIG_ESP32S2_DATA_CACHE_0KB
{ 0x3FFB2000, 0x2000, 2, 0x40022000}, //Block 1, can be use as I/D cache memory
{ 0x3FFB4000, 0x2000, 2, 0x40024000}, //Block 2, can be use as D cache memory
{ 0x3FFB6000, 0x2000, 2, 0x40026000}, //Block 3, can be use as D cache memory
#elif CONFIG_ESP32S2_DATA_CACHE_8KB
{ 0x3FFB4000, 0x2000, 2, 0x40024000}, //Block 2, can be use as D cache memory
{ 0x3FFB6000, 0x2000, 2, 0x40026000}, //Block 3, can be use as D cache memory
#else
{ 0x3FFB6000, 0x2000, 2, 0x40026000}, //Block 3, can be use as D cache memory
#endif
#else
#if CONFIG_ESP32S2_DATA_CACHE_0KB
{ 0x3FFB4000, 0x2000, 2, 0x40024000}, //Block 2, can be use as D cache memory
{ 0x3FFB6000, 0x2000, 2, 0x40026000}, //Block 3, can be use as D cache memory
#elif CONFIG_ESP32S2_DATA_CACHE_8KB
{ 0x3FFB6000, 0x2000, 2, 0x40026000}, //Block 3, can be use as D cache memory
#endif
#endif
{ 0x3FFB8000, 0x4000, 2, 0x40028000}, //Block 4, can be remapped to ROM, can be used as trace memory
{ 0x3FFBC000, 0x4000, 2, 0x4002C000}, //Block 5, can be remapped to ROM, can be used as trace memory
{ 0x3FFC0000, 0x4000, 2, 0x40030000}, //Block 6, can be used as trace memory
{ 0x3FFC4000, 0x4000, 2, 0x40034000}, //Block 7, can be used as trace memory
{ 0x3FFC8000, 0x4000, 2, 0x40038000}, //Block 8, can be used as trace memory
{ 0x3FFCC000, 0x4000, 2, 0x4003C000}, //Block 9, can be used as trace memory
{ 0x3FFD0000, 0x4000, 2, 0x40040000}, //Block 10, can be used as trace memory
{ 0x3FFD4000, 0x4000, 2, 0x40044000}, //Block 11, can be used as trace memory
{ 0x3FFD8000, 0x4000, 2, 0x40048000}, //Block 12, can be used as trace memory
{ 0x3FFDC000, 0x4000, 2, 0x4004C000}, //Block 13, can be used as trace memory
{ 0x3FFE0000, 0x4000, 2, 0x40050000}, //Block 14, can be used as trace memory
{ 0x3FFE4000, 0x4000, 2, 0x40054000}, //Block 15, can be used as trace memory
{ 0x3FFE8000, 0x4000, 2, 0x40058000}, //Block 16, can be used as trace memory
{ 0x3FFEC000, 0x4000, 2, 0x4005C000}, //Block 17, can be used as trace memory
{ 0x3FFF0000, 0x4000, 2, 0x40060000}, //Block 18, can be used for MAC dump, can be used as trace memory
{ 0x3FFF4000, 0x4000, 2, 0x40064000}, //Block 19, can be used for MAC dump, can be used as trace memory
{ 0x3FFF8000, 0x4000, 2, 0x40068000}, //Block 20, can be used for MAC dump, can be used as trace memory
{ 0x3FFFC000, 0x4000, 1, 0x4006C000}, //Block 21, can be used for MAC dump, can be used as trace memory, used for startup stack
};
const size_t soc_memory_region_count = sizeof(soc_memory_regions)/sizeof(soc_memory_region_t);
extern int _dram0_rtos_reserved_start;
extern int _data_start, _heap_start, _iram_start, _iram_end;
/* Reserved memory regions
These are removed from the soc_memory_regions array when heaps are created.
*/
//ROM data region
SOC_RESERVE_MEMORY_REGION((intptr_t)&_dram0_rtos_reserved_start, SOC_BYTE_ACCESSIBLE_HIGH, rom_data_region);
// Static data region. DRAM used by data+bss and possibly rodata
SOC_RESERVE_MEMORY_REGION((intptr_t)&_data_start, (intptr_t)&_heap_start, dram_data);
// ESP32S2 has a big D/IRAM region, the part used by code is reserved
// The address of the D/I bus are in the same order, directly shift IRAM address to get reserved DRAM address
#define I_D_OFFSET (SOC_IRAM_LOW - SOC_DRAM_LOW)
SOC_RESERVE_MEMORY_REGION((intptr_t)&_iram_start - I_D_OFFSET, (intptr_t)&_iram_end - I_D_OFFSET, iram_code);
#ifdef CONFIG_SPIRAM
SOC_RESERVE_MEMORY_REGION( SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH, extram_data_region); //SPI RAM gets added later if needed, in spiram.c; reserve it for now
#endif
// Blocks 19 and 20 may be reserved for the trace memory
#if CONFIG_ESP32S2_TRACEMEM_RESERVE_DRAM > 0
SOC_RESERVE_MEMORY_REGION(0x3fffc000 - CONFIG_ESP32S2_TRACEMEM_RESERVE_DRAM, 0x3fffc000, trace_mem);
#endif
#endif // BOOTLOADER_BUILD

View File

@@ -0,0 +1,119 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The HAL layer for Touch Sensor (common part)
#include "hal/touch_sensor_hal.h"
#include "hal/touch_sensor_types.h"
void touch_hal_init(void)
{
touch_ll_intr_disable(TOUCH_PAD_INTR_ALL);
touch_ll_clear_channel_mask(SOC_TOUCH_SENSOR_BIT_MASK_MAX);
touch_ll_clear_trigger_status_mask();
touch_ll_set_meas_times(TOUCH_PAD_MEASURE_CYCLE_DEFAULT);
touch_ll_set_sleep_time(TOUCH_PAD_SLEEP_CYCLE_DEFAULT);
touch_ll_set_voltage_high(TOUCH_PAD_HIGH_VOLTAGE_THRESHOLD);
touch_ll_set_voltage_low(TOUCH_PAD_LOW_VOLTAGE_THRESHOLD);
touch_ll_set_voltage_attenuation(TOUCH_PAD_ATTEN_VOLTAGE_THRESHOLD);
touch_ll_set_inactive_connect(TOUCH_PAD_INACTIVE_CONNECT_DEFAULT);
}
void touch_hal_deinit(void)
{
touch_hal_stop_fsm();
touch_hal_clear_trigger_status_mask();
touch_ll_intr_disable(TOUCH_PAD_INTR_ALL);
}
void touch_hal_filter_set_config(const touch_filter_config_t *filter_info)
{
touch_ll_filter_set_filter_mode(filter_info->mode);
touch_ll_filter_set_debounce(filter_info->debounce_cnt);
touch_ll_filter_set_hysteresis(filter_info->hysteresis_thr);
touch_ll_filter_set_noise_thres(filter_info->noise_thr);
touch_ll_filter_set_neg_noise_thres(filter_info->noise_neg_thr);
touch_ll_filter_set_baseline_reset(filter_info->neg_noise_limit);
touch_ll_filter_set_jitter_step(filter_info->jitter_step);
}
void touch_hal_filter_get_config(touch_filter_config_t *filter_info)
{
touch_ll_filter_get_filter_mode(&filter_info->mode);
touch_ll_filter_get_debounce(&filter_info->debounce_cnt);
touch_ll_filter_get_hysteresis(&filter_info->hysteresis_thr);
touch_ll_filter_get_noise_thres(&filter_info->noise_thr);
touch_ll_filter_get_neg_noise_thres(&filter_info->noise_neg_thr);
touch_ll_filter_get_baseline_reset(&filter_info->neg_noise_limit);
touch_ll_filter_get_jitter_step(&filter_info->jitter_step);
}
void touch_hal_denoise_set_config(const touch_pad_denoise_t *denoise)
{
touch_ll_denoise_set_cap_level(denoise->cap_level);
touch_ll_denoise_set_grade(denoise->grade);
}
void touch_hal_denoise_get_config(touch_pad_denoise_t *denoise)
{
touch_ll_denoise_get_cap_level(&denoise->cap_level);
touch_ll_denoise_get_grade(&denoise->grade);
}
void touch_hal_denoise_enable(void)
{
touch_ll_clear_channel_mask(1U << SOC_TOUCH_DENOISE_CHANNEL);
touch_ll_denoise_enable();
}
void touch_hal_waterproof_set_config(const touch_pad_waterproof_t *waterproof)
{
touch_ll_waterproof_set_guard_pad(waterproof->guard_ring_pad);
touch_ll_waterproof_set_sheild_driver(waterproof->shield_driver);
}
void touch_hal_waterproof_get_config(touch_pad_waterproof_t *waterproof)
{
touch_ll_waterproof_get_guard_pad(&waterproof->guard_ring_pad);
touch_ll_waterproof_get_sheild_driver(&waterproof->shield_driver);
}
void touch_hal_waterproof_enable(void)
{
touch_ll_clear_channel_mask(1U << SOC_TOUCH_SHIELD_CHANNEL);
touch_ll_waterproof_enable();
}
void touch_hal_proximity_set_config(const touch_pad_proximity_t *proximity)
{
touch_ll_proximity_set_channel_num(proximity->select_pad);
touch_ll_proximity_set_meas_times(proximity->meas_num);
}
void touch_hal_proximity_get_config(touch_pad_proximity_t *proximity)
{
touch_ll_proximity_get_channel_num(proximity->select_pad);
touch_ll_proximity_get_meas_times(&proximity->meas_num);
}
void touch_hal_sleep_channel_config(const touch_pad_sleep_channel_t *slp_config)
{
touch_ll_sleep_set_channel_num(slp_config->touch_num);
touch_ll_sleep_set_threshold(slp_config->sleep_pad_threshold);
if (slp_config->en_proximity) {
touch_ll_sleep_enable_approach();
} else {
touch_ll_sleep_disable_approach();
}
}

View File

@@ -0,0 +1,22 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "hal/usb_ll.h"
#include "hal/usb_hal.h"
void usb_hal_init(usb_hal_context_t *usb)
{
usb_ll_init(usb->use_external_phy);
}