hal: extract hal component from soc component

This commit is contained in:
Michael (XIAO Xufeng)
2020-08-08 20:15:27 +08:00
parent 5a9a42b079
commit 5425ef4ee4
222 changed files with 147 additions and 107 deletions

View File

@@ -1,7 +1,5 @@
set(srcs "adc_hal.c"
set(srcs
"dac_hal.c"
"brownout_hal.c"
"cp_dma_hal.c"
"rtc_clk.c"
"rtc_clk_init.c"
"rtc_init.c"
@@ -9,16 +7,12 @@ set(srcs "adc_hal.c"
"rtc_sleep.c"
"rtc_time.c"
"rtc_wdt.c"
"soc_memory_layout.c"
"systimer_hal.c"
"touch_sensor_hal.c"
"usb_hal.c")
"soc_memory_layout.c")
add_prefix(srcs "${CMAKE_CURRENT_LIST_DIR}/" "${srcs}")
target_sources(${COMPONENT_LIB} PRIVATE "${srcs}")
target_include_directories(${COMPONENT_LIB} PUBLIC . include)
target_include_directories(${COMPONENT_LIB} PRIVATE ../hal)
if(NOT CMAKE_BUILD_EARLY_EXPANSION)
set_source_files_properties("${CMAKE_CURRENT_LIST_DIR}/rtc_clk.c" PROPERTIES

View File

@@ -1,255 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The HAL layer for ADC (esp32s2 specific part)
#include "hal/adc_hal.h"
#include "hal/adc_types.h"
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
void adc_hal_digi_init(void)
{
adc_hal_init();
adc_ll_digi_set_clk_div(SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT);
}
void adc_hal_digi_deinit(void)
{
adc_ll_digi_trigger_disable(); // boss
adc_ll_digi_dma_disable();
adc_ll_digi_clear_pattern_table(ADC_NUM_1);
adc_ll_digi_clear_pattern_table(ADC_NUM_2);
adc_ll_digi_filter_reset(ADC_NUM_1);
adc_ll_digi_filter_reset(ADC_NUM_2);
adc_ll_digi_reset();
adc_ll_digi_controller_clk_disable();
adc_hal_deinit();
}
static inline void adc_set_init_code(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
uint32_t cal_val = adc_hal_calibration(adc_n, channel, atten, true, false);
adc_hal_set_calibration_param(adc_n, cal_val);
}
void adc_hal_digi_controller_config(const adc_digi_config_t *cfg)
{
/* If enable digtal controller, adc xpd should always on. */
adc_ll_set_power_manage(ADC_POWER_SW_ON);
/* Single channel mode or multi channel mode. */
adc_ll_digi_set_convert_mode(cfg->conv_mode);
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_1) {
if (cfg->adc1_pattern_len) {
adc_ll_digi_clear_pattern_table(ADC_NUM_1);
adc_ll_digi_set_pattern_table_len(ADC_NUM_1, cfg->adc1_pattern_len);
for (int i = 0; i < cfg->adc1_pattern_len; i++) {
adc_ll_digi_set_pattern_table(ADC_NUM_1, i, cfg->adc1_pattern[i]);
adc_set_init_code(ADC_NUM_1, cfg->adc1_pattern[i].channel, cfg->adc1_pattern[i].atten);
}
}
}
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_2) {
if (cfg->adc2_pattern_len) {
adc_ll_digi_clear_pattern_table(ADC_NUM_2);
adc_ll_digi_set_pattern_table_len(ADC_NUM_2, cfg->adc2_pattern_len);
for (int i = 0; i < cfg->adc2_pattern_len; i++) {
adc_ll_digi_set_pattern_table(ADC_NUM_2, i, cfg->adc2_pattern[i]);
adc_set_init_code(ADC_NUM_2, cfg->adc2_pattern[i].channel, cfg->adc2_pattern[i].atten);
}
}
}
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_1) {
adc_ll_set_controller(ADC_NUM_1, ADC_CTRL_DIG);
}
if (cfg->conv_mode & ADC_CONV_SINGLE_UNIT_2) {
adc_ll_set_controller(ADC_NUM_2, ADC_CTRL_DIG);
}
adc_ll_digi_set_output_format(cfg->format);
if (cfg->conv_limit_en) {
adc_ll_digi_set_convert_limit_num(cfg->conv_limit_num);
adc_ll_digi_convert_limit_enable();
} else {
adc_ll_digi_convert_limit_disable();
}
adc_ll_digi_set_trigger_interval(cfg->interval);
adc_hal_digi_clk_config(&cfg->dig_clk);
adc_ll_digi_dma_set_eof_num(cfg->dma_eof_num);
}
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Enable clock and select clock source for ADC digital controller.
* Expression: controller_clk = (`APLL` or `APB`) / (div_num + div_a / div_b + 1).
*
* @note ADC and DAC digital controller share the same frequency divider.
* Please set a reasonable frequency division factor to meet the sampling frequency of the ADC and the output frequency of the DAC.
*
* @param clk Refer to ``adc_digi_clk_t``.
*/
void adc_hal_digi_clk_config(const adc_digi_clk_t *clk)
{
adc_ll_digi_controller_clk_div(clk->div_num, clk->div_b, clk->div_a);
adc_ll_digi_controller_clk_enable(clk->use_apll);
}
/**
* Enable digital controller to trigger the measurement.
*/
void adc_hal_digi_enable(void)
{
adc_ll_digi_dma_enable();
adc_ll_digi_trigger_enable();
}
/**
* Disable digital controller to trigger the measurement.
*/
void adc_hal_digi_disable(void)
{
adc_ll_digi_trigger_disable();
adc_ll_digi_dma_disable();
}
/**
* Config monitor of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @param config Refer to ``adc_digi_monitor_t``.
*/
void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config)
{
adc_ll_digi_monitor_set_mode(adc_n, config->mode);
adc_ll_digi_monitor_set_thres(adc_n, config->threshold);
}
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* Config ADC2 module arbiter.
* The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
* the low priority controller will read the invalid ADC2 data, and the validity of the data can be judged by the flag bit in the data.
*
* @note Only ADC2 support arbiter.
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
* @note Default priority: Wi-Fi > RTC > Digital;
*
* @param config Refer to ``adc_arbiter_t``.
*/
void adc_hal_arbiter_config(adc_arbiter_t *config)
{
adc_ll_set_arbiter_work_mode(config->mode);
adc_ll_set_arbiter_priority(config->rtc_pri, config->dig_pri, config->pwdet_pri);
}
/*---------------------------------------------------------------
ADC calibration setting
---------------------------------------------------------------*/
#define ADC_HAL_CAL_OFFSET_RANGE (4096)
#define ADC_HAL_CAL_TIMES (10)
static uint16_t s_adc_cali_param[ADC_NUM_MAX][ADC_ATTEN_MAX] = { {0}, {0} };
static uint32_t adc_hal_read_self_cal(adc_ll_num_t adc_n, int channel)
{
adc_ll_rtc_start_convert(adc_n, channel);
while (adc_ll_rtc_convert_is_done(adc_n) != true);
return (uint32_t)adc_ll_rtc_get_convert_value(adc_n);
}
uint32_t adc_hal_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd, bool force_cal)
{
if (!force_cal) {
if (s_adc_cali_param[adc_n][atten]) {
return (uint32_t)s_adc_cali_param[adc_n][atten];
}
}
uint32_t code_list[ADC_HAL_CAL_TIMES] = {0};
uint32_t code_sum = 0;
uint32_t code_h = 0;
uint32_t code_l = 0;
uint32_t chk_code = 0;
uint32_t dout = 0;
adc_hal_set_power_manage(ADC_POWER_SW_ON);
if (adc_n == ADC_NUM_2) {
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
adc_hal_arbiter_config(&config);
}
adc_hal_set_controller(adc_n, ADC_CTRL_RTC); //Set controller
// adc_hal_arbiter_config(adc_arbiter_t *config)
adc_ll_calibration_prepare(adc_n, channel, internal_gnd);
/* Enable/disable internal connect GND (for calibration). */
if (internal_gnd) {
adc_ll_rtc_disable_channel(adc_n, channel);
adc_ll_set_atten(adc_n, 0, atten); // Note: when disable all channel, HW auto select channel0 atten param.
} else {
adc_ll_rtc_enable_channel(adc_n, channel);
adc_ll_set_atten(adc_n, channel, atten);
}
for (uint8_t rpt = 0 ; rpt < ADC_HAL_CAL_TIMES ; rpt ++) {
code_h = ADC_HAL_CAL_OFFSET_RANGE;
code_l = 0;
chk_code = (code_h + code_l) / 2;
adc_ll_set_calibration_param(adc_n, chk_code);
dout = adc_hal_read_self_cal(adc_n, channel);
while (code_h - code_l > 1) {
if (dout == 0) {
code_h = chk_code;
} else {
code_l = chk_code;
}
chk_code = (code_h + code_l) / 2;
adc_ll_set_calibration_param(adc_n, chk_code);
dout = adc_hal_read_self_cal(adc_n, channel);
if ((code_h - code_l == 1)) {
chk_code += 1;
adc_ll_set_calibration_param(adc_n, chk_code);
dout = adc_hal_read_self_cal(adc_n, channel);
}
}
code_list[rpt] = chk_code;
code_sum += chk_code;
}
code_l = code_list[0];
code_h = code_list[0];
for (uint8_t i = 0 ; i < ADC_HAL_CAL_TIMES ; i++) {
if (code_l > code_list[i]) {
code_l = code_list[i];
}
if (code_h < code_list[i]) {
code_h = code_list[i];
}
}
chk_code = code_h + code_l;
dout = ((code_sum - chk_code) % (ADC_HAL_CAL_TIMES - 2) < 4)
? (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2)
: (code_sum - chk_code) / (ADC_HAL_CAL_TIMES - 2) + 1;
adc_ll_set_calibration_param(adc_n, dout);
adc_ll_calibration_finish(adc_n);
s_adc_cali_param[adc_n][atten] = (uint16_t)dout;
return dout;
}

View File

@@ -1,46 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "hal/brownout_hal.h"
#include "soc/rtc_cntl_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "i2c_rtc_clk.h"
#include "i2c_brownout.h"
void brownout_hal_config(const brownout_hal_config_t *cfg)
{
I2C_WRITEREG_MASK_RTC(I2C_BOD, I2C_BOD_THRESHOLD, cfg->threshold);
typeof(RTCCNTL.brown_out) brown_out_reg = {
.out2_ena = 1,
.int_wait = 0x002,
.close_flash_ena = cfg->flash_power_down,
.pd_rf_ena = cfg->rf_power_down,
.rst_wait = 0x3ff,
.rst_ena = cfg->reset_enabled,
.ena = cfg->enabled,
};
RTCCNTL.brown_out = brown_out_reg;
}
void brownout_hal_intr_enable(bool enable)
{
RTCCNTL.int_ena.rtc_brown_out = enable;
}
void brownout_hal_intr_clear(void)
{
RTCCNTL.int_clr.rtc_brown_out = 1;
}

View File

@@ -1,218 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "hal/cp_dma_hal.h"
#include "hal/cp_dma_ll.h"
#include "soc/cp_dma_caps.h"
#define MCP_DESCRIPTOR_BUFFER_OWNER_DMA (1)
#define MCP_DESCRIPTOR_BUFFER_OWNER_CPU (0)
void cp_dma_hal_init(cp_dma_hal_context_t *hal, cp_dma_descriptor_t *tx_descriptors[], uint32_t tx_desc_num, cp_dma_descriptor_t *rx_descriptors[], uint32_t rx_desc_num)
{
hal->dev = &CP_DMA;
cp_dma_ll_enable_clock(hal->dev, true);
cp_dma_ll_reset_in_link(hal->dev);
cp_dma_ll_reset_out_link(hal->dev);
cp_dma_ll_reset_cmd_fifo(hal->dev);
cp_dma_ll_reset_fifo(hal->dev);
cp_dma_ll_enable_intr(hal->dev, UINT32_MAX, false);
cp_dma_ll_clear_intr_status(hal->dev, UINT32_MAX);
cp_dma_ll_enable_owner_check(hal->dev, true);
// circle TX descriptors
for (int i = 0; i < tx_desc_num; i++) {
tx_descriptors[i]->dw0.owner = MCP_DESCRIPTOR_BUFFER_OWNER_CPU;
tx_descriptors[i]->next = tx_descriptors[i + 1];
}
tx_descriptors[tx_desc_num - 1]->next = tx_descriptors[0];
// circle RX descriptors
for (int i = 0; i < rx_desc_num; i++) {
rx_descriptors[i]->dw0.owner = MCP_DESCRIPTOR_BUFFER_OWNER_CPU;
rx_descriptors[i]->next = rx_descriptors[i + 1];
}
rx_descriptors[rx_desc_num - 1]->next = rx_descriptors[0];
// set the start of each descriptor chain
hal->tx_desc = tx_descriptors[0];
hal->rx_desc = rx_descriptors[0];
/* set base address of the first descriptor */
cp_dma_ll_tx_set_descriptor_base_addr(hal->dev, (uint32_t)hal->tx_desc);
cp_dma_ll_rx_set_descriptor_base_addr(hal->dev, (uint32_t)hal->rx_desc);
hal->next_rx_desc_to_check = rx_descriptors[0];
}
void cp_dma_hal_deinit(cp_dma_hal_context_t *hal)
{
cp_dma_ll_enable_clock(hal->dev, false);
hal->dev = NULL;
hal->tx_desc = NULL;
hal->rx_desc = NULL;
}
void cp_dma_hal_start(cp_dma_hal_context_t *hal)
{
// enable DMA engine
cp_dma_ll_start_rx(hal->dev, true);
cp_dma_ll_start_tx(hal->dev, true);
// enable RX EOF interrupt
cp_dma_ll_enable_intr(hal->dev, CP_DMA_LL_EVENT_RX_EOF, true);
}
void cp_dma_hal_stop(cp_dma_hal_context_t *hal)
{
// disable interrupt
cp_dma_ll_enable_intr(hal->dev, CP_DMA_LL_EVENT_RX_EOF, false);
cp_dma_ll_enable_intr(hal->dev, CP_DMA_LL_EVENT_TX_EOF, false);
// disable DMA
cp_dma_ll_start_rx(hal->dev, false);
cp_dma_ll_start_tx(hal->dev, false);
}
uint32_t cp_dma_hal_get_intr_status(cp_dma_hal_context_t *hal)
{
return cp_dma_ll_get_intr_status(hal->dev);
}
void cp_dma_hal_clear_intr_status(cp_dma_hal_context_t *hal, uint32_t mask)
{
cp_dma_ll_clear_intr_status(hal->dev, mask);
}
int cp_dma_hal_prepare_transmit(cp_dma_hal_context_t *hal, void *buffer, size_t len, cp_dma_descriptor_t **start_desc, cp_dma_descriptor_t **end_desc)
{
uint32_t prepared_length = 0;
uint8_t *buf = (uint8_t *)buffer;
cp_dma_descriptor_t *desc = hal->tx_desc; // descriptor iterator
cp_dma_descriptor_t *start = desc;
cp_dma_descriptor_t *end = desc;
while (len > SOC_CP_DMA_MAX_BUFFER_SIZE) {
if (desc->dw0.owner != MCP_DESCRIPTOR_BUFFER_OWNER_DMA) {
desc->dw0.eof = 0; // not the end of the transaction
desc->dw0.size = SOC_CP_DMA_MAX_BUFFER_SIZE;
desc->dw0.length = SOC_CP_DMA_MAX_BUFFER_SIZE;
desc->buffer = &buf[prepared_length];
desc = desc->next; // move to next descriptor
prepared_length += SOC_CP_DMA_MAX_BUFFER_SIZE;
len -= SOC_CP_DMA_MAX_BUFFER_SIZE;
} else {
// out of TX descriptors
goto _exit;
}
}
if (len) {
if (desc->dw0.owner != MCP_DESCRIPTOR_BUFFER_OWNER_DMA) {
end = desc; // the last descriptor used
desc->dw0.eof = 1; // end of the transaction
desc->dw0.size = len;
desc->dw0.length = len;
desc->buffer = &buf[prepared_length];
desc = desc->next; // move to next descriptor
prepared_length += len;
} else {
// out of TX descriptors
goto _exit;
}
}
*start_desc = start;
*end_desc = end;
_exit:
return prepared_length;
}
int cp_dma_hal_prepare_receive(cp_dma_hal_context_t *hal, void *buffer, size_t size, cp_dma_descriptor_t **start_desc, cp_dma_descriptor_t **end_desc)
{
uint32_t prepared_length = 0;
uint8_t *buf = (uint8_t *)buffer;
cp_dma_descriptor_t *desc = hal->rx_desc; // descriptor iterator
cp_dma_descriptor_t *start = desc;
cp_dma_descriptor_t *end = desc;
while (size > SOC_CP_DMA_MAX_BUFFER_SIZE) {
if (desc->dw0.owner != MCP_DESCRIPTOR_BUFFER_OWNER_DMA) {
desc->dw0.size = SOC_CP_DMA_MAX_BUFFER_SIZE;
desc->buffer = &buf[prepared_length];
desc = desc->next; // move to next descriptor
prepared_length += SOC_CP_DMA_MAX_BUFFER_SIZE;
size -= SOC_CP_DMA_MAX_BUFFER_SIZE;
} else {
// out of TX descriptors
goto _exit;
}
}
if (size) {
if (desc->dw0.owner != MCP_DESCRIPTOR_BUFFER_OWNER_DMA) {
end = desc; // the last descriptor used
desc->dw0.size = size;
desc->buffer = &buf[prepared_length];
desc = desc->next; // move to next descriptor
prepared_length += size;
} else {
// out of TX descriptors
goto _exit;
}
}
*start_desc = start;
*end_desc = end;
_exit:
return prepared_length;
}
void cp_dma_hal_restart_tx(cp_dma_hal_context_t *hal, cp_dma_descriptor_t *start_desc, cp_dma_descriptor_t *end_desc)
{
// Give descriptor owner to DMA
cp_dma_descriptor_t *desc = start_desc;
while (desc != end_desc) {
desc->dw0.owner = MCP_DESCRIPTOR_BUFFER_OWNER_DMA;
desc = desc->next;
}
desc->dw0.owner = MCP_DESCRIPTOR_BUFFER_OWNER_DMA;
hal->tx_desc = end_desc->next; // update the next available descriptor in HAL
cp_dma_ll_restart_tx(hal->dev);
}
void cp_dma_hal_restart_rx(cp_dma_hal_context_t *hal, cp_dma_descriptor_t *start_desc, cp_dma_descriptor_t *end_desc)
{
// Give descriptor owner to DMA
cp_dma_descriptor_t *desc = start_desc;
while (desc != end_desc) {
desc->dw0.owner = MCP_DESCRIPTOR_BUFFER_OWNER_DMA;
desc = desc->next;
}
desc->dw0.owner = MCP_DESCRIPTOR_BUFFER_OWNER_DMA;
hal->rx_desc = end_desc->next; // update the next available descriptor in HAL
cp_dma_ll_restart_rx(hal->dev);
}
bool cp_dma_hal_get_next_rx_descriptor(cp_dma_hal_context_t *hal, cp_dma_descriptor_t *eof_desc, cp_dma_descriptor_t **next_desc)
{
cp_dma_descriptor_t *next = hal->next_rx_desc_to_check;
// additional check, to avoid potential interrupt got triggered by mistake
if (next->dw0.owner == MCP_DESCRIPTOR_BUFFER_OWNER_CPU) {
hal->next_rx_desc_to_check = hal->next_rx_desc_to_check->next;
*next_desc = next;
// return if we need to continue
return eof_desc == next ? false : true;
} else {
*next_desc = NULL;
return false;
}
}

View File

@@ -1,249 +0,0 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The HAL layer for ADC (esp32s2 specific part)
#pragma once
#include "hal/adc_ll.h"
#include "hal/adc_types.h"
#include_next "hal/adc_hal.h"
#ifdef __cplusplus
extern "C" {
#endif
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/**
* ADC Digital controller output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
#define adc_hal_digi_output_invert(adc_n, inv_en) adc_ll_digi_output_invert(adc_n, inv_en)
/**
* Sets the number of interval clock cycles for the digital controller to trigger the measurement.
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval. Refer to ``adc_digi_clk_t``.
*
* @note The trigger interval should not be less than the sampling time of the SAR ADC.
* @param cycle The number of clock cycles for the trigger interval. The unit is the divided clock. Range: 40 ~ 4095.
*/
#define adc_hal_digi_set_trigger_interval(cycle) adc_ll_digi_set_trigger_interval(cycle)
/**
* Enable digital controller to trigger the measurement.
*/
void adc_hal_digi_enable(void);
/**
* Disable digital controller to trigger the measurement.
*/
void adc_hal_digi_disable(void);
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Enable clock and select clock source for ADC digital controller.
* Expression: controller_clk = (`APLL` or `APB`) / (div_num + div_a / div_b + 1).
*
* @note ADC and DAC digital controller share the same frequency divider.
* Please set a reasonable frequency division factor to meet the sampling frequency of the ADC and the output frequency of the DAC.
*
* @param clk Refer to ``adc_digi_clk_t``.
*/
void adc_hal_digi_clk_config(const adc_digi_clk_t *clk);
/**
* Reset adc digital controller filter.
*
* @param adc_n ADC unit.
*/
#define adc_hal_digi_filter_reset(adc_n) adc_ll_digi_filter_reset(adc_n)
/**
* Set adc digital controller filter factor.
*
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
#define adc_hal_digi_filter_set_factor(adc_n, factor) adc_ll_digi_filter_set_factor(adc_n, factor)
/**
* Get adc digital controller filter factor.
*
* @param adc_n ADC unit.
* @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64).
*/
#define adc_hal_digi_filter_get_factor(adc_n, factor) adc_ll_digi_filter_get_factor(adc_n, factor)
/**
* Enable/disable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
*/
#define adc_hal_digi_filter_enable(adc_n, enable) adc_ll_digi_filter_enable(adc_n, enable)
/**
* Get the filtered data of adc digital controller filter.
* The data after each measurement and filtering is updated to the DMA by the digital controller. But it can also be obtained manually through this API.
*
* @note The filter will filter all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @return Filtered data.
*/
#define adc_hal_digi_filter_read_data(adc_n) adc_ll_digi_filter_read_data(adc_n)
/**
* Config monitor of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
* @param config Refer to ``adc_digi_monitor_t``.
*/
void adc_hal_digi_monitor_config(adc_ll_num_t adc_n, adc_digi_monitor_t *config);
/**
* Enable/disable monitor of adc digital controller.
*
* @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time.
* @param adc_n ADC unit.
*/
#define adc_hal_digi_monitor_enable(adc_n, enable) adc_ll_digi_monitor_enable(adc_n, enable)
/**
* Enable interrupt of adc digital controller by bitmask.
*
* @param adc_n ADC unit.
* @param intr Interrupt bitmask.
*/
#define adc_hal_digi_intr_enable(adc_n, intr) adc_ll_digi_intr_enable(adc_n, intr)
/**
* Disable interrupt of adc digital controller by bitmask.
*
* @param adc_n ADC unit.
* @param intr Interrupt bitmask.
*/
#define adc_hal_digi_intr_disable(adc_n, intr) adc_ll_digi_intr_disable(adc_n, intr)
/**
* Clear interrupt of adc digital controller by bitmask.
*
* @param adc_n ADC unit.
* @param intr Interrupt bitmask.
*/
#define adc_hal_digi_intr_clear(adc_n, intr) adc_ll_digi_intr_clear(adc_n, intr)
/**
* Get interrupt status mask of adc digital controller.
*
* @param adc_n ADC unit.
* @return
* - intr Interrupt bitmask.
*/
#define adc_hal_digi_get_intr_status(adc_n) adc_ll_digi_get_intr_status(adc_n)
/**
* Set DMA eof num of adc digital controller.
* If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated.
*
* @param num eof num of DMA.
*/
#define adc_hal_digi_dma_set_eof_num(num) adc_ll_digi_dma_set_eof_num(num)
/**
* Enable output data to DMA from adc digital controller.
*/
#define adc_hal_digi_dma_enable() adc_ll_digi_dma_enable()
/**
* Disable output data to DMA from adc digital controller.
*/
#define adc_hal_digi_dma_disable() adc_ll_digi_dma_disable()
/**
* Reset adc digital controller.
*/
#define adc_hal_digi_reset() adc_ll_digi_reset()
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
/**
* Reset RTC controller FSM.
*/
#define adc_hal_rtc_reset() adc_ll_rtc_reset()
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* Config ADC2 module arbiter.
* The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority,
* the low priority controller will read the invalid ADC2 data, and the validity of the data can be judged by the flag bit in the data.
*
* @note Only ADC2 support arbiter.
* @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
* @note Default priority: Wi-Fi > RTC > Digital;
*
* @param config Refer to ``adc_arbiter_t``.
*/
void adc_hal_arbiter_config(adc_arbiter_t *config);
/*---------------------------------------------------------------
ADC calibration setting
---------------------------------------------------------------*/
/**
* Calibrate the ADC according to the parameters.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
* @param channel adc channel number.
* @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage.
* false: Use IO external voltage as calibration voltage.
* @param force_cal true: Do not use the results that have already been verified, and perform the verification again. It will take a long time(~40us).
* false: Use the result of the last calibration. Return immediately.
*
* @return
* - The calibration result (initial data) to ADC, use `adc_hal_set_calibration_param` to set.
*/
uint32_t adc_hal_calibration(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten, bool internal_gnd, bool force_cal);
/**
* Set the calibration result (initial data) to ADC.
*
* @note Different ADC units and different attenuation options use different calibration data (initial data).
*
* @param adc_n ADC index number.
*/
#define adc_hal_set_calibration_param(adc_n, param) adc_ll_set_calibration_param(adc_n, param);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,283 +0,0 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "soc/periph_defs.h"
#include "soc/system_reg.h"
#include "soc/syscon_reg.h"
#include "soc/dport_access.h"
static inline uint32_t periph_ll_get_clk_en_mask(periph_module_t periph)
{
switch (periph) {
case PERIPH_LEDC_MODULE:
return DPORT_LEDC_CLK_EN;
case PERIPH_UART0_MODULE:
return DPORT_UART_CLK_EN;
case PERIPH_UART1_MODULE:
return DPORT_UART1_CLK_EN;
case PERIPH_USB_MODULE:
return DPORT_USB_CLK_EN;
case PERIPH_I2C0_MODULE:
return DPORT_I2C_EXT0_CLK_EN;
case PERIPH_I2C1_MODULE:
return DPORT_I2C_EXT1_CLK_EN;
case PERIPH_I2S0_MODULE:
return DPORT_I2S0_CLK_EN;
case PERIPH_I2S1_MODULE:
return DPORT_I2S1_CLK_EN;
case PERIPH_TIMG0_MODULE:
return DPORT_TIMERGROUP_CLK_EN;
case PERIPH_TIMG1_MODULE:
return DPORT_TIMERGROUP1_CLK_EN;
case PERIPH_PWM0_MODULE:
return DPORT_PWM0_CLK_EN;
case PERIPH_PWM1_MODULE:
return DPORT_PWM1_CLK_EN;
case PERIPH_PWM2_MODULE:
return DPORT_PWM2_CLK_EN;
case PERIPH_PWM3_MODULE:
return DPORT_PWM3_CLK_EN;
case PERIPH_UHCI0_MODULE:
return DPORT_UHCI0_CLK_EN;
case PERIPH_UHCI1_MODULE:
return DPORT_UHCI1_CLK_EN;
case PERIPH_RMT_MODULE:
return DPORT_RMT_CLK_EN;
case PERIPH_PCNT_MODULE:
return DPORT_PCNT_CLK_EN;
case PERIPH_SPI_MODULE:
return DPORT_SPI01_CLK_EN;
case PERIPH_FSPI_MODULE:
return DPORT_SPI2_CLK_EN;
case PERIPH_HSPI_MODULE:
return DPORT_SPI3_CLK_EN;
case PERIPH_SPI2_DMA_MODULE:
return DPORT_SPI2_DMA_CLK_EN;
case PERIPH_SPI3_DMA_MODULE:
return DPORT_SPI3_DMA_CLK_EN;
case PERIPH_TWAI_MODULE:
return DPORT_TWAI_CLK_EN;
case PERIPH_RNG_MODULE:
return DPORT_WIFI_CLK_RNG_EN;
case PERIPH_WIFI_MODULE:
return DPORT_WIFI_CLK_WIFI_EN_M;
case PERIPH_WIFI_BT_COMMON_MODULE:
return DPORT_WIFI_CLK_WIFI_BT_COMMON_M;
case PERIPH_SYSTIMER_MODULE:
return DPORT_SYSTIMER_CLK_EN;
case PERIPH_AES_MODULE:
return DPORT_CRYPTO_AES_CLK_EN;
case PERIPH_SHA_MODULE:
return DPORT_CRYPTO_SHA_CLK_EN;
case PERIPH_RSA_MODULE:
return DPORT_CRYPTO_RSA_CLK_EN;
case PERIPH_CRYPTO_DMA_MODULE:
return DPORT_CRYPTO_DMA_CLK_EN;
case PERIPH_SHA_DMA_MODULE:
return DPORT_CRYPTO_DMA_CLK_EN | DPORT_CRYPTO_SHA_CLK_EN;
case PERIPH_AES_DMA_MODULE:
return DPORT_CRYPTO_DMA_CLK_EN | DPORT_CRYPTO_AES_CLK_EN;
default:
return 0;
}
}
static inline uint32_t periph_ll_get_rst_en_mask(periph_module_t periph, bool enable)
{
(void)enable; // unused
switch (periph) {
case PERIPH_LEDC_MODULE:
return DPORT_LEDC_RST;
case PERIPH_UART0_MODULE:
return DPORT_UART_RST;
case PERIPH_UART1_MODULE:
return DPORT_UART1_RST;
case PERIPH_USB_MODULE:
return DPORT_USB_RST;
case PERIPH_I2C0_MODULE:
return DPORT_I2C_EXT0_RST;
case PERIPH_I2C1_MODULE:
return DPORT_I2C_EXT1_RST;
case PERIPH_I2S0_MODULE:
return DPORT_I2S0_RST;
case PERIPH_I2S1_MODULE:
return DPORT_I2S1_RST;
case PERIPH_TIMG0_MODULE:
return DPORT_TIMERGROUP_RST;
case PERIPH_TIMG1_MODULE:
return DPORT_TIMERGROUP1_RST;
case PERIPH_PWM0_MODULE:
return DPORT_PWM0_RST;
case PERIPH_PWM1_MODULE:
return DPORT_PWM1_RST;
case PERIPH_PWM2_MODULE:
return DPORT_PWM2_RST;
case PERIPH_PWM3_MODULE:
return DPORT_PWM3_RST;
case PERIPH_UHCI0_MODULE:
return DPORT_UHCI0_RST;
case PERIPH_UHCI1_MODULE:
return DPORT_UHCI1_RST;
case PERIPH_RMT_MODULE:
return DPORT_RMT_RST;
case PERIPH_PCNT_MODULE:
return DPORT_PCNT_RST;
case PERIPH_SPI_MODULE:
return DPORT_SPI01_RST;
case PERIPH_FSPI_MODULE:
return DPORT_SPI2_RST;
case PERIPH_HSPI_MODULE:
return DPORT_SPI3_RST;
case PERIPH_SPI2_DMA_MODULE:
return DPORT_SPI2_DMA_RST;
case PERIPH_SPI3_DMA_MODULE:
return DPORT_SPI3_DMA_RST;
case PERIPH_TWAI_MODULE:
return DPORT_TWAI_RST;
case PERIPH_SYSTIMER_MODULE:
return DPORT_SYSTIMER_RST;
case PERIPH_AES_MODULE:
if (enable == true) {
// Clear reset on digital signature, otherwise AES unit is held in reset also.
return (DPORT_CRYPTO_AES_RST | DPORT_CRYPTO_DS_RST);
} else {
//Don't return other units to reset, as this pulls reset on RSA & SHA units, respectively.
return DPORT_CRYPTO_AES_RST;
}
case PERIPH_SHA_MODULE:
if (enable == true) {
// Clear reset on digital signature and HMAC, otherwise SHA is held in reset
return (DPORT_CRYPTO_SHA_RST | DPORT_CRYPTO_DS_RST | DPORT_CRYPTO_HMAC_RST);
} else {
// Don't assert reset on secure boot, otherwise AES is held in reset
return DPORT_CRYPTO_SHA_RST;
}
case PERIPH_RSA_MODULE:
if (enable == true) {
/* also clear reset on digital signature, otherwise RSA is held in reset */
return (DPORT_CRYPTO_RSA_RST | DPORT_CRYPTO_DS_RST);
} else {
/* don't reset digital signature unit, as this resets AES also */
return DPORT_CRYPTO_RSA_RST;
}
case PERIPH_CRYPTO_DMA_MODULE:
return DPORT_CRYPTO_DMA_RST;
case PERIPH_AES_DMA_MODULE:
if (enable == true) {
// Clear reset on digital signature, otherwise AES unit is held in reset also.
return (DPORT_CRYPTO_AES_RST | DPORT_CRYPTO_DS_RST | DPORT_CRYPTO_DMA_RST);
} else {
//Don't return other units to reset, as this pulls reset on RSA & SHA units, respectively.
return (DPORT_CRYPTO_AES_RST | DPORT_CRYPTO_DMA_RST);
}
case PERIPH_SHA_DMA_MODULE:
if (enable == true) {
// Clear reset on digital signature and HMAC, otherwise SHA is held in reset
return (DPORT_CRYPTO_SHA_RST | DPORT_CRYPTO_DS_RST | DPORT_CRYPTO_HMAC_RST | DPORT_CRYPTO_DMA_RST);
} else {
// Don't assert reset on secure boot, otherwise AES is held in reset
return (DPORT_CRYPTO_SHA_RST | DPORT_CRYPTO_DMA_RST);
}
default:
return 0;
}
}
static inline uint32_t periph_ll_get_clk_en_reg(periph_module_t periph)
{
switch (periph) {
case PERIPH_RNG_MODULE:
case PERIPH_WIFI_MODULE:
case PERIPH_WIFI_BT_COMMON_MODULE:
return DPORT_WIFI_CLK_EN_REG;
case PERIPH_AES_MODULE:
case PERIPH_SHA_MODULE:
case PERIPH_RSA_MODULE:
case PERIPH_CRYPTO_DMA_MODULE:
case PERIPH_AES_DMA_MODULE:
case PERIPH_SHA_DMA_MODULE:
return DPORT_PERIP_CLK_EN1_REG;
default:
return DPORT_PERIP_CLK_EN_REG;
}
}
static inline uint32_t periph_ll_get_rst_en_reg(periph_module_t periph)
{
switch (periph) {
case PERIPH_RNG_MODULE:
case PERIPH_WIFI_MODULE:
case PERIPH_WIFI_BT_COMMON_MODULE:
return DPORT_CORE_RST_EN_REG;
case PERIPH_AES_MODULE:
case PERIPH_SHA_MODULE:
case PERIPH_RSA_MODULE:
case PERIPH_CRYPTO_DMA_MODULE:
case PERIPH_AES_DMA_MODULE:
case PERIPH_SHA_DMA_MODULE:
return DPORT_PERIP_RST_EN1_REG;
default:
return DPORT_PERIP_RST_EN_REG;
}
}
static inline void periph_ll_enable_clk_clear_rst(periph_module_t periph)
{
DPORT_SET_PERI_REG_MASK(periph_ll_get_clk_en_reg(periph), periph_ll_get_clk_en_mask(periph));
DPORT_CLEAR_PERI_REG_MASK(periph_ll_get_rst_en_reg(periph), periph_ll_get_rst_en_mask(periph, true));
}
static inline void periph_ll_disable_clk_set_rst(periph_module_t periph)
{
DPORT_CLEAR_PERI_REG_MASK(periph_ll_get_clk_en_reg(periph), periph_ll_get_clk_en_mask(periph));
DPORT_SET_PERI_REG_MASK(periph_ll_get_rst_en_reg(periph), periph_ll_get_rst_en_mask(periph, false));
}
static inline void IRAM_ATTR periph_ll_wifi_bt_module_enable_clk_clear_rst(void)
{
DPORT_SET_PERI_REG_MASK(DPORT_WIFI_CLK_EN_REG, DPORT_WIFI_CLK_WIFI_BT_COMMON_M);
DPORT_CLEAR_PERI_REG_MASK(DPORT_CORE_RST_EN_REG, 0);
}
static inline void IRAM_ATTR periph_ll_wifi_bt_module_disable_clk_set_rst(void)
{
DPORT_CLEAR_PERI_REG_MASK(DPORT_WIFI_CLK_EN_REG, DPORT_WIFI_CLK_WIFI_BT_COMMON_M);
DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG, 0);
}
static inline void periph_ll_reset(periph_module_t periph)
{
DPORT_SET_PERI_REG_MASK(periph_ll_get_rst_en_reg(periph), periph_ll_get_rst_en_mask(periph, false));
DPORT_CLEAR_PERI_REG_MASK(periph_ll_get_rst_en_reg(periph), periph_ll_get_rst_en_mask(periph, false));
}
static inline bool IRAM_ATTR periph_ll_periph_enabled(periph_module_t periph)
{
return DPORT_REG_GET_BIT(periph_ll_get_rst_en_reg(periph), periph_ll_get_rst_en_mask(periph, false)) != 0 &&
DPORT_REG_GET_BIT(periph_ll_get_clk_en_reg(periph), periph_ll_get_clk_en_mask(periph)) != 0;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,155 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The HAL is not public api, don't use in application code.
* See readme.md in soc/README.md
******************************************************************************/
// CP DMA HAL usages:
// 1. Initialize HAL layer by cp_dma_hal_init, pass in the allocated descriptors for TX and RX
// 2. Enable DMA and interrupt by cp_dma_hal_start
// 3. Prepare descriptors used for TX and RX
// 4. Restart the DMA engine in case it's not in working
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stddef.h>
#include <stdbool.h>
#include "esp_attr.h"
#include "soc/cp_dma_struct.h"
typedef struct cp_dma_descriptor {
struct {
uint32_t size : 12; /*!< buffer size */
uint32_t length : 12; /*!< specify number of valid bytes in the buffer */
uint32_t reversed24_27 : 4; /*!< reserved */
uint32_t err : 1; /*!< specify whether a received buffer contains error */
uint32_t reserved29 : 1; /*!< reserved */
uint32_t eof : 1; /*!< if this dma link is the last one, you shoule set this bit 1 */
uint32_t owner : 1; /*!< specify the owner of buffer that this descriptor points to, 1=DMA, 0=CPU. DMA will clear it after use. */
} dw0; /*!< descriptor word 0 */
void *buffer; /*!< pointer to the buffer */
struct cp_dma_descriptor *next; /*!< pointer to the next descriptor or NULL if this descriptor is the last one */
} cp_dma_descriptor_t;
_Static_assert(sizeof(cp_dma_descriptor_t) == 12, "cp_dma_descriptor_t should occupy 12 bytes in memory");
/**
* @brief HAL context
*
* @note `tx_desc` and `rx_desc` are internal state of the HAL, will be modified during the operations.
* Upper layer of HAL should keep the buffer address themselves and make sure the buffers are freed when the HAL is no longer used.
*
*/
typedef struct {
cp_dma_dev_t *dev;
cp_dma_descriptor_t *tx_desc;
cp_dma_descriptor_t *rx_desc;
cp_dma_descriptor_t *next_rx_desc_to_check;
} cp_dma_hal_context_t;
/**
* @brief Initialize HAL layer context
*
* @param hal HAL layer context, memroy should be allocated at driver layer
* @param tx_descriptors out link descriptor pool
* @param tx_desc_num number of out link descriptors
* @param rx_descriptors in line descriptor pool
* @param rx_desc_num number of in link descriptors
*/
void cp_dma_hal_init(cp_dma_hal_context_t *hal, cp_dma_descriptor_t *tx_descriptors[], uint32_t tx_desc_num, cp_dma_descriptor_t *rx_descriptors[], uint32_t rx_desc_num);
/**
* @brief Deinitialize HAL layer context
*/
void cp_dma_hal_deinit(cp_dma_hal_context_t *hal);
/**
* @brief Start mem2mem DMA state machine
*/
void cp_dma_hal_start(cp_dma_hal_context_t *hal);
/**
* @brief Stop mem2mem DMA state machine
*/
void cp_dma_hal_stop(cp_dma_hal_context_t *hal);
/**
* @brief Get interrupt status word
*
* @return uint32_t Interrupt status
*/
uint32_t cp_dma_hal_get_intr_status(cp_dma_hal_context_t *hal) IRAM_ATTR;
/**
* @brief Clear interrupt mask
*
* @param mask interrupt mask
*/
void cp_dma_hal_clear_intr_status(cp_dma_hal_context_t *hal, uint32_t mask) IRAM_ATTR;
/**
* @brief Get next RX descriptor that needs recycling
*
* @param eof_desc EOF descriptor for this iteration
* @param[out] next_desc Next descriptor needs to check
* @return Whether to continue
*/
bool cp_dma_hal_get_next_rx_descriptor(cp_dma_hal_context_t *hal, cp_dma_descriptor_t *eof_desc, cp_dma_descriptor_t **next_desc);
/**
* @brief Prepare buffer to be transmitted
*
* @param hal HAL layer context
* @param buffer buffer address
* @param len buffer size
* @param[out] start_desc The first descriptor that carry the TX transaction
* @param[out] end_desc The last descriptor that carry the TX transaction
* @return Number of bytes has been parepared to transmit
*/
int cp_dma_hal_prepare_transmit(cp_dma_hal_context_t *hal, void *buffer, size_t len, cp_dma_descriptor_t **start_desc, cp_dma_descriptor_t **end_desc);
/**
* @brief Prepare buffer to receive
*
* @param hal HAL layer context
* @param buffer buffer address
* @param size buffer size
* @param[out] start_desc The first descriptor that carries the RX transaction
* @param[out] end_desc The last descriptor that carries the RX transaction
* @return Number of bytes has been parepared to receive
*/
int cp_dma_hal_prepare_receive(cp_dma_hal_context_t *hal, void *buffer, size_t size, cp_dma_descriptor_t **start_desc, cp_dma_descriptor_t **end_desc);
/**@{*/
/**
* @brief Give the owner of descriptors between [start_desc, end_desc] to DMA, and restart DMA HW engine
*
* @param hal HAL layer context
* @param start_desc The first descriptor that carries one transaction
* @param end_desc The last descriptor that carries one transaction
*/
void cp_dma_hal_restart_tx(cp_dma_hal_context_t *hal, cp_dma_descriptor_t *start_desc, cp_dma_descriptor_t *end_desc);
void cp_dma_hal_restart_rx(cp_dma_hal_context_t *hal, cp_dma_descriptor_t *start_desc, cp_dma_descriptor_t *end_desc);
/**@}*/
#ifdef __cplusplus
}
#endif

View File

@@ -1,159 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "soc/cp_dma_struct.h"
#define CP_DMA_LL_EVENT_RX_DONE (1 << 0)
#define CP_DMA_LL_EVENT_RX_EOF (1 << 1)
#define CP_DMA_LL_EVENT_TX_DONE (1 << 2)
#define CP_DMA_LL_EVENT_TX_EOF (1 << 3)
#define CP_DMA_LL_EVENT_RX_DESC_ERR (1 << 4)
#define CP_DMA_LL_EVENT_TX_DESC_ERR (1 << 5)
#define CP_DMA_LL_EVENT_RX_DESC_EMPTY (1 << 6)
#define CP_DMA_LL_EVENT_TX_TOTAL_EOF (1 << 7)
#define CP_DMA_LL_EVENT_ALL (0xFF)
/**
* Copy DMA firstly reads data to be transferred from internal RAM,
* stores the data into DMA FIFO via an outlink,
* and then writes the data to the destination internal RAM via an inlink.
*/
static inline void cp_dma_ll_reset_in_link(cp_dma_dev_t *dev)
{
dev->dma_conf.dma_in_rst = 1;
dev->dma_conf.dma_in_rst = 0;
}
static inline void cp_dma_ll_reset_out_link(cp_dma_dev_t *dev)
{
dev->dma_conf.dma_out_rst = 1;
dev->dma_conf.dma_out_rst = 0;
}
static inline void cp_dma_ll_reset_fifo(cp_dma_dev_t *dev)
{
dev->dma_conf.dma_fifo_rst = 1;
dev->dma_conf.dma_fifo_rst = 0;
}
static inline void cp_dma_ll_reset_cmd_fifo(cp_dma_dev_t *dev)
{
dev->dma_conf.dma_cmdfifo_rst = 1;
dev->dma_conf.dma_cmdfifo_rst = 0;
}
static inline void cp_dma_ll_enable_owner_check(cp_dma_dev_t *dev, bool enable)
{
dev->dma_conf.dma_check_owner = enable;
dev->dma_conf.dma_out_auto_wrback = 1;
dev->dma_conf.dma_out_owner = 0;
dev->dma_conf.dma_in_owner = 0;
}
static inline void cp_dma_ll_enable_clock(cp_dma_dev_t *dev, bool enable)
{
dev->dma_conf.dma_clk_en = enable;
}
static inline void cp_dma_ll_enable_intr(cp_dma_dev_t *dev, uint32_t mask, bool enable)
{
if (enable) {
dev->dma_int_ena.val |= mask;
} else {
dev->dma_int_ena.val &= ~mask;
}
}
static inline __attribute__((always_inline)) uint32_t cp_dma_ll_get_intr_status(cp_dma_dev_t *dev)
{
return dev->dma_int_st.val;
}
static inline __attribute__((always_inline)) void cp_dma_ll_clear_intr_status(cp_dma_dev_t *dev, uint32_t mask)
{
dev->dma_int_clr.val = mask;
}
static inline void cp_dma_ll_tx_set_descriptor_base_addr(cp_dma_dev_t *dev, uint32_t address)
{
dev->dma_out_link.dma_outlink_addr = address;
}
static inline void cp_dma_ll_rx_set_descriptor_base_addr(cp_dma_dev_t *dev, uint32_t address)
{
dev->dma_in_link.dma_inlink_addr = address;
}
static inline void cp_dma_ll_start_tx(cp_dma_dev_t *dev, bool enable)
{
if (enable) {
dev->dma_out_link.dma_outlink_start = 1; // cleared automatically by HW
} else {
dev->dma_out_link.dma_outlink_stop = 1; // cleared automatically by HW
}
}
static inline void cp_dma_ll_start_rx(cp_dma_dev_t *dev, bool enable)
{
if (enable) {
dev->dma_in_link.dma_inlink_start = 1; // cleared automatically by HW
} else {
dev->dma_in_link.dma_inlink_stop = 1; // cleared automatically by HW
}
}
static inline void cp_dma_ll_restart_tx(cp_dma_dev_t *dev)
{
dev->dma_out_link.dma_outlink_restart = 1; // cleared automatically by HW
}
static inline void cp_dma_ll_restart_rx(cp_dma_dev_t *dev)
{
dev->dma_in_link.dma_inlink_restart = 1; // cleared automatically by HW
}
// get the address of last rx descriptor
static inline uint32_t cp_dma_ll_get_rx_eof_descriptor_address(cp_dma_dev_t *dev)
{
return dev->dma_in_eof_des_addr.dma_in_suc_eof_des_addr;
}
// get the address of last tx descriptor
static inline uint32_t cp_dma_ll_get_tx_eof_descriptor_address(cp_dma_dev_t *dev)
{
return dev->dma_out_eof_des_addr.dma_out_eof_des_addr;
}
static inline uint32_t cp_dma_ll_get_tx_status(cp_dma_dev_t *dev)
{
return dev->dma_out_st.val;
}
static inline uint32_t cp_dma_ll_get_rx_status(cp_dma_dev_t *dev)
{
return dev->dma_in_st.val;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,173 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include "esp_attr.h"
#include "soc/cpu_caps.h"
#include "xt_instr_macros.h"
#include "xtensa/config/specreg.h"
#include "xtensa/config/extreg.h"
#include "esp_bit_defs.h"
#include "xtensa/config/core.h"
#ifdef __cplusplus
extern "C" {
#endif
static inline int IRAM_ATTR cpu_ll_get_core_id(void)
{
return 0;
}
static inline uint32_t cpu_ll_get_cycle_count(void)
{
uint32_t result;
RSR(CCOUNT, result);
return result;
}
static inline void* cpu_ll_get_sp(void)
{
void *sp;
asm volatile ("mov %0, sp;" : "=r" (sp));
return sp;
}
static inline void cpu_ll_init_hwloop(void)
{
#if XCHAL_ERRATUM_572
uint32_t memctl = XCHAL_CACHE_MEMCTL_DEFAULT;
WSR(MEMCTL, memctl);
#endif // XCHAL_ERRATUM_572
}
static inline void cpu_ll_set_breakpoint(int id, uint32_t pc)
{
uint32_t en;
// Set the break address register to the appropriate PC
if (id) {
WSR(IBREAKA_1, pc);
} else {
WSR(IBREAKA_0, pc);
}
// Enable the breakpoint using the break enable register
RSR(IBREAKENABLE, en);
en |= BIT(id);
WSR(IBREAKENABLE, en);
}
static inline void cpu_ll_clear_breakpoint(int id)
{
uint32_t en = 0;
uint32_t pc = 0;
// Set the break address register to the appropriate PC
if (id) {
WSR(IBREAKA_1, pc);
} else {
WSR(IBREAKA_0, pc);
}
// Enable the breakpoint using the break enable register
RSR(IBREAKENABLE, en);
en &= ~BIT(id);
WSR(IBREAKENABLE, en);
}
static inline uint32_t cpu_ll_ptr_to_pc(const void* addr)
{
return ((uint32_t) addr);
}
static inline void* cpu_ll_pc_to_ptr(uint32_t pc)
{
return (void*) ((pc & 0x3fffffffU) | 0x40000000U);
}
static inline void cpu_ll_set_watchpoint(int id,
const void* addr,
size_t size,
bool on_read,
bool on_write)
{
uint32_t dbreakc = 0x3F;
//We support watching 2^n byte values, from 1 to 64. Calculate the mask for that.
for (int x = 0; x < 7; x++) {
if (size == (size_t)(1 << x)) {
break;
}
dbreakc <<= 1;
}
dbreakc = (dbreakc & 0x3F);
if (on_read) {
dbreakc |= BIT(30);
}
if (on_write) {
dbreakc |= BIT(31);
}
// Write the break address register and the size to control
// register.
if (id) {
WSR(DBREAKA_1, (uint32_t) addr);
WSR(DBREAKC_1, dbreakc);
} else {
WSR(DBREAKA_0, (uint32_t) addr);
WSR(DBREAKC_0, dbreakc);
}
}
static inline void cpu_ll_clear_watchpoint(int id)
{
// Clear both break address register and control register
if (id) {
WSR(DBREAKA_1, 0);
WSR(DBREAKC_1, 0);
} else {
WSR(DBREAKA_0, 0);
WSR(DBREAKC_0, 0);
}
}
static inline bool cpu_ll_is_debugger_attached(void)
{
uint32_t dcr = 0;
uint32_t reg = DSRSET;
RER(reg, dcr);
return (dcr&0x1);
}
static inline void cpu_ll_break(void)
{
__asm__ ("break 0,0");
}
static inline void cpu_ll_set_vecbase(const void* vecbase)
{
asm volatile ("wsr %0, vecbase" :: "r" (vecbase));
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,288 +0,0 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
#pragma once
#include <stdlib.h>
#include "soc/dac_periph.h"
#include "hal/dac_types.h"
#include "soc/apb_saradc_struct.h"
#include "soc/apb_saradc_reg.h"
#ifdef __cplusplus
extern "C" {
#endif
/*---------------------------------------------------------------
DAC common setting
---------------------------------------------------------------*/
/**
* Power on dac module and start output voltage.
*
* @note Before powering up, make sure the DAC PAD is set to RTC PAD and floating status.
* @param channel DAC channel num.
*/
static inline void dac_ll_power_on(dac_channel_t channel)
{
SENS.sar_dac_ctrl1.dac_clkgate_en = 1;
RTCIO.pad_dac[channel].dac_xpd_force = 1;
RTCIO.pad_dac[channel].xpd_dac = 1;
}
/**
* Power done dac module and stop output voltage.
*
* @param channel DAC channel num.
*/
static inline void dac_ll_power_down(dac_channel_t channel)
{
RTCIO.pad_dac[channel].dac_xpd_force = 0;
RTCIO.pad_dac[channel].xpd_dac = 0;
if (RTCIO.pad_dac[0].xpd_dac == 0 && RTCIO.pad_dac[1].xpd_dac == 0) {
SENS.sar_dac_ctrl1.dac_clkgate_en = 0;
}
}
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
/**
* Output voltage with value (8 bit).
*
* @param channel DAC channel num.
* @param value Output value. Value range: 0 ~ 255.
* The corresponding range of voltage is 0v ~ VDD3P3_RTC.
*/
static inline void dac_ll_update_output_value(dac_channel_t channel, uint8_t value)
{
if (channel == DAC_CHANNEL_1) {
SENS.sar_dac_ctrl2.dac_cw_en1 = 0;
RTCIO.pad_dac[channel].dac = value;
} else if (channel == DAC_CHANNEL_2) {
SENS.sar_dac_ctrl2.dac_cw_en2 = 0;
RTCIO.pad_dac[channel].dac = value;
}
}
/**
* Reset dac by software.
*/
static inline void dac_ll_rtc_reset(void)
{
SENS.sar_dac_ctrl1.dac_reset = 1;
SENS.sar_dac_ctrl1.dac_reset = 0;
}
/**
* Enable/disable the synchronization operation function of ADC1 and DAC.
*
* @note If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage.
*
* @param enable Enable or disable adc and dac synchronization function.
*/
static inline void dac_ll_rtc_sync_by_adc(bool enable)
{
SENS.sar_amp_ctrl3.sar1_dac_xpd_fsm = enable;
}
/************************************/
/* DAC cosine wave generator API's */
/************************************/
/**
* Enable cosine wave generator output.
*/
static inline void dac_ll_cw_generator_enable(void)
{
SENS.sar_dac_ctrl1.sw_tone_en = 1;
}
/**
* Disable cosine wave generator output.
*/
static inline void dac_ll_cw_generator_disable(void)
{
SENS.sar_dac_ctrl1.sw_tone_en = 0;
}
/**
* Enable the cosine wave generator of DAC channel.
*
* @param channel DAC channel num.
* @param enable
*/
static inline void dac_ll_cw_set_channel(dac_channel_t channel, bool enable)
{
if (channel == DAC_CHANNEL_1) {
SENS.sar_dac_ctrl2.dac_cw_en1 = enable;
} else if (channel == DAC_CHANNEL_2) {
SENS.sar_dac_ctrl2.dac_cw_en2 = enable;
}
}
/**
* Set frequency of cosine wave generator output.
*
* @note We know that CLK8M is about 8M, but don't know the actual value. so this freq have limited error.
* @param freq_hz CW generator frequency. Range: 130(130Hz) ~ 55000(100KHz).
*/
static inline void dac_ll_cw_set_freq(uint32_t freq)
{
uint32_t sw_freq = freq * 0xFFFF / RTC_FAST_CLK_FREQ_APPROX;
SENS.sar_dac_ctrl1.sw_fstep = (sw_freq > 0xFFFF) ? 0xFFFF : sw_freq;
}
/**
* Set the amplitude of the cosine wave generator output.
*
* @param channel DAC channel num.
* @param scale The multiple of the amplitude. The max amplitude is VDD3P3_RTC.
*/
static inline void dac_ll_cw_set_scale(dac_channel_t channel, dac_cw_scale_t scale)
{
if (channel == DAC_CHANNEL_1) {
SENS.sar_dac_ctrl2.dac_scale1 = scale;
} else if (channel == DAC_CHANNEL_2) {
SENS.sar_dac_ctrl2.dac_scale2 = scale;
}
}
/**
* Set the phase of the cosine wave generator output.
*
* @param channel DAC channel num.
* @param scale Phase value.
*/
static inline void dac_ll_cw_set_phase(dac_channel_t channel, dac_cw_phase_t phase)
{
if (channel == DAC_CHANNEL_1) {
SENS.sar_dac_ctrl2.dac_inv1 = phase;
} else if (channel == DAC_CHANNEL_2) {
SENS.sar_dac_ctrl2.dac_inv2 = phase;
}
}
/**
* Set the voltage value of the DC component of the cosine wave generator output.
*
* @note The DC offset setting should be after phase setting.
* @note Unreasonable settings can cause the signal to be oversaturated.
* @param channel DAC channel num.
* @param offset DC value. Range: -128 ~ 127.
*/
static inline void dac_ll_cw_set_dc_offset(dac_channel_t channel, int8_t offset)
{
if (channel == DAC_CHANNEL_1) {
if (SENS.sar_dac_ctrl2.dac_inv1 == DAC_CW_PHASE_180) {
offset = 0 - offset;
}
SENS.sar_dac_ctrl2.dac_dc1 = offset ? offset : (-128 - offset);
} else if (channel == DAC_CHANNEL_2) {
if (SENS.sar_dac_ctrl2.dac_inv2 == DAC_CW_PHASE_180) {
offset = 0 - offset;
}
SENS.sar_dac_ctrl2.dac_dc2 = offset ? offset : (-128 - offset);
}
}
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/************************************/
/* DAC DMA API's */
/************************************/
/**
* Enable/disable invert the DAC digital controller clock signal.
*
* @param enable true or false.
*/
static inline void dac_ll_digi_clk_inv(bool enable)
{
SENS.sar_dac_ctrl1.dac_clk_inv = enable;
}
/**
* Enable/disable DAC-DMA mode for dac digital controller.
*/
static inline void dac_ll_digi_enable_dma(bool enable)
{
SENS.sar_dac_ctrl1.dac_dig_force = enable;
APB_SARADC.apb_dac_ctrl.apb_dac_trans = enable;
}
/**
* Sets the number of interval clock cycles for the digital controller to trigger the DAC output.
* Expression: `dac_output_freq` = `controller_clk` / interval.
*
* @note The clocks of the DAC digital controller use the ADC digital controller clock divider.
*
* @param cycle The number of clock cycles for the trigger output interval. The unit is the divided clock.
*/
static inline void dac_ll_digi_set_trigger_interval(uint32_t cycle)
{
APB_SARADC.apb_dac_ctrl.dac_timer_target = cycle;
}
/**
* Enable/disable DAC digital controller to trigger the DAC output.
*
* @param enable true or false.
*/
static inline void dac_ll_digi_trigger_output(bool enable)
{
APB_SARADC.apb_dac_ctrl.dac_timer_en = enable;
}
/**
* Set DAC conversion mode for digital controller.
*
* @param mode Conversion mode select. See ``dac_digi_convert_mode_t``.
*/
static inline void dac_ll_digi_set_convert_mode(dac_digi_convert_mode_t mode)
{
if (mode == DAC_CONV_NORMAL) {
APB_SARADC.apb_dac_ctrl.apb_dac_alter_mode = 0;
} else {
APB_SARADC.apb_dac_ctrl.apb_dac_alter_mode = 1;
}
}
/**
* Reset FIFO of DAC digital controller.
*/
static inline void dac_ll_digi_fifo_reset(void)
{
APB_SARADC.apb_dac_ctrl.dac_reset_fifo = 1;
APB_SARADC.apb_dac_ctrl.dac_reset_fifo = 0;
}
/**
* Reset DAC digital controller.
*/
static inline void dac_ll_digi_reset(void)
{
APB_SARADC.apb_dac_ctrl.apb_dac_rst = 1;
APB_SARADC.apb_dac_ctrl.apb_dac_rst = 0;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,422 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The LL layer for ESP32-S2 GPIO register operations
#pragma once
#include "soc/soc.h"
#include "soc/gpio_periph.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc_io_reg.h"
#include "hal/gpio_types.h"
#ifdef __cplusplus
extern "C" {
#endif
// Get GPIO hardware instance with giving gpio num
#define GPIO_LL_GET_HW(num) (((num) == 0) ? (&GPIO) : NULL)
/**
* @brief Enable pull-up on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_pullup_en(gpio_dev_t *hw, gpio_num_t gpio_num)
{
REG_SET_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PU);
}
/**
* @brief Disable pull-up on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_pullup_dis(gpio_dev_t *hw, gpio_num_t gpio_num)
{
REG_CLR_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PU);
}
/**
* @brief Enable pull-down on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_pulldown_en(gpio_dev_t *hw, gpio_num_t gpio_num)
{
REG_SET_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PD);
}
/**
* @brief Disable pull-down on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_pulldown_dis(gpio_dev_t *hw, gpio_num_t gpio_num)
{
REG_CLR_BIT(GPIO_PIN_MUX_REG[gpio_num], FUN_PD);
}
/**
* @brief GPIO set interrupt trigger type
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number. If you want to set the trigger type of e.g. of GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param intr_type Interrupt type, select from gpio_int_type_t
*/
static inline void gpio_ll_set_intr_type(gpio_dev_t *hw, gpio_num_t gpio_num, gpio_int_type_t intr_type)
{
hw->pin[gpio_num].int_type = intr_type;
}
/**
* @brief Get GPIO interrupt status
*
* @param hw Peripheral GPIO hardware instance address.
* @param core_id interrupt core id
* @param status interrupt status
*/
static inline void gpio_ll_get_intr_status(gpio_dev_t *hw, uint32_t core_id, uint32_t *status)
{
*status = hw->pcpu_int;
}
/**
* @brief Get GPIO interrupt status high
*
* @param hw Peripheral GPIO hardware instance address.
* @param core_id interrupt core id
* @param status interrupt status high
*/
static inline void gpio_ll_get_intr_status_high(gpio_dev_t *hw, uint32_t core_id, uint32_t *status)
{
*status = hw->pcpu_int1.intr;
}
/**
* @brief Clear GPIO interrupt status
*
* @param hw Peripheral GPIO hardware instance address.
* @param mask interrupt status clear mask
*/
static inline void gpio_ll_clear_intr_status(gpio_dev_t *hw, uint32_t mask)
{
hw->status_w1tc = mask;
}
/**
* @brief Clear GPIO interrupt status high
*
* @param hw Peripheral GPIO hardware instance address.
* @param mask interrupt status high clear mask
*/
static inline void gpio_ll_clear_intr_status_high(gpio_dev_t *hw, uint32_t mask)
{
hw->status1_w1tc.intr_st = mask;
}
/**
* @brief Enable GPIO module interrupt signal
*
* @param hw Peripheral GPIO hardware instance address.
* @param core_id Interrupt enabled CPU to corresponding ID
* @param gpio_num GPIO number. If you want to enable the interrupt of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
*/
static inline void gpio_ll_intr_enable_on_core(gpio_dev_t *hw, uint32_t core_id, gpio_num_t gpio_num)
{
if (core_id == 0) {
GPIO.pin[gpio_num].int_ena = GPIO_PRO_CPU_INTR_ENA; //enable pro cpu intr
}
}
/**
* @brief Disable GPIO module interrupt signal
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number. If you want to disable the interrupt of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
*/
static inline void gpio_ll_intr_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->pin[gpio_num].int_ena = 0; //disable GPIO intr
}
/**
* @brief Disable input mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_input_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_INPUT_DISABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Enable input mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_input_enable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio_num]);
}
/**
* @brief Disable output mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_output_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
if (gpio_num < 32) {
hw->enable_w1tc = (0x1 << gpio_num);
} else {
hw->enable1_w1tc.data = (0x1 << (gpio_num - 32));
}
// Ensure no other output signal is routed via GPIO matrix to this pin
REG_WRITE(GPIO_FUNC0_OUT_SEL_CFG_REG + (gpio_num * 4),
SIG_GPIO_OUT_IDX);
}
/**
* @brief Enable output mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_output_enable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
if (gpio_num < 32) {
hw->enable_w1ts = (0x1 << gpio_num);
} else {
hw->enable1_w1ts.data = (0x1 << (gpio_num - 32));
}
}
/**
* @brief Disable open-drain mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_od_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->pin[gpio_num].pad_driver = 0;
}
/**
* @brief Enable open-drain mode on GPIO.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_od_enable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->pin[gpio_num].pad_driver = 1;
}
/**
* @brief GPIO set output level
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number. If you want to set the output level of e.g. GPIO16, gpio_num should be GPIO_NUM_16 (16);
* @param level Output level. 0: low ; 1: high
*/
static inline void gpio_ll_set_level(gpio_dev_t *hw, gpio_num_t gpio_num, uint32_t level)
{
if (level) {
if (gpio_num < 32) {
hw->out_w1ts = (1 << gpio_num);
} else {
hw->out1_w1ts.data = (1 << (gpio_num - 32));
}
} else {
if (gpio_num < 32) {
hw->out_w1tc = (1 << gpio_num);
} else {
hw->out1_w1tc.data = (1 << (gpio_num - 32));
}
}
}
/**
* @brief GPIO get input level
*
* @warning If the pad is not configured for input (or input and output) the returned value is always 0.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number. If you want to get the logic level of e.g. pin GPIO16, gpio_num should be GPIO_NUM_16 (16);
*
* @return
* - 0 the GPIO input level is 0
* - 1 the GPIO input level is 1
*/
static inline int gpio_ll_get_level(gpio_dev_t *hw, gpio_num_t gpio_num)
{
if (gpio_num < 32) {
return (hw->in >> gpio_num) & 0x1;
} else {
return (hw->in1.data >> (gpio_num - 32)) & 0x1;
}
}
/**
* @brief Enable GPIO wake-up function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number.
* @param intr_type GPIO wake-up type. Only GPIO_INTR_LOW_LEVEL or GPIO_INTR_HIGH_LEVEL can be used.
*/
static inline void gpio_ll_wakeup_enable(gpio_dev_t *hw, gpio_num_t gpio_num, gpio_int_type_t intr_type)
{
hw->pin[gpio_num].int_type = intr_type;
hw->pin[gpio_num].wakeup_enable = 0x1;
}
/**
* @brief Disable GPIO wake-up function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number
*/
static inline void gpio_ll_wakeup_disable(gpio_dev_t *hw, gpio_num_t gpio_num)
{
hw->pin[gpio_num].wakeup_enable = 0;
}
/**
* @brief Set GPIO pad drive capability
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number, only support output GPIOs
* @param strength Drive capability of the pad
*/
static inline void gpio_ll_set_drive_capability(gpio_dev_t *hw, gpio_num_t gpio_num, gpio_drive_cap_t strength)
{
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[gpio_num], FUN_DRV_V, strength, FUN_DRV_S);
}
/**
* @brief Get GPIO pad drive capability
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number, only support output GPIOs
* @param strength Pointer to accept drive capability of the pad
*/
static inline void gpio_ll_get_drive_capability(gpio_dev_t *hw, gpio_num_t gpio_num, gpio_drive_cap_t *strength)
{
*strength = GET_PERI_REG_BITS2(GPIO_PIN_MUX_REG[gpio_num], FUN_DRV_V, FUN_DRV_S);
}
/**
* @brief Enable all digital gpio pad hold function during Deep-sleep.
*
* @param hw Peripheral GPIO hardware instance address.
*/
static inline void gpio_ll_deep_sleep_hold_en(gpio_dev_t *hw)
{
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_AUTOHOLD_EN_M);
}
/**
* @brief Disable all digital gpio pad hold function during Deep-sleep.
*
* @param hw Peripheral GPIO hardware instance address.
*/
static inline void gpio_ll_deep_sleep_hold_dis(gpio_dev_t *hw)
{
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_CLR_DG_PAD_AUTOHOLD);
}
/**
* @brief Enable gpio pad hold function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number, only support output GPIOs
*/
static inline void gpio_ll_hold_en(gpio_dev_t *hw, gpio_num_t gpio_num)
{
SET_PERI_REG_MASK(RTC_CNTL_DIG_PAD_HOLD_REG, GPIO_HOLD_MASK[gpio_num]);
}
/**
* @brief Disable gpio pad hold function.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number, only support output GPIOs
*/
static inline void gpio_ll_hold_dis(gpio_dev_t *hw, gpio_num_t gpio_num)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PAD_HOLD_REG, GPIO_HOLD_MASK[gpio_num]);
}
/**
* @brief Set pad input to a peripheral signal through the IOMUX.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num GPIO number of the pad.
* @param signal_idx Peripheral signal id to input. One of the ``*_IN_IDX`` signals in ``soc/gpio_sig_map.h``.
*/
static inline void gpio_ll_iomux_in(gpio_dev_t *hw, uint32_t gpio, uint32_t signal_idx)
{
hw->func_in_sel_cfg[signal_idx].sig_in_sel = 0;
PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[gpio]);
}
/**
* @brief Set peripheral output to an GPIO pad through the IOMUX.
*
* @param hw Peripheral GPIO hardware instance address.
* @param gpio_num gpio_num GPIO number of the pad.
* @param func The function number of the peripheral pin to output pin.
* One of the ``FUNC_X_*`` of specified pin (X) in ``soc/io_mux_reg.h``.
* @param oen_inv True if the output enable needs to be inverted, otherwise False.
*/
static inline void gpio_ll_iomux_out(gpio_dev_t *hw, uint8_t gpio_num, int func, uint32_t oen_inv)
{
hw->func_out_sel_cfg[gpio_num].oen_sel = 0;
hw->func_out_sel_cfg[gpio_num].oen_inv_sel = oen_inv;
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], func);
}
static inline void gpio_ll_force_hold_all(gpio_dev_t *hw)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_UNHOLD);
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_HOLD);
}
static inline void gpio_ll_force_unhold_all(gpio_dev_t *hw)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_HOLD);
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_UNHOLD);
SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_CLR_DG_PAD_AUTOHOLD);
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,366 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The Lowlevel layer for SPI Flash
#pragma once
#include <stdlib.h>
#include "soc/spi_periph.h"
#include "hal/spi_types.h"
#include "hal/spi_flash_types.h"
#include <sys/param.h> // For MIN/MAX
#include <stdbool.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif
#define gpspi_flash_ll_get_hw(host_id) ( ((host_id)==SPI2_HOST) ? &GPSPI2 : (\
((host_id)==SPI3_HOST) ? &GPSPI3 : (\
{abort();(spi_dev_t*)0;}\
)) )
#define gpspi_flash_ll_hw_get_id(dev) ( ((dev) == (void*)&GPSPI2) ? SPI2_HOST : (\
((dev) == (void*)&GPSPI3) ? SPI3_HOST : (\
-1 \
)) )
typedef typeof(GPSPI2.clock) gpspi_flash_ll_clock_reg_t;
//Supported clock register values
#define GPSPI_FLASH_LL_CLKREG_VAL_5MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x0000F1CF}) ///< Clock set to 5 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_10MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x000070C7}) ///< Clock set to 10 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_20MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x00003043}) ///< Clock set to 20 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_26MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x00002002}) ///< Clock set to 26 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_40MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x00001001}) ///< Clock set to 40 MHz
#define GPSPI_FLASH_LL_CLKREG_VAL_80MHZ ((gpspi_flash_ll_clock_reg_t){.val=0x80000000}) ///< Clock set to 80 MHz
/*------------------------------------------------------------------------------
* Control
*----------------------------------------------------------------------------*/
/**
* Reset peripheral registers before configuration and starting control
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void gpspi_flash_ll_reset(spi_dev_t *dev)
{
dev->user.val = 0;
dev->ctrl.val = 0;
}
/**
* Check whether the previous operation is done.
*
* @param dev Beginning address of the peripheral registers.
*
* @return true if last command is done, otherwise false.
*/
static inline bool gpspi_flash_ll_cmd_is_done(const spi_dev_t *dev)
{
return (dev->cmd.val == 0);
}
/**
* Get the read data from the buffer after ``gpspi_flash_ll_read`` is done.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer to hold the output data
* @param read_len Length to get out of the buffer
*/
static inline void gpspi_flash_ll_get_buffer_data(spi_dev_t *dev, void *buffer, uint32_t read_len)
{
if (((intptr_t)buffer % 4 == 0) && (read_len % 4 == 0)) {
// If everything is word-aligned, do a faster memcpy
memcpy(buffer, (void *)dev->data_buf, read_len);
} else {
// Otherwise, slow(er) path copies word by word
int copy_len = read_len;
for (int i = 0; i < (read_len + 3) / 4; i++) {
int word_len = MIN(sizeof(uint32_t), copy_len);
uint32_t word = dev->data_buf[i];
memcpy(buffer, &word, word_len);
buffer = (void *)((intptr_t)buffer + word_len);
copy_len -= word_len;
}
}
}
/**
* Write a word to the data buffer.
*
* @param dev Beginning address of the peripheral registers.
* @param word Data to write at address 0.
*/
static inline void gpspi_flash_ll_write_word(spi_dev_t *dev, uint32_t word)
{
dev->data_buf[0] = word;
}
/**
* Set the data to be written in the data buffer.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer holding the data
* @param length Length of data in bytes.
*/
static inline void gpspi_flash_ll_set_buffer_data(spi_dev_t *dev, const void *buffer, uint32_t length)
{
// Load data registers, word at a time
int num_words = (length + 3) / 4;
for (int i = 0; i < num_words; i++) {
uint32_t word = 0;
uint32_t word_len = MIN(length, sizeof(word));
memcpy(&word, buffer, word_len);
dev->data_buf[i] = word;
length -= word_len;
buffer = (void *)((intptr_t)buffer + word_len);
}
}
/**
* Trigger a user defined transaction. All phases, including command, address, dummy, and the data phases,
* should be configured before this is called.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void gpspi_flash_ll_user_start(spi_dev_t *dev)
{
dev->cmd.usr = 1;
}
/**
* Check whether the host is idle to perform new commands.
*
* @param dev Beginning address of the peripheral registers.
*
* @return true if the host is idle, otherwise false
*/
static inline bool gpspi_flash_ll_host_idle(const spi_dev_t *dev)
{
return dev->fsm.st != 0;
}
/**
* Set phases for user-defined transaction to read
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void gpspi_flash_ll_read_phase(spi_dev_t *dev)
{
typeof (dev->user) user = {
.usr_command = 1,
.usr_mosi = 0,
.usr_miso = 1,
.usr_addr = 1,
};
dev->user = user;
}
/*------------------------------------------------------------------------------
* Configs
*----------------------------------------------------------------------------*/
/**
* Select which pin to use for the flash
*
* @param dev Beginning address of the peripheral registers.
* @param pin Pin ID to use, 0-2. Set to other values to disable all the CS pins.
*/
static inline void gpspi_flash_ll_set_cs_pin(spi_dev_t *dev, int pin)
{
dev->misc.cs0_dis = (pin != 0);
dev->misc.cs1_dis = (pin != 1);
dev->misc.cs2_dis = (pin != 2);
dev->misc.cs3_dis = (pin != 3);
dev->misc.cs4_dis = (pin != 4);
dev->misc.cs5_dis = (pin != 5);
}
/**
* Set the read io mode.
*
* @param dev Beginning address of the peripheral registers.
* @param read_mode I/O mode to use in the following transactions.
*/
static inline void gpspi_flash_ll_set_read_mode(spi_dev_t *dev, esp_flash_io_mode_t read_mode)
{
typeof (dev->ctrl) ctrl = dev->ctrl;
typeof (dev->user) user = dev->user;
ctrl.val &= ~(SPI_FCMD_QUAD_M | SPI_FADDR_QUAD_M | SPI_FREAD_QUAD_M | SPI_FCMD_DUAL_M | SPI_FADDR_DUAL_M | SPI_FREAD_DUAL_M);
user.val &= ~(SPI_FWRITE_QUAD_M | SPI_FWRITE_DUAL_M);
switch (read_mode) {
case SPI_FLASH_FASTRD:
//the default option
case SPI_FLASH_SLOWRD:
break;
case SPI_FLASH_QIO:
ctrl.fread_quad = 1;
ctrl.faddr_quad = 1;
user.fwrite_quad = 1;
break;
case SPI_FLASH_QOUT:
ctrl.fread_quad = 1;
user.fwrite_quad = 1;
break;
case SPI_FLASH_DIO:
ctrl.fread_dual = 1;
ctrl.faddr_dual = 1;
user.fwrite_dual = 1;
break;
case SPI_FLASH_DOUT:
ctrl.fread_dual = 1;
user.fwrite_dual = 1;
break;
default:
abort();
}
dev->ctrl = ctrl;
dev->user = user;
}
/**
* Set clock frequency to work at.
*
* @param dev Beginning address of the peripheral registers.
* @param clock_val pointer to the clock value to set
*/
static inline void gpspi_flash_ll_set_clock(spi_dev_t *dev, gpspi_flash_ll_clock_reg_t *clock_val)
{
dev->clock = *clock_val;
}
/**
* Set the input length, in bits.
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of input, in bits.
*/
static inline void gpspi_flash_ll_set_miso_bitlen(spi_dev_t *dev, uint32_t bitlen)
{
dev->user.usr_miso = bitlen > 0;
dev->miso_dlen.usr_miso_bit_len = bitlen ? (bitlen - 1) : 0;
}
/**
* Set the output length, in bits (not including command, address and dummy
* phases)
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of output, in bits.
*/
static inline void gpspi_flash_ll_set_mosi_bitlen(spi_dev_t *dev, uint32_t bitlen)
{
dev->user.usr_mosi = bitlen > 0;
dev->mosi_dlen.usr_mosi_bit_len = bitlen ? (bitlen - 1) : 0;
}
/**
* Set the command with fixed length (8 bits).
*
* @param dev Beginning address of the peripheral registers.
* @param command Command to send
*/
static inline void gpspi_flash_ll_set_command8(spi_dev_t *dev, uint8_t command)
{
dev->user.usr_command = 1;
typeof(dev->user2) user2 = {
.usr_command_value = command,
.usr_command_bitlen = (8 - 1),
};
dev->user2 = user2;
}
/**
* Get the address length that is set in register, in bits.
*
* @param dev Beginning address of the peripheral registers.
*
*/
static inline int gpspi_flash_ll_get_addr_bitlen(spi_dev_t *dev)
{
return dev->user.usr_addr ? dev->user1.usr_addr_bitlen + 1 : 0;
}
/**
* Set the address length to send, in bits. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of the address, in bits
*/
static inline void gpspi_flash_ll_set_addr_bitlen(spi_dev_t *dev, uint32_t bitlen)
{
dev->user1.usr_addr_bitlen = (bitlen - 1);
dev->user.usr_addr = bitlen ? 1 : 0;
}
/**
* Set the address to send in user mode. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param addr Address to send
*/
static inline void gpspi_flash_ll_set_usr_address(spi_dev_t *dev, uint32_t addr, uint32_t bitlen)
{
dev->addr = (addr << (32 - bitlen));
}
/**
* Set the address to send. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param addr Address to send
*/
static inline void gpspi_flash_ll_set_address(spi_dev_t *dev, uint32_t addr)
{
dev->addr = addr;
}
/**
* Set the length of dummy cycles.
*
* @param dev Beginning address of the peripheral registers.
* @param dummy_n Cycles of dummy phases
*/
static inline void gpspi_flash_ll_set_dummy(spi_dev_t *dev, uint32_t dummy_n)
{
dev->user.usr_dummy = dummy_n ? 1 : 0;
dev->user1.usr_dummy_cyclelen = dummy_n - 1;
}
/**
* Set D/Q output level during dummy phase
*
* @param dev Beginning address of the peripheral registers.
* @param out_en whether to enable IO output for dummy phase
* @param out_level dummy output level
*/
static inline void gpspi_flash_ll_set_dummy_out(spi_dev_t *dev, uint32_t out_en, uint32_t out_lev)
{
dev->ctrl.dummy_out = out_en;
dev->ctrl.q_pol = out_lev;
dev->ctrl.d_pol = out_lev;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,891 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The LL layer for I2C register operations
#pragma once
#include "soc/i2c_periph.h"
#include "hal/i2c_types.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief I2C hardware cmd register filed.
*/
typedef union {
struct {
uint32_t byte_num: 8,
ack_en: 1,
ack_exp: 1,
ack_val: 1,
op_code: 3,
reserved14: 17,
done: 1;
};
uint32_t val;
} i2c_hw_cmd_t;
/**
* @brief I2C interrupt event
*/
typedef enum {
I2C_INTR_EVENT_ERR,
I2C_INTR_EVENT_ARBIT_LOST, /*!< I2C arbition lost event */
I2C_INTR_EVENT_NACK, /*!< I2C NACK event */
I2C_INTR_EVENT_TOUT, /*!< I2C time out event */
I2C_INTR_EVENT_END_DET, /*!< I2C end detected event */
I2C_INTR_EVENT_TRANS_DONE, /*!< I2C trans done event */
I2C_INTR_EVENT_RXFIFO_FULL, /*!< I2C rxfifo full event */
I2C_INTR_EVENT_TXFIFO_EMPTY, /*!< I2C txfifo empty event */
} i2c_intr_event_t;
/**
* @brief Data structure for calculating I2C bus timing.
*/
typedef struct {
uint16_t scl_low; /*!< I2C scl low period */
uint16_t scl_high; /*!< I2C scl hight period */
uint16_t scl_wait_high; /*!< I2C scl wait_high period */
uint16_t sda_hold; /*!< I2C scl low period */
uint16_t sda_sample; /*!< I2C sda sample time */
uint16_t setup; /*!< I2C start and stop condition setup period */
uint16_t hold; /*!< I2C start and stop condition hold period */
uint16_t tout; /*!< I2C bus timeout period */
} i2c_clk_cal_t;
// Get the I2C hardware instance
#define I2C_LL_GET_HW(i2c_num) (((i2c_num) == 0) ? &I2C0 : &I2C1)
// Get the I2C hardware FIFO address
#define I2C_LL_GET_FIFO_ADDR(i2c_num) (I2C_DATA_APB_REG(i2c_num))
// I2C master TX interrupt bitmap
#define I2C_LL_MASTER_TX_INT (I2C_NACK_INT_ENA_M|I2C_TIME_OUT_INT_ENA_M|I2C_TRANS_COMPLETE_INT_ENA_M|I2C_ARBITRATION_LOST_INT_ENA_M|I2C_END_DETECT_INT_ENA_M)
// I2C master RX interrupt bitmap
#define I2C_LL_MASTER_RX_INT (I2C_TIME_OUT_INT_ENA_M|I2C_TRANS_COMPLETE_INT_ENA_M|I2C_ARBITRATION_LOST_INT_ENA_M|I2C_END_DETECT_INT_ENA_M)
// I2C slave TX interrupt bitmap
#define I2C_LL_SLAVE_TX_INT (I2C_TXFIFO_WM_INT_ENA_M)
// I2C slave RX interrupt bitmap
#define I2C_LL_SLAVE_RX_INT (I2C_RXFIFO_WM_INT_ENA_M | I2C_TRANS_COMPLETE_INT_ENA_M)
/**
* @brief Calculate I2C bus frequency
*
* @param source_clk I2C source clock
* @param bus_freq I2C bus frequency
* @param clk_cal Pointer to accept the clock configuration
*
* @return None
*/
static inline void i2c_ll_cal_bus_clk(uint32_t source_clk, uint32_t bus_freq, i2c_clk_cal_t *clk_cal)
{
uint32_t half_cycle = source_clk / bus_freq / 2;
//SCL
clk_cal->scl_low = half_cycle;
// default, scl_wait_high < scl_high
clk_cal->scl_high = half_cycle / 2 + 2;
clk_cal->scl_wait_high = half_cycle - clk_cal->scl_high;
clk_cal->sda_hold = half_cycle / 2;
// scl_wait_high < sda_sample <= scl_high
clk_cal->sda_sample = half_cycle / 2 - 1;
clk_cal->setup = half_cycle;
clk_cal->hold = half_cycle;
//default we set the timeout value to 10 bus cycles
clk_cal->tout = half_cycle * 20;
}
/**
* @brief Configure the I2C bus timing related register.
*
* @param hw Beginning address of the peripheral registers
* @param bus_cfg Pointer to the data structure holding the register configuration.
*
* @return None
*/
static inline void i2c_ll_set_bus_timing(i2c_dev_t *hw, i2c_clk_cal_t *bus_cfg)
{
//scl period
hw->scl_low_period.period = bus_cfg->scl_low - 1;
hw->scl_high_period.period = bus_cfg->scl_high;
hw->scl_high_period.scl_wait_high_period = bus_cfg->scl_wait_high;
//sda sample
hw->sda_hold.time = bus_cfg->sda_hold;
hw->sda_sample.time = bus_cfg->sda_sample;
//setup
hw->scl_rstart_setup.time = bus_cfg->setup;
hw->scl_stop_setup.time = bus_cfg->setup;
//hold
hw->scl_start_hold.time = bus_cfg->hold - 1;
hw->scl_stop_hold.time = bus_cfg->hold;
hw->timeout.tout = bus_cfg->tout;
}
/**
* @brief Reset I2C txFIFO
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_txfifo_rst(i2c_dev_t *hw)
{
hw->fifo_conf.tx_fifo_rst = 1;
hw->fifo_conf.tx_fifo_rst = 0;
}
/**
* @brief Reset I2C rxFIFO
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_rxfifo_rst(i2c_dev_t *hw)
{
hw->fifo_conf.rx_fifo_rst = 1;
hw->fifo_conf.rx_fifo_rst = 0;
}
/**
* @brief Configure I2C SCL timing
*
* @param hw Beginning address of the peripheral registers
* @param hight_period The I2C SCL hight period (in APB cycle, hight_period > 2)
* @param low_period The I2C SCL low period (in APB cycle, low_period > 1)
*
* @return None.
*/
static inline void i2c_ll_set_scl_timing(i2c_dev_t *hw, int hight_period, int low_period)
{
hw->scl_low_period.period = low_period-1;
hw->scl_high_period.period = hight_period/2+2;
hw->scl_high_period.scl_wait_high_period = hight_period - hw->scl_high_period.period;
}
/**
* @brief Clear I2C interrupt status
*
* @param hw Beginning address of the peripheral registers
* @param mask Interrupt mask needs to be cleared
*
* @return None
*/
static inline void i2c_ll_clr_intsts_mask(i2c_dev_t *hw, uint32_t mask)
{
hw->int_clr.val = mask;
}
/**
* @brief Enable I2C interrupt
*
* @param hw Beginning address of the peripheral registers
* @param mask Interrupt mask needs to be enabled
*
* @return None
*/
static inline void i2c_ll_enable_intr_mask(i2c_dev_t *hw, uint32_t mask)
{
hw->int_ena.val |= mask;
}
/**
* @brief Disable I2C interrupt
*
* @param hw Beginning address of the peripheral registers
* @param mask Interrupt mask needs to be disabled
*
* @return None
*/
static inline void i2c_ll_disable_intr_mask(i2c_dev_t *hw, uint32_t mask)
{
hw->int_ena.val &= (~mask);
}
/**
* @brief Get I2C interrupt status
*
* @param hw Beginning address of the peripheral registers
*
* @return I2C interrupt status
*/
static inline uint32_t i2c_ll_get_intsts_mask(i2c_dev_t *hw)
{
return hw->int_status.val;
}
/**
* @brief Configure I2C memory access mode, FIFO mode or non-FIFO mode
*
* @param hw Beginning address of the peripheral registers
* @param fifo_mode_en Set true to enable FIFO access mode, else, set it false
*
* @return None
*/
static inline void i2c_ll_set_fifo_mode(i2c_dev_t *hw, bool fifo_mode_en)
{
hw->fifo_conf.nonfifo_en = fifo_mode_en ? 0 : 1;
}
/**
* @brief Configure I2C timeout
*
* @param hw Beginning address of the peripheral registers
* @param tout_num The I2C timeout value needs to be set (in APB cycle)
*
* @return None
*/
static inline void i2c_ll_set_tout(i2c_dev_t *hw, int tout)
{
hw->timeout.tout = tout;
hw->timeout.time_out_en = tout > 0;
}
/**
* @brief Configure I2C slave address
*
* @param hw Beginning address of the peripheral registers
* @param slave_addr I2C slave address needs to be set
* @param addr_10bit_en Set true to enable 10-bit slave address mode, set false to enable 7-bit address mode
*
* @return None
*/
static inline void i2c_ll_set_slave_addr(i2c_dev_t *hw, uint16_t slave_addr, bool addr_10bit_en)
{
hw->slave_addr.addr = slave_addr;
hw->slave_addr.en_10bit = addr_10bit_en;
}
/**
* @brief Write I2C hardware command register
*
* @param hw Beginning address of the peripheral registers
* @param cmd I2C hardware command
* @param cmd_idx The index of the command register, should be less than 16
*
* @return None
*/
static inline void i2c_ll_write_cmd_reg(i2c_dev_t *hw, i2c_hw_cmd_t cmd, int cmd_idx)
{
hw->command[cmd_idx].val = cmd.val;
}
/**
* @brief Configure I2C start timing
*
* @param hw Beginning address of the peripheral registers
* @param start_setup The start condition setup period (in APB cycle)
* @param start_hold The start condition hold period (in APB cycle)
*
* @return None
*/
static inline void i2c_ll_set_start_timing(i2c_dev_t *hw, int start_setup, int start_hold)
{
hw->scl_rstart_setup.time = start_setup;
hw->scl_start_hold.time = start_hold-1;
}
/**
* @brief Configure I2C stop timing
*
* @param hw Beginning address of the peripheral registers
* @param stop_setup The stop condition setup period (in APB cycle)
* @param stop_hold The stop condition hold period (in APB cycle)
*
* @return None
*/
static inline void i2c_ll_set_stop_timing(i2c_dev_t *hw, int stop_setup, int stop_hold)
{
hw->scl_stop_setup.time = stop_setup;
hw->scl_stop_hold.time = stop_hold;
}
/**
* @brief Configure I2C stop timing
*
* @param hw Beginning address of the peripheral registers
* @param sda_sample The SDA sample time (in APB cycle)
* @param sda_hold The SDA hold time (in APB cycle)
*
* @return None
*/
static inline void i2c_ll_set_sda_timing(i2c_dev_t *hw, int sda_sample, int sda_hold)
{
hw->sda_hold.time = sda_hold;
hw->sda_sample.time = sda_sample;
}
/**
* @brief Set I2C txFIFO empty threshold
*
* @param hw Beginning address of the peripheral registers
* @param empty_thr The txFIFO empty threshold
*
* @return None
*/
static inline void i2c_ll_set_txfifo_empty_thr(i2c_dev_t *hw, uint8_t empty_thr)
{
hw->fifo_conf.tx_fifo_wm_thrhd = empty_thr;
}
/**
* @brief Set I2C rxFIFO full threshold
*
* @param hw Beginning address of the peripheral registers
* @param full_thr The rxFIFO full threshold
*
* @return None
*/
static inline void i2c_ll_set_rxfifo_full_thr(i2c_dev_t *hw, uint8_t full_thr)
{
hw->fifo_conf.rx_fifo_wm_thrhd = full_thr;
}
/**
* @brief Set the I2C data mode, LSB or MSB
*
* @param hw Beginning address of the peripheral registers
* @param tx_mode Tx data bit mode
* @param rx_mode Rx data bit mode
*
* @return None
*/
static inline void i2c_ll_set_data_mode(i2c_dev_t *hw, i2c_trans_mode_t tx_mode, i2c_trans_mode_t rx_mode)
{
hw->ctr.tx_lsb_first = tx_mode;
hw->ctr.rx_lsb_first = rx_mode;
}
/**
* @brief Get the I2C data mode
*
* @param hw Beginning address of the peripheral registers
* @param tx_mode Pointer to accept the received bytes mode
* @param rx_mode Pointer to accept the sended bytes mode
*
* @return None
*/
static inline void i2c_ll_get_data_mode(i2c_dev_t *hw, i2c_trans_mode_t *tx_mode, i2c_trans_mode_t *rx_mode)
{
*tx_mode = hw->ctr.tx_lsb_first;
*rx_mode = hw->ctr.rx_lsb_first;
}
/**
* @brief Get I2C sda timing configuration
*
* @param hw Beginning address of the peripheral registers
* @param sda_sample Pointer to accept the SDA sample timing configuration
* @param sda_hold Pointer to accept the SDA hold timing configuration
*
* @return None
*/
static inline void i2c_ll_get_sda_timing(i2c_dev_t *hw, int *sda_sample, int *sda_hold)
{
*sda_hold = hw->sda_hold.time;
*sda_sample = hw->sda_sample.time;
}
/**
* @brief Get the I2C hardware version
*
* @param hw Beginning address of the peripheral registers
*
* @return The I2C hardware version
*/
static inline uint32_t i2c_ll_get_hw_version(i2c_dev_t *hw)
{
return hw->date;
}
/**
* @brief Check if the I2C bus is busy
*
* @param hw Beginning address of the peripheral registers
*
* @return True if I2C state machine is busy, else false will be returned
*/
static inline bool i2c_ll_is_bus_busy(i2c_dev_t *hw)
{
return hw->status_reg.bus_busy;
}
/**
* @brief Check if I2C is master mode
*
* @param hw Beginning address of the peripheral registers
*
* @return True if I2C is master mode, else false will be returned
*/
static inline bool i2c_ll_is_master_mode(i2c_dev_t *hw)
{
return hw->ctr.ms_mode;
}
/**
* @brief Get the rxFIFO readable length
*
* @param hw Beginning address of the peripheral registers
*
* @return RxFIFO readable length
*/
static inline uint32_t i2c_ll_get_rxfifo_cnt(i2c_dev_t *hw)
{
return hw->status_reg.rx_fifo_cnt;
}
/**
* @brief Get I2C txFIFO writable length
*
* @param hw Beginning address of the peripheral registers
*
* @return TxFIFO writable length
*/
static inline uint32_t i2c_ll_get_txfifo_len(i2c_dev_t *hw)
{
return SOC_I2C_FIFO_LEN - hw->status_reg.tx_fifo_cnt;
}
/**
* @brief Get I2C timeout configuration
*
* @param hw Beginning address of the peripheral registers
*
* @return The I2C timeout value
*/
static inline uint32_t i2c_ll_get_tout(i2c_dev_t *hw)
{
return hw->timeout.tout;
}
/**
* @brief Start I2C transfer
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_trans_start(i2c_dev_t *hw)
{
hw->ctr.trans_start = 1;
}
/**
* @brief Get I2C start timing configuration
*
* @param hw Beginning address of the peripheral registers
* @param setup_time Pointer to accept the start condition setup period
* @param hold_time Pointer to accept the start condition hold period
*
* @return None
*/
static inline void i2c_ll_get_start_timing(i2c_dev_t *hw, int *setup_time, int *hold_time)
{
*setup_time = hw->scl_rstart_setup.time;
*hold_time = hw->scl_start_hold.time+1;
}
/**
* @brief Get I2C stop timing configuration
*
* @param hw Beginning address of the peripheral registers
* @param setup_time Pointer to accept the stop condition setup period
* @param hold_time Pointer to accept the stop condition hold period
*
* @return None
*/
static inline void i2c_ll_get_stop_timing(i2c_dev_t *hw, int *setup_time, int *hold_time)
{
*setup_time = hw->scl_stop_setup.time;
*hold_time = hw->scl_stop_hold.time;
}
/**
* @brief Get I2C SCL timing configuration
*
* @param hw Beginning address of the peripheral registers
* @param high_period Pointer to accept the SCL high period
* @param low_period Pointer to accept the SCL low period
*
* @return None
*/
static inline void i2c_ll_get_scl_timing(i2c_dev_t *hw, int *high_period, int *low_period)
{
*high_period = hw->scl_high_period.period + hw->scl_high_period.scl_wait_high_period;
*low_period = hw->scl_low_period.period + 1;
}
/**
* @brief Write the I2C hardware txFIFO
*
* @param hw Beginning address of the peripheral registers
* @param ptr Pointer to data buffer
* @param len Amount of data needs to be writen
*
* @return None.
*/
static inline void i2c_ll_write_txfifo(i2c_dev_t *hw, uint8_t *ptr, uint8_t len)
{
uint32_t fifo_addr = (hw == &I2C0) ? 0x6001301c : 0x6002701c;
for(int i = 0; i < len; i++) {
WRITE_PERI_REG(fifo_addr, ptr[i]);
}
}
/**
* @brief Read the I2C hardware rxFIFO
*
* @param hw Beginning address of the peripheral registers
* @param ptr Pointer to data buffer
* @param len Amount of data needs read
*
* @return None
*/
static inline void i2c_ll_read_rxfifo(i2c_dev_t *hw, uint8_t *ptr, uint8_t len)
{
uint32_t fifo_addr = (hw == &I2C0) ? 0x6001301c : 0x6002701c;
for(int i = 0; i < len; i++) {
ptr[i] = READ_PERI_REG(fifo_addr);
}
}
/**
* @brief Configure I2C hardware filter
*
* @param hw Beginning address of the peripheral registers
* @param filter_num If the glitch period on the line is less than this value, it can be filtered out
* If `filter_num == 0`, the filter will be disabled
*
* @return None
*/
static inline void i2c_ll_set_filter(i2c_dev_t *hw, uint8_t filter_num)
{
if(filter_num > 0) {
hw->scl_filter_cfg.thres = filter_num;
hw->sda_filter_cfg.thres = filter_num;
hw->scl_filter_cfg.en = 1;
hw->sda_filter_cfg.en = 1;
} else {
hw->scl_filter_cfg.en = 0;
hw->sda_filter_cfg.en = 0;
}
}
/**
* @brief Get I2C hardware filter configuration
*
* @param hw Beginning address of the peripheral registers
*
* @return The hardware filter configuration
*/
static inline uint8_t i2c_ll_get_filter(i2c_dev_t *hw)
{
return hw->sda_filter_cfg.thres;
}
/**
* @brief Enable I2C master TX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_enable_tx_it(i2c_dev_t *hw)
{
hw->int_clr.val = ~0;
hw->int_ena.val = I2C_LL_MASTER_TX_INT;
}
/**
* @brief Enable I2C master RX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_enable_rx_it(i2c_dev_t *hw)
{
hw->int_clr.val = ~0;
hw->int_ena.val = I2C_LL_MASTER_RX_INT;
}
/**
* @brief Disable I2C master TX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_disable_tx_it(i2c_dev_t *hw)
{
hw->int_ena.val &= (~I2C_LL_MASTER_TX_INT);
}
/**
* @brief Disable I2C master RX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_disable_rx_it(i2c_dev_t *hw)
{
hw->int_ena.val &= (~I2C_LL_MASTER_RX_INT);
}
/**
* @brief Clear I2C master TX interrupt status register
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_clr_tx_it(i2c_dev_t *hw)
{
hw->int_clr.val = I2C_LL_MASTER_TX_INT;
}
/**
* @brief Clear I2C master RX interrupt status register
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_clr_rx_it(i2c_dev_t *hw)
{
hw->int_clr.val = I2C_LL_MASTER_RX_INT;
}
/**
* @brief
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_enable_tx_it(i2c_dev_t *hw)
{
hw->int_ena.val |= I2C_LL_SLAVE_TX_INT;
}
/**
* @brief Enable I2C slave RX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_enable_rx_it(i2c_dev_t *hw)
{
hw->int_ena.val |= I2C_LL_SLAVE_RX_INT;
}
/**
* @brief Disable I2C slave TX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_disable_tx_it(i2c_dev_t *hw)
{
hw->int_ena.val &= (~I2C_LL_SLAVE_TX_INT);
}
/**
* @brief Disable I2C slave RX interrupt
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_disable_rx_it(i2c_dev_t *hw)
{
hw->int_ena.val &= (~I2C_LL_SLAVE_RX_INT);
}
/**
* @brief Clear I2C slave TX interrupt status register
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_clr_tx_it(i2c_dev_t *hw)
{
hw->int_clr.val = I2C_LL_SLAVE_TX_INT;
}
/**
* @brief Clear I2C slave RX interrupt status register.
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_clr_rx_it(i2c_dev_t *hw)
{
hw->int_clr.val = I2C_LL_SLAVE_RX_INT;
}
/**
* @brief Reste I2C master FSM. When the master FSM is stuck, call this function to reset the FSM
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_fsm_rst(i2c_dev_t *hw)
{
hw->ctr.fsm_rst = 1;
}
/**
* @brief Clear I2C bus, when the slave is stuck in a deadlock and keeps pulling the bus low,
* master can controls the SCL bus to generate 9 CLKs.
*
* Note: The master cannot detect if deadlock happens, but when the scl_st_to interrupt is generated, a deadlock may occur.
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_clr_bus(i2c_dev_t *hw)
{
hw->scl_sp_conf.scl_rst_slv_num = 9;
hw->scl_sp_conf.scl_rst_slv_en = 0;
hw->scl_sp_conf.scl_rst_slv_en = 1;
}
/**
* @brief Set I2C source clock
*
* @param hw Beginning address of the peripheral registers
* @param src_clk Source clock of the I2C
*
* @return None
*/
static inline void i2c_ll_set_source_clk(i2c_dev_t *hw, i2c_sclk_t src_clk)
{
hw->ctr.ref_always_on = src_clk;
}
/**
* @brief Get I2C master interrupt event
*
* @param hw Beginning address of the peripheral registers
* @param event Pointer to accept the interrupt event
*
* @return None
*/
static inline void i2c_ll_master_get_event(i2c_dev_t *hw, i2c_intr_event_t *event)
{
typeof(hw->int_status) int_sts = hw->int_status;
if (int_sts.arbitration_lost) {
*event = I2C_INTR_EVENT_ARBIT_LOST;
} else if (int_sts.nack) {
*event = I2C_INTR_EVENT_NACK;
} else if (int_sts.time_out) {
*event = I2C_INTR_EVENT_TOUT;
} else if (int_sts.end_detect) {
*event = I2C_INTR_EVENT_END_DET;
} else if (int_sts.trans_complete) {
*event = I2C_INTR_EVENT_TRANS_DONE;
} else {
*event = I2C_INTR_EVENT_ERR;
}
}
/**
* @brief Get I2C slave interrupt event
*
* @param hw Beginning address of the peripheral registers
* @param event Pointer to accept the interrupt event
*
* @return None
*/
static inline void i2c_ll_slave_get_event(i2c_dev_t *hw, i2c_intr_event_t *event)
{
typeof(hw->int_status) int_sts = hw->int_status;
if (int_sts.tx_fifo_wm) {
*event = I2C_INTR_EVENT_TXFIFO_EMPTY;
} else if (int_sts.trans_complete) {
*event = I2C_INTR_EVENT_TRANS_DONE;
} else if (int_sts.rx_fifo_wm) {
*event = I2C_INTR_EVENT_RXFIFO_FULL;
} else {
*event = I2C_INTR_EVENT_ERR;
}
}
/**
* @brief Init I2C master
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_master_init(i2c_dev_t *hw)
{
typeof(hw->ctr) ctrl_reg;
ctrl_reg.val = 0;
ctrl_reg.ms_mode = 1;
ctrl_reg.sda_force_out = 1;
ctrl_reg.scl_force_out = 1;
//Disable REF tick;
ctrl_reg.ref_always_on = 1;
hw->ctr.val = ctrl_reg.val;
}
/**
* @brief Enable I2C internal open-drain mode
* If internal open-drain of the I2C module is disabled, scl and sda gpio should be configured in open-drain mode.
* Otherwise it is not needed.
*
* @param hw Beginning address of the peripheral registers
* @param internal_od_ena Set true to enble internal open-drain, otherwise, set it false.
*
* @return None
*/
static inline void i2c_ll_internal_od_enable(i2c_dev_t *hw, bool internal_od_ena)
{
hw->ctr.sda_force_out = (internal_od_ena == false);
hw->ctr.scl_force_out = (internal_od_ena == false);
}
/**
* @brief Init I2C slave
*
* @param hw Beginning address of the peripheral registers
*
* @return None
*/
static inline void i2c_ll_slave_init(i2c_dev_t *hw)
{
typeof(hw->ctr) ctrl_reg;
ctrl_reg.val = 0;
//Open-drain output via GPIO
ctrl_reg.sda_force_out = 1;
ctrl_reg.scl_force_out = 1;
//Disable REF tick;
ctrl_reg.ref_always_on = 1;
hw->ctr.val = ctrl_reg.val;
hw->fifo_conf.fifo_addr_cfg_en = 0;
hw->scl_stretch_conf.slave_scl_stretch_en = 0;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,765 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The LL layer for ESP32-S2 I2S register operations
#pragma once
#include <stdbool.h>
#include "soc/i2s_periph.h"
#include "hal/i2s_types.h"
#ifdef __cplusplus
extern "C" {
#endif
// Get I2S hardware instance with giving i2s num
#define I2S_LL_GET_HW(num) (((num) == 0) ? (&I2S0) : NULL)
#define I2S_INTR_IN_SUC_EOF BIT(9)
#define I2S_INTR_OUT_EOF BIT(12)
#define I2S_INTR_IN_DSCR_ERR BIT(13)
#define I2S_INTR_OUT_DSCR_ERR BIT(14)
#define I2S_INTR_MAX (0xFFFFFFFF)
/**
* @brief Reset rx fifo
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_reset_rx_fifo(i2s_dev_t *hw)
{
hw->conf.rx_fifo_reset = 1;
hw->conf.rx_fifo_reset = 0;
}
/**
* @brief Reset tx fifo
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_reset_tx_fifo(i2s_dev_t *hw)
{
hw->conf.tx_fifo_reset = 1;
hw->conf.tx_fifo_reset = 0;
}
/**
* @brief Enable rx interrupt
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_enable_rx_intr(i2s_dev_t *hw)
{
hw->int_ena.in_suc_eof = 1;
hw->int_ena.in_dscr_err = 1;
}
/**
* @brief Disable rx interrupt
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_disable_rx_intr(i2s_dev_t *hw)
{
hw->int_ena.in_suc_eof = 0;
hw->int_ena.in_dscr_err = 0;
}
/**
* @brief Disable tx interrupt
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_disable_tx_intr(i2s_dev_t *hw)
{
hw->int_ena.out_eof = 0;
hw->int_ena.out_dscr_err = 0;
}
/**
* @brief Enable tx interrupt
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_enable_tx_intr(i2s_dev_t *hw)
{
hw->int_ena.out_eof = 1;
hw->int_ena.out_dscr_err = 1;
}
/**
* @brief Reset dma in
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_reset_dma_in(i2s_dev_t *hw)
{
hw->lc_conf.in_rst = 1;
hw->lc_conf.in_rst = 0;
}
/**
* @brief Reset dma out
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_reset_dma_out(i2s_dev_t *hw)
{
hw->lc_conf.out_rst = 1;
hw->lc_conf.out_rst = 0;
}
/**
* @brief Reset tx
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_reset_tx(i2s_dev_t *hw)
{
hw->conf.tx_reset = 1;
hw->conf.tx_reset = 0;
}
/**
* @brief Reset rx
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_reset_rx(i2s_dev_t *hw)
{
hw->conf.rx_reset = 1;
hw->conf.rx_reset = 0;
}
/**
* @brief Start out link
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_start_out_link(i2s_dev_t *hw)
{
hw->out_link.start = 1;
}
/**
* @brief Start tx
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_start_tx(i2s_dev_t *hw)
{
hw->conf.tx_start = 1;
}
/**
* @brief Start in link
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_start_in_link(i2s_dev_t *hw)
{
hw->in_link.start = 1;
}
/**
* @brief Start rx
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_start_rx(i2s_dev_t *hw)
{
hw->conf.rx_start = 1;
}
/**
* @brief Stop out link
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_stop_out_link(i2s_dev_t *hw)
{
hw->out_link.stop = 1;
}
/**
* @brief Stop tx
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_stop_tx(i2s_dev_t *hw)
{
hw->conf.tx_start = 0;
}
/**
* @brief Stop in link
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_stop_in_link(i2s_dev_t *hw)
{
hw->in_link.stop = 1;
}
/**
* @brief Stop rx
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_stop_rx(i2s_dev_t *hw)
{
hw->conf.rx_start = 0;
}
/**
* @brief Enable dma
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_enable_dma(i2s_dev_t *hw)
{
//Enable and configure DMA
typeof(hw->lc_conf) lc_conf;
lc_conf.val = 0;
lc_conf.out_eof_mode = 1;
hw->lc_conf.val = lc_conf.val;
}
/**
* @brief Get I2S interrupt status
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get interrupt status
*/
static inline void i2s_ll_get_intr_status(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->int_st.val;
}
/**
* @brief Clear I2S interrupt status
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to clear interrupt status
*/
static inline void i2s_ll_clear_intr_status(i2s_dev_t *hw, uint32_t val)
{
hw->int_clr.val = val;
}
/**
* @brief Get I2S out eof des address
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get out eof des address
*/
static inline void i2s_ll_get_out_eof_des_addr(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->out_eof_des_addr;
}
/**
* @brief Get I2S in eof des address
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get in eof des address
*/
static inline void i2s_ll_get_in_eof_des_addr(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->in_eof_des_addr;
}
/**
* @brief Get I2S tx fifo mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get tx fifo mode
*/
static inline void i2s_ll_get_tx_fifo_mod(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->fifo_conf.tx_fifo_mod;
}
/**
* @brief Set I2S tx fifo mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx fifo mode
*/
static inline void i2s_ll_set_tx_fifo_mod(i2s_dev_t *hw, uint32_t val)
{
hw->fifo_conf.tx_fifo_mod = val;
}
/**
* @brief Get I2S rx fifo mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get rx fifo mode
*/
static inline void i2s_ll_get_rx_fifo_mod(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->fifo_conf.rx_fifo_mod;
}
/**
* @brief Set I2S rx fifo mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx fifo mode
*/
static inline void i2s_ll_set_rx_fifo_mod(i2s_dev_t *hw, uint32_t val)
{
hw->fifo_conf.rx_fifo_mod = val;
}
/**
* @brief Set I2S tx chan mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx chan mode
*/
static inline void i2s_ll_set_tx_chan_mod(i2s_dev_t *hw, uint32_t val)
{
hw->conf_chan.tx_chan_mod = val;
}
/**
* @brief Set I2S rx chan mode
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx chan mode
*/
static inline void i2s_ll_set_rx_chan_mod(i2s_dev_t *hw, uint32_t val)
{
hw->conf_chan.rx_chan_mod = val;
}
/**
* @brief Set I2S tx dma equal
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx dma equal
*/
static inline void i2s_ll_set_tx_dma_equal(i2s_dev_t *hw, uint32_t val)
{
hw->conf.tx_dma_equal = val;
}
/**
* @brief Set I2S rx dma equal
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx dma equal
*/
static inline void i2s_ll_set_rx_dma_equal(i2s_dev_t *hw, uint32_t val)
{
hw->conf.rx_dma_equal = val;
}
/**
* @brief Set I2S out link address
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set out link address
*/
static inline void i2s_ll_set_out_link_addr(i2s_dev_t *hw, uint32_t val)
{
hw->out_link.addr = val;
}
/**
* @brief Set I2S in link address
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set in link address
*/
static inline void i2s_ll_set_in_link_addr(i2s_dev_t *hw, uint32_t val)
{
hw->in_link.addr = val;
}
/**
* @brief Set I2S rx eof num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx eof num
*/
static inline void i2s_ll_set_rx_eof_num(i2s_dev_t *hw, uint32_t val)
{
hw->rx_eof_num = val;
}
/**
* @brief Set I2S clkm div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set clkm div num
*/
static inline void i2s_ll_set_clkm_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->clkm_conf.clkm_div_num = val;
}
/**
* @brief Set I2S clkm div b
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set clkm div b
*/
static inline void i2s_ll_set_clkm_div_b(i2s_dev_t *hw, uint32_t val)
{
hw->clkm_conf.clkm_div_b = val;
}
/**
* @brief Set I2S clkm div a
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set clkm div a
*/
static inline void i2s_ll_set_clkm_div_a(i2s_dev_t *hw, uint32_t val)
{
hw->clkm_conf.clkm_div_a = val;
}
/**
* @brief Set I2S tx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx bck div num
*/
static inline void i2s_ll_set_tx_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.tx_bck_div_num = val;
}
/**
* @brief Set I2S rx bck div num
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx bck div num
*/
static inline void i2s_ll_set_rx_bck_div_num(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.rx_bck_div_num = val;
}
/**
* @brief Set I2S clk sel
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set clk sel
*/
static inline void i2s_ll_set_clk_sel(i2s_dev_t *hw, uint32_t val)
{
hw->clkm_conf.clk_sel = (val == 1) ? 1 : 2;
}
/**
* @brief Set I2S tx bits mod
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx bits mod
*/
static inline void i2s_ll_set_tx_bits_mod(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.tx_bits_mod = val;
}
/**
* @brief Set I2S rx bits mod
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx bits mod
*/
static inline void i2s_ll_set_rx_bits_mod(i2s_dev_t *hw, uint32_t val)
{
hw->sample_rate_conf.rx_bits_mod = val;
}
/**
* @brief Set I2S dscr en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set dscr en
*/
static inline void i2s_ll_set_dscr_en(i2s_dev_t *hw, bool val)
{
hw->fifo_conf.dscr_en = val;
}
/**
* @brief Set I2S lcd en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set lcd en
*/
static inline void i2s_ll_set_lcd_en(i2s_dev_t *hw, bool val)
{
hw->conf2.lcd_en = val;
}
/**
* @brief Set I2S camera en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set camera en
*/
static inline void i2s_ll_set_camera_en(i2s_dev_t *hw, bool val)
{
hw->conf2.camera_en = val;
}
/**
* @brief Set I2S tx fifo mod force en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx fifo mod force en
*/
static inline void i2s_ll_set_tx_fifo_mod_force_en(i2s_dev_t *hw, bool val)
{
hw->fifo_conf.tx_fifo_mod_force_en = val;
}
/**
* @brief Set I2S rx fifo mod force en
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx fifo mod force en
*/
static inline void i2s_ll_set_rx_fifo_mod_force_en(i2s_dev_t *hw, bool val)
{
hw->fifo_conf.rx_fifo_mod_force_en = val;
}
/**
* @brief Set I2S tx right first
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx right first
*/
static inline void i2s_ll_set_tx_right_first(i2s_dev_t *hw, uint32_t val)
{
hw->conf.tx_right_first = val;
}
/**
* @brief Set I2S rx right first
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx right first
*/
static inline void i2s_ll_set_rx_right_first(i2s_dev_t *hw, uint32_t val)
{
hw->conf.rx_right_first = val;
}
/**
* @brief Set I2S tx slave mod
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx slave mod
*/
static inline void i2s_ll_set_tx_slave_mod(i2s_dev_t *hw, uint32_t val)
{
hw->conf.tx_slave_mod = val;
}
/**
* @brief Set I2S rx slave mod
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx slave mod
*/
static inline void i2s_ll_set_rx_slave_mod(i2s_dev_t *hw, uint32_t val)
{
hw->conf.rx_slave_mod = val;
}
/**
* @brief Get I2S tx msb right
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get tx msb right
*/
static inline void i2s_ll_get_tx_msb_right(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->conf.tx_msb_right;
}
/**
* @brief Get I2S rx msb right
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to get rx msb right
*/
static inline void i2s_ll_get_rx_msb_right(i2s_dev_t *hw, uint32_t *val)
{
*val = hw->conf.rx_msb_right;
}
/**
* @brief Set I2S tx msb right
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx msb right
*/
static inline void i2s_ll_set_tx_msb_right(i2s_dev_t *hw, uint32_t val)
{
hw->conf.tx_msb_right = val;
}
/**
* @brief Set I2S rx msb right
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx msb right
*/
static inline void i2s_ll_set_rx_msb_right(i2s_dev_t *hw, uint32_t val)
{
hw->conf.rx_msb_right = val;
}
/**
* @brief Set I2S tx mono
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set tx mono
*/
static inline void i2s_ll_set_tx_mono(i2s_dev_t *hw, uint32_t val)
{
hw->conf.tx_mono = val;
}
/**
* @brief Set I2S rx mono
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set rx mono
*/
static inline void i2s_ll_set_rx_mono(i2s_dev_t *hw, uint32_t val)
{
hw->conf.rx_mono = val;
}
/**
* @brief Set I2S sig loopback
*
* @param hw Peripheral I2S hardware instance address.
* @param val value to set sig loopback
*/
static inline void i2s_ll_set_sig_loopback(i2s_dev_t *hw, uint32_t val)
{
hw->conf.sig_loopback = val;
}
/**
* @brief Set I2S TX to philip standard
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_set_tx_format_philip(i2s_dev_t *hw)
{
hw->conf.tx_short_sync = 0;
hw->conf.tx_msb_shift = 1;
}
/**
* @brief Set I2S RX to philip standard
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_set_rx_format_philip(i2s_dev_t *hw)
{
hw->conf.rx_short_sync = 0;
hw->conf.rx_msb_shift = 1;
}
/**
* @brief Set I2S TX to MSB Alignment Standard
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_set_tx_format_msb_align(i2s_dev_t *hw)
{
hw->conf.tx_short_sync = 0;
hw->conf.tx_msb_shift = 0;
}
/**
* @brief Set I2S RX to MSB Alignment Standard
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_set_rx_format_msb_align(i2s_dev_t *hw)
{
hw->conf.rx_short_sync = 0;
hw->conf.rx_msb_shift = 0;
}
/**
* @brief Set I2S TX to PCM short standard
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_set_tx_pcm_short(i2s_dev_t *hw)
{
hw->conf.tx_short_sync = 1;
hw->conf.tx_msb_shift = 0;
}
/**
* @brief Set I2S RX to PCM short standard
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_set_rx_pcm_short(i2s_dev_t *hw)
{
hw->conf.rx_short_sync = 1;
hw->conf.rx_msb_shift = 0;
}
/**
* @brief Set I2S TX to PCM long standard
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_set_tx_pcm_long(i2s_dev_t *hw)
{
hw->conf.tx_short_sync = 0;
hw->conf.tx_msb_shift = 0;
}
/**
* @brief Set I2S RX to PCM long standard
*
* @param hw Peripheral I2S hardware instance address.
*/
static inline void i2s_ll_set_rx_pcm_long(i2s_dev_t *hw)
{
hw->conf.rx_short_sync = 0;
hw->conf.rx_msb_shift = 0;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,487 +0,0 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The LL layer for LEDC register operations.
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#include "hal/ledc_types.h"
#include "soc/ledc_periph.h"
#ifdef __cplusplus
extern "C" {
#endif
#define LEDC_LL_GET_HW() &LEDC
/**
* @brief Set LEDC low speed timer clock
*
* @param hw Beginning address of the peripheral registers
* @param slow_clk_sel LEDC low speed timer clock source
*
* @return None
*/
static inline void ledc_ll_set_slow_clk_sel(ledc_dev_t *hw, ledc_slow_clk_sel_t slow_clk_sel){
uint32_t clk_sel_val = 0;
if (slow_clk_sel == LEDC_SLOW_CLK_APB) {
clk_sel_val = 1;
} else if (slow_clk_sel == LEDC_SLOW_CLK_RTC8M) {
clk_sel_val = 2;
} else if (slow_clk_sel == LEDC_SLOW_CLK_XTAL) {
clk_sel_val = 3;
}
hw->conf.apb_clk_sel = clk_sel_val;
}
/**
* @brief Get LEDC low speed timer clock
*
* @param hw Beginning address of the peripheral registers
* @param slow_clk_sel LEDC low speed timer clock source
*
* @return None
*/
static inline void ledc_ll_get_slow_clk_sel(ledc_dev_t *hw, ledc_slow_clk_sel_t *slow_clk_sel){
uint32_t clk_sel_val = hw->conf.apb_clk_sel;
if (clk_sel_val == 1) {
*slow_clk_sel = LEDC_SLOW_CLK_APB;
} else if (clk_sel_val == 2) {
*slow_clk_sel = LEDC_SLOW_CLK_RTC8M;
} else if (clk_sel_val == 3) {
*slow_clk_sel = LEDC_SLOW_CLK_XTAL;
}
}
/**
* @brief Update LEDC low speed timer
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_ls_timer_update(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel){
hw->timer_group[speed_mode].timer[timer_sel].conf.low_speed_update = 1;
}
/**
* @brief Reset LEDC timer
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_timer_rst(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel){
hw->timer_group[speed_mode].timer[timer_sel].conf.rst = 1;
hw->timer_group[speed_mode].timer[timer_sel].conf.rst = 0;
}
/**
* @brief Pause LEDC timer
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_timer_pause(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel){
hw->timer_group[speed_mode].timer[timer_sel].conf.pause = 1;
}
/**
* @brief Resume LEDC timer
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_timer_resume(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel){
hw->timer_group[speed_mode].timer[timer_sel].conf.pause = 0;
}
/**
* @brief Set LEDC timer clock divider
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param clock_divider Timer clock divide value, the timer clock is divided from the selected clock source
*
* @return None
*/
static inline void ledc_ll_set_clock_divider(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t clock_divider){
hw->timer_group[speed_mode].timer[timer_sel].conf.clock_divider = clock_divider;
}
/**
* @brief Get LEDC timer clock divider
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param clock_divider Timer clock divide value, the timer clock is divided from the selected clock source
*
* @return None
*/
static inline void ledc_ll_get_clock_divider(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t *clock_divider){
*clock_divider = hw->timer_group[speed_mode].timer[timer_sel].conf.clock_divider;
}
/**
* @brief Set LEDC timer clock source
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param clk_src Timer clock source
*
* @return None
*/
static inline void ledc_ll_set_clock_source(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, ledc_clk_src_t clk_src){
if (clk_src == LEDC_REF_TICK) {
//REF_TICK can only be used when APB is selected.
hw->timer_group[speed_mode].timer[timer_sel].conf.tick_sel = 1;
hw->conf.apb_clk_sel = 1;
} else {
hw->timer_group[speed_mode].timer[timer_sel].conf.tick_sel = 0;
}
}
/**
* @brief Get LEDC timer clock source
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param clk_src Pointer to accept the timer clock source
*
* @return None
*/
static inline void ledc_ll_get_clock_source(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, ledc_clk_src_t *clk_src){
if (hw->timer_group[speed_mode].timer[timer_sel].conf.tick_sel == 1) {
*clk_src = LEDC_REF_TICK;
} else {
*clk_src = LEDC_APB_CLK;
}
}
/**
* @brief Set LEDC duty resolution
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param duty_resolution Resolution of duty setting in number of bits. The range of duty values is [0, (2**duty_resolution)]
*
* @return None
*/
static inline void ledc_ll_set_duty_resolution(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t duty_resolution){
hw->timer_group[speed_mode].timer[timer_sel].conf.duty_resolution = duty_resolution;
}
/**
* @brief Get LEDC duty resolution
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
* @param duty_resolution Pointer to accept the resolution of duty setting in number of bits.
*
* @return None
*/
static inline void ledc_ll_get_duty_resolution(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t *duty_resolution){
*duty_resolution = hw->timer_group[speed_mode].timer[timer_sel].conf.duty_resolution;
}
/**
* @brief Update channel configure when select low speed mode
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
*
* @return None
*/
static inline void ledc_ll_ls_channel_update(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num){
hw->channel_group[speed_mode].channel[channel_num].conf0.low_speed_update = 1;
}
/**
* @brief Get LEDC max duty
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param max_duty Pointer to accept the max duty
*
* @return None
*/
static inline void ledc_ll_get_max_duty(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t *max_duty){
uint32_t timer_sel = hw->channel_group[speed_mode].channel[channel_num].conf0.timer_sel;
*max_duty = (1 << (LEDC.timer_group[speed_mode].timer[timer_sel].conf.duty_resolution));
}
/**
* @brief Set LEDC hpoint value
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param hpoint_val LEDC hpoint value(max: 0xfffff)
*
* @return None
*/
static inline void ledc_ll_set_hpoint(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t hpoint_val){
hw->channel_group[speed_mode].channel[channel_num].hpoint.hpoint = hpoint_val;
}
/**
* @brief Get LEDC hpoint value
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param hpoint_val Pointer to accept the LEDC hpoint value(max: 0xfffff)
*
* @return None
*/
static inline void ledc_ll_get_hpoint(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t *hpoint_val){
*hpoint_val = hw->channel_group[speed_mode].channel[channel_num].hpoint.hpoint;
}
/**
* @brief Set LEDC the integer part of duty value
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_val LEDC duty value, the range of duty setting is [0, (2**duty_resolution)]
*
* @return None
*/
static inline void ledc_ll_set_duty_int_part(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t duty_val){
hw->channel_group[speed_mode].channel[channel_num].duty.duty = duty_val << 4;
}
/**
* @brief Get LEDC duty value
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_val Pointer to accept the LEDC duty value
*
* @return None
*/
static inline void ledc_ll_get_duty(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t *duty_val){
*duty_val = (hw->channel_group[speed_mode].channel[channel_num].duty_rd.duty_read >> 4);
}
/**
* @brief Set LEDC duty change direction
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_direction LEDC duty change direction, increase or decrease
*
* @return None
*/
static inline void ledc_ll_set_duty_direction(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, ledc_duty_direction_t duty_direction){
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_inc = duty_direction;
}
/**
* @brief Get LEDC duty change direction
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_direction Pointer to accept the LEDC duty change direction, increase or decrease
*
* @return None
*/
static inline void ledc_ll_get_duty_direction(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, ledc_duty_direction_t *duty_direction){
*duty_direction = hw->channel_group[speed_mode].channel[channel_num].conf1.duty_inc;
}
/**
* @brief Set the number of increased or decreased times
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_num The number of increased or decreased times
*
* @return None
*/
static inline void ledc_ll_set_duty_num(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t duty_num){
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_num = duty_num;
}
/**
* @brief Set the duty cycles of increase or decrease
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_cycle The duty cycles
*
* @return None
*/
static inline void ledc_ll_set_duty_cycle(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t duty_cycle){
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_cycle = duty_cycle;
}
/**
* @brief Set the step scale of increase or decrease
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_scale The step scale
*
* @return None
*/
static inline void ledc_ll_set_duty_scale(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t duty_scale){
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_scale = duty_scale;
}
/**
* @brief Set the output enable
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param sig_out_en The output enable status
*
* @return None
*/
static inline void ledc_ll_set_sig_out_en(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, bool sig_out_en){
hw->channel_group[speed_mode].channel[channel_num].conf0.sig_out_en = sig_out_en;
}
/**
* @brief Set the duty start
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param duty_start The duty start
*
* @return None
*/
static inline void ledc_ll_set_duty_start(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, bool duty_start){
hw->channel_group[speed_mode].channel[channel_num].conf1.duty_start = duty_start;
}
/**
* @brief Set output idle level
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param idle_level The output idle level
*
* @return None
*/
static inline void ledc_ll_set_idle_level(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, uint32_t idle_level){
hw->channel_group[speed_mode].channel[channel_num].conf0.idle_lv = idle_level & 0x1;
}
/**
* @brief Set fade end interrupt enable
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param fade_end_intr_en The fade end interrupt enable status
*
* @return None
*/
static inline void ledc_ll_set_fade_end_intr(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, bool fade_end_intr_en){
uint32_t value = hw->int_ena.val;
uint32_t int_en_base = LEDC_DUTY_CHNG_END_LSCH0_INT_ENA_S;
hw->int_ena.val = fade_end_intr_en ? (value | BIT(int_en_base + channel_num)) : (value & (~(BIT(int_en_base + channel_num))));
}
/**
* @brief Get fade end interrupt status
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param intr_status The fade end interrupt status
*
* @return None
*/
static inline void ledc_ll_get_fade_end_intr_status(ledc_dev_t *hw, ledc_mode_t speed_mode, uint32_t *intr_status){
uint32_t value = hw->int_st.val;
uint32_t int_en_base = LEDC_DUTY_CHNG_END_LSCH0_INT_ENA_S;
*intr_status = (value >> int_en_base) & 0xff;
}
/**
* @brief Clear fade end interrupt status
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
*
* @return None
*/
static inline void ledc_ll_clear_fade_end_intr_status(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num){
uint32_t int_en_base = LEDC_DUTY_CHNG_END_LSCH0_INT_ENA_S;
hw->int_clr.val = BIT(int_en_base + channel_num);
}
/**
* @brief Set timer index of the specified channel
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param timer_sel LEDC timer index (0-3), select from ledc_timer_t
*
* @return None
*/
static inline void ledc_ll_bind_channel_timer(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, ledc_timer_t timer_sel){
hw->channel_group[speed_mode].channel[channel_num].conf0.timer_sel = timer_sel;
}
/**
* @brief Get timer index of the specified channel
*
* @param hw Beginning address of the peripheral registers
* @param speed_mode LEDC speed_mode, high-speed mode or low-speed mode
* @param channel_num LEDC channel index (0-7), select from ledc_channel_t
* @param timer_sel Pointer to accept the LEDC timer index
*
* @return None
*/
static inline void ledc_ll_get_channel_timer(ledc_dev_t *hw, ledc_mode_t speed_mode, ledc_channel_t channel_num, ledc_timer_t *timer_sel){
*timer_sel = hw->channel_group[speed_mode].channel[channel_num].conf0.timer_sel;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,651 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
/**
* === IRAM0 ====
*/
#define IRAM0_TOTAL_UNI_BLOCKS 4
#define IRAM0_UNI_BLOCK_0 0
#define IRAM0_UNI_BLOCK_1 1
#define IRAM0_UNI_BLOCK_2 2
#define IRAM0_UNI_BLOCK_3 3
#define IRAM0_SPL_BLOCK_BASE 0x40000000
//unified management (SRAM blocks 0-3)
#define IRAM0_UNI_BLOCK_0_LOW 0x40020000
#define IRAM0_UNI_BLOCK_0_HIGH 0x40021FFF
#define IRAM0_UNI_BLOCK_1_LOW 0x40022000
#define IRAM0_UNI_BLOCK_1_HIGH 0x40023FFF
#define IRAM0_UNI_BLOCK_2_LOW 0x40024000
#define IRAM0_UNI_BLOCK_2_HIGH 0x40025FFF
#define IRAM0_UNI_BLOCK_3_LOW 0x40026000
#define IRAM0_UNI_BLOCK_3_HIGH 0x40027FFF
//split management (SRAM blocks 4-21)
#define IRAM0_SPL_BLOCK_LOW 0x40028000 //block 4 low
#define IRAM0_SPL_BLOCK_HIGH 0x4006FFFF //block 21 high
#define IRAM0_SPLTADDR_MIN 0x40030000 //block 6 low - minimum splitting address
//IRAM0 interrupt status bitmasks
#define IRAM0_INTR_ST_FAULTADDR_M 0x003FFFFC //(bits 21:6 in the reg, as well as in real address)
#define IRAM0_INTR_ST_FAULTADDR_HI 0x40000000 //(high nonsignificant bits 31:22 of the faulting address - constant)
#define IRAM0_INTR_ST_OP_TYPE_BIT BIT(1) //instruction: 0, data: 1
#define IRAM0_INTR_ST_OP_RW_BIT BIT(0) //read: 0, write: 1
static inline uint32_t esp_memprot_iram0_get_intr_source_num(void)
{
return ETS_PMS_PRO_IRAM0_ILG_INTR_SOURCE;
}
static inline void esp_memprot_iram0_intr_ena(bool enable)
{
if ( enable ) {
DPORT_SET_PERI_REG_MASK( DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_EN );
} else {
DPORT_CLEAR_PERI_REG_MASK( DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_EN );
}
}
static inline uint32_t esp_memprot_iram0_get_ena_reg(void)
{
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_4_REG);
}
static inline uint32_t esp_memprot_iram0_get_fault_reg(void)
{
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_5_REG);
}
static inline void esp_memprot_iram0_get_fault_status(uint32_t **faulting_address, uint32_t *op_type, uint32_t *op_subtype)
{
uint32_t status_bits = esp_memprot_iram0_get_fault_reg();
uint32_t fault_addr = (status_bits & IRAM0_INTR_ST_FAULTADDR_M);
*faulting_address = (uint32_t *)(fault_addr | IRAM0_INTR_ST_FAULTADDR_HI);
*op_type = (uint32_t)status_bits & IRAM0_INTR_ST_OP_RW_BIT;
*op_subtype = (uint32_t)status_bits & IRAM0_INTR_ST_OP_TYPE_BIT;
}
static inline bool esp_memprot_iram0_is_assoc_intr(void)
{
return DPORT_GET_PERI_REG_MASK(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_INTR) > 0;
}
static inline void esp_memprot_iram0_clear_intr(void)
{
DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_CLR);
}
static inline uint32_t esp_memprot_iram0_get_intr_ena_bit(void)
{
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_EN);
}
static inline uint32_t esp_memprot_iram0_get_intr_on_bit(void)
{
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_INTR);
}
static inline uint32_t esp_memprot_iram0_get_intr_clr_bit(void)
{
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_4_REG, DPORT_PMS_PRO_IRAM0_ILG_CLR);
}
//resets automatically on CPU restart
static inline void esp_memprot_iram0_set_lock(void)
{
DPORT_WRITE_PERI_REG( DPORT_PMS_PRO_IRAM0_0_REG, DPORT_PMS_PRO_IRAM0_LOCK);
}
static inline uint32_t esp_memprot_iram0_get_lock_reg(void)
{
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_0_REG);
}
static inline uint32_t esp_memprot_iram0_get_lock_bit(void)
{
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_IRAM0_0_REG, DPORT_PMS_PRO_IRAM0_LOCK);
}
//block 0-3
static inline void esp_memprot_iram0_set_uni_block_perm(uint32_t block, bool write_perm, bool read_perm, bool exec_perm)
{
assert(block < IRAM0_TOTAL_UNI_BLOCKS);
uint32_t write_bit, read_bit, exec_bit;
switch ( block ) {
case IRAM0_UNI_BLOCK_0:
write_bit = DPORT_PMS_PRO_IRAM0_SRAM_0_W;
read_bit = DPORT_PMS_PRO_IRAM0_SRAM_0_R;
exec_bit = DPORT_PMS_PRO_IRAM0_SRAM_0_F;
break;
case IRAM0_UNI_BLOCK_1:
write_bit = DPORT_PMS_PRO_IRAM0_SRAM_1_W;
read_bit = DPORT_PMS_PRO_IRAM0_SRAM_1_R;
exec_bit = DPORT_PMS_PRO_IRAM0_SRAM_1_F;
break;
case IRAM0_UNI_BLOCK_2:
write_bit = DPORT_PMS_PRO_IRAM0_SRAM_2_W;
read_bit = DPORT_PMS_PRO_IRAM0_SRAM_2_R;
exec_bit = DPORT_PMS_PRO_IRAM0_SRAM_2_F;
break;
case IRAM0_UNI_BLOCK_3:
write_bit = DPORT_PMS_PRO_IRAM0_SRAM_3_W;
read_bit = DPORT_PMS_PRO_IRAM0_SRAM_3_R;
exec_bit = DPORT_PMS_PRO_IRAM0_SRAM_3_F;
break;
default:
abort();
}
if ( write_perm ) {
DPORT_SET_PERI_REG_MASK( DPORT_PMS_PRO_IRAM0_1_REG, write_bit );
} else {
DPORT_CLEAR_PERI_REG_MASK( DPORT_PMS_PRO_IRAM0_1_REG, write_bit );
}
if ( read_perm ) {
DPORT_SET_PERI_REG_MASK( DPORT_PMS_PRO_IRAM0_1_REG, read_bit );
} else {
DPORT_CLEAR_PERI_REG_MASK( DPORT_PMS_PRO_IRAM0_1_REG, read_bit );
}
if ( exec_perm ) {
DPORT_SET_PERI_REG_MASK( DPORT_PMS_PRO_IRAM0_1_REG, exec_bit );
} else {
DPORT_CLEAR_PERI_REG_MASK( DPORT_PMS_PRO_IRAM0_1_REG, exec_bit );
}
}
static inline uint32_t esp_memprot_iram0_get_uni_block_read_bit(uint32_t block)
{
assert(block < IRAM0_TOTAL_UNI_BLOCKS);
switch ( block ) {
case IRAM0_UNI_BLOCK_0:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_0_R );
case IRAM0_UNI_BLOCK_1:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_1_R );
case IRAM0_UNI_BLOCK_2:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_2_R );
case IRAM0_UNI_BLOCK_3:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_3_R );
default:
abort();
}
}
static inline uint32_t esp_memprot_iram0_get_uni_block_write_bit(uint32_t block)
{
assert(block < IRAM0_TOTAL_UNI_BLOCKS);
switch ( block ) {
case IRAM0_UNI_BLOCK_0:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_0_W );
case IRAM0_UNI_BLOCK_1:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_1_W );
case IRAM0_UNI_BLOCK_2:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_2_W );
case IRAM0_UNI_BLOCK_3:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_3_W );
default:
abort();
}
}
static inline uint32_t esp_memprot_iram0_get_uni_block_exec_bit(uint32_t block)
{
assert(block < IRAM0_TOTAL_UNI_BLOCKS);
switch ( block ) {
case IRAM0_UNI_BLOCK_0:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_0_F );
case IRAM0_UNI_BLOCK_1:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_1_F );
case IRAM0_UNI_BLOCK_2:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_2_F );
case IRAM0_UNI_BLOCK_3:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_1_REG, DPORT_PMS_PRO_IRAM0_SRAM_3_F );
default:
abort();
}
}
static inline void esp_memprot_iram0_get_uni_block_sgnf_bits(uint32_t block, uint32_t *write_bit, uint32_t *read_bit, uint32_t *exec_bit)
{
assert(block < IRAM0_TOTAL_UNI_BLOCKS);
switch ( block ) {
case IRAM0_UNI_BLOCK_0:
*write_bit = DPORT_PMS_PRO_IRAM0_SRAM_0_W;
*read_bit = DPORT_PMS_PRO_IRAM0_SRAM_0_R;
*exec_bit = DPORT_PMS_PRO_IRAM0_SRAM_0_F;
break;
case IRAM0_UNI_BLOCK_1:
*write_bit = DPORT_PMS_PRO_IRAM0_SRAM_1_W;
*read_bit = DPORT_PMS_PRO_IRAM0_SRAM_1_R;
*exec_bit = DPORT_PMS_PRO_IRAM0_SRAM_1_F;
break;
case IRAM0_UNI_BLOCK_2:
*write_bit = DPORT_PMS_PRO_IRAM0_SRAM_2_W;
*read_bit = DPORT_PMS_PRO_IRAM0_SRAM_2_R;
*exec_bit = DPORT_PMS_PRO_IRAM0_SRAM_2_F;
break;
case IRAM0_UNI_BLOCK_3:
*write_bit = DPORT_PMS_PRO_IRAM0_SRAM_3_W;
*read_bit = DPORT_PMS_PRO_IRAM0_SRAM_3_R;
*exec_bit = DPORT_PMS_PRO_IRAM0_SRAM_3_F;
break;
default:
abort();
}
}
static inline uint32_t esp_memprot_iram0_get_perm_uni_reg(void)
{
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_1_REG);
}
static inline uint32_t esp_memprot_iram0_get_perm_split_reg(void)
{
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_IRAM0_2_REG);
}
static inline void esp_memprot_iram0_set_prot(uint32_t *split_addr, bool lw, bool lr, bool lx, bool hw, bool hr, bool hx)
{
uint32_t addr = (uint32_t)split_addr;
assert( addr <= IRAM0_SPL_BLOCK_HIGH );
//find possible split.address in low region blocks
int uni_blocks_low = -1;
if ( addr >= IRAM0_UNI_BLOCK_0_LOW ) {
uni_blocks_low++;
}
if ( addr >= IRAM0_UNI_BLOCK_1_LOW ) {
uni_blocks_low++;
}
if ( addr >= IRAM0_UNI_BLOCK_2_LOW ) {
uni_blocks_low++;
}
if ( addr >= IRAM0_UNI_BLOCK_3_LOW ) {
uni_blocks_low++;
}
//unified mgmt settings per block (bits W/R/X: [11:9] bl3, [8:6] bl2, [5:3] bl1, [2:0] bl0)
uint32_t write_bit, read_bit, exec_bit;
uint32_t uni_block_perm = 0;
for ( size_t x = 0; x < IRAM0_TOTAL_UNI_BLOCKS; x++ ) {
esp_memprot_iram0_get_uni_block_sgnf_bits(x, &write_bit, &read_bit, &exec_bit);
if ( x <= uni_blocks_low ) {
if (lw) {
uni_block_perm |= write_bit;
}
if (lr) {
uni_block_perm |= read_bit;
}
if (lx) {
uni_block_perm |= exec_bit;
}
} else {
if (hw) {
uni_block_perm |= write_bit;
}
if (hr) {
uni_block_perm |= read_bit;
}
if (hx) {
uni_block_perm |= exec_bit;
}
}
}
//if splt.ddr not set yet, do required normalization to make the addr writeble into splt.mgmt cfg register
uint32_t reg_split_addr = 0;
if ( addr >= IRAM0_SPL_BLOCK_LOW ) {
//split Address must be WORD aligned
reg_split_addr = addr >> 2;
assert(addr == (reg_split_addr << 2));
//use only 17 signf.bits as the cropped parts are constant for whole section (bits [16:0])
reg_split_addr = (reg_split_addr << DPORT_PMS_PRO_IRAM0_SRAM_4_SPLTADDR_S) & DPORT_PMS_PRO_IRAM0_SRAM_4_SPLTADDR_M;
}
//prepare high & low permission mask (bits: [22:20] high range, [19:17] low range)
uint32_t permission_mask = 0;
if ( lw ) {
permission_mask |= DPORT_PMS_PRO_IRAM0_SRAM_4_L_W;
}
if ( lr ) {
permission_mask |= DPORT_PMS_PRO_IRAM0_SRAM_4_L_R;
}
if ( lx ) {
permission_mask |= DPORT_PMS_PRO_IRAM0_SRAM_4_L_F;
}
if ( hw ) {
permission_mask |= DPORT_PMS_PRO_IRAM0_SRAM_4_H_W;
}
if ( hr ) {
permission_mask |= DPORT_PMS_PRO_IRAM0_SRAM_4_H_R;
}
if ( hx ) {
permission_mask |= DPORT_PMS_PRO_IRAM0_SRAM_4_H_F;
}
//write both cfg. registers
DPORT_WRITE_PERI_REG( DPORT_PMS_PRO_IRAM0_1_REG, uni_block_perm );
DPORT_WRITE_PERI_REG( DPORT_PMS_PRO_IRAM0_2_REG, reg_split_addr | permission_mask );
}
static inline void esp_memprot_iram0_get_split_sgnf_bits(bool *lw, bool *lr, bool *lx, bool *hw, bool *hr, bool *hx)
{
*lw = DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_L_W );
*lr = DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_L_R );
*lx = DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_L_F );
*hw = DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_H_W );
*hr = DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_H_R );
*hx = DPORT_REG_GET_FIELD( DPORT_PMS_PRO_IRAM0_2_REG, DPORT_PMS_PRO_IRAM0_SRAM_4_H_F );
}
/**
* === DRAM0 ====
*/
#define DRAM0_TOTAL_UNI_BLOCKS 4
#define DRAM0_UNI_BLOCK_0 0
#define DRAM0_UNI_BLOCK_1 1
#define DRAM0_UNI_BLOCK_2 2
#define DRAM0_UNI_BLOCK_3 3
#define DRAM0_SPL_BLOCK_BASE 0x3FFB0000
//unified management (SRAM blocks 0-3)
#define DRAM0_UNI_BLOCK_0_LOW 0x3FFB0000
#define DRAM0_UNI_BLOCK_0_HIGH 0x3FFB1FFF
#define DRAM0_UNI_BLOCK_1_LOW 0x3FFB2000
#define DRAM0_UNI_BLOCK_1_HIGH 0x3FFB3FFF
#define DRAM0_UNI_BLOCK_2_LOW 0x3FFB4000
#define DRAM0_UNI_BLOCK_2_HIGH 0x3FFB5FFF
#define DRAM0_UNI_BLOCK_3_LOW 0x3FFB6000
#define DRAM0_UNI_BLOCK_3_HIGH 0x3FFB7FFF
//split management (SRAM blocks 4-21)
#define DRAM0_SPL_BLOCK_LOW 0x3FFB8000 //block 4 low
#define DRAM0_SPL_BLOCK_HIGH 0x3FFFFFFF //block 21 high
#define DRAM0_SPLTADDR_MIN 0x3FFC0000 //block 6 low - minimum splitting address
//DRAM0 interrupt status bitmasks
#define DRAM0_INTR_ST_FAULTADDR_M 0x03FFFFC0 //(bits 25:6 in the reg)
#define DRAM0_INTR_ST_FAULTADDR_S 0x4 //(bits 21:2 of real address)
#define DRAM0_INTR_ST_FAULTADDR_HI 0x3FF00000 //(high nonsignificant bits 31:22 of the faulting address - constant)
#define DRAM0_INTR_ST_OP_RW_BIT BIT(4) //read: 0, write: 1
#define DRAM0_INTR_ST_OP_ATOMIC_BIT BIT(5) //non-atomic: 0, atomic: 1
static inline uint32_t esp_memprot_dram0_get_intr_source_num(void)
{
return ETS_PMS_PRO_DRAM0_ILG_INTR_SOURCE;
}
static inline void esp_memprot_dram0_intr_ena(bool enable)
{
if ( enable ) {
DPORT_SET_PERI_REG_MASK( DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_EN );
} else {
DPORT_CLEAR_PERI_REG_MASK( DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_EN );
}
}
static inline bool esp_memprot_dram0_is_assoc_intr(void)
{
return DPORT_GET_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_INTR) > 0;
}
static inline void esp_memprot_dram0_clear_intr(void)
{
DPORT_SET_PERI_REG_MASK(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_CLR);
}
static inline uint32_t esp_memprot_dram0_get_intr_ena_bit(void)
{
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_EN);
}
static inline uint32_t esp_memprot_dram0_get_intr_on_bit(void)
{
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_INTR);
}
static inline uint32_t esp_memprot_dram0_get_intr_clr_bit(void)
{
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_3_REG, DPORT_PMS_PRO_DRAM0_ILG_CLR);
}
static inline uint32_t esp_memprot_dram0_get_lock_bit(void)
{
return DPORT_REG_GET_FIELD(DPORT_PMS_PRO_DRAM0_0_REG, DPORT_PMS_PRO_DRAM0_LOCK);
}
static inline void esp_memprot_dram0_get_uni_block_sgnf_bits(uint32_t block, uint32_t *write_bit, uint32_t *read_bit)
{
assert(block < DRAM0_TOTAL_UNI_BLOCKS);
switch ( block ) {
case DRAM0_UNI_BLOCK_0:
*write_bit = DPORT_PMS_PRO_DRAM0_SRAM_0_W;
*read_bit = DPORT_PMS_PRO_DRAM0_SRAM_0_R;
break;
case DRAM0_UNI_BLOCK_1:
*write_bit = DPORT_PMS_PRO_DRAM0_SRAM_1_W;
*read_bit = DPORT_PMS_PRO_DRAM0_SRAM_1_R;
break;
case DRAM0_UNI_BLOCK_2:
*write_bit = DPORT_PMS_PRO_DRAM0_SRAM_2_W;
*read_bit = DPORT_PMS_PRO_DRAM0_SRAM_2_R;
break;
case DRAM0_UNI_BLOCK_3:
*write_bit = DPORT_PMS_PRO_DRAM0_SRAM_3_W;
*read_bit = DPORT_PMS_PRO_DRAM0_SRAM_3_R;
break;
default:
abort();
}
}
static inline void esp_memprot_dram0_set_uni_block_perm(uint32_t block, bool write_perm, bool read_perm)
{
assert(block < DRAM0_TOTAL_UNI_BLOCKS);
uint32_t write_bit, read_bit;
esp_memprot_dram0_get_uni_block_sgnf_bits(block, &write_bit, &read_bit);
if ( write_perm ) {
DPORT_SET_PERI_REG_MASK( DPORT_PMS_PRO_DRAM0_1_REG, write_bit );
} else {
DPORT_CLEAR_PERI_REG_MASK( DPORT_PMS_PRO_DRAM0_1_REG, write_bit );
}
if ( read_perm ) {
DPORT_SET_PERI_REG_MASK( DPORT_PMS_PRO_DRAM0_1_REG, read_bit );
} else {
DPORT_CLEAR_PERI_REG_MASK( DPORT_PMS_PRO_DRAM0_1_REG, read_bit );
}
}
static inline uint32_t esp_memprot_dram0_get_uni_block_read_bit(uint32_t block)
{
assert(block < DRAM0_TOTAL_UNI_BLOCKS);
switch ( block ) {
case DRAM0_UNI_BLOCK_0:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_0_R );
case DRAM0_UNI_BLOCK_1:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_1_R );
case DRAM0_UNI_BLOCK_2:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_2_R );
case DRAM0_UNI_BLOCK_3:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_3_R );
default:
abort();
}
}
static inline uint32_t esp_memprot_dram0_get_uni_block_write_bit(uint32_t block)
{
assert(block < DRAM0_TOTAL_UNI_BLOCKS);
switch ( block ) {
case DRAM0_UNI_BLOCK_0:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_0_W );
case DRAM0_UNI_BLOCK_1:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_1_W );
case DRAM0_UNI_BLOCK_2:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_2_W );
case DRAM0_UNI_BLOCK_3:
return DPORT_REG_GET_FIELD( DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_3_W );
default:
abort();
}
}
static inline uint32_t esp_memprot_dram0_get_lock_reg(void)
{
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_0_REG);
}
//lock resets automatically on CPU restart
static inline void esp_memprot_dram0_set_lock(void)
{
DPORT_WRITE_PERI_REG( DPORT_PMS_PRO_DRAM0_0_REG, DPORT_PMS_PRO_DRAM0_LOCK);
}
static inline uint32_t esp_memprot_dram0_get_perm_reg(void)
{
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_1_REG);
}
static inline uint32_t esp_memprot_dram0_get_ena_reg(void)
{
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_3_REG);
}
static inline uint32_t esp_memprot_dram0_get_fault_reg(void)
{
return DPORT_READ_PERI_REG(DPORT_PMS_PRO_DRAM0_4_REG);
}
static inline void esp_memprot_dram0_get_fault_status(uint32_t **faulting_address, uint32_t *op_type, uint32_t *op_subtype)
{
uint32_t status_bits = esp_memprot_dram0_get_fault_reg();
uint32_t fault_addr = (status_bits & DRAM0_INTR_ST_FAULTADDR_M) >> DRAM0_INTR_ST_FAULTADDR_S;
*faulting_address = (uint32_t *)(fault_addr | DRAM0_INTR_ST_FAULTADDR_HI);
*op_type = (uint32_t)status_bits & DRAM0_INTR_ST_OP_RW_BIT;
*op_subtype = (uint32_t)status_bits & DRAM0_INTR_ST_OP_ATOMIC_BIT;
}
static inline void esp_memprot_dram0_set_prot(uint32_t *split_addr, bool lw, bool lr, bool hw, bool hr)
{
uint32_t addr = (uint32_t)split_addr;
//low boundary check provided by LD script. see comment in esp_memprot_iram0_set_prot()
assert( addr <= DRAM0_SPL_BLOCK_HIGH );
//set low region
int uni_blocks_low = -1;
if ( addr >= DRAM0_UNI_BLOCK_0_LOW ) {
uni_blocks_low++;
}
if ( addr >= DRAM0_UNI_BLOCK_1_LOW ) {
uni_blocks_low++;
}
if ( addr >= DRAM0_UNI_BLOCK_2_LOW ) {
uni_blocks_low++;
}
if ( addr >= DRAM0_UNI_BLOCK_3_LOW ) {
uni_blocks_low++;
}
//set unified mgmt region
uint32_t write_bit, read_bit, uni_block_perm = 0;
for ( size_t x = 0; x < DRAM0_TOTAL_UNI_BLOCKS; x++ ) {
esp_memprot_dram0_get_uni_block_sgnf_bits(x, &write_bit, &read_bit);
if ( x <= uni_blocks_low ) {
if (lw) {
uni_block_perm |= write_bit;
}
if (lr) {
uni_block_perm |= read_bit;
}
} else {
if (hw) {
uni_block_perm |= write_bit;
}
if (hr) {
uni_block_perm |= read_bit;
}
}
}
//check split address is WORD aligned
uint32_t reg_split_addr = addr >> 2;
assert(addr == (reg_split_addr << 2));
//shift aligned split address to proper bit offset
reg_split_addr = (reg_split_addr << DPORT_PMS_PRO_DRAM0_SRAM_4_SPLTADDR_S) & DPORT_PMS_PRO_DRAM0_SRAM_4_SPLTADDR_M;
//prepare high & low permission mask
uint32_t permission_mask = 0;
if (lw) {
permission_mask |= DPORT_PMS_PRO_DRAM0_SRAM_4_L_W;
}
if (lr) {
permission_mask |= DPORT_PMS_PRO_DRAM0_SRAM_4_L_R;
}
if (hw) {
permission_mask |= DPORT_PMS_PRO_DRAM0_SRAM_4_H_W;
}
if (hr) {
permission_mask |= DPORT_PMS_PRO_DRAM0_SRAM_4_H_R;
}
//write configuration to DPORT_PMS_PRO_DRAM0_1_REG
DPORT_WRITE_PERI_REG(DPORT_PMS_PRO_DRAM0_1_REG, reg_split_addr | permission_mask | uni_block_perm);
}
static inline void esp_memprot_dram0_get_split_sgnf_bits(bool *lw, bool *lr, bool *hw, bool *hr)
{
*lw = DPORT_REG_GET_FIELD( DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_L_W );
*lr = DPORT_REG_GET_FIELD( DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_L_R );
*hw = DPORT_REG_GET_FIELD( DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_H_W );
*hr = DPORT_REG_GET_FIELD( DPORT_PMS_PRO_DRAM0_1_REG, DPORT_PMS_PRO_DRAM0_SRAM_4_H_R );
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,62 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "soc/mpu_caps.h"
#include "xt_instr_macros.h"
#ifdef __cplusplus
extern "C" {
#endif
static inline uint32_t mpu_ll_id_to_addr(int id)
{
// vpn - id
// 0x00000000 = 0
// 0x20000000 = 1
// 0x40000000 = 2
// 0x60000000 = 3
// 0x80000000 = 4
// 0xa0000000 = 5
// 0xc0000000 = 6
// 0xe0000000 = 7
return id * SOC_MPU_MIN_REGION_SIZE;
}
static inline void mpu_ll_set_region_rw(uint32_t addr)
{
WDTLB(0x0, addr); // cached, no allocate
}
static inline void mpu_ll_set_region_rwx(uint32_t addr)
{
WDTLB(0x2, addr); // bypass cache
}
static inline void mpu_ll_set_region_x(uint32_t addr)
{
WITLB(0x3, addr); // cached
}
static inline void mpu_ll_set_region_illegal(uint32_t addr)
{
WITLB(0xF, addr);
WDTLB(0xF, addr);
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,264 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The LL layer for Timer Group register operations.
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "soc/timer_periph.h"
#include "hal/wdt_types.h"
#include "esp_attr.h"
//Type check wdt_stage_action_t
_Static_assert(WDT_STAGE_ACTION_OFF == TIMG_WDT_STG_SEL_OFF, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
_Static_assert(WDT_STAGE_ACTION_INT == TIMG_WDT_STG_SEL_INT, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
_Static_assert(WDT_STAGE_ACTION_RESET_CPU == TIMG_WDT_STG_SEL_RESET_CPU, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
_Static_assert(WDT_STAGE_ACTION_RESET_SYSTEM == TIMG_WDT_STG_SEL_RESET_SYSTEM, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
//Type check wdt_reset_sig_length_t
_Static_assert(WDT_RESET_SIG_LENGTH_100ns == TIMG_WDT_RESET_LENGTH_100_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_200ns == TIMG_WDT_RESET_LENGTH_200_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_300ns == TIMG_WDT_RESET_LENGTH_300_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_400ns == TIMG_WDT_RESET_LENGTH_400_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_500ns == TIMG_WDT_RESET_LENGTH_500_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_800ns == TIMG_WDT_RESET_LENGTH_800_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_1_6us == TIMG_WDT_RESET_LENGTH_1600_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_3_2us == TIMG_WDT_RESET_LENGTH_3200_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
/**
* @brief Enable the MWDT
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void mwdt_ll_enable(timg_dev_t *hw)
{
hw->wdt_config0.en = 1;
}
/**
* @brief Disable the MWDT
*
* @param hw Start address of the peripheral registers.
* @note This function does not disable the flashboot mode. Therefore, given that
* the MWDT is disabled using this function, a timeout can still occur
* if the flashboot mode is simultaneously enabled.
*/
FORCE_INLINE_ATTR void mwdt_ll_disable(timg_dev_t *hw)
{
hw->wdt_config0.en = 0;
}
/**
* Check if the MWDT is enabled
*
* @param hw Start address of the peripheral registers.
* @return True if the MWDT is enabled, false otherwise
*/
FORCE_INLINE_ATTR bool mwdt_ll_check_if_enabled(timg_dev_t *hw)
{
return (hw->wdt_config0.en) ? true : false;
}
/**
* @brief Configure a particular stage of the MWDT
*
* @param hw Start address of the peripheral registers.
* @param stage Which stage to configure
* @param timeout Number of timer ticks for the stage to timeout
* @param behavior What action to take when the stage times out
*/
FORCE_INLINE_ATTR void mwdt_ll_config_stage(timg_dev_t *hw, wdt_stage_t stage, uint32_t timeout, wdt_stage_action_t behavior)
{
switch (stage) {
case WDT_STAGE0:
hw->wdt_config0.stg0 = behavior;
hw->wdt_config2 = timeout;
break;
case WDT_STAGE1:
hw->wdt_config0.stg1 = behavior;
hw->wdt_config3 = timeout;
break;
case WDT_STAGE2:
hw->wdt_config0.stg2 = behavior;
hw->wdt_config4 = timeout;
break;
case WDT_STAGE3:
hw->wdt_config0.stg3 = behavior;
hw->wdt_config5 = timeout;
break;
default:
break;
}
}
/**
* @brief Disable a particular stage of the MWDT
*
* @param hw Start address of the peripheral registers.
* @param stage Which stage to disable
*/
FORCE_INLINE_ATTR void mwdt_ll_disable_stage(timg_dev_t *hw, uint32_t stage)
{
switch (stage) {
case WDT_STAGE0:
hw->wdt_config0.stg0 = WDT_STAGE_ACTION_OFF;
break;
case WDT_STAGE1:
hw->wdt_config0.stg1 = WDT_STAGE_ACTION_OFF;
break;
case WDT_STAGE2:
hw->wdt_config0.stg2 = WDT_STAGE_ACTION_OFF;
break;
case WDT_STAGE3:
hw->wdt_config0.stg3 = WDT_STAGE_ACTION_OFF;
break;
default:
break;
}
}
/**
* @brief Enable or disable MWDT edge interrupt
*
* @param hw Start address of the peripheral registers.
* @param enable Whether to enable edge interrupt
*/
FORCE_INLINE_ATTR void mwdt_ll_set_edge_intr(timg_dev_t *hw, bool enable)
{
hw->wdt_config0.edge_int_en = (enable) ? 1 : 0;
}
/**
* @brief Enable or disable MWDT level interrupt
*
* @param hw Start address of the peripheral registers.
* @param enable Whether to enable level interrupt
*/
FORCE_INLINE_ATTR void mwdt_ll_set_level_intr(timg_dev_t *hw, bool enable)
{
hw->wdt_config0.level_int_en = (enable) ? 1 : 0;
}
/**
* @brief Set the length of the CPU reset action
*
* @param hw Start address of the peripheral registers.
* @param length Length of CPU reset signal
*/
FORCE_INLINE_ATTR void mwdt_ll_set_cpu_reset_length(timg_dev_t *hw, wdt_reset_sig_length_t length)
{
hw->wdt_config0.cpu_reset_length = length;
}
/**
* @brief Set the length of the system reset action
*
* @param hw Start address of the peripheral registers.
* @param length Length of system reset signal
*/
FORCE_INLINE_ATTR void mwdt_ll_set_sys_reset_length(timg_dev_t *hw, wdt_reset_sig_length_t length)
{
hw->wdt_config0.sys_reset_length = length;
}
/**
* @brief Enable/Disable the MWDT flashboot mode.
*
* @param hw Beginning address of the peripheral registers.
* @param enable True to enable WDT flashboot mode, false to disable WDT flashboot mode.
*
* @note Flashboot mode is independent and can trigger a WDT timeout event if the
* WDT's enable bit is set to 0. Flashboot mode for TG0 is automatically enabled
* on flashboot, and should be disabled by software when flashbooting completes.
*/
FORCE_INLINE_ATTR void mwdt_ll_set_flashboot_en(timg_dev_t* hw, bool enable)
{
hw->wdt_config0.flashboot_mod_en = (enable) ? 1 : 0;
}
/**
* @brief Set the clock prescaler of the MWDT
*
* @param hw Start address of the peripheral registers.
* @param prescaler Prescaler value between 1 to 65535
*/
FORCE_INLINE_ATTR void mwdt_ll_set_prescaler(timg_dev_t *hw, uint32_t prescaler)
{
hw->wdt_config1.clk_prescale = prescaler;
}
/**
* @brief Feed the MWDT
*
* Resets the current timer count and current stage.
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void mwdt_ll_feed(timg_dev_t *hw)
{
hw->wdt_feed = 1;
}
/**
* @brief Enable write protection of the MWDT registers
*
* Locking the MWDT will prevent any of the MWDT's registers from being modified
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void mwdt_ll_write_protect_enable(timg_dev_t *hw)
{
hw->wdt_wprotect = 0;
}
/**
* @brief Disable write protection of the MWDT registers
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void mwdt_ll_write_protect_disable(timg_dev_t *hw)
{
hw->wdt_wprotect = TIMG_WDT_WKEY_VALUE;
}
/**
* @brief Clear the MWDT interrupt status.
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void mwdt_ll_clear_intr_status(timg_dev_t* hw)
{
hw->int_clr.wdt = 1;
}
/**
* @brief Set the interrupt enable bit for the MWDT interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param enable Whether to enable the MWDT interrupt
*/
FORCE_INLINE_ATTR void mwdt_ll_set_intr_enable(timg_dev_t* hw, bool enable)
{
hw->int_ena.wdt = (enable) ? 1 : 0;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,301 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The LL layer for ESP32-S2 PCNT register operations
#pragma once
#include "soc/pcnt_periph.h"
#include "hal/pcnt_types.h"
#ifdef __cplusplus
extern "C" {
#endif
// Get PCNT hardware instance with giving pcnt num
#define PCNT_LL_GET_HW(num) (((num) == 0) ? (&PCNT) : NULL)
/**
* @brief Set PCNT counter mode
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param channel PCNT channel number
* @param pos_mode Counter mode when detecting positive edge
* @param neg_mode Counter mode when detecting negative edge
* @param hctrl_mode Counter mode when control signal is high level
* @param lctrl_mode Counter mode when control signal is low level
*/
static inline void pcnt_ll_set_mode(pcnt_dev_t *hw, pcnt_unit_t unit, pcnt_channel_t channel, pcnt_count_mode_t pos_mode, pcnt_count_mode_t neg_mode, pcnt_ctrl_mode_t hctrl_mode, pcnt_ctrl_mode_t lctrl_mode)
{
typeof(hw->conf_unit[unit].conf0) conf0_reg = hw->conf_unit[unit].conf0;
if (channel == 0) {
conf0_reg.ch0_pos_mode = pos_mode;
conf0_reg.ch0_neg_mode = neg_mode;
conf0_reg.ch0_hctrl_mode = hctrl_mode;
conf0_reg.ch0_lctrl_mode = lctrl_mode;
} else {
conf0_reg.ch1_pos_mode = pos_mode;
conf0_reg.ch1_neg_mode = neg_mode;
conf0_reg.ch1_hctrl_mode = hctrl_mode;
conf0_reg.ch1_lctrl_mode = lctrl_mode;
}
hw->conf_unit[unit].conf0 = conf0_reg;
}
/**
* @brief Get pulse counter value
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit Pulse Counter unit number
* @param count Pointer to accept counter value
*/
static inline void pcnt_ll_get_counter_value(pcnt_dev_t *hw, pcnt_unit_t unit, int16_t *count)
{
*count = (int16_t) hw->cnt_unit[unit].cnt_val;
}
/**
* @brief Pause PCNT counter of PCNT unit
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
*/
static inline void pcnt_ll_counter_pause(pcnt_dev_t *hw, pcnt_unit_t unit)
{
hw->ctrl.val |= BIT(PCNT_CNT_PAUSE_U0_S + (unit * 2));
}
/**
* @brief Resume counting for PCNT counter
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number, select from pcnt_unit_t
*/
static inline void pcnt_ll_counter_resume(pcnt_dev_t *hw, pcnt_unit_t unit)
{
hw->ctrl.val &= (~(BIT(PCNT_CNT_PAUSE_U0_S + (unit * 2))));
}
/**
* @brief Clear and reset PCNT counter value to zero
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number, select from pcnt_unit_t
*/
static inline void pcnt_ll_counter_clear(pcnt_dev_t *hw, pcnt_unit_t unit)
{
uint32_t reset_bit = BIT(PCNT_PULSE_CNT_RST_U0_S + (unit * 2));
hw->ctrl.val |= reset_bit;
hw->ctrl.val &= ~reset_bit;
}
/**
* @brief Enable PCNT interrupt for PCNT unit
* @note
* Each Pulse counter unit has five watch point events that share the same interrupt.
* Configure events with pcnt_event_enable() and pcnt_event_disable()
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
*/
static inline void pcnt_ll_intr_enable(pcnt_dev_t *hw, pcnt_unit_t unit)
{
hw->int_ena.val |= BIT(PCNT_CNT_THR_EVENT_U0_INT_ENA_S + unit);
}
/**
* @brief Disable PCNT interrupt for PCNT unit
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
*/
static inline void pcnt_ll_intr_disable(pcnt_dev_t *hw, pcnt_unit_t unit)
{
hw->int_ena.val &= (~(BIT(PCNT_CNT_THR_EVENT_U0_INT_ENA_S + unit)));
}
/**
* @brief Get PCNT interrupt status
*
* @param hw Peripheral PCNT hardware instance address.
* @param status Pointer to accept value
*/
static inline void pcnt_ll_get_intr_status(pcnt_dev_t *hw, uint32_t *status)
{
*status = hw->int_st.val;
}
/**
* @brief Clear PCNT interrupt status
*
* @param hw Peripheral PCNT hardware instance address.
* @param status value to clear interrupt status
*/
static inline void pcnt_ll_clear_intr_status(pcnt_dev_t *hw, uint32_t status)
{
hw->int_clr.val = status;
}
/**
* @brief Enable PCNT event of PCNT unit
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param evt_type Watch point event type.
* All enabled events share the same interrupt (one interrupt per pulse counter unit).
*/
static inline void pcnt_ll_event_enable(pcnt_dev_t *hw, pcnt_unit_t unit, pcnt_evt_type_t evt_type)
{
if (evt_type == PCNT_EVT_L_LIM) {
hw->conf_unit[unit].conf0.thr_l_lim_en = 1;
} else if (evt_type == PCNT_EVT_H_LIM) {
hw->conf_unit[unit].conf0.thr_h_lim_en = 1;
} else if (evt_type == PCNT_EVT_THRES_0) {
hw->conf_unit[unit].conf0.thr_thres0_en = 1;
} else if (evt_type == PCNT_EVT_THRES_1) {
hw->conf_unit[unit].conf0.thr_thres1_en = 1;
} else if (evt_type == PCNT_EVT_ZERO) {
hw->conf_unit[unit].conf0.thr_zero_en = 1;
}
}
/**
* @brief Disable PCNT event of PCNT unit
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param evt_type Watch point event type.
* All enabled events share the same interrupt (one interrupt per pulse counter unit).
*/
static inline void pcnt_ll_event_disable(pcnt_dev_t *hw, pcnt_unit_t unit, pcnt_evt_type_t evt_type)
{
if (evt_type == PCNT_EVT_L_LIM) {
hw->conf_unit[unit].conf0.thr_l_lim_en = 0;
} else if (evt_type == PCNT_EVT_H_LIM) {
hw->conf_unit[unit].conf0.thr_h_lim_en = 0;
} else if (evt_type == PCNT_EVT_THRES_0) {
hw->conf_unit[unit].conf0.thr_thres0_en = 0;
} else if (evt_type == PCNT_EVT_THRES_1) {
hw->conf_unit[unit].conf0.thr_thres1_en = 0;
} else if (evt_type == PCNT_EVT_ZERO) {
hw->conf_unit[unit].conf0.thr_zero_en = 0;
}
}
/**
* @brief Set PCNT event value of PCNT unit
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param evt_type Watch point event type.
* All enabled events share the same interrupt (one interrupt per pulse counter unit).
*
* @param value Counter value for PCNT event
*/
static inline void pcnt_ll_set_event_value(pcnt_dev_t *hw, pcnt_unit_t unit, pcnt_evt_type_t evt_type, int16_t value)
{
if (evt_type == PCNT_EVT_L_LIM) {
hw->conf_unit[unit].conf2.cnt_l_lim = value;
} else if (evt_type == PCNT_EVT_H_LIM) {
hw->conf_unit[unit].conf2.cnt_h_lim = value;
} else if (evt_type == PCNT_EVT_THRES_0) {
hw->conf_unit[unit].conf1.cnt_thres0 = value;
} else if (evt_type == PCNT_EVT_THRES_1) {
hw->conf_unit[unit].conf1.cnt_thres1 = value;
}
}
/**
* @brief Get PCNT event value of PCNT unit
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param evt_type Watch point event type.
* All enabled events share the same interrupt (one interrupt per pulse counter unit).
* @param value Pointer to accept counter value for PCNT event
*/
static inline void pcnt_ll_get_event_value(pcnt_dev_t *hw, pcnt_unit_t unit, pcnt_evt_type_t evt_type, int16_t *value)
{
if (evt_type == PCNT_EVT_L_LIM) {
*value = (int16_t) hw->conf_unit[unit].conf2.cnt_l_lim;
} else if (evt_type == PCNT_EVT_H_LIM) {
*value = (int16_t) hw->conf_unit[unit].conf2.cnt_h_lim;
} else if (evt_type == PCNT_EVT_THRES_0) {
*value = (int16_t) hw->conf_unit[unit].conf1.cnt_thres0;
} else if (evt_type == PCNT_EVT_THRES_1) {
*value = (int16_t) hw->conf_unit[unit].conf1.cnt_thres1;
} else {
*value = 0;
}
}
/**
* @brief Set PCNT filter value
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param filter_val PCNT signal filter value, counter in APB_CLK cycles.
* Any pulses lasting shorter than this will be ignored when the filter is enabled.
* @note
* filter_val is a 10-bit value, so the maximum filter_val should be limited to 1023.
*/
static inline void pcnt_ll_set_filter_value(pcnt_dev_t *hw, pcnt_unit_t unit, uint16_t filter_val)
{
hw->conf_unit[unit].conf0.filter_thres = filter_val;
}
/**
* @brief Get PCNT filter value
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
* @param filter_val Pointer to accept PCNT filter value.
*/
static inline void pcnt_ll_get_filter_value(pcnt_dev_t *hw, pcnt_unit_t unit, uint16_t *filter_val)
{
*filter_val = hw->conf_unit[unit].conf0.filter_thres;
}
/**
* @brief Enable PCNT input filter
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
*/
static inline void pcnt_ll_filter_enable(pcnt_dev_t *hw, pcnt_unit_t unit)
{
hw->conf_unit[unit].conf0.filter_en = 1;
}
/**
* @brief Disable PCNT input filter
*
* @param hw Peripheral PCNT hardware instance address.
* @param unit PCNT unit number
*/
static inline void pcnt_ll_filter_disable(pcnt_dev_t *hw, pcnt_unit_t unit)
{
hw->conf_unit[unit].conf0.filter_en = 0;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,403 +0,0 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdbool.h>
#include "soc/rmt_struct.h"
#include "soc/rmt_caps.h"
#define RMT_LL_HW_BASE (&RMT)
#define RMT_LL_MEM_BASE (&RMTMEM)
static inline void rmt_ll_enable_drive_clock(rmt_dev_t *dev, bool enable)
{
dev->apb_conf.clk_en = enable; // register clock gating
dev->apb_conf.mem_clk_force_on = enable; // memory clock gating
}
static inline void rmt_ll_reset_counter_clock_div(rmt_dev_t *dev, uint32_t channel)
{
dev->ref_cnt_rst.val |= (1 << channel);
dev->ref_cnt_rst.val &= ~(1 << channel);
}
static inline void rmt_ll_reset_tx_pointer(rmt_dev_t *dev, uint32_t channel)
{
dev->conf_ch[channel].conf1.mem_rd_rst = 1;
dev->conf_ch[channel].conf1.mem_rd_rst = 0;
}
static inline void rmt_ll_reset_rx_pointer(rmt_dev_t *dev, uint32_t channel)
{
dev->conf_ch[channel].conf1.mem_wr_rst = 1;
dev->conf_ch[channel].conf1.mem_wr_rst = 0;
}
static inline void rmt_ll_start_tx(rmt_dev_t *dev, uint32_t channel)
{
dev->conf_ch[channel].conf1.tx_start = 1;
}
static inline void rmt_ll_stop_tx(rmt_dev_t *dev, uint32_t channel)
{
dev->conf_ch[channel].conf1.tx_stop = 1;
}
static inline void rmt_ll_enable_rx(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf1.rx_en = enable;
}
static inline void rmt_ll_power_down_mem(rmt_dev_t *dev, bool enable)
{
dev->apb_conf.mem_force_pu = !enable;
dev->apb_conf.mem_force_pd = enable;
}
static inline bool rmt_ll_is_mem_power_down(rmt_dev_t *dev)
{
// the RTC domain can also power down RMT memory
// so it's probably not enough to detect whether it's powered down or not
// mem_force_pd has higher priority than mem_force_pu
return (dev->apb_conf.mem_force_pd) || !(dev->apb_conf.mem_force_pu);
}
static inline void rmt_ll_set_mem_blocks(rmt_dev_t *dev, uint32_t channel, uint8_t block_num)
{
dev->conf_ch[channel].conf0.mem_size = block_num;
}
static inline uint32_t rmt_ll_get_mem_blocks(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf0.mem_size;
}
static inline void rmt_ll_set_counter_clock_div(rmt_dev_t *dev, uint32_t channel, uint32_t div)
{
dev->conf_ch[channel].conf0.div_cnt = div;
}
static inline uint32_t rmt_ll_get_counter_clock_div(rmt_dev_t *dev, uint32_t channel)
{
uint32_t div = dev->conf_ch[channel].conf0.div_cnt;
return div == 0 ? 256 : div;
}
static inline void rmt_ll_enable_tx_pingpong(rmt_dev_t *dev, bool enable)
{
dev->apb_conf.mem_tx_wrap_en = enable;
}
static inline void rmt_ll_enable_mem_access(rmt_dev_t *dev, bool enable)
{
dev->apb_conf.fifo_mask = enable;
}
static inline void rmt_ll_set_rx_idle_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres)
{
dev->conf_ch[channel].conf0.idle_thres = thres;
}
static inline uint32_t rmt_ll_get_rx_idle_thres(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf0.idle_thres;
}
static inline void rmt_ll_set_mem_owner(rmt_dev_t *dev, uint32_t channel, uint8_t owner)
{
dev->conf_ch[channel].conf1.mem_owner = owner;
}
static inline uint32_t rmt_ll_get_mem_owner(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.mem_owner;
}
static inline void rmt_ll_enable_tx_loop(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf1.tx_conti_mode = enable;
}
static inline bool rmt_ll_is_tx_loop_enabled(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.tx_conti_mode;
}
static inline void rmt_ll_set_tx_loop_count(rmt_dev_t *dev, uint32_t channel, uint32_t count)
{
dev->tx_lim_ch[channel].tx_loop_num = count;
}
static inline void rmt_ll_reset_tx_loop(rmt_dev_t *dev, uint32_t channel)
{
dev->tx_lim_ch[channel].loop_count_reset = 1;
dev->tx_lim_ch[channel].loop_count_reset = 0;
}
static inline void rmt_ll_enable_tx_loop_count(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->tx_lim_ch[channel].tx_loop_cnt_en = enable;
}
static inline void rmt_ll_enable_tx_sync(rmt_dev_t *dev, bool enable)
{
dev->tx_sim.en = enable;
}
static inline void rmt_ll_add_channel_to_group(rmt_dev_t *dev, uint32_t channel)
{
dev->tx_sim.val |= 1 << channel;
}
static inline uint32_t rmt_ll_remove_channel_from_group(rmt_dev_t *dev, uint32_t channel)
{
dev->tx_sim.val &= ~(1 << channel);
return dev->tx_sim.val & 0x0F;
}
static inline void rmt_ll_enable_rx_filter(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf1.rx_filter_en = enable;
}
static inline void rmt_ll_set_rx_filter_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres)
{
dev->conf_ch[channel].conf1.rx_filter_thres = thres;
}
static inline void rmt_ll_set_counter_clock_src(rmt_dev_t *dev, uint32_t channel, uint8_t src)
{
dev->conf_ch[channel].conf1.ref_always_on = src;
}
static inline uint32_t rmt_ll_get_counter_clock_src(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.ref_always_on;
}
static inline void rmt_ll_enable_tx_idle(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf1.idle_out_en = enable;
}
static inline bool rmt_ll_is_tx_idle_enabled(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.idle_out_en;
}
static inline void rmt_ll_set_tx_idle_level(rmt_dev_t *dev, uint32_t channel, uint8_t level)
{
dev->conf_ch[channel].conf1.idle_out_lv = level;
}
static inline uint32_t rmt_ll_get_tx_idle_level(rmt_dev_t *dev, uint32_t channel)
{
return dev->conf_ch[channel].conf1.idle_out_lv;
}
static inline uint32_t rmt_ll_get_channel_status(rmt_dev_t *dev, uint32_t channel)
{
return dev->status_ch[channel].val;
}
static inline void rmt_ll_set_tx_limit(rmt_dev_t *dev, uint32_t channel, uint32_t limit)
{
dev->tx_lim_ch[channel].limit = limit;
}
static inline void rmt_ll_set_rx_limit(rmt_dev_t *dev, uint32_t channel, uint32_t limit)
{
dev->tx_lim_ch[channel].rx_lim = limit;
}
static inline uint32_t rmt_ll_get_rx_limit(rmt_dev_t *dev, uint32_t channel)
{
return dev->tx_lim_ch[channel].rx_lim;
}
static inline void rmt_ll_enable_tx_end_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->int_ena.val &= ~(1 << (channel * 3));
dev->int_ena.val |= (enable << (channel * 3));
}
static inline void rmt_ll_enable_rx_end_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->int_ena.val &= ~(1 << (channel * 3 + 1));
dev->int_ena.val |= (enable << (channel * 3 + 1));
}
static inline void rmt_ll_enable_err_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->int_ena.val &= ~(1 << (channel * 3 + 2));
dev->int_ena.val |= (enable << (channel * 3 + 2));
}
static inline void rmt_ll_enable_tx_thres_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->int_ena.val &= ~(1 << (channel + 12));
dev->int_ena.val |= (enable << (channel + 12));
}
static inline void rmt_ll_enable_tx_loop_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->int_ena.val &= ~(1 << (channel + 16));
dev->int_ena.val |= (enable << (channel + 16));
}
static inline void rmt_ll_enable_rx_thres_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->int_ena.val &= ~(1 << (channel + 20));
dev->int_ena.val |= (enable << (channel + 20));
}
static inline void rmt_ll_clear_tx_end_interrupt(rmt_dev_t *dev, uint32_t channel)
{
dev->int_clr.val = (1 << (channel * 3));
}
static inline void rmt_ll_clear_rx_end_interrupt(rmt_dev_t *dev, uint32_t channel)
{
dev->int_clr.val = (1 << (channel * 3 + 1));
}
static inline void rmt_ll_clear_err_interrupt(rmt_dev_t *dev, uint32_t channel)
{
dev->int_clr.val = (1 << (channel * 3 + 2));
}
static inline void rmt_ll_clear_tx_thres_interrupt(rmt_dev_t *dev, uint32_t channel)
{
dev->int_clr.val = (1 << (channel + 12));
}
static inline void rmt_ll_clear_tx_loop_interrupt(rmt_dev_t *dev, uint32_t channel)
{
dev->int_clr.val = (1 << (channel + 16));
}
static inline void rmt_ll_clear_rx_thres_interrupt(rmt_dev_t *dev, uint32_t channel)
{
dev->int_clr.val = (1 << (channel + 20));
}
static inline uint32_t rmt_ll_get_tx_end_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return ((status & 0x01) >> 0) | ((status & 0x08) >> 2) | ((status & 0x40) >> 4) | ((status & 0x200) >> 6);
}
static inline uint32_t rmt_ll_get_rx_end_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return ((status & 0x02) >> 1) | ((status & 0x10) >> 3) | ((status & 0x80) >> 5) | ((status & 0x400) >> 7);
}
static inline uint32_t rmt_ll_get_err_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return ((status & 0x04) >> 2) | ((status & 0x20) >> 4) | ((status & 0x100) >> 6) | ((status & 0x800) >> 8);
}
static inline uint32_t rmt_ll_get_tx_thres_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return (status & 0xF000) >> 12;
}
static inline uint32_t rmt_ll_get_tx_loop_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return (status & 0xF0000) >> 16;
}
static inline uint32_t rmt_ll_get_rx_thres_interrupt_status(rmt_dev_t *dev)
{
uint32_t status = dev->int_st.val;
return (status & 0xF00000) >> 20;
}
static inline void rmt_ll_set_tx_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks)
{
dev->carrier_duty_ch[channel].high = high_ticks;
dev->carrier_duty_ch[channel].low = low_ticks;
}
static inline void rmt_ll_set_rx_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks)
{
dev->ch_rx_carrier_rm[channel].carrier_high_thres_ch = high_ticks;
dev->ch_rx_carrier_rm[channel].carrier_low_thres_ch = low_ticks;
}
static inline void rmt_ll_get_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t *high_ticks, uint32_t *low_ticks)
{
*high_ticks = dev->carrier_duty_ch[channel].high;
*low_ticks = dev->carrier_duty_ch[channel].low;
}
// This function has different meaning for TX and RX
// TX: enable to modulate carrier
// RX: enable to demodulate carrier
static inline void rmt_ll_enable_carrier(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf0.carrier_en = enable;
}
static inline void rmt_ll_set_carrier_on_level(rmt_dev_t *dev, uint32_t channel, uint8_t level)
{
dev->conf_ch[channel].conf0.carrier_out_lv = level;
}
// set true, enable carrier in all RMT state (idle, reading, sending)
// set false, enable carrier only in sending state (i.e. there're effective data in RAM to be sent)
static inline void rmt_ll_tx_set_carrier_always_on(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf0.carrier_eff_en = !enable;
}
//Writes items to the specified TX channel memory with the given offset and writen length.
//the caller should ensure that (length + off) <= (memory block * SOC_RMT_CHANNEL_MEM_WORDS)
static inline void rmt_ll_write_memory(rmt_mem_t *mem, uint32_t channel, const rmt_item32_t *data, uint32_t length, uint32_t off)
{
for (uint32_t i = 0; i < length; i++) {
mem->chan[channel].data32[i + off].val = data[i].val;
}
}
static inline void rmt_ll_enable_rx_pingpong(rmt_dev_t *dev, uint32_t channel, bool enable)
{
dev->conf_ch[channel].conf1.chk_rx_carrier_en = enable;
}
/************************************************************************************************
* Following Low Level APIs only used for backward compatible, will be deprecated in the future!
***********************************************************************************************/
static inline void rmt_ll_set_intr_enable_mask(uint32_t mask)
{
RMT.int_ena.val |= mask;
}
static inline void rmt_ll_clr_intr_enable_mask(uint32_t mask)
{
RMT.int_ena.val &= (~mask);
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,58 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#ifdef __cplusplus
extern "C" {
#endif
static inline void rtc_cntl_ll_set_wakeup_timer(uint64_t t)
{
WRITE_PERI_REG(RTC_CNTL_SLP_TIMER0_REG, t & UINT32_MAX);
WRITE_PERI_REG(RTC_CNTL_SLP_TIMER1_REG, t >> 32);
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_MAIN_TIMER_INT_CLR_M);
SET_PERI_REG_MASK(RTC_CNTL_SLP_TIMER1_REG, RTC_CNTL_MAIN_TIMER_ALARM_EN_M);
}
static inline uint32_t rtc_cntl_ll_ext1_get_wakeup_pins(void)
{
return REG_GET_FIELD(RTC_CNTL_EXT_WAKEUP1_STATUS_REG, RTC_CNTL_EXT_WAKEUP1_STATUS);
}
static inline void rtc_cntl_ll_ext1_set_wakeup_pins(uint32_t mask, int mode)
{
REG_SET_FIELD(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_SEL, mask);
SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1,
mode, RTC_CNTL_EXT_WAKEUP1_LV_S);
}
static inline void rtc_cntl_ll_ext1_clear_wakeup_pins(void)
{
REG_SET_BIT(RTC_CNTL_EXT_WAKEUP1_REG, RTC_CNTL_EXT_WAKEUP1_STATUS_CLR);
}
static inline void rtc_cntl_ll_ulp_wakeup_enable(void)
{
SET_PERI_REG_BITS(RTC_CNTL_STATE0_REG, RTC_CNTL_WAKEUP_ENA_V, 0x800, RTC_CNTL_WAKEUP_ENA_S);
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,367 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
#pragma once
#include <stdlib.h>
#include "soc/rtc_io_periph.h"
#include "hal/rtc_io_types.h"
#include "hal/gpio_types.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
RTCIO_FUNC_RTC = 0x0, /*!< The pin controled by RTC module. */
RTCIO_FUNC_DIGITAL = 0x1, /*!< The pin controlled by DIGITAL module. */
} rtcio_ll_func_t;
typedef enum {
RTCIO_WAKEUP_DISABLE = 0, /*!< Disable GPIO interrupt */
RTCIO_WAKEUP_LOW_LEVEL = 0x4, /*!< GPIO interrupt type : input low level trigger */
RTCIO_WAKEUP_HIGH_LEVEL = 0x5, /*!< GPIO interrupt type : input high level trigger */
} rtcio_ll_wake_type_t;
typedef enum {
RTCIO_OUTPUT_NORMAL = 0, /*!< RTCIO output mode is normal. */
RTCIO_OUTPUT_OD = 0x1, /*!< RTCIO output mode is open-drain. */
} rtcio_ll_out_mode_t;
/**
* @brief Select the rtcio function.
*
* @note The RTC function must be selected before the pad analog function is enabled.
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @param func Select pin function.
*/
static inline void rtcio_ll_function_select(int rtcio_num, rtcio_ll_func_t func)
{
if (func == RTCIO_FUNC_RTC) {
SENS.sar_io_mux_conf.iomux_clk_gate_en = 1;
// 0: GPIO connected to digital GPIO module. 1: GPIO connected to analog RTC module.
SET_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, (rtc_io_desc[rtcio_num].mux));
//0:RTC FUNCTION 1,2,3:Reserved
SET_PERI_REG_BITS(rtc_io_desc[rtcio_num].reg, RTC_IO_TOUCH_PAD1_FUN_SEL_V, SOC_PIN_FUNC_RTC_IO, rtc_io_desc[rtcio_num].func);
} else if (func == RTCIO_FUNC_DIGITAL) {
CLEAR_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, (rtc_io_desc[rtcio_num].mux));
SENS.sar_io_mux_conf.iomux_clk_gate_en = 0;
}
}
/**
* Enable rtcio output.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_output_enable(int rtcio_num)
{
RTCIO.enable_w1ts.w1ts = (1U << rtcio_num);
}
/**
* Disable rtcio output.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_output_disable(int rtcio_num)
{
RTCIO.enable_w1tc.w1tc = (1U << rtcio_num);
}
/**
* Set RTCIO output level.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @param level 0: output low; ~0: output high.
*/
static inline void rtcio_ll_set_level(int rtcio_num, uint32_t level)
{
if (level) {
RTCIO.out_w1ts.w1ts = (1U << rtcio_num);
} else {
RTCIO.out_w1tc.w1tc = (1U << rtcio_num);
}
}
/**
* Enable rtcio input.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_input_enable(int rtcio_num)
{
SET_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].ie);
}
/**
* Disable rtcio input.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_input_disable(int rtcio_num)
{
CLEAR_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].ie);
}
/**
* Get RTCIO input level.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @return 0: input low; ~0: input high.
*/
static inline uint32_t rtcio_ll_get_level(int rtcio_num)
{
return (uint32_t)(RTCIO.in_val.in >> rtcio_num) & 0x1;
}
/**
* @brief Set RTC GPIO pad drive capability
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @param strength Drive capability of the pad. Range: 0 ~ 3.
*/
static inline void rtcio_ll_set_drive_capability(int rtcio_num, uint32_t strength)
{
if (rtc_io_desc[rtcio_num].drv_v) {
SET_PERI_REG_BITS(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].drv_v, strength, rtc_io_desc[rtcio_num].drv_s);
}
}
/**
* @brief Get RTC GPIO pad drive capability.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @return Drive capability of the pad. Range: 0 ~ 3.
*/
static inline uint32_t rtcio_ll_get_drive_capability(int rtcio_num)
{
return GET_PERI_REG_BITS2(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].drv_v, rtc_io_desc[rtcio_num].drv_s);
}
/**
* @brief Set RTC GPIO pad output mode.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @return mode Output mode.
*/
static inline void rtcio_ll_output_mode_set(int rtcio_num, rtcio_ll_out_mode_t mode)
{
RTCIO.pin[rtcio_num].pad_driver = mode;
}
/**
* RTC GPIO pullup enable.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_pullup_enable(int rtcio_num)
{
if (rtc_io_desc[rtcio_num].pullup) {
SET_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].pullup);
}
}
/**
* RTC GPIO pullup disable.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_pullup_disable(int rtcio_num)
{
if (rtc_io_desc[rtcio_num].pullup) {
CLEAR_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].pullup);
}
}
/**
* RTC GPIO pulldown enable.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_pulldown_enable(int rtcio_num)
{
if (rtc_io_desc[rtcio_num].pulldown) {
SET_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].pulldown);
}
}
/**
* RTC GPIO pulldown disable.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_pulldown_disable(int rtcio_num)
{
if (rtc_io_desc[rtcio_num].pulldown) {
CLEAR_PERI_REG_MASK(rtc_io_desc[rtcio_num].reg, rtc_io_desc[rtcio_num].pulldown);
}
}
/**
* Enable force hold function for RTC IO pad.
*
* Enabling HOLD function will cause the pad to lock current status, such as,
* input/output enable, input/output value, function, drive strength values.
* This function is useful when going into light or deep sleep mode to prevent
* the pin configuration from changing.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_force_hold_enable(int rtcio_num)
{
SET_PERI_REG_MASK(RTC_CNTL_PAD_HOLD_REG, rtc_io_desc[rtcio_num].hold_force);
}
/**
* Disable hold function on an RTC IO pad
*
* @note If disable the pad hold, the status of pad maybe changed in sleep mode.
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_force_hold_disable(int rtcio_num)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_PAD_HOLD_REG, rtc_io_desc[rtcio_num].hold_force);
}
/**
* Enable force hold function for RTC IO pad.
*
* Enabling HOLD function will cause the pad to lock current status, such as,
* input/output enable, input/output value, function, drive strength values.
* This function is useful when going into light or deep sleep mode to prevent
* the pin configuration from changing.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_force_hold_all(void)
{
SET_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PAD_FORCE_HOLD_M);
}
/**
* Disable hold function on an RTC IO pad
*
* @note If disable the pad hold, the status of pad maybe changed in sleep mode.
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_force_unhold_all(void)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_PWC_REG, RTC_CNTL_PAD_FORCE_HOLD_M);
}
/**
* Enable wakeup function and set wakeup type from light sleep status for rtcio.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
* @param type Wakeup on high level or low level.
*/
static inline void rtcio_ll_wakeup_enable(int rtcio_num, rtcio_ll_wake_type_t type)
{
RTCIO.pin[rtcio_num].wakeup_enable = 0x1;
RTCIO.pin[rtcio_num].int_type = type;
}
/**
* Disable wakeup function from light sleep status for rtcio.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_wakeup_disable(int rtcio_num)
{
RTCIO.pin[rtcio_num].wakeup_enable = 0;
RTCIO.pin[rtcio_num].int_type = RTCIO_WAKEUP_DISABLE;
}
/**
* Enable rtc io output in deep sleep.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_enable_output_in_sleep(gpio_num_t gpio_num)
{
if (rtc_io_desc[gpio_num].slpoe) {
SET_PERI_REG_MASK(rtc_io_desc[gpio_num].reg, rtc_io_desc[gpio_num].slpoe);
}
}
/**
* Disable rtc io output in deep sleep.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_in_sleep_disable_output(gpio_num_t gpio_num)
{
if (rtc_io_desc[gpio_num].slpoe) {
CLEAR_PERI_REG_MASK(rtc_io_desc[gpio_num].reg, rtc_io_desc[gpio_num].slpoe);
}
}
/**
* Enable rtc io input in deep sleep.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_in_sleep_enable_input(gpio_num_t gpio_num)
{
SET_PERI_REG_MASK(rtc_io_desc[gpio_num].reg, rtc_io_desc[gpio_num].slpie);
}
/**
* Disable rtc io input in deep sleep.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_in_sleep_disable_input(gpio_num_t gpio_num)
{
CLEAR_PERI_REG_MASK(rtc_io_desc[gpio_num].reg, rtc_io_desc[gpio_num].slpie);
}
/**
* Enable rtc io keep another setting in deep sleep.
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_enable_sleep_setting(gpio_num_t gpio_num)
{
SET_PERI_REG_MASK(rtc_io_desc[gpio_num].reg, rtc_io_desc[gpio_num].slpsel);
}
/**
* Disable rtc io keep another setting in deep sleep. (Default)
*
* @param rtcio_num The index of rtcio. 0 ~ MAX(rtcio).
*/
static inline void rtcio_ll_disable_sleep_setting(gpio_num_t gpio_num)
{
CLEAR_PERI_REG_MASK(rtc_io_desc[gpio_num].reg, rtc_io_desc[gpio_num].slpsel);
}
static inline void rtcio_ll_ext0_set_wakeup_pin(int rtcio_num, int level)
{
REG_SET_FIELD(RTC_IO_EXT_WAKEUP0_REG, RTC_IO_EXT_WAKEUP0_SEL, rtcio_num);
// Set level which will trigger wakeup
SET_PERI_REG_BITS(RTC_CNTL_EXT_WAKEUP_CONF_REG, 0x1,
level , RTC_CNTL_EXT_WAKEUP0_LV_S);
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,311 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The LL layer for Timer Group register operations.
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdlib.h>
#include <stdbool.h>
#include "hal/wdt_types.h"
#include "soc/rtc_cntl_periph.h"
#include "soc/efuse_reg.h"
#include "esp_attr.h"
//Type check wdt_stage_action_t
_Static_assert(WDT_STAGE_ACTION_OFF == RTC_WDT_STG_SEL_OFF, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
_Static_assert(WDT_STAGE_ACTION_INT == RTC_WDT_STG_SEL_INT, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
_Static_assert(WDT_STAGE_ACTION_RESET_CPU == RTC_WDT_STG_SEL_RESET_CPU, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
_Static_assert(WDT_STAGE_ACTION_RESET_SYSTEM == RTC_WDT_STG_SEL_RESET_SYSTEM, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
_Static_assert(WDT_STAGE_ACTION_RESET_RTC == RTC_WDT_STG_SEL_RESET_RTC, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_stage_action_t");
//Type check wdt_reset_sig_length_t
_Static_assert(WDT_RESET_SIG_LENGTH_100ns == RTC_WDT_RESET_LENGTH_100_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_200ns == RTC_WDT_RESET_LENGTH_200_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_300ns == RTC_WDT_RESET_LENGTH_300_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_400ns == RTC_WDT_RESET_LENGTH_400_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_500ns == RTC_WDT_RESET_LENGTH_500_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_800ns == RTC_WDT_RESET_LENGTH_800_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_1_6us == RTC_WDT_RESET_LENGTH_1600_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
_Static_assert(WDT_RESET_SIG_LENGTH_3_2us == RTC_WDT_RESET_LENGTH_3200_NS, "Add mapping to LL watchdog timeout behavior, since it's no longer naturally compatible with wdt_reset_sig_length_t");
/**
* @brief Enable the RWDT
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void rwdt_ll_enable(rtc_cntl_dev_t *hw)
{
hw->wdt_config0.en = 1;
}
/**
* @brief Disable the RWDT
*
* @param hw Start address of the peripheral registers.
* @note This function does not disable the flashboot mode. Therefore, given that
* the MWDT is disabled using this function, a timeout can still occur
* if the flashboot mode is simultaneously enabled.
*/
FORCE_INLINE_ATTR void rwdt_ll_disable(rtc_cntl_dev_t *hw)
{
hw->wdt_config0.en = 0;
}
/**
* @brief Check if the RWDT is enabled
*
* @param hw Start address of the peripheral registers.
* @return True if RTC WDT is enabled
*/
FORCE_INLINE_ATTR bool rwdt_ll_check_if_enabled(rtc_cntl_dev_t *hw)
{
return (hw->wdt_config0.en) ? true : false;
}
/**
* @brief Configure a particular stage of the RWDT
*
* @param hw Start address of the peripheral registers.
* @param stage Which stage to configure
* @param timeout Number of timer ticks for the stage to timeout (see note).
* @param behavior What action to take when the stage times out
*
* @note The value of of RWDT stage 0 timeout register is special, in
* that an implicit multiplier is applied to that value to produce
* and effective timeout tick value. The multiplier is dependent
* on an EFuse value. Therefore, when configuring stage 0, the valid
* values for the timeout argument are:
* - If Efuse value is 0, any even number between [2,2*UINT32_MAX]
* - If Efuse value is 1, any multiple of 4 between [4,4*UINT32_MAX]
* - If Efuse value is 2, any multiple of 8 between [8,8*UINT32_MAX]
* - If Efuse value is 3, any multiple of 16 between [16,16*UINT32_MAX]
*/
FORCE_INLINE_ATTR void rwdt_ll_config_stage(rtc_cntl_dev_t *hw, wdt_stage_t stage, uint32_t timeout_ticks, wdt_stage_action_t behavior)
{
switch (stage) {
case WDT_STAGE0:
hw->wdt_config0.stg0 = behavior;
//Account of implicty multiplier applied to stage 0 timeout tick config value
hw->wdt_config1 = timeout_ticks >> (1 + REG_GET_FIELD(EFUSE_RD_REPEAT_DATA1_REG, EFUSE_WDT_DELAY_SEL));
break;
case WDT_STAGE1:
hw->wdt_config0.stg1 = behavior;
hw->wdt_config2 = timeout_ticks;
break;
case WDT_STAGE2:
hw->wdt_config0.stg2 = behavior;
hw->wdt_config3 = timeout_ticks;
break;
case WDT_STAGE3:
hw->wdt_config0.stg3 = behavior;
hw->wdt_config4 = timeout_ticks;
break;
default:
abort();
}
}
/**
* @brief Disable a particular stage of the RWDT
*
* @param hw Start address of the peripheral registers.
* @param stage Which stage to disable
*/
FORCE_INLINE_ATTR void rwdt_ll_disable_stage(rtc_cntl_dev_t *hw, wdt_stage_t stage)
{
switch (stage) {
case WDT_STAGE0:
hw->wdt_config0.stg0 = WDT_STAGE_ACTION_OFF;
break;
case WDT_STAGE1:
hw->wdt_config0.stg1 = WDT_STAGE_ACTION_OFF;
break;
case WDT_STAGE2:
hw->wdt_config0.stg2 = WDT_STAGE_ACTION_OFF;
break;
case WDT_STAGE3:
hw->wdt_config0.stg3 = WDT_STAGE_ACTION_OFF;
break;
default:
abort();
}
}
/**
* @brief Set the length of the CPU reset action
*
* @param hw Start address of the peripheral registers.
* @param length Length of CPU reset signal
*/
FORCE_INLINE_ATTR void rwdt_ll_set_cpu_reset_length(rtc_cntl_dev_t *hw, wdt_reset_sig_length_t length)
{
hw->wdt_config0.cpu_reset_length = length;
}
/**
* @brief Set the length of the system reset action
*
* @param hw Start address of the peripheral registers.
* @param length Length of system reset signal
*/
FORCE_INLINE_ATTR void rwdt_ll_set_sys_reset_length(rtc_cntl_dev_t *hw, wdt_reset_sig_length_t length)
{
hw->wdt_config0.sys_reset_length = length;
}
/**
* @brief Enable/Disable the RWDT flashboot mode.
*
* @param hw Start address of the peripheral registers.
* @param enable True to enable RWDT flashboot mode, false to disable RWDT flashboot mode.
*
* @note Flashboot mode is independent and can trigger a WDT timeout event if the
* WDT's enable bit is set to 0. Flashboot mode for RWDT is automatically enabled
* on flashboot, and should be disabled by software when flashbooting completes.
*/
FORCE_INLINE_ATTR void rwdt_ll_set_flashboot_en(rtc_cntl_dev_t* hw, bool enable)
{
hw->wdt_config0.flashboot_mod_en = (enable) ? 1 : 0;
}
/**
* @brief Enable/Disable the CPU0 to be reset on WDT_STAGE_ACTION_RESET_CPU
*
* @param hw Start address of the peripheral registers.
* @param enable True to enable CPU0 to be reset, false to disable.
*/
FORCE_INLINE_ATTR void rwdt_ll_set_procpu_reset_en(rtc_cntl_dev_t* hw, bool enable)
{
hw->wdt_config0.procpu_reset_en = (enable) ? 1 : 0;
}
/**
* @brief Enable/Disable the CPU1 to be reset on WDT_STAGE_ACTION_RESET_CPU
*
* @param hw Start address of the peripheral registers.
* @param enable True to enable CPU1 to be reset, false to disable.
*/
FORCE_INLINE_ATTR void rwdt_ll_set_appcpu_reset_en(rtc_cntl_dev_t* hw, bool enable)
{
hw->wdt_config0.appcpu_reset_en = (enable) ? 1 : 0;
}
/**
* @brief Enable/Disable the RWDT pause during sleep functionality
*
* @param hw Start address of the peripheral registers.
* @param enable True to enable, false to disable.
*/
FORCE_INLINE_ATTR void rwdt_ll_set_pause_in_sleep_en(rtc_cntl_dev_t* hw, bool enable)
{
hw->wdt_config0.pause_in_slp = (enable) ? 1 : 0;
}
/**
* @brief Enable/Disable chip reset on RWDT timeout.
*
* A chip reset also resets the analog portion of the chip. It will appear as a
* POWERON reset rather than an RTC reset.
*
* @param hw Start address of the peripheral registers.
* @param enable True to enable, false to disable.
*/
FORCE_INLINE_ATTR void rwdt_ll_set_chip_reset_en(rtc_cntl_dev_t* hw, bool enable)
{
hw->wdt_config0.chip_reset_en = (enable) ? 1 : 0;
}
/**
* @brief Set width of chip reset signal
*
* @param hw Start address of the peripheral registers.
* @param width Width of chip reset signal in terms of number of RTC_SLOW_CLK cycles
*/
FORCE_INLINE_ATTR void rwdt_ll_set_chip_reset_width(rtc_cntl_dev_t *hw, uint32_t width)
{
hw->wdt_config0.chip_reset_width = width;
}
/**
* @brief Feed the RWDT
*
* Resets the current timer count and current stage.
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void rwdt_ll_feed(rtc_cntl_dev_t *hw)
{
hw->wdt_feed.feed = 1;
}
/**
* @brief Enable write protection of the RWDT registers
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void rwdt_ll_write_protect_enable(rtc_cntl_dev_t *hw)
{
hw->wdt_wprotect = 0;
}
/**
* @brief Disable write protection of the RWDT registers
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void rwdt_ll_write_protect_disable(rtc_cntl_dev_t *hw)
{
hw->wdt_wprotect = RTC_CNTL_WDT_WKEY_VALUE;
}
/**
* @brief Enable the RWDT interrupt.
*
* @param hw Start address of the peripheral registers.
* @param enable True to enable RWDT interrupt, false to disable.
*/
FORCE_INLINE_ATTR void rwdt_ll_set_intr_enable(rtc_cntl_dev_t* hw, bool enable)
{
hw->int_ena.rtc_wdt = (enable) ? 1 : 0;
}
/**
* @brief Check if the RWDT interrupt has been triggered
*
* @param hw Start address of the peripheral registers.
* @return True if the RWDT interrupt was triggered
*/
FORCE_INLINE_ATTR bool rwdt_ll_check_intr_status(rtc_cntl_dev_t *hw)
{
return (hw->int_st.rtc_wdt) ? true : false;
}
/**
* @brief Clear the RWDT interrupt status.
*
* @param hw Start address of the peripheral registers.
*/
FORCE_INLINE_ATTR void rwdt_ll_clear_intr_status(rtc_cntl_dev_t* hw)
{
hw->int_clr.rtc_wdt = 1;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,73 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The LL layer for ESP32-S2 SIGMADELTA register operations
#pragma once
#include <stdbool.h>
#include "soc/sigmadelta_periph.h"
#include "hal/sigmadelta_types.h"
#ifdef __cplusplus
extern "C" {
#endif
// Get SIGMADELTA hardware instance with giving sigmadelta num
#define SIGMADELTA_LL_GET_HW(num) (((num) == 0) ? (&SIGMADELTA) : NULL)
/**
* @brief Set Sigma-delta enable
*
* @param hw Peripheral SIGMADELTA hardware instance address.
* @param en Sigma-delta enable value
*/
static inline void sigmadelta_ll_set_en(gpio_sd_dev_t *hw, bool en)
{
hw->misc.function_clk_en = en;
}
/**
* @brief Set Sigma-delta channel duty.
*
* @param hw Peripheral SIGMADELTA hardware instance address.
* @param channel Sigma-delta channel number
* @param duty Sigma-delta duty of one channel, the value ranges from -128 to 127, recommended range is -90 ~ 90.
* The waveform is more like a random one in this range.
*/
static inline void sigmadelta_ll_set_duty(gpio_sd_dev_t *hw, sigmadelta_channel_t channel, int8_t duty)
{
hw->channel[channel].duty = duty;
}
/**
* @brief Set Sigma-delta channel's clock pre-scale value.
*
* @param hw Peripheral SIGMADELTA hardware instance address.
* @param channel Sigma-delta channel number
* @param prescale The divider of source clock, ranges from 0 to 255
*/
static inline void sigmadelta_ll_set_prescale(gpio_sd_dev_t *hw, sigmadelta_channel_t channel, uint8_t prescale)
{
hw->channel[channel].prescale = prescale;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,32 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "soc/soc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/soc_caps.h"
#include "soc/rtc.h"
#ifdef __cplusplus
extern "C" {
#endif
static inline void soc_ll_reset_core(int core)
{
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_PROCPU_RST_M);
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,105 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The Lowlevel layer for SPI Flash
#pragma once
#include "gpspi_flash_ll.h"
#include "spimem_flash_ll.h"
#ifdef __cplusplus
extern "C" {
#endif
// For esp32s2, spimem is equivalent to traditional spi peripherals found
// in esp32. Let the spi flash clock reg definitions reflect this.
#define SPI_FLASH_LL_CLKREG_VAL_5MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_5MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_10MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_10MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_20MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_20MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_26MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_26MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_40MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_40MHZ}
#define SPI_FLASH_LL_CLKREG_VAL_80MHZ {.spimem=SPIMEM_FLASH_LL_CLKREG_VAL_80MHZ}
#define spi_flash_ll_get_hw(host_id) (((host_id)<=SPI1_HOST ? (spi_dev_t*) spimem_flash_ll_get_hw(host_id) \
: gpspi_flash_ll_get_hw(host_id)))
#define spi_flash_ll_hw_get_id(dev) ({int dev_id = spimem_flash_ll_hw_get_id(dev); \
if (dev_id < 0) {\
dev_id = gpspi_flash_ll_hw_get_id(dev);\
}\
dev_id; \
})
typedef union {
gpspi_flash_ll_clock_reg_t gpspi;
spimem_flash_ll_clock_reg_t spimem;
} spi_flash_ll_clock_reg_t;
#ifdef GPSPI_BUILD
#define spi_flash_ll_reset(dev) gpspi_flash_ll_reset((spi_dev_t*)dev)
#define spi_flash_ll_cmd_is_done(dev) gpspi_flash_ll_cmd_is_done((spi_dev_t*)dev)
#define spi_flash_ll_get_buffer_data(dev, buffer, read_len) gpspi_flash_ll_get_buffer_data((spi_dev_t*)dev, buffer, read_len)
#define spi_flash_ll_set_buffer_data(dev, buffer, len) gpspi_flash_ll_set_buffer_data((spi_dev_t*)dev, buffer, len)
#define spi_flash_ll_user_start(dev) gpspi_flash_ll_user_start((spi_dev_t*)dev)
#define spi_flash_ll_host_idle(dev) gpspi_flash_ll_host_idle((spi_dev_t*)dev)
#define spi_flash_ll_read_phase(dev) gpspi_flash_ll_read_phase((spi_dev_t*)dev)
#define spi_flash_ll_set_cs_pin(dev, pin) gpspi_flash_ll_set_cs_pin((spi_dev_t*)dev, pin)
#define spi_flash_ll_set_read_mode(dev, read_mode) gpspi_flash_ll_set_read_mode((spi_dev_t*)dev, read_mode)
#define spi_flash_ll_set_clock(dev, clk) gpspi_flash_ll_set_clock((spi_dev_t*)dev, (gpspi_flash_ll_clock_reg_t*)clk)
#define spi_flash_ll_set_miso_bitlen(dev, bitlen) gpspi_flash_ll_set_miso_bitlen((spi_dev_t*)dev, bitlen)
#define spi_flash_ll_set_mosi_bitlen(dev, bitlen) gpspi_flash_ll_set_mosi_bitlen((spi_dev_t*)dev, bitlen)
#define spi_flash_ll_set_command8(dev, cmd) gpspi_flash_ll_set_command8((spi_dev_t*)dev, cmd)
#define spi_flash_ll_set_addr_bitlen(dev, bitlen) gpspi_flash_ll_set_addr_bitlen((spi_dev_t*)dev, bitlen)
#define spi_flash_ll_get_addr_bitlen(dev) gpspi_flash_ll_get_addr_bitlen((spi_dev_t*)dev)
#define spi_flash_ll_set_address(dev, addr) gpspi_flash_ll_set_address((spi_dev_t*)dev, addr)
#define spi_flash_ll_set_usr_address(dev, addr, bitlen) gpspi_flash_ll_set_usr_address((spi_dev_t*)dev, addr, bitlen)
#define spi_flash_ll_set_dummy(dev, dummy) gpspi_flash_ll_set_dummy((spi_dev_t*)dev, dummy)
#define spi_flash_ll_set_dummy_out(dev, en, lev) gpspi_flash_ll_set_dummy_out((spi_dev_t*)dev, en, lev)
#else
#define spi_flash_ll_reset(dev) spimem_flash_ll_reset((spi_mem_dev_t*)dev)
#define spi_flash_ll_cmd_is_done(dev) spimem_flash_ll_cmd_is_done((spi_mem_dev_t*)dev)
#define spi_flash_ll_erase_chip(dev) spimem_flash_ll_erase_chip((spi_mem_dev_t*)dev)
#define spi_flash_ll_erase_sector(dev) spimem_flash_ll_erase_sector((spi_mem_dev_t*)dev)
#define spi_flash_ll_erase_block(dev) spimem_flash_ll_erase_block((spi_mem_dev_t*)dev)
#define spi_flash_ll_set_write_protect(dev, wp) spimem_flash_ll_set_write_protect((spi_mem_dev_t*)dev, wp)
#define spi_flash_ll_get_buffer_data(dev, buffer, read_len) spimem_flash_ll_get_buffer_data((spi_mem_dev_t*)dev, buffer, read_len)
#define spi_flash_ll_set_buffer_data(dev, buffer, len) spimem_flash_ll_set_buffer_data((spi_mem_dev_t*)dev, buffer, len)
#define spi_flash_ll_program_page(dev, buffer, len) spimem_flash_ll_program_page((spi_mem_dev_t*)dev, buffer, len)
#define spi_flash_ll_user_start(dev) spimem_flash_ll_user_start((spi_mem_dev_t*)dev)
#define spi_flash_ll_host_idle(dev) spimem_flash_ll_host_idle((spi_mem_dev_t*)dev)
#define spi_flash_ll_read_phase(dev) spimem_flash_ll_read_phase((spi_mem_dev_t*)dev)
#define spi_flash_ll_set_cs_pin(dev, pin) spimem_flash_ll_set_cs_pin((spi_mem_dev_t*)dev, pin)
#define spi_flash_ll_set_read_mode(dev, read_mode) spimem_flash_ll_set_read_mode((spi_mem_dev_t*)dev, read_mode)
#define spi_flash_ll_set_clock(dev, clk) spimem_flash_ll_set_clock((spi_mem_dev_t*)dev, (spimem_flash_ll_clock_reg_t*)clk)
#define spi_flash_ll_set_miso_bitlen(dev, bitlen) spimem_flash_ll_set_miso_bitlen((spi_mem_dev_t*)dev, bitlen)
#define spi_flash_ll_set_mosi_bitlen(dev, bitlen) spimem_flash_ll_set_mosi_bitlen((spi_mem_dev_t*)dev, bitlen)
#define spi_flash_ll_set_command8(dev, cmd) spimem_flash_ll_set_command8((spi_mem_dev_t*)dev, cmd)
#define spi_flash_ll_set_addr_bitlen(dev, bitlen) spimem_flash_ll_set_addr_bitlen((spi_mem_dev_t*)dev, bitlen)
#define spi_flash_ll_get_addr_bitlen(dev) spimem_flash_ll_get_addr_bitlen((spi_mem_dev_t*) dev)
#define spi_flash_ll_set_address(dev, addr) spimem_flash_ll_set_address((spi_mem_dev_t*)dev, addr)
#define spi_flash_ll_set_usr_address(dev, addr, bitlen) spimem_flash_ll_set_address((spi_mem_dev_t*)dev, addr)
#define spi_flash_ll_set_dummy(dev, dummy) spimem_flash_ll_set_dummy((spi_mem_dev_t*)dev, dummy)
#define spi_flash_ll_set_dummy_out(dev, en, lev) spimem_flash_ll_set_dummy_out((spi_mem_dev_t*)dev, en, lev)
#endif
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,388 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The Lowlevel layer for SPI Flash
#pragma once
#include <stdlib.h>
#include <sys/param.h> // For MIN/MAX
#include <stdbool.h>
#include <string.h>
#include "soc/spi_periph.h"
#include "hal/spi_types.h"
#include "hal/spi_flash_types.h"
#ifdef __cplusplus
extern "C" {
#endif
#define spimem_flash_ll_get_hw(host_id) (((host_id)==SPI1_HOST ? &SPIMEM1 : NULL ))
#define spimem_flash_ll_hw_get_id(dev) ((dev) == (void*)&SPIMEM1? SPI1_HOST: -1)
typedef typeof(SPIMEM1.clock) spimem_flash_ll_clock_reg_t;
//Supported clock register values
#define SPIMEM_FLASH_LL_CLKREG_VAL_5MHZ ((spimem_flash_ll_clock_reg_t){.val=0x000F070F}) ///< Clock set to 5 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_10MHZ ((spimem_flash_ll_clock_reg_t){.val=0x00070307}) ///< Clock set to 10 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_20MHZ ((spimem_flash_ll_clock_reg_t){.val=0x00030103}) ///< Clock set to 20 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_26MHZ ((spimem_flash_ll_clock_reg_t){.val=0x00020002}) ///< Clock set to 26 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_40MHZ ((spimem_flash_ll_clock_reg_t){.val=0x00010001}) ///< Clock set to 40 MHz
#define SPIMEM_FLASH_LL_CLKREG_VAL_80MHZ ((spimem_flash_ll_clock_reg_t){.val=0x80000000}) ///< Clock set to 80 MHz
/*------------------------------------------------------------------------------
* Control
*----------------------------------------------------------------------------*/
/**
* Reset peripheral registers before configuration and starting control
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_reset(spi_mem_dev_t *dev)
{
dev->user.val = 0;
dev->ctrl.val = 0;
}
/**
* Check whether the previous operation is done.
*
* @param dev Beginning address of the peripheral registers.
*
* @return true if last command is done, otherwise false.
*/
static inline bool spimem_flash_ll_cmd_is_done(const spi_mem_dev_t *dev)
{
return (dev->cmd.val == 0);
}
/**
* Erase the flash chip.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_erase_chip(spi_mem_dev_t *dev)
{
dev->cmd.flash_ce = 1;
}
/**
* Erase the sector, the address should be set by spimem_flash_ll_set_address.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_erase_sector(spi_mem_dev_t *dev)
{
dev->ctrl.val = 0;
dev->cmd.flash_se = 1;
}
/**
* Erase the block, the address should be set by spimem_flash_ll_set_address.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_erase_block(spi_mem_dev_t *dev)
{
dev->cmd.flash_be = 1;
}
/**
* Enable/disable write protection for the flash chip.
*
* @param dev Beginning address of the peripheral registers.
* @param wp true to enable the protection, false to disable (write enable).
*/
static inline void spimem_flash_ll_set_write_protect(spi_mem_dev_t *dev, bool wp)
{
if (wp) {
dev->cmd.flash_wrdi = 1;
} else {
dev->cmd.flash_wren = 1;
}
}
/**
* Get the read data from the buffer after ``spimem_flash_ll_read`` is done.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer to hold the output data
* @param read_len Length to get out of the buffer
*/
static inline void spimem_flash_ll_get_buffer_data(spi_mem_dev_t *dev, void *buffer, uint32_t read_len)
{
if (((intptr_t)buffer % 4 == 0) && (read_len % 4 == 0)) {
// If everything is word-aligned, do a faster memcpy
memcpy(buffer, (void *)dev->data_buf, read_len);
} else {
// Otherwise, slow(er) path copies word by word
int copy_len = read_len;
for (int i = 0; i < (read_len + 3) / 4; i++) {
int word_len = MIN(sizeof(uint32_t), copy_len);
uint32_t word = dev->data_buf[i];
memcpy(buffer, &word, word_len);
buffer = (void *)((intptr_t)buffer + word_len);
copy_len -= word_len;
}
}
}
/**
* Set the data to be written in the data buffer.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer holding the data
* @param length Length of data in bytes.
*/
static inline void spimem_flash_ll_set_buffer_data(spi_mem_dev_t *dev, const void *buffer, uint32_t length)
{
// Load data registers, word at a time
int num_words = (length + 3) / 4;
for (int i = 0; i < num_words; i++) {
uint32_t word = 0;
uint32_t word_len = MIN(length, sizeof(word));
memcpy(&word, buffer, word_len);
dev->data_buf[i] = word;
length -= word_len;
buffer = (void *)((intptr_t)buffer + word_len);
}
}
/**
* Program a page of the flash chip. Call ``spimem_flash_ll_set_address`` before
* this to set the address to program.
*
* @param dev Beginning address of the peripheral registers.
* @param buffer Buffer holding the data to program
* @param length Length to program.
*/
static inline void spimem_flash_ll_program_page(spi_mem_dev_t *dev, const void *buffer, uint32_t length)
{
dev->user.usr_dummy = 0;
spimem_flash_ll_set_buffer_data(dev, buffer, length);
dev->cmd.flash_pp = 1;
}
/**
* Trigger a user defined transaction. All phases, including command, address, dummy, and the data phases,
* should be configured before this is called.
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_user_start(spi_mem_dev_t *dev)
{
dev->cmd.usr = 1;
}
/**
* Check whether the host is idle to perform new commands.
*
* @param dev Beginning address of the peripheral registers.
*
* @return true if the host is idle, otherwise false
*/
static inline bool spimem_flash_ll_host_idle(const spi_mem_dev_t *dev)
{
return dev->fsm.st != 0;
}
/**
* Set phases for user-defined transaction to read
*
* @param dev Beginning address of the peripheral registers.
*/
static inline void spimem_flash_ll_read_phase(spi_mem_dev_t *dev)
{
typeof (dev->user) user = {
.usr_command = 1,
.usr_mosi = 0,
.usr_miso = 1,
.usr_addr = 1,
};
dev->user = user;
}
/*------------------------------------------------------------------------------
* Configs
*----------------------------------------------------------------------------*/
/**
* Select which pin to use for the flash
*
* @param dev Beginning address of the peripheral registers.
* @param pin Pin ID to use, 0-1. Set to other values to disable all the CS pins.
*/
static inline void spimem_flash_ll_set_cs_pin(spi_mem_dev_t *dev, int pin)
{
dev->misc.cs0_dis = (pin != 0);
dev->misc.cs1_dis = (pin != 1);
}
/**
* Set the read io mode.
*
* @param dev Beginning address of the peripheral registers.
* @param read_mode I/O mode to use in the following transactions.
*/
static inline void spimem_flash_ll_set_read_mode(spi_mem_dev_t *dev, esp_flash_io_mode_t read_mode)
{
typeof (dev->ctrl) ctrl = dev->ctrl;
ctrl.val &= ~(SPI_MEM_FREAD_QIO_M | SPI_MEM_FREAD_QUAD_M | SPI_MEM_FREAD_DIO_M | SPI_MEM_FREAD_DUAL_M);
ctrl.val |= SPI_MEM_FASTRD_MODE_M;
switch (read_mode) {
case SPI_FLASH_FASTRD:
//the default option
break;
case SPI_FLASH_QIO:
ctrl.fread_qio = 1;
break;
case SPI_FLASH_QOUT:
ctrl.fread_quad = 1;
break;
case SPI_FLASH_DIO:
ctrl.fread_dio = 1;
break;
case SPI_FLASH_DOUT:
ctrl.fread_dual = 1;
break;
case SPI_FLASH_SLOWRD:
ctrl.fastrd_mode = 0;
break;
default:
abort();
}
dev->ctrl = ctrl;
}
/**
* Set clock frequency to work at.
*
* @param dev Beginning address of the peripheral registers.
* @param clock_val pointer to the clock value to set
*/
static inline void spimem_flash_ll_set_clock(spi_mem_dev_t *dev, spimem_flash_ll_clock_reg_t *clock_val)
{
dev->clock = *clock_val;
}
/**
* Set the input length, in bits.
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of input, in bits.
*/
static inline void spimem_flash_ll_set_miso_bitlen(spi_mem_dev_t *dev, uint32_t bitlen)
{
dev->user.usr_miso = bitlen > 0;
dev->miso_dlen.usr_miso_bit_len = bitlen ? (bitlen - 1) : 0;
}
/**
* Set the output length, in bits (not including command, address and dummy
* phases)
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of output, in bits.
*/
static inline void spimem_flash_ll_set_mosi_bitlen(spi_mem_dev_t *dev, uint32_t bitlen)
{
dev->user.usr_mosi = bitlen > 0;
dev->mosi_dlen.usr_mosi_bit_len = bitlen ? (bitlen - 1) : 0;
}
/**
* Set the command with fixed length (8 bits).
*
* @param dev Beginning address of the peripheral registers.
* @param command Command to send
*/
static inline void spimem_flash_ll_set_command8(spi_mem_dev_t *dev, uint8_t command)
{
dev->user.usr_command = 1;
typeof(dev->user2) user2 = {
.usr_command_value = command,
.usr_command_bitlen = (8 - 1),
};
dev->user2 = user2;
}
/**
* Get the address length that is set in register, in bits.
*
* @param dev Beginning address of the peripheral registers.
*
*/
static inline int spimem_flash_ll_get_addr_bitlen(spi_mem_dev_t *dev)
{
return dev->user.usr_addr ? dev->user1.usr_addr_bitlen + 1 : 0;
}
/**
* Set the address length to send, in bits. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param bitlen Length of the address, in bits
*/
static inline void spimem_flash_ll_set_addr_bitlen(spi_mem_dev_t *dev, uint32_t bitlen)
{
dev->user1.usr_addr_bitlen = (bitlen - 1);
dev->user.usr_addr = bitlen ? 1 : 0;
}
/**
* Set the address to send. Should be called before commands that requires the address e.g. erase sector, read, write...
*
* @param dev Beginning address of the peripheral registers.
* @param addr Address to send
*/
static inline void spimem_flash_ll_set_address(spi_mem_dev_t *dev, uint32_t addr)
{
dev->addr = addr;
}
/**
* Set the length of dummy cycles.
*
* @param dev Beginning address of the peripheral registers.
* @param dummy_n Cycles of dummy phases
*/
static inline void spimem_flash_ll_set_dummy(spi_mem_dev_t *dev, uint32_t dummy_n)
{
dev->user.usr_dummy = dummy_n ? 1 : 0;
dev->user1.usr_dummy_cyclelen = dummy_n - 1;
}
/**
* Set D/Q output level during dummy phase
*
* @param dev Beginning address of the peripheral registers.
* @param out_en whether to enable IO output for dummy phase
* @param out_level dummy output level
*/
static inline void spimem_flash_ll_set_dummy_out(spi_mem_dev_t *dev, uint32_t out_en, uint32_t out_lev)
{
dev->ctrl.fdummy_out = out_en;
dev->ctrl.q_pol = out_lev;
dev->ctrl.d_pol = out_lev;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,138 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "soc/soc.h"
#include "soc/systimer_reg.h"
// All these functions get invoked either from ISR or HAL that linked to IRAM.
// Always inline these functions even no gcc optimization is applied.
/*******************counter*************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_clock(void)
{
REG_SET_BIT(SYSTIMER_CONF_REG, SYSTIMER_CLK_EN);
}
__attribute__((always_inline)) static inline void systimer_ll_apply_counter_value(void)
{
REG_SET_BIT(SYSTIMER_LOAD_REG, SYSTIMER_TIMER_LOAD);
}
__attribute__((always_inline)) static inline void systimer_ll_load_counter_value(uint64_t value)
{
REG_WRITE(SYSTIMER_LOAD_LO_REG, value & 0xFFFFFFFF);
REG_WRITE(SYSTIMER_LOAD_HI_REG, (value & 0xFFFFFFFF00000000) >> 32);
}
__attribute__((always_inline)) static inline void systimer_ll_set_step_for_pll(uint32_t step)
{
REG_SET_FIELD(SYSTIMER_STEP_REG, SYSTIMER_TIMER_PLL_STEP, step);
}
__attribute__((always_inline)) static inline void systimer_ll_set_step_for_xtal(uint32_t step)
{
REG_SET_FIELD(SYSTIMER_STEP_REG, SYSTIMER_TIMER_XTAL_STEP, step);
}
__attribute__((always_inline)) static inline void systimer_ll_counter_snapshot(void)
{
REG_WRITE(SYSTIMER_UPDATE_REG, SYSTIMER_TIMER_UPDATE);
}
__attribute__((always_inline)) static inline bool systimer_ll_is_counter_value_valid(void)
{
return REG_GET_BIT(SYSTIMER_UPDATE_REG, SYSTIMER_TIMER_VALUE_VALID);
}
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_low(void)
{
return REG_READ(SYSTIMER_VALUE_LO_REG);
}
__attribute__((always_inline)) static inline uint32_t systimer_ll_get_counter_value_high(void)
{
return REG_READ(SYSTIMER_VALUE_HI_REG);
}
/*******************alarm*************************/
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_value(uint32_t alarm_id, uint64_t value)
{
REG_WRITE(SYSTIMER_TARGET0_LO_REG + alarm_id * 8, value & 0xFFFFFFFF);
REG_WRITE(SYSTIMER_TARGET0_HI_REG + alarm_id * 8, (value & 0xFFFFFFFF00000000) >> 32);
}
__attribute__((always_inline)) static inline uint64_t systimer_ll_get_alarm_value(uint32_t alarm_id)
{
return (uint64_t)REG_READ(SYSTIMER_TARGET0_HI_REG + alarm_id * 8) << 32 | REG_READ(SYSTIMER_TARGET0_LO_REG + alarm_id * 8);
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm(uint32_t alarm_id)
{
REG_SET_BIT(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, BIT(31));
}
__attribute__((always_inline)) static inline void systimer_ll_disable_alarm(uint32_t alarm_id)
{
REG_CLR_BIT(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, BIT(31));
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_oneshot(uint32_t alarm_id)
{
REG_CLR_BIT(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, BIT(30));
}
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_period(uint32_t alarm_id)
{
REG_SET_BIT(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, BIT(30));
}
__attribute__((always_inline)) static inline void systimer_ll_set_alarm_period(uint32_t alarm_id, uint32_t period)
{
REG_SET_FIELD(SYSTIMER_TARGET0_CONF_REG + alarm_id * 4, SYSTIMER_TARGET0_PERIOD, period);
}
/*******************interrupt*************************/
__attribute__((always_inline)) static inline void systimer_ll_enable_alarm_int(uint32_t alarm_id)
{
REG_SET_BIT(SYSTIMER_INT_ENA_REG, 1 << alarm_id);
}
__attribute__((always_inline)) static inline void systimer_ll_disable_alarm_int(uint32_t alarm_id)
{
REG_CLR_BIT(SYSTIMER_INT_ENA_REG, 1 << alarm_id);
}
__attribute__((always_inline)) static inline bool systimer_ll_is_alarm_int_fired(uint32_t alarm_id)
{
return REG_GET_BIT(SYSTIMER_INT_RAW_REG, 1 << alarm_id);
}
__attribute__((always_inline)) static inline void systimer_ll_clear_alarm_int(uint32_t alarm_id)
{
REG_SET_BIT(SYSTIMER_INT_CLR_REG, 1 << alarm_id);
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,422 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The LL layer for Timer Group register operations.
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdlib.h>
#include "hal/timer_types.h"
#include "soc/timer_periph.h"
_Static_assert(TIMER_INTR_T0 == TIMG_T0_INT_CLR, "Add mapping to LL interrupt handling, since it's no longer naturally compatible with the timer_intr_t");
_Static_assert(TIMER_INTR_T1 == TIMG_T1_INT_CLR, "Add mapping to LL interrupt handling, since it's no longer naturally compatible with the timer_intr_t");
_Static_assert(TIMER_INTR_WDT == TIMG_WDT_INT_CLR, "Add mapping to LL interrupt handling, since it's no longer naturally compatible with the timer_intr_t");
// Get timer group instance with giving group number
#define TIMER_LL_GET_HW(num) ((num == 0) ? (&TIMERG0) : (&TIMERG1))
/**
* @brief Set timer clock prescale value
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param divider Prescale value (0 is not valid)
*
* @return None
*/
static inline void timer_ll_set_divider(timg_dev_t *hw, timer_idx_t timer_num, uint32_t divider)
{
// refer to TRM 12.2.1
if (divider == 65536) {
divider = 0;
}
int timer_en = hw->hw_timer[timer_num].config.enable;
hw->hw_timer[timer_num].config.enable = 0;
hw->hw_timer[timer_num].config.divider = divider;
hw->hw_timer[timer_num].config.enable = timer_en;
}
/**
* @brief Get timer clock prescale value
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param divider Pointer to accept the prescale value
*
* @return None
*/
static inline void timer_ll_get_divider(timg_dev_t *hw, timer_idx_t timer_num, uint32_t *divider)
{
uint32_t d = hw->hw_timer[timer_num].config.divider;
if (d == 0) {
d = 65536;
}
*divider = d;
}
/**
* @brief Load counter value into time-base counter
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param load_val Counter value
*
* @return None
*/
static inline void timer_ll_set_counter_value(timg_dev_t *hw, timer_idx_t timer_num, uint64_t load_val)
{
hw->hw_timer[timer_num].load_high = (uint32_t) (load_val >> 32);
hw->hw_timer[timer_num].load_low = (uint32_t) load_val;
hw->hw_timer[timer_num].reload = 1;
}
/**
* @brief Get counter value from time-base counter
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param timer_val Pointer to accept the counter value
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_get_counter_value(timg_dev_t *hw, timer_idx_t timer_num, uint64_t *timer_val)
{
hw->hw_timer[timer_num].update.update = 1;
*timer_val = ((uint64_t) hw->hw_timer[timer_num].cnt_high << 32) | (hw->hw_timer[timer_num].cnt_low);
}
/**
* @brief Set counter mode, include increment mode and decrement mode.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param increase_en True to increment mode, fasle to decrement mode
*
* @return None
*/
static inline void timer_ll_set_counter_increase(timg_dev_t *hw, timer_idx_t timer_num, bool increase_en)
{
hw->hw_timer[timer_num].config.increase = increase_en;
}
/**
* @brief Get counter mode, include increment mode and decrement mode.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return
* - true Increment mode
* - false Decrement mode
*/
static inline bool timer_ll_get_counter_increase(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.increase;
}
/**
* @brief Set counter status, enable or disable counter.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param counter_en True to enable counter, false to disable counter
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_set_counter_enable(timg_dev_t *hw, timer_idx_t timer_num, bool counter_en)
{
hw->hw_timer[timer_num].config.enable = counter_en;
}
/**
* @brief Get counter status.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return
* - true Enable counter
* - false Disable conuter
*/
static inline bool timer_ll_get_counter_enable(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.enable;
}
/**
* @brief Set auto reload mode.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param auto_reload_en True to enable auto reload mode, flase to disable auto reload mode
*
* @return None
*/
static inline void timer_ll_set_auto_reload(timg_dev_t *hw, timer_idx_t timer_num, bool auto_reload_en)
{
hw->hw_timer[timer_num].config.autoreload = auto_reload_en;
}
/**
* @brief Get auto reload mode.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return
* - true Enable auto reload mode
* - false Disable auto reload mode
*/
FORCE_INLINE_ATTR bool timer_ll_get_auto_reload(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.autoreload;
}
/**
* @brief Set the counter value to trigger the alarm.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param alarm_value Counter value to trigger the alarm
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_set_alarm_value(timg_dev_t *hw, timer_idx_t timer_num, uint64_t alarm_value)
{
hw->hw_timer[timer_num].alarm_high = (uint32_t) (alarm_value >> 32);
hw->hw_timer[timer_num].alarm_low = (uint32_t) alarm_value;
}
/**
* @brief Get the counter value to trigger the alarm.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param alarm_value Pointer to accept the counter value to trigger the alarm
*
* @return None
*/
static inline void timer_ll_get_alarm_value(timg_dev_t *hw, timer_idx_t timer_num, uint64_t *alarm_value)
{
*alarm_value = ((uint64_t) hw->hw_timer[timer_num].alarm_high << 32) | (hw->hw_timer[timer_num].alarm_low);
}
/**
* @brief Set the alarm status, enable or disable the alarm.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param alarm_en True to enable alarm, false to disable alarm
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_set_alarm_enable(timg_dev_t *hw, timer_idx_t timer_num, bool alarm_en)
{
hw->hw_timer[timer_num].config.alarm_en = alarm_en;
}
/**
* @brief Get the alarm status.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return
* - true Enable alarm
* - false Disable alarm
*/
static inline bool timer_ll_get_alarm_enable(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.alarm_en;
}
/**
* @brief Enable timer interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_intr_enable(timg_dev_t *hw, timer_idx_t timer_num)
{
hw->int_ena.val |= BIT(timer_num);
hw->hw_timer[timer_num].config.level_int_en = 1;
}
/**
* @brief Disable timer interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_intr_disable(timg_dev_t *hw, timer_idx_t timer_num)
{
hw->int_ena.val &= (~BIT(timer_num));
hw->hw_timer[timer_num].config.level_int_en = 0;
}
/**
* @brief Disable timer interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_clear_intr_status(timg_dev_t *hw, timer_idx_t timer_num)
{
hw->int_clr.val |= BIT(timer_num);
}
/**
* @brief Get interrupt status.
*
* @param hw Beginning address of the peripheral registers.
* @param intr_status Interrupt status
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_get_intr_status(timg_dev_t *hw, uint32_t *intr_status)
{
*intr_status = hw->int_st.val;
}
/**
* @brief Get interrupt raw status.
*
* @param group_num Timer group number, 0 for TIMERG0 or 1 for TIMERG1
* @param intr_raw_status Interrupt raw status
*
* @return None
*/
FORCE_INLINE_ATTR void timer_ll_get_intr_raw_status(timer_group_t group_num, uint32_t *intr_raw_status)
{
timg_dev_t *hw = TIMER_LL_GET_HW(group_num);
*intr_raw_status = hw->int_raw.val;
}
/**
* @brief Set the level interrupt status, enable or disable the level interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param level_int_en True to enable level interrupt, false to disable level interrupt
*
* @return None
*/
static inline void timer_ll_set_level_int_enable(timg_dev_t *hw, timer_idx_t timer_num, bool level_int_en)
{
hw->hw_timer[timer_num].config.level_int_en = level_int_en;
}
/**
* @brief Get the level interrupt status.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return
* - true Enable level interrupt
* - false Disable level interrupt
*/
static inline bool timer_ll_get_level_int_enable(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.level_int_en;
}
/**
* @brief Set the edge interrupt status, enable or disable the edge interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
* @param edge_int_en True to enable edge interrupt, false to disable edge interrupt
*
* @return None
*/
static inline void timer_ll_set_edge_int_enable(timg_dev_t *hw, timer_idx_t timer_num, bool edge_int_en)
{
hw->hw_timer[timer_num].config.edge_int_en = edge_int_en;
}
/**
* @brief Get the edge interrupt status.
*
* @param hw Beginning address of the peripheral registers.
* @param timer_num The timer number
*
* @return
* - true Enable edge interrupt
* - false Disable edge interrupt
*/
static inline bool timer_ll_get_edge_int_enable(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.edge_int_en;
}
/**
* @brief Get interrupt status register address.
*
* @param hw Beginning address of the peripheral registers.
*
* @return uint32_t Interrupt status register address
*/
static inline uint32_t timer_ll_get_intr_status_reg(timg_dev_t *hw)
{
return (uint32_t) & (hw->int_st.val);
}
static inline uint32_t timer_ll_get_intr_mask_bit(timg_dev_t *hw, timer_idx_t timer_num)
{
return (1U << timer_num);
}
/**
* @brief Set clock source.
*
* @param hal Context of the HAL layer
* @param use_xtal_en True to use XTAL clock, flase to use APB clock
*
* @return None
*/
static inline void timer_ll_set_use_xtal(timg_dev_t *hw, timer_idx_t timer_num, bool use_xtal_en)
{
hw->hw_timer[timer_num].config.use_xtal = use_xtal_en;
}
/**
* @brief Get clock source.
*
* @param hal Context of the HAL layer
*
* @return
* - true Use XTAL clock
* - false Use APB clock
*/
static inline bool timer_ll_get_use_xtal(timg_dev_t *hw, timer_idx_t timer_num)
{
return hw->hw_timer[timer_num].config.use_xtal;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,613 +0,0 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The hal is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The HAL layer for touch sensor (esp32s2 specific part)
#pragma once
#include "hal/touch_sensor_ll.h"
#include "hal/touch_sensor_types.h"
#include_next "hal/touch_sensor_hal.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* Reset the whole of touch module.
*
* @note Call this funtion after `touch_pad_fsm_stop`,
*/
#define touch_hal_reset() touch_ll_reset()
/**
* Set touch sensor measurement time.
*
* @param meas_time The duration of the touch sensor measurement.
* t_meas = meas_time / (8MHz), the maximum measure time is 0xffff / 8M = 8.19 ms.
*/
#define touch_hal_set_meas_times(meas_time) touch_ll_set_meas_times(meas_time)
/**
* Get touch sensor times of charge and discharge.
*
* @param meas_times Pointer to accept times count of charge and discharge.
*/
#define touch_hal_get_measure_times(meas_time) touch_ll_get_measure_times(meas_time)
/**
* Set connection type of touch channel in idle status.
* When a channel is in measurement mode, other initialized channels are in idle mode.
* The touch channel is generally adjacent to the trace, so the connection state of the idle channel
* affects the stability and sensitivity of the test channel.
* The `CONN_HIGHZ`(high resistance) setting increases the sensitivity of touch channels.
* The `CONN_GND`(grounding) setting increases the stability of touch channels.
*
* @param type Select idle channel connect to high resistance state or ground.
*/
#define touch_hal_set_idle_channel_connect(type) touch_ll_set_idle_channel_connect(type)
/**
* Set connection type of touch channel in idle status.
* When a channel is in measurement mode, other initialized channels are in idle mode.
* The touch channel is generally adjacent to the trace, so the connection state of the idle channel
* affects the stability and sensitivity of the test channel.
* The `CONN_HIGHZ`(high resistance) setting increases the sensitivity of touch channels.
* The `CONN_GND`(grounding) setting increases the stability of touch channels.
*
* @param type Select idle channel connect to high resistance state or ground.
*/
#define touch_hal_get_idle_channel_connect(type) touch_ll_get_idle_channel_connect(type)
/**
* Get the current measure channel. Touch sensor measurement is cyclic scan mode.
*
* @return
* - touch channel number
*/
#define touch_hal_get_current_meas_channel() touch_ll_get_current_meas_channel()
/**
* Enable touch sensor interrupt by bitmask.
*
* @param type interrupt type
*/
#define touch_hal_intr_enable(int_mask) touch_ll_intr_enable(int_mask)
/**
* Disable touch sensor interrupt by bitmask.
*
* @param type interrupt type
*/
#define touch_hal_intr_disable(int_mask) touch_ll_intr_disable(int_mask)
/**
* Clear touch sensor interrupt by bitmask.
*
* @param int_mask Pad mask to clear interrupts
*/
#define touch_hal_intr_clear(int_mask) touch_ll_intr_clear(int_mask)
/**
* Get the bitmask of touch sensor interrupt status.
*
* @return type interrupt type
*/
#define touch_hal_read_intr_status_mask() touch_ll_read_intr_status_mask()
/**
* Enable the timeout check for all touch sensor channels measurements.
* When the touch reading of a touch channel exceeds the measurement threshold,
* If enable: a timeout interrupt will be generated and it will go to the next channel measurement.
* If disable: the FSM is always on the channel, until the measurement of this channel is over.
*
* @note Set the timeout threshold correctly before enabling it.
*/
#define touch_hal_timeout_enable() touch_ll_timeout_enable()
/**
* Disable the timeout check for all touch sensor channels measurements.
* When the touch reading of a touch channel exceeds the measurement threshold,
* If enable: a timeout interrupt will be generated and it will go to the next channel measurement.
* If disable: the FSM is always on the channel, until the measurement of this channel is over.
*
* @note Set the timeout threshold correctly before enabling it.
*/
#define touch_hal_timeout_disable() touch_ll_timeout_disable()
/**
* Set timeout threshold for all touch sensor channels measurements.
* Compared with touch readings.
*
* @param threshold Set to the maximum time measured on one channel.
*/
#define touch_hal_timeout_set_threshold(threshold) touch_ll_timeout_set_threshold(threshold)
/**
* Get timeout threshold for all touch sensor channels measurements.
* Compared with touch readings.
*
* @param threshold Point to timeout threshold.
*/
#define touch_hal_timeout_get_threshold(threshold) touch_ll_timeout_get_threshold(threshold)
/**
* Touch timer trigger measurement and always wait measurement done.
* Force done for touch timer ensures that the timer always can get the measurement done signal.
*/
#define touch_hal_timer_force_done() touch_ll_timer_force_done()
/************************ Filter register setting ************************/
/**
* Set parameter of touch sensor filter and detection algorithm.
* For more details on the detection algorithm, please refer to the application documentation.
*
* @param filter_info select filter type and threshold of detection algorithm
*/
void touch_hal_filter_set_config(const touch_filter_config_t *filter_info);
/**
* Get parameter of touch sensor filter and detection algorithm.
* For more details on the detection algorithm, please refer to the application documentation.
*
* @param filter_info select filter type and threshold of detection algorithm
*/
void touch_hal_filter_get_config(touch_filter_config_t *filter_info);
/**
* Get smoothed data that obtained by filtering the raw data.
*
* @param touch_num touch pad index
* @param smooth_data pointer to smoothed data
*/
#define touch_hal_filter_read_smooth(touch_num, smooth_data) touch_ll_filter_read_smooth(touch_num, smooth_data)
/**
* Get benchmark value of touch sensor.
*
* @note After initialization, the benchmark value is the maximum during the first measurement period.
* @param touch_num touch pad index
* @param touch_value pointer to accept touch sensor value
*/
#define touch_hal_read_benchmark(touch_num, benchmark) touch_ll_read_benchmark(touch_num, benchmark)
/**
* Force reset benchmark to raw data of touch sensor.
*
* @param touch_num touch pad index
* - TOUCH_PAD_MAX Reset basaline of all channels.
*/
#define touch_hal_reset_benchmark(touch_num) touch_ll_reset_benchmark(touch_num)
/**
* Set filter mode. The input of the filter is the raw value of touch reading,
* and the output of the filter is involved in the judgment of the touch state.
*
* @param mode Filter mode type. Refer to ``touch_filter_mode_t``.
*/
#define touch_hal_filter_set_filter_mode(mode) touch_ll_filter_set_filter_mode(mode)
/**
* Get filter mode. The input of the filter is the raw value of touch reading,
* and the output of the filter is involved in the judgment of the touch state.
*
* @param mode Filter mode type. Refer to ``touch_filter_mode_t``.
*/
#define touch_hal_filter_get_filter_mode(mode) touch_ll_filter_get_filter_mode(mode)
/**
* Set debounce count, such as `n`. If the measured values continue to exceed
* the threshold for `n` times, it is determined that the touch sensor state changes.
*
* @param dbc_cnt Debounce count value.
*/
#define touch_hal_filter_set_debounce(dbc_cnt) touch_ll_filter_set_debounce(dbc_cnt)
/**
* Get debounce count.
*
* @param dbc_cnt Debounce count value.
*/
#define touch_hal_filter_get_debounce(dbc_cnt) touch_ll_filter_get_debounce(dbc_cnt)
/**
* Set noise threshold coefficient. Higher = More noise resistance.
* The actual noise should be less than (noise coefficient * touch threshold).
* Range: 0 ~ 3. The coefficient is 0: 4/8; 1: 3/8; 2: 2/8; 3: 1;
*
* @param hys_thr Noise threshold coefficient.
*/
#define touch_hal_filter_set_noise_thres(noise_thr) touch_ll_filter_set_noise_thres(noise_thr)
/**
* Get noise threshold coefficient. Higher = More noise resistance.
* The actual noise should be less than (noise coefficient * touch threshold).
* Range: 0 ~ 3. The coefficient is 0: 4/8; 1: 3/8; 2: 2/8; 3: 1;
*
* @param noise_thr Noise threshold coefficient.
*/
#define touch_hal_filter_get_noise_thres(noise_thr) touch_ll_filter_get_noise_thres(noise_thr)
/**
* Set the cumulative number of benchmark reset processes. such as `n`. If the measured values continue to exceed
* the negative noise threshold for `n` times, the benchmark reset to raw data.
* Range: 0 ~ 15
*
* @param reset_cnt The cumulative number of benchmark reset processes.
*/
#define touch_hal_filter_set_benchmark_reset(reset_cnt) touch_ll_filter_set_benchmark_reset(reset_cnt)
/**
* Get the cumulative number of benchmark reset processes. such as `n`. If the measured values continue to exceed
* the negative noise threshold for `n` times, the benchmark reset to raw data.
* Range: 0 ~ 15
*
* @param reset_cnt The cumulative number of benchmark reset processes.
*/
#define touch_hal_filter_get_benchmark_reset(reset_cnt) touch_ll_filter_get_benchmark_reset(reset_cnt)
/**
* Set jitter filter step size.
* If filter mode is jitter, should set filter step for jitter.
* Range: 0 ~ 15
*
* @param step The step size of the data change.
*/
#define touch_hal_filter_set_jitter_step(step) touch_ll_filter_set_jitter_step(step)
/**
* Get jitter filter step size.
* If filter mode is jitter, should set filter step for jitter.
* Range: 0 ~ 15
*
* @param step The step size of the data change.
*/
#define touch_hal_filter_get_jitter_step(step) touch_ll_filter_get_jitter_step(step)
/**
* Enable touch sensor filter and detection algorithm.
* For more details on the detection algorithm, please refer to the application documentation.
*/
#define touch_hal_filter_enable() touch_ll_filter_enable()
/**
* Disable touch sensor filter and detection algorithm.
* For more details on the detection algorithm, please refer to the application documentation.
*/
#define touch_hal_filter_disable() touch_ll_filter_disable()
/************************ Denoise register setting ************************/
/**
* set parameter of denoise pad (TOUCH_PAD_NUM0).
* T0 is an internal channel that does not have a corresponding external GPIO.
* T0 will work simultaneously with the measured channel Tn. Finally, the actual
* measured value of Tn is the value after subtracting lower bits of T0.
* This denoise function filters out interference introduced on all channels,
* such as noise introduced by the power supply and external EMI.
*
* @param denoise parameter of denoise
*/
void touch_hal_denoise_set_config(const touch_pad_denoise_t *denoise);
/**
* @brief get parameter of denoise pad (TOUCH_PAD_NUM0).
*
* @param denoise Pointer to parameter of denoise
*/
void touch_hal_denoise_get_config(touch_pad_denoise_t *denoise);
/**
* Enable denoise function.
* T0 is an internal channel that does not have a corresponding external GPIO.
* T0 will work simultaneously with the measured channel Tn. Finally, the actual
* measured value of Tn is the value after subtracting lower bits of T0.
* This denoise function filters out interference introduced on all channels,
* such as noise introduced by the power supply and external EMI.
*/
void touch_hal_denoise_enable(void);
/**
* Enable denoise function.
* T0 is an internal channel that does not have a corresponding external GPIO.
* T0 will work simultaneously with the measured channel Tn. Finally, the actual
* measured value of Tn is the value after subtracting lower bits of T0.
* This denoise function filters out interference introduced on all channels,
* such as noise introduced by the power supply and external EMI.
*/
#define touch_hal_denoise_disable() touch_ll_denoise_disable()
/**
* Set internal reference capacitance of denoise channel.
* Select the appropriate internal reference capacitance value so that
* the reading of denoise channel is closest to the reading of the channel being measured.
*
* @param cap_level Capacitance level.
*/
#define touch_hal_denoise_set_cap_level(cap_level) touch_ll_denoise_set_cap_level(cap_level)
/**
* Get internal reference capacitance of denoise channel.
* Select the appropriate internal reference capacitance value so that
* the reading of denoise channel is closest to the reading of the channel being measured.
*
* @param cap_level Capacitance level.
*/
#define touch_hal_denoise_get_cap_level(cap_level) touch_ll_denoise_get_cap_level(cap_level)
/**
* Set denoise range of denoise channel.
* Determined by measuring the noise amplitude of the denoise channel.
*
* @param grade Denoise range of denoise channel.
*/
#define touch_hal_denoise_set_grade(grade) touch_ll_denoise_set_grade(grade)
/**
* Set denoise range of denoise channel.
* Determined by measuring the noise amplitude of the denoise channel.
*
* @param grade Denoise range of denoise channel.
*/
#define touch_hal_denoise_get_grade(grade) touch_ll_denoise_get_grade(grade)
/**
* Read denoise measure value (TOUCH_PAD_NUM0).
*
* @param denoise value of denoise.
*/
#define touch_hal_denoise_read_data(data) touch_ll_denoise_read_data(data)
/************************ Waterproof register setting ************************/
/**
* Set touch channel use for guard pad.
*
* @param pad_num Touch sensor channel number.
*/
#define touch_hal_waterproof_set_guard_pad(pad_num) touch_ll_waterproof_set_guard_pad(pad_num)
/**
* Get touch channel use for guard pad.
*
* @param pad_num Touch sensor channel number.
*/
#define touch_hal_waterproof_get_guard_pad(pad_num) touch_ll_waterproof_get_guard_pad(pad_num)
/**
* Set max equivalent capacitance for sheild channel.
* The equivalent capacitance of the shielded channel can be calculated
* from the reading of denoise channel.
*
* @param pad_num Touch sensor channel number.
*/
#define touch_hal_waterproof_set_sheild_driver(driver_level) touch_ll_waterproof_set_sheild_driver(driver_level)
/**
* Get max equivalent capacitance for sheild channel.
* The equivalent capacitance of the shielded channel can be calculated
* from the reading of denoise channel.
*
* @param pad_num Touch sensor channel number.
*/
#define touch_hal_waterproof_get_sheild_driver(driver_level) touch_ll_waterproof_get_sheild_driver(driver_level)
/**
* Set parameter of waterproof function.
*
* The waterproof function includes a shielded channel (TOUCH_PAD_NUM14) and a guard channel.
* Guard pad is used to detect the large area of water covering the touch panel.
* Shield pad is used to shield the influence of water droplets covering the touch panel.
* It is generally designed as a grid and is placed around the touch buttons.
*
* @param waterproof parameter of waterproof
*/
void touch_hal_waterproof_set_config(const touch_pad_waterproof_t *waterproof);
/**
* Get parameter of waterproof function.
*
* @param waterproof parameter of waterproof.
*/
void touch_hal_waterproof_get_config(touch_pad_waterproof_t *waterproof);
/**
* Enable parameter of waterproof function.
* Should be called after function ``touch_hal_waterproof_set_config``.
*/
void touch_hal_waterproof_enable(void);
/**
* Disable parameter of waterproof function.
*/
#define touch_hal_waterproof_disable() touch_ll_waterproof_disable()
/************************ Proximity register setting ************************/
/**
* Enable/disable proximity function of touch channels.
* The proximity sensor measurement is the accumulation of touch channel measurements.
*
* @note Supports up to three touch channels configured as proximity sensors.
* @param touch_num touch pad index
* @param enabled true: enable the proximity function; false: disable the proximity function
* @return
* - true: Configured correctly.
* - false: Configured error.
*/
bool touch_hal_enable_proximity(touch_pad_t touch_num, bool enabled);
/**
* Set touch channel number for proximity pad.
* If disable the proximity pad, point this pad to `TOUCH_PAD_NUM0`
*
* @param prox_pad The array of three proximity pads.
*/
#define touch_hal_proximity_set_channel_num(prox_pad) touch_ll_proximity_set_channel_num(prox_pad)
/**
* Get touch channel number for proximity pad.
* If disable the proximity pad, point this pad to `TOUCH_PAD_NUM0`
*
* @param prox_pad The array of three proximity pads.
*/
#define touch_hal_proximity_get_channel_num(prox_pad) touch_ll_proximity_get_channel_num(prox_pad)
/**
* Set cumulative measurement times for proximity pad.
*
* @param times The cumulative number of measurement cycles.
*/
#define touch_hal_proximity_set_meas_times(times) touch_ll_proximity_set_meas_times(times)
/**
* Get cumulative measurement times for proximity pad.
*
* @param times The cumulative number of measurement cycles.
*/
#define touch_hal_proximity_get_meas_times(times) touch_ll_proximity_get_meas_times(times)
/**
* Read current cumulative measurement times for proximity pad.
*
* @param times The cumulative number of measurement cycles.
*/
#define touch_hal_proximity_read_meas_cnt(touch_num, cnt) touch_ll_proximity_read_meas_cnt(touch_num, cnt)
/**
* Check if the touch sensor channel is the proximity pad.
*
* @param touch_num The touch sensor channel number.
*/
#define touch_hal_proximity_pad_check(touch_num) touch_ll_proximity_pad_check(touch_num)
/************** sleep pad setting ***********************/
/**
* Get parameter of touch sensor sleep channel.
* The touch sensor can works in sleep mode to wake up sleep.
* After the sleep channel is configured, users should query the channel reading using a specific function.
*
* @param slp_config Point to touch sleep pad config.
*/
void touch_hal_sleep_channel_get_config(touch_pad_sleep_channel_t *slp_config);
/**
* Set parameter of touch sensor sleep channel.
* The touch sensor can works in sleep mode to wake up sleep.
* After the sleep channel is configured, users should query the channel reading using a specific function.
*
* @note ESP32S2 only support one channel to be set sleep channel.
*
* @param pad_num touch sleep pad number.
* @param enable Enable/disable sleep pad function.
*/
void touch_hal_sleep_channel_enable(touch_pad_t pad_num, bool enable);
/**
* Set touch channel number for sleep pad.
*
* @note Only one touch sensor channel is supported in deep sleep mode.
* @param touch_num Touch sensor channel number.
*/
#define touch_hal_sleep_set_channel_num(touch_num) touch_ll_sleep_set_channel_num(touch_num)
/**
* Get touch channel number for sleep pad.
*
* @note Only one touch sensor channel is supported in deep sleep mode.
* @param touch_num Touch sensor channel number.
*/
#define touch_hal_sleep_get_channel_num(touch_num) touch_ll_sleep_get_channel_num(touch_num)
/**
* Set the trigger threshold of touch sensor in deep sleep.
* The threshold determines the sensitivity of the touch sensor.
* The threshold is the original value of the trigger state minus the benchmark value.
*
* @note The threshold at sleep is the same as the threshold before sleep.
*/
#define touch_hal_sleep_set_threshold(touch_thres) touch_ll_sleep_set_threshold(touch_thres)
/**
* Get the trigger threshold of touch sensor in deep sleep.
* The threshold determines the sensitivity of the touch sensor.
* The threshold is the original value of the trigger state minus the benchmark value.
*
* @note The threshold at sleep is the same as the threshold before sleep.
*/
#define touch_hal_sleep_get_threshold(touch_thres) touch_ll_sleep_get_threshold(touch_thres)
/**
* Enable proximity function for sleep pad.
*/
#define touch_hal_sleep_enable_approach() touch_ll_sleep_enable_approach()
/**
* Disable proximity function for sleep pad.
*/
#define touch_hal_sleep_disable_approach() touch_ll_sleep_disable_approach()
/**
* Read benchmark of touch sensor for sleep pad.
*
* @param benchmark Pointer to accept touch sensor benchmark value.
*/
#define touch_hal_sleep_read_benchmark(benchmark) touch_ll_sleep_read_benchmark(benchmark)
/**
* Read smooth data of touch sensor for sleep pad.
*/
#define touch_hal_sleep_read_smooth(smooth_data) touch_ll_sleep_read_smooth(smooth_data)
/**
* Read raw data of touch sensor for sleep pad.
*/
#define touch_hal_sleep_read_data(raw_data) touch_ll_sleep_read_data(raw_data)
/**
* Reset benchmark of touch sensor for sleep pad.
*/
#define touch_hal_sleep_reset_benchmark() touch_ll_sleep_reset_benchmark()
/**
* Read debounce of touch sensor for sleep pad.
*
* @param debounce Pointer to accept touch sensor debounce value.
*/
#define touch_hal_sleep_read_debounce(debounce) touch_ll_sleep_read_debounce(debounce)
/**
* Read proximity count of touch sensor for sleep pad.
* @param proximity_cnt Pointer to accept touch sensor proximity count value.
*/
#define touch_hal_sleep_read_proximity_cnt(approach_cnt) touch_ll_sleep_read_proximity_cnt(approach_cnt)
/**
* Get the touch pad which caused wakeup from deep sleep.
*
* @param pad_num pointer to touch pad which caused wakeup.
*/
#define touch_hal_get_wakeup_status(pad_num) touch_ll_get_wakeup_status(pad_num)
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -1,675 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*******************************************************************************
* NOTICE
* The ll is not public api, don't use in application code.
* See readme.md in soc/include/hal/readme.md
******************************************************************************/
// The Lowlevel layer for TWAI
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#include "hal/twai_types.h"
#include "soc/twai_periph.h"
/* ------------------------- Defines and Typedefs --------------------------- */
#define TWAI_LL_STATUS_RBS (0x1 << 0)
#define TWAI_LL_STATUS_DOS (0x1 << 1)
#define TWAI_LL_STATUS_TBS (0x1 << 2)
#define TWAI_LL_STATUS_TCS (0x1 << 3)
#define TWAI_LL_STATUS_RS (0x1 << 4)
#define TWAI_LL_STATUS_TS (0x1 << 5)
#define TWAI_LL_STATUS_ES (0x1 << 6)
#define TWAI_LL_STATUS_BS (0x1 << 7)
//Todo: Add Miss status support
#define TWAI_LL_INTR_RI (0x1 << 0)
#define TWAI_LL_INTR_TI (0x1 << 1)
#define TWAI_LL_INTR_EI (0x1 << 2)
//Data overrun interrupt not supported in SW due to HW peculiarities
#define TWAI_LL_INTR_EPI (0x1 << 5)
#define TWAI_LL_INTR_ALI (0x1 << 6)
#define TWAI_LL_INTR_BEI (0x1 << 7)
/*
* The following frame structure has an NEARLY identical bit field layout to
* each byte of the TX buffer. This allows for formatting and parsing frames to
* be done outside of time critical regions (i.e., ISRs). All the ISR needs to
* do is to copy byte by byte to/from the TX/RX buffer. The two reserved bits in
* TX buffer are used in the frame structure to store the self_reception and
* single_shot flags which in turn indicate the type of transmission to execute.
*/
typedef union {
struct {
struct {
uint8_t dlc: 4; //Data length code (0 to 8) of the frame
uint8_t self_reception: 1; //This frame should be transmitted using self reception command
uint8_t single_shot: 1; //This frame should be transmitted using single shot command
uint8_t rtr: 1; //This frame is a remote transmission request
uint8_t frame_format: 1; //Format of the frame (1 = extended, 0 = standard)
};
union {
struct {
uint8_t id[2]; //11 bit standard frame identifier
uint8_t data[8]; //Data bytes (0 to 8)
uint8_t reserved8[2];
} standard;
struct {
uint8_t id[4]; //29 bit extended frame identifier
uint8_t data[8]; //Data bytes (0 to 8)
} extended;
};
};
uint8_t bytes[13];
} __attribute__((packed)) twai_ll_frame_buffer_t;
_Static_assert(sizeof(twai_ll_frame_buffer_t) == 13, "TX/RX buffer type should be 13 bytes");
/* ---------------------------- Mode Register ------------------------------- */
/**
* @brief Enter reset mode
*
* When in reset mode, the TWAI controller is effectively disconnected from the
* TWAI bus and will not participate in any bus activates. Reset mode is required
* in order to write the majority of configuration registers.
*
* @param hw Start address of the TWAI registers
* @return true if reset mode was entered successfully
*
* @note Reset mode is automatically entered on BUS OFF condition
*/
static inline bool twai_ll_enter_reset_mode(twai_dev_t *hw)
{
hw->mode_reg.rm = 1;
return hw->mode_reg.rm;
}
/**
* @brief Exit reset mode
*
* When not in reset mode, the TWAI controller will take part in bus activities
* (e.g., send/receive/acknowledge messages and error frames) depending on the
* operating mode.
*
* @param hw Start address of the TWAI registers
* @return true if reset mode was exit successfully
*
* @note Reset mode must be exit to initiate BUS OFF recovery
*/
static inline bool twai_ll_exit_reset_mode(twai_dev_t *hw)
{
hw->mode_reg.rm = 0;
return !(hw->mode_reg.rm);
}
/**
* @brief Check if in reset mode
* @param hw Start address of the TWAI registers
* @return true if in reset mode
*/
static inline bool twai_ll_is_in_reset_mode(twai_dev_t *hw)
{
return hw->mode_reg.rm;
}
/**
* @brief Set operating mode of TWAI controller
*
* @param hw Start address of the TWAI registers
* @param mode Operating mode
*
* @note Must be called in reset mode
*/
static inline void twai_ll_set_mode(twai_dev_t *hw, twai_mode_t mode)
{
if (mode == TWAI_MODE_NORMAL) { //Normal Operating mode
hw->mode_reg.lom = 0;
hw->mode_reg.stm = 0;
} else if (mode == TWAI_MODE_NO_ACK) { //Self Test Mode (No Ack)
hw->mode_reg.lom = 0;
hw->mode_reg.stm = 1;
} else if (mode == TWAI_MODE_LISTEN_ONLY) { //Listen Only Mode
hw->mode_reg.lom = 1;
hw->mode_reg.stm = 0;
}
}
/* --------------------------- Command Register ----------------------------- */
/**
* @brief Set TX command
*
* Setting the TX command will cause the TWAI controller to attempt to transmit
* the frame stored in the TX buffer. The TX buffer will be occupied (i.e.,
* locked) until TX completes.
*
* @param hw Start address of the TWAI registers
*
* @note Transmit commands should be called last (i.e., after handling buffer
* release and clear data overrun) in order to prevent the other commands
* overwriting this latched TX bit with 0.
*/
static inline void twai_ll_set_cmd_tx(twai_dev_t *hw)
{
hw->command_reg.tr = 1;
}
/**
* @brief Set single shot TX command
*
* Similar to setting TX command, but the TWAI controller will not automatically
* retry transmission upon an error (e.g., due to an acknowledgement error).
*
* @param hw Start address of the TWAI registers
*
* @note Transmit commands should be called last (i.e., after handling buffer
* release and clear data overrun) in order to prevent the other commands
* overwriting this latched TX bit with 0.
*/
static inline void twai_ll_set_cmd_tx_single_shot(twai_dev_t *hw)
{
hw->command_reg.val = 0x03; //Set command_reg.tr and command_reg.at simultaneously for single shot transmittion request
}
/**
* @brief Aborts TX
*
* Frames awaiting TX will be aborted. Frames already being TX are not aborted.
* Transmission Complete Status bit is automatically set to 1.
* Similar to setting TX command, but the TWAI controller will not automatically
* retry transmission upon an error (e.g., due to acknowledge error).
*
* @param hw Start address of the TWAI registers
*
* @note Transmit commands should be called last (i.e., after handling buffer
* release and clear data overrun) in order to prevent the other commands
* overwriting this latched TX bit with 0.
*/
static inline void twai_ll_set_cmd_abort_tx(twai_dev_t *hw)
{
hw->command_reg.at = 1;
}
/**
* @brief Release RX buffer
*
* Rotates RX buffer to the next frame in the RX FIFO.
*
* @param hw Start address of the TWAI registers
*/
static inline void twai_ll_set_cmd_release_rx_buffer(twai_dev_t *hw)
{
hw->command_reg.rrb = 1;
}
/**
* @brief Clear data overrun
*
* Clears the data overrun status bit
*
* @param hw Start address of the TWAI registers
*/
static inline void twai_ll_set_cmd_clear_data_overrun(twai_dev_t *hw)
{
hw->command_reg.cdo = 1;
}
/**
* @brief Set self reception single shot command
*
* Similar to setting TX command, but the TWAI controller also simultaneously
* receive the transmitted frame and is generally used for self testing
* purposes. The TWAI controller will not ACK the received message, so consider
* using the NO_ACK operating mode.
*
* @param hw Start address of the TWAI registers
*
* @note Transmit commands should be called last (i.e., after handling buffer
* release and clear data overrun) in order to prevent the other commands
* overwriting this latched TX bit with 0.
*/
static inline void twai_ll_set_cmd_self_rx_request(twai_dev_t *hw)
{
hw->command_reg.srr = 1;
}
/**
* @brief Set self reception request command
*
* Similar to setting the self reception request, but the TWAI controller will
* not automatically retry transmission upon an error (e.g., due to and
* acknowledgement error).
*
* @param hw Start address of the TWAI registers
*
* @note Transmit commands should be called last (i.e., after handling buffer
* release and clear data overrun) in order to prevent the other commands
* overwriting this latched TX bit with 0.
*/
static inline void twai_ll_set_cmd_self_rx_single_shot(twai_dev_t *hw)
{
hw->command_reg.val = 0x12; //Set command_reg.srr and command_reg.at simultaneously for single shot self reception request
}
/* --------------------------- Status Register ------------------------------ */
/**
* @brief Get all status bits
*
* @param hw Start address of the TWAI registers
* @return Status bits
*/
static inline uint32_t twai_ll_get_status(twai_dev_t *hw)
{
return hw->status_reg.val;
}
/**
* @brief Check if RX FIFO overrun status bit is set
*
* @param hw Start address of the TWAI registers
* @return Overrun status bit
*/
static inline bool twai_ll_is_fifo_overrun(twai_dev_t *hw)
{
return hw->status_reg.dos;
}
/**
* @brief Check if previously TX was successful
*
* @param hw Start address of the TWAI registers
* @return Whether previous TX was successful
*/
static inline bool twai_ll_is_last_tx_successful(twai_dev_t *hw)
{
return hw->status_reg.tcs;
}
//Todo: Add stand alone status bit check functions when necessary
/* -------------------------- Interrupt Register ---------------------------- */
/**
* @brief Get currently set interrupts
*
* Reading the interrupt registers will automatically clear all interrupts
* except for the Receive Interrupt.
*
* @param hw Start address of the TWAI registers
* @return Bit mask of set interrupts
*/
static inline uint32_t twai_ll_get_and_clear_intrs(twai_dev_t *hw)
{
return hw->interrupt_reg.val;
}
/* ----------------------- Interrupt Enable Register ------------------------ */
/**
* @brief Set which interrupts are enabled
*
* @param hw Start address of the TWAI registers
* @param Bit mask of interrupts to enable
*
* @note Must be called in reset mode
*/
static inline void twai_ll_set_enabled_intrs(twai_dev_t *hw, uint32_t intr_mask)
{
hw->interrupt_enable_reg.val = intr_mask;
}
/* ------------------------ Bus Timing Registers --------------------------- */
/**
* @brief Set bus timing
*
* @param hw Start address of the TWAI registers
* @param brp Baud Rate Prescaler
* @param sjw Synchronization Jump Width
* @param tseg1 Timing Segment 1
* @param tseg2 Timing Segment 2
* @param triple_sampling Triple Sampling enable/disable
*
* @note Must be called in reset mode
* @note ESP32S2 brp can be any even number between 2 to 32768
*/
static inline void twai_ll_set_bus_timing(twai_dev_t *hw, uint32_t brp, uint32_t sjw, uint32_t tseg1, uint32_t tseg2, bool triple_sampling)
{
hw->bus_timing_0_reg.brp = (brp / 2) - 1;
hw->bus_timing_0_reg.sjw = sjw - 1;
hw->bus_timing_1_reg.tseg1 = tseg1 - 1;
hw->bus_timing_1_reg.tseg2 = tseg2 - 1;
hw->bus_timing_1_reg.sam = triple_sampling;
}
/* ----------------------------- ALC Register ------------------------------- */
/**
* @brief Clear Arbitration Lost Capture Register
*
* Reading the ALC register rearms the Arbitration Lost Interrupt
*
* @param hw Start address of the TWAI registers
*/
static inline void twai_ll_clear_arb_lost_cap(twai_dev_t *hw)
{
(void)hw->arbitration_lost_captue_reg.val;
//Todo: Decode ALC register
}
/* ----------------------------- ECC Register ------------------------------- */
/**
* @brief Clear Error Code Capture register
*
* Reading the ECC register rearms the Bus Error Interrupt
*
* @param hw Start address of the TWAI registers
*/
static inline void twai_ll_clear_err_code_cap(twai_dev_t *hw)
{
(void)hw->error_code_capture_reg.val;
//Todo: Decode error code capture
}
/* ----------------------------- EWL Register ------------------------------- */
/**
* @brief Set Error Warning Limit
*
* @param hw Start address of the TWAI registers
* @param ewl Error Warning Limit
*
* @note Must be called in reset mode
*/
static inline void twai_ll_set_err_warn_lim(twai_dev_t *hw, uint32_t ewl)
{
hw->error_warning_limit_reg.ewl = ewl;
}
/**
* @brief Get Error Warning Limit
*
* @param hw Start address of the TWAI registers
* @return Error Warning Limit
*/
static inline uint32_t twai_ll_get_err_warn_lim(twai_dev_t *hw)
{
return hw->error_warning_limit_reg.val;
}
/* ------------------------ RX Error Count Register ------------------------- */
/**
* @brief Get RX Error Counter
*
* @param hw Start address of the TWAI registers
* @return REC value
*
* @note REC is not frozen in reset mode. Listen only mode will freeze it. A BUS
* OFF condition automatically sets the REC to 0.
*/
static inline uint32_t twai_ll_get_rec(twai_dev_t *hw)
{
return hw->rx_error_counter_reg.val;
}
/**
* @brief Set RX Error Counter
*
* @param hw Start address of the TWAI registers
* @param rec REC value
*
* @note Must be called in reset mode
*/
static inline void twai_ll_set_rec(twai_dev_t *hw, uint32_t rec)
{
hw->rx_error_counter_reg.rxerr = rec;
}
/* ------------------------ TX Error Count Register ------------------------- */
/**
* @brief Get TX Error Counter
*
* @param hw Start address of the TWAI registers
* @return TEC value
*
* @note A BUS OFF condition will automatically set this to 128
*/
static inline uint32_t twai_ll_get_tec(twai_dev_t *hw)
{
return hw->tx_error_counter_reg.val;
}
/**
* @brief Set TX Error Counter
*
* @param hw Start address of the TWAI registers
* @param tec TEC value
*
* @note Must be called in reset mode
*/
static inline void twai_ll_set_tec(twai_dev_t *hw, uint32_t tec)
{
hw->tx_error_counter_reg.txerr = tec;
}
/* ---------------------- Acceptance Filter Registers ----------------------- */
/**
* @brief Set Acceptance Filter
* @param hw Start address of the TWAI registers
* @param code Acceptance Code
* @param mask Acceptance Mask
* @param single_filter Whether to enable single filter mode
*
* @note Must be called in reset mode
*/
static inline void twai_ll_set_acc_filter(twai_dev_t* hw, uint32_t code, uint32_t mask, bool single_filter)
{
uint32_t code_swapped = __builtin_bswap32(code);
uint32_t mask_swapped = __builtin_bswap32(mask);
for (int i = 0; i < 4; i++) {
hw->acceptance_filter.acr[i].byte = ((code_swapped >> (i * 8)) & 0xFF);
hw->acceptance_filter.amr[i].byte = ((mask_swapped >> (i * 8)) & 0xFF);
}
hw->mode_reg.afm = single_filter;
}
/* ------------------------- TX/RX Buffer Registers ------------------------- */
/**
* @brief Copy a formatted TWAI frame into TX buffer for transmission
*
* @param hw Start address of the TWAI registers
* @param tx_frame Pointer to formatted frame
*
* @note Call twai_ll_format_frame_buffer() to format a frame
*/
static inline void twai_ll_set_tx_buffer(twai_dev_t *hw, twai_ll_frame_buffer_t *tx_frame)
{
//Copy formatted frame into TX buffer
for (int i = 0; i < 13; i++) {
hw->tx_rx_buffer[i].val = tx_frame->bytes[i];
}
}
/**
* @brief Copy a received frame from the RX buffer for parsing
*
* @param hw Start address of the TWAI registers
* @param rx_frame Pointer to store formatted frame
*
* @note Call twai_ll_prase_frame_buffer() to parse the formatted frame
*/
static inline void twai_ll_get_rx_buffer(twai_dev_t *hw, twai_ll_frame_buffer_t *rx_frame)
{
//Copy RX buffer registers into frame
for (int i = 0; i < 13; i++) {
rx_frame->bytes[i] = hw->tx_rx_buffer[i].byte;
}
}
/**
* @brief Format contents of a TWAI frame into layout of TX Buffer
*
* This function encodes a message into a frame structure. The frame structure
* has an identical layout to the TX buffer, allowing the frame structure to be
* directly copied into TX buffer.
*
* @param[in] 11bit or 29bit ID
* @param[in] dlc Data length code
* @param[in] data Pointer to an 8 byte array containing data. NULL if no data
* @param[in] format Type of TWAI frame
* @param[in] single_shot Frame will not be retransmitted on failure
* @param[in] self_rx Frame will also be simultaneously received
* @param[out] tx_frame Pointer to store formatted frame
*/
static inline void twai_ll_format_frame_buffer(uint32_t id, uint8_t dlc, const uint8_t *data,
uint32_t flags, twai_ll_frame_buffer_t *tx_frame)
{
bool is_extd = flags & TWAI_MSG_FLAG_EXTD;
bool is_rtr = flags & TWAI_MSG_FLAG_RTR;
//Set frame information
tx_frame->dlc = dlc;
tx_frame->frame_format = is_extd;
tx_frame->rtr = is_rtr;
tx_frame->self_reception = (flags & TWAI_MSG_FLAG_SELF) ? 1 : 0;
tx_frame->single_shot = (flags & TWAI_MSG_FLAG_SS) ? 1 : 0;
//Set ID. The ID registers are big endian and left aligned, therefore a bswap will be required
if (is_extd) {
uint32_t id_temp = __builtin_bswap32((id & TWAI_EXTD_ID_MASK) << 3); //((id << 3) >> 8*(3-i))
for (int i = 0; i < 4; i++) {
tx_frame->extended.id[i] = (id_temp >> (8 * i)) & 0xFF;
}
} else {
uint32_t id_temp = __builtin_bswap16((id & TWAI_STD_ID_MASK) << 5); //((id << 5) >> 8*(1-i))
for (int i = 0; i < 2; i++) {
tx_frame->standard.id[i] = (id_temp >> (8 * i)) & 0xFF;
}
}
uint8_t *data_buffer = (is_extd) ? tx_frame->extended.data : tx_frame->standard.data;
if (!is_rtr) { //Only copy data if the frame is a data frame (i.e not a remote frame)
for (int i = 0; (i < dlc) && (i < TWAI_FRAME_MAX_DLC); i++) {
data_buffer[i] = data[i];
}
}
}
/**
* @brief Parse formatted TWAI frame (RX Buffer Layout) into its constituent contents
*
* @param[in] rx_frame Pointer to formatted frame
* @param[out] id 11 or 29bit ID
* @param[out] dlc Data length code
* @param[out] data Data. Left over bytes set to 0.
* @param[out] format Type of TWAI frame
*/
static inline void twai_ll_prase_frame_buffer(twai_ll_frame_buffer_t *rx_frame, uint32_t *id, uint8_t *dlc,
uint8_t *data, uint32_t *flags)
{
//Copy frame information
*dlc = rx_frame->dlc;
uint32_t flags_temp = 0;
flags_temp |= (rx_frame->frame_format) ? TWAI_MSG_FLAG_EXTD : 0;
flags_temp |= (rx_frame->rtr) ? TWAI_MSG_FLAG_RTR : 0;
flags_temp |= (rx_frame->dlc > TWAI_FRAME_MAX_DLC) ? TWAI_MSG_FLAG_DLC_NON_COMP : 0;
*flags = flags_temp;
//Copy ID. The ID registers are big endian and left aligned, therefore a bswap will be required
if (rx_frame->frame_format) {
uint32_t id_temp = 0;
for (int i = 0; i < 4; i++) {
id_temp |= rx_frame->extended.id[i] << (8 * i);
}
id_temp = __builtin_bswap32(id_temp) >> 3; //((byte[i] << 8*(3-i)) >> 3)
*id = id_temp & TWAI_EXTD_ID_MASK;
} else {
uint32_t id_temp = 0;
for (int i = 0; i < 2; i++) {
id_temp |= rx_frame->standard.id[i] << (8 * i);
}
id_temp = __builtin_bswap16(id_temp) >> 5; //((byte[i] << 8*(1-i)) >> 5)
*id = id_temp & TWAI_STD_ID_MASK;
}
uint8_t *data_buffer = (rx_frame->frame_format) ? rx_frame->extended.data : rx_frame->standard.data;
//Only copy data if the frame is a data frame (i.e. not a remote frame)
int data_length = (rx_frame->rtr) ? 0 : ((rx_frame->dlc > TWAI_FRAME_MAX_DLC) ? TWAI_FRAME_MAX_DLC : rx_frame->dlc);
for (int i = 0; i < data_length; i++) {
data[i] = data_buffer[i];
}
//Set remaining bytes of data to 0
for (int i = data_length; i < TWAI_FRAME_MAX_DLC; i++) {
data[i] = 0;
}
}
/* ----------------------- RX Message Count Register ------------------------ */
/**
* @brief Get RX Message Counter
*
* @param hw Start address of the TWAI registers
* @return RX Message Counter
*/
static inline uint32_t twai_ll_get_rx_msg_count(twai_dev_t *hw)
{
return hw->rx_message_counter_reg.val;
}
/* ------------------------- Clock Divider Register ------------------------- */
/**
* @brief Set CLKOUT Divider and enable/disable
*
* Configure CLKOUT. CLKOUT is a pre-scaled version of APB CLK. Divider can be
* 1, or any even number from 2 to 490. Set the divider to 0 to disable CLKOUT.
*
* @param hw Start address of the TWAI registers
* @param divider Divider for CLKOUT (any even number from 2 to 490). Set to 0 to disable CLKOUT
*/
static inline void twai_ll_set_clkout(twai_dev_t *hw, uint32_t divider)
{
if (divider >= 2 && divider <= 490) {
hw->clock_divider_reg.co = 0;
hw->clock_divider_reg.cd = (divider / 2) - 1;
} else if (divider == 1) {
//Setting the divider reg to max value (255) means a divider of 1
hw->clock_divider_reg.co = 0;
hw->clock_divider_reg.cd = 255;
} else {
hw->clock_divider_reg.co = 1;
hw->clock_divider_reg.cd = 0;
}
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,805 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The LL layer for UART register operations.
// Note that most of the register operations in this layer are non-atomic operations.
#pragma once
#include "hal/uart_types.h"
#include "soc/uart_periph.h"
#ifdef __cplusplus
extern "C" {
#endif
// The default fifo depth
#define UART_LL_FIFO_DEF_LEN (UART_FIFO_LEN)
// Get UART hardware instance with giving uart num
#define UART_LL_GET_HW(num) (((num) == 0) ? (&UART0) : (&UART1))
// Define UART interrupts
typedef enum {
UART_INTR_RXFIFO_FULL = (0x1<<0),
UART_INTR_TXFIFO_EMPTY = (0x1<<1),
UART_INTR_PARITY_ERR = (0x1<<2),
UART_INTR_FRAM_ERR = (0x1<<3),
UART_INTR_RXFIFO_OVF = (0x1<<4),
UART_INTR_DSR_CHG = (0x1<<5),
UART_INTR_CTS_CHG = (0x1<<6),
UART_INTR_BRK_DET = (0x1<<7),
UART_INTR_RXFIFO_TOUT = (0x1<<8),
UART_INTR_SW_XON = (0x1<<9),
UART_INTR_SW_XOFF = (0x1<<10),
UART_INTR_GLITCH_DET = (0x1<<11),
UART_INTR_TX_BRK_DONE = (0x1<<12),
UART_INTR_TX_BRK_IDLE = (0x1<<13),
UART_INTR_TX_DONE = (0x1<<14),
UART_INTR_RS485_PARITY_ERR = (0x1<<15),
UART_INTR_RS485_FRM_ERR = (0x1<<16),
UART_INTR_RS485_CLASH = (0x1<<17),
UART_INTR_CMD_CHAR_DET = (0x1<<18),
} uart_intr_t;
/**
* @brief Configure the baud-rate.
*
* @param hw Beginning address of the peripheral registers.
* @param baud The baud rate to be set. When the source clock is APB, the max baud rate is `UART_LL_BITRATE_MAX`
* @param source_clk The UART source clock. The source clock can be APB clock or REF_TICK.
* If the source clock is REF_TICK, the UART can still work when the APB changes.
*
* @return None
*/
static inline void uart_ll_set_baudrate(uart_dev_t *hw, uart_sclk_t source_clk, uint32_t baud)
{
uint32_t sclk_freq = (source_clk == UART_SCLK_APB) ? APB_CLK_FREQ : REF_CLK_FREQ;
uint32_t clk_div = ((sclk_freq) << 4) / baud;
// The baud rate configuration register is divided into
// an integer part and a fractional part.
hw->clk_div.div_int = clk_div >> 4;
hw->clk_div.div_frag = clk_div & 0xf;
// Configure the UART source clock.
hw->conf0.tick_ref_always_on = (source_clk == UART_SCLK_APB);
}
/**
* @brief Get the current baud-rate.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The current baudrate
*/
static inline uint32_t uart_ll_get_baudrate(uart_dev_t *hw)
{
uint32_t src_clk = hw->conf0.tick_ref_always_on ? APB_CLK_FREQ : REF_CLK_FREQ;
typeof(hw->clk_div) div_reg = hw->clk_div;
return ((src_clk << 4)) / ((div_reg.div_int << 4) | div_reg.div_frag);
}
/**
* @brief Enable the UART interrupt based on the given mask.
*
* @param hw Beginning address of the peripheral registers.
* @param mask The bitmap of the interrupts need to be enabled.
*
* @return None
*/
static inline void uart_ll_ena_intr_mask(uart_dev_t *hw, uint32_t mask)
{
hw->int_ena.val |= mask;
}
/**
* @brief Disable the UART interrupt based on the given mask.
*
* @param hw Beginning address of the peripheral registers.
* @param mask The bitmap of the interrupts need to be disabled.
*
* @return None
*/
static inline void uart_ll_disable_intr_mask(uart_dev_t *hw, uint32_t mask)
{
hw->int_ena.val &= (~mask);
}
/**
* @brief Get the UART interrupt status.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The UART interrupt status.
*/
static inline uint32_t uart_ll_get_intsts_mask(uart_dev_t *hw)
{
return hw->int_st.val;
}
/**
* @brief Clear the UART interrupt status based on the given mask.
*
* @param hw Beginning address of the peripheral registers.
* @param mask The bitmap of the interrupts need to be cleared.
*
* @return None
*/
static inline void uart_ll_clr_intsts_mask(uart_dev_t *hw, uint32_t mask)
{
hw->int_clr.val = mask;
}
/**
* @brief Get status of enabled interrupt.
*
* @param hw Beginning address of the peripheral registers.
*
* @return interrupt enable value
*/
static inline uint32_t uart_ll_get_intr_ena_status(uart_dev_t *hw)
{
return hw->int_ena.val;
}
/**
* @brief Read the UART rxfifo.
*
* @param hw Beginning address of the peripheral registers.
* @param buf The data buffer. The buffer size should be large than 128 byts.
* @param rd_len The data length needs to be read.
*
* @return None.
*/
static inline void uart_ll_read_rxfifo(uart_dev_t *hw, uint8_t *buf, uint32_t rd_len)
{
//Get the UART fifo addr, ESP32-S2 have 2 UART
uint32_t fifo_addr = (hw == &UART0) ? UART_FIFO_AHB_REG(0) : UART_FIFO_AHB_REG(1);
for(int i = 0; i < rd_len; i++) {
buf[i] = READ_PERI_REG(fifo_addr);
}
}
/**
* @brief Write byte to the UART txfifo.
*
* @param hw Beginning address of the peripheral registers.
* @param buf The data buffer.
* @param wr_len The data length needs to be writen.
*
* @return None
*/
static inline void uart_ll_write_txfifo(uart_dev_t *hw, const uint8_t *buf, uint32_t wr_len)
{
//Get the UART fifo addr, ESP32-S2 have 2 UART
uint32_t fifo_addr = (hw == &UART0) ? UART_FIFO_AHB_REG(0) : UART_FIFO_AHB_REG(1);
for(int i = 0; i < wr_len; i++) {
WRITE_PERI_REG(fifo_addr, buf[i]);
}
}
/**
* @brief Reset the UART hw rxfifo.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None
*/
static inline void uart_ll_rxfifo_rst(uart_dev_t *hw)
{
hw->conf0.rxfifo_rst = 1;
hw->conf0.rxfifo_rst = 0;
}
/**
* @brief Reset the UART hw txfifo.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None
*/
static inline void uart_ll_txfifo_rst(uart_dev_t *hw)
{
hw->conf0.txfifo_rst = 1;
hw->conf0.txfifo_rst = 0;
}
/**
* @brief Get the length of readable data in UART rxfifo.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The readable data length in rxfifo.
*/
static inline uint32_t uart_ll_get_rxfifo_len(uart_dev_t *hw)
{
return hw->status.rxfifo_cnt;
}
/**
* @brief Get the writable data length of UART txfifo.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The data length of txfifo can be written.
*/
static inline uint32_t uart_ll_get_txfifo_len(uart_dev_t *hw)
{
return UART_LL_FIFO_DEF_LEN - hw->status.txfifo_cnt;
}
/**
* @brief Configure the UART stop bit.
*
* @param hw Beginning address of the peripheral registers.
* @param stop_bit The stop bit number to be set.
*
* @return None.
*/
static inline void uart_ll_set_stop_bits(uart_dev_t *hw, uart_stop_bits_t stop_bit)
{
hw->conf0.stop_bit_num = stop_bit;
}
/**
* @brief Get the configuration of the UART stop bit.
*
* @param hw Beginning address of the peripheral registers.
* @param stop_bit The pointer to accept the stop bit configuration
*
* @return None.
*/
static inline void uart_ll_get_stop_bits(uart_dev_t *hw, uart_stop_bits_t *stop_bit)
{
*stop_bit = hw->conf0.stop_bit_num;
}
/**
* @brief Configure the UART parity check mode.
*
* @param hw Beginning address of the peripheral registers.
* @param parity_mode The parity check mode to be set.
*
* @return None.
*/
static inline void uart_ll_set_parity(uart_dev_t *hw, uart_parity_t parity_mode)
{
if(parity_mode != UART_PARITY_DISABLE) {
hw->conf0.parity = parity_mode & 0x1;
}
hw->conf0.parity_en = (parity_mode >> 1) & 0x1;
}
/**
* @brief Get the UART parity check mode configuration.
*
* @param hw Beginning address of the peripheral registers.
* @param parity_mode The pointer to accept the parity check mode configuration.
*
* @return None.
*/
static inline void uart_ll_get_parity(uart_dev_t *hw, uart_parity_t *parity_mode)
{
if(hw->conf0.parity_en) {
*parity_mode = 0X2 | hw->conf0.parity;
} else {
*parity_mode = UART_PARITY_DISABLE;
}
}
/**
* @brief Set the UART rxfifo full threshold value. When the data in rxfifo is more than the threshold value,
* it will produce rxfifo_full_int_raw interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param full_thrhd The full threshold value of the rxfifo. `full_thrhd` should be less than `UART_LL_FIFO_DEF_LEN`.
*
* @return None.
*/
static inline void uart_ll_set_rxfifo_full_thr(uart_dev_t *hw, uint16_t full_thrhd)
{
hw->conf1.rxfifo_full_thrhd = full_thrhd;
}
/**
* @brief Set the txfifo empty threshold. when the data length in txfifo is less than threshold value,
* it will produce txfifo_empty_int_raw interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param empty_thrhd The empty threshold of txfifo.
*
* @return None.
*/
static inline void uart_ll_set_txfifo_empty_thr(uart_dev_t *hw, uint16_t empty_thrhd)
{
hw->conf1.txfifo_empty_thrhd = empty_thrhd;
}
/**
* @brief Set the UART rx-idle threshold value. when receiver takes more time than rx_idle_thrhd to receive a byte data,
* it will produce frame end signal for uhci to stop receiving data.
*
* @param hw Beginning address of the peripheral registers.
* @param rx_idle_thr The rx-idle threshold to be set.
*
* @return None.
*/
static inline void uart_ll_set_rx_idle_thr(uart_dev_t *hw, uint32_t rx_idle_thr)
{
hw->idle_conf.rx_idle_thrhd = rx_idle_thr;
}
/**
* @brief Configure the duration time between transfers.
*
* @param hw Beginning address of the peripheral registers.
* @param idle_num the duration time between transfers.
*
* @return None.
*/
static inline void uart_ll_set_tx_idle_num(uart_dev_t *hw, uint32_t idle_num)
{
hw->idle_conf.tx_idle_num = idle_num;
}
/**
* @brief Configure the transmiter to send break chars.
*
* @param hw Beginning address of the peripheral registers.
* @param break_num The number of the break chars need to be send.
*
* @return None.
*/
static inline void uart_ll_tx_break(uart_dev_t *hw, uint32_t break_num)
{
if(break_num > 0) {
hw->idle_conf.tx_brk_num = break_num;
hw->conf0.txd_brk = 1;
} else {
hw->conf0.txd_brk = 0;
}
}
/**
* @brief Configure the UART hardware flow control.
*
* @param hw Beginning address of the peripheral registers.
* @param flow_ctrl The hw flow control configuration.
* @param rx_thrs The rx flow control signal will be active if the data length in rxfifo is more than this value.
*
* @return None.
*/
static inline void uart_ll_set_hw_flow_ctrl(uart_dev_t *hw, uart_hw_flowcontrol_t flow_ctrl, uint32_t rx_thrs)
{
//only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
hw->mem_conf.rx_flow_thrhd = rx_thrs;
hw->conf1.rx_flow_en = 1;
} else {
hw->conf1.rx_flow_en = 0;
}
if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
hw->conf0.tx_flow_en = 1;
} else {
hw->conf0.tx_flow_en = 0;
}
}
/**
* @brief Configure the hardware flow control.
*
* @param hw Beginning address of the peripheral registers.
* @param flow_ctrl A pointer to accept the hw flow control configuration.
*
* @return None.
*/
static inline void uart_ll_get_hw_flow_ctrl(uart_dev_t *hw, uart_hw_flowcontrol_t *flow_ctrl)
{
*flow_ctrl = UART_HW_FLOWCTRL_DISABLE;
if(hw->conf1.rx_flow_en) {
*flow_ctrl |= UART_HW_FLOWCTRL_RTS;
}
if(hw->conf0.tx_flow_en) {
*flow_ctrl |= UART_HW_FLOWCTRL_CTS;
}
}
/**
* @brief Configure the software flow control.
*
* @param hw Beginning address of the peripheral registers.
* @param flow_ctrl The UART sofware flow control settings.
* @param sw_flow_ctrl_en Set true to enable software flow control, otherwise set it false.
*
* @return None.
*/
static inline void uart_ll_set_sw_flow_ctrl(uart_dev_t *hw, uart_sw_flowctrl_t *flow_ctrl, bool sw_flow_ctrl_en)
{
if(sw_flow_ctrl_en) {
hw->flow_conf.xonoff_del = 1;
hw->flow_conf.sw_flow_con_en = 1;
hw->swfc_conf1.xon_threshold = flow_ctrl->xon_thrd;
hw->swfc_conf0.xoff_threshold = flow_ctrl->xoff_thrd;
hw->swfc_conf1.xon_char = flow_ctrl->xon_char;
hw->swfc_conf0.xoff_char = flow_ctrl->xoff_char;
} else {
hw->flow_conf.sw_flow_con_en = 0;
hw->flow_conf.xonoff_del = 0;
}
}
/**
* @brief Configure the AT cmd char. When the receiver receives a continuous AT cmd char, it will produce at_cmd_char_det interrupt.
*
* @param hw Beginning address of the peripheral registers.
* @param cmd_char The AT cmd char configuration.The configuration member is:
* - cmd_char The AT cmd character
* - char_num The number of received AT cmd char must be equal to or greater than this value
* - gap_tout The interval between each AT cmd char, when the duration is less than this value, it will not take this data as AT cmd char
* - pre_idle The idle time before the first AT cmd char, when the duration is less than this value, it will not take the previous data as the last AT cmd char
* - post_idle The idle time after the last AT cmd char, when the duration is less than this value, it will not take this data as the first AT cmd char
*
* @return None.
*/
static inline void uart_ll_set_at_cmd_char(uart_dev_t *hw, uart_at_cmd_t *cmd_char)
{
hw->at_cmd_char.data = cmd_char->cmd_char;
hw->at_cmd_char.char_num = cmd_char->char_num;
hw->at_cmd_postcnt.post_idle_num = cmd_char->post_idle;
hw->at_cmd_precnt.pre_idle_num = cmd_char->pre_idle;
hw->at_cmd_gaptout.rx_gap_tout = cmd_char->gap_tout;
}
/**
* @brief Set the UART data bit mode.
*
* @param hw Beginning address of the peripheral registers.
* @param data_bit The data bit mode to be set.
*
* @return None.
*/
static inline void uart_ll_set_data_bit_num(uart_dev_t *hw, uart_word_length_t data_bit)
{
hw->conf0.bit_num = data_bit;
}
/**
* @brief Get the UART source clock.
*
* @param hw Beginning address of the peripheral registers.
* @param source_clk The pointer to accept the UART source clock configuration.
*
* @return None.
*/
static inline void uart_ll_get_sclk(uart_dev_t *hw, uart_sclk_t* source_clk)
{
*source_clk = hw->conf0.tick_ref_always_on ? UART_SCLK_APB : UART_SCLK_REF_TICK;
}
/**
* @brief Set the rts active level.
*
* @param hw Beginning address of the peripheral registers.
* @param level The rts active level, 0 or 1.
*
* @return None.
*/
static inline void uart_ll_set_rts_active_level(uart_dev_t *hw, int level)
{
hw->conf0.sw_rts = level & 0x1;
}
/**
* @brief Set the dtr active level.
*
* @param hw Beginning address of the peripheral registers.
* @param level The dtr active level, 0 or 1.
*
* @return None.
*/
static inline void uart_ll_set_dtr_active_level(uart_dev_t *hw, int level)
{
hw->conf0.sw_dtr = level & 0x1;
}
/**
* @brief Set the UART wakeup threshold.
*
* @param hw Beginning address of the peripheral registers.
* @param wakeup_thrd The wakeup threshold value to be set. When the input rx edge changes more than this value,
* the UART will active from light sleeping mode.
*
* @return None.
*/
static inline void uart_ll_set_wakeup_thrd(uart_dev_t *hw, uint32_t wakeup_thrd)
{
hw->sleep_conf.active_threshold = wakeup_thrd - SOC_UART_MIN_WAKEUP_THRESH;
}
/**
* @brief Configure the UART work in normal mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_normal(uart_dev_t *hw)
{
hw->rs485_conf.en = 0;
hw->rs485_conf.tx_rx_en = 0;
hw->rs485_conf.rx_busy_tx_en = 0;
hw->conf0.irda_en = 0;
}
/**
* @brief Configure the UART work in rs485_app_ctrl mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_rs485_app_ctrl(uart_dev_t *hw)
{
// Application software control, remove echo
hw->rs485_conf.rx_busy_tx_en = 1;
hw->conf0.irda_en = 0;
hw->conf0.sw_rts = 0;
hw->conf0.irda_en = 0;
hw->rs485_conf.en = 1;
}
/**
* @brief Configure the UART work in rs485_half_duplex mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_rs485_half_duplex(uart_dev_t *hw)
{
// Enable receiver, sw_rts = 1 generates low level on RTS pin
hw->conf0.sw_rts = 1;
// Must be set to 0 to automatically remove echo
hw->rs485_conf.tx_rx_en = 0;
// This is to void collision
hw->rs485_conf.rx_busy_tx_en = 1;
hw->conf0.irda_en = 0;
hw->rs485_conf.en = 1;
}
/**
* @brief Configure the UART work in collision_detect mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_collision_detect(uart_dev_t *hw)
{
hw->conf0.irda_en = 0;
// Transmitters output signal loop back to the receivers input signal
hw->rs485_conf.tx_rx_en = 1 ;
// Transmitter should send data when the receiver is busy
hw->rs485_conf.rx_busy_tx_en = 1;
hw->conf0.sw_rts = 0;
hw->rs485_conf.en = 1;
}
/**
* @brief Configure the UART work in irda mode.
*
* @param hw Beginning address of the peripheral registers.
*
* @return None.
*/
static inline void uart_ll_set_mode_irda(uart_dev_t *hw)
{
hw->rs485_conf.en = 0;
hw->rs485_conf.tx_rx_en = 0;
hw->rs485_conf.rx_busy_tx_en = 0;
hw->conf0.sw_rts = 0;
hw->conf0.irda_en = 1;
}
/**
* @brief Set uart mode.
*
* @param hw Beginning address of the peripheral registers.
* @param mode The UART mode to be set.
*
* @return None.
*/
static inline void uart_ll_set_mode(uart_dev_t *hw, uart_mode_t mode)
{
switch (mode) {
default:
case UART_MODE_UART:
uart_ll_set_mode_normal(hw);
break;
case UART_MODE_RS485_COLLISION_DETECT:
uart_ll_set_mode_collision_detect(hw);
break;
case UART_MODE_RS485_APP_CTRL:
uart_ll_set_mode_rs485_app_ctrl(hw);
break;
case UART_MODE_RS485_HALF_DUPLEX:
uart_ll_set_mode_rs485_half_duplex(hw);
break;
case UART_MODE_IRDA:
uart_ll_set_mode_irda(hw);
break;
}
}
/**
* @brief Get the UART AT cmd char configuration.
*
* @param hw Beginning address of the peripheral registers.
* @param cmd_char The Pointer to accept value of UART AT cmd char.
* @param char_num Pointer to accept the repeat number of UART AT cmd char.
*
* @return None.
*/
static inline void uart_ll_get_at_cmd_char(uart_dev_t *hw, uint8_t *cmd_char, uint8_t *char_num)
{
*cmd_char = hw->at_cmd_char.data;
*char_num = hw->at_cmd_char.char_num;
}
/**
* @brief Get the UART wakeup threshold value.
*
* @param hw Beginning address of the peripheral registers.
*
* @return The UART wakeup threshold value.
*/
static inline uint32_t uart_ll_get_wakeup_thrd(uart_dev_t *hw)
{
return hw->sleep_conf.active_threshold + SOC_UART_MIN_WAKEUP_THRESH;
}
/**
* @brief Get the UART data bit configuration.
*
* @param hw Beginning address of the peripheral registers.
* @param data_bit The pointer to accept the UART data bit configuration.
*
* @return The bit mode.
*/
static inline void uart_ll_get_data_bit_num(uart_dev_t *hw, uart_word_length_t *data_bit)
{
*data_bit = hw->conf0.bit_num;
}
/**
* @brief Check if the UART sending state machine is in the IDLE state.
*
* @param hw Beginning address of the peripheral registers.
*
* @return True if the state machine is in the IDLE state, otherwise false is returned.
*/
static inline bool uart_ll_is_tx_idle(uart_dev_t *hw)
{
return ((hw->status.txfifo_cnt == 0) && (hw->fsm_status.st_utx_out == 0));
}
/**
* @brief Check if the UART rts flow control is enabled.
*
* @param hw Beginning address of the peripheral registers.
*
* @return True if hw rts flow control is enabled, otherwise false is returned.
*/
static inline bool uart_ll_is_hw_rts_en(uart_dev_t *hw)
{
return hw->conf1.rx_flow_en;
}
/**
* @brief Check if the UART cts flow control is enabled.
*
* @param hw Beginning address of the peripheral registers.
*
* @return True if hw cts flow control is enabled, otherwise false is returned.
*/
static inline bool uart_ll_is_hw_cts_en(uart_dev_t *hw)
{
return hw->conf0.tx_flow_en;
}
/**
* @brief Configure TX signal loop back to RX module, just for the testing purposes
*
* @param hw Beginning address of the peripheral registers.
* @param loop_back_en Set ture to enable the loop back function, else set it false.
*
* @return None
*/
static inline void uart_ll_set_loop_back(uart_dev_t *hw, bool loop_back_en)
{
hw->conf0.loopback = loop_back_en;
}
/**
* @brief Inverse the UART signal with the given mask.
*
* @param hw Beginning address of the peripheral registers.
* @param inv_mask The UART signal bitmap needs to be inversed.
* Use the ORred mask of `uart_signal_inv_t`;
*
* @return None.
*/
static inline void uart_ll_inverse_signal(uart_dev_t *hw, uint32_t inv_mask)
{
typeof(hw->conf0) conf0_reg = hw->conf0;
conf0_reg.irda_tx_inv = (inv_mask & UART_SIGNAL_IRDA_TX_INV) ? 1 : 0;
conf0_reg.irda_rx_inv = (inv_mask & UART_SIGNAL_IRDA_RX_INV) ? 1 : 0;
conf0_reg.rxd_inv = (inv_mask & UART_SIGNAL_RXD_INV) ? 1 : 0;
conf0_reg.cts_inv = (inv_mask & UART_SIGNAL_CTS_INV) ? 1 : 0;
conf0_reg.dsr_inv = (inv_mask & UART_SIGNAL_DSR_INV) ? 1 : 0;
conf0_reg.txd_inv = (inv_mask & UART_SIGNAL_TXD_INV) ? 1 : 0;
conf0_reg.rts_inv = (inv_mask & UART_SIGNAL_RTS_INV) ? 1 : 0;
conf0_reg.dtr_inv = (inv_mask & UART_SIGNAL_DTR_INV) ? 1 : 0;
hw->conf0.val = conf0_reg.val;
}
/**
* @brief Configure the timeout value for receiver receiving a byte, and enable rx timeout function.
*
* @param hw Beginning address of the peripheral registers.
* @param tout_thrd The timeout value as UART bit time. The rx timeout function will be disabled if `tout_thrd == 0`.
*
* @return None.
*/
static inline void uart_ll_set_rx_tout(uart_dev_t *hw, uint16_t tout_thrd)
{
uint16_t tout_val = tout_thrd;
if(tout_thrd > 0) {
hw->mem_conf.rx_tout_thrhd = tout_val;
hw->conf1.rx_tout_en = 1;
} else {
hw->conf1.rx_tout_en = 0;
}
}
/**
* @brief Get the timeout value for receiver receiving a byte.
*
* @param hw Beginning address of the peripheral registers.
*
* @return tout_thr The timeout threshold value. If timeout feature is disabled returns 0.
*/
static inline uint16_t uart_ll_get_rx_tout_thr(uart_dev_t *hw)
{
uint16_t tout_thrd = 0;
if(hw->conf1.rx_tout_en > 0) {
tout_thrd = hw->mem_conf.rx_tout_thrhd;
}
return tout_thrd;
}
/**
* @brief Get UART maximum timeout threshold.
*
* @param hw Beginning address of the peripheral registers.
*
* @return maximum timeout threshold.
*/
static inline uint16_t uart_ll_max_tout_thrd(uart_dev_t *hw)
{
return UART_RX_TOUT_THRHD_V;
}
#ifdef __cplusplus
}
#endif

View File

@@ -1,42 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "soc/soc.h"
#include "soc/system_reg.h"
#include "soc/gpio_sig_map.h"
#include "soc/usb_periph.h"
static inline void usb_ll_int_phy_enable(void)
{
USB_WRAP.otg_conf.pad_enable = 1;
USB_WRAP.otg_conf.phy_sel = 0;
}
static inline void usb_ll_ext_phy_enable(void)
{
USB_WRAP.otg_conf.pad_enable = 1;
USB_WRAP.otg_conf.phy_sel = 1;
}
static inline void usb_ll_int_phy_pullup_conf(bool dp_pu, bool dp_pd, bool dm_pu, bool dm_pd)
{
usb_wrap_otg_conf_reg_t conf = USB_WRAP.otg_conf;
conf.pad_pull_override = 1;
conf.dp_pullup = dp_pu;
conf.dp_pulldown = dp_pd;
conf.dm_pullup = dm_pu;
conf.dm_pulldown = dp_pd;
USB_WRAP.otg_conf = conf;
}

View File

@@ -1,148 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sys/param.h>
#include <assert.h>
#include "hal/systimer_hal.h"
#include "hal/systimer_ll.h"
#include "hal/systimer_types.h"
#include "soc/systimer_caps.h"
#include "soc/rtc.h"
#define SYSTIMER_TICKS_PER_US (80) // Number of timer ticks per microsecond
uint64_t systimer_hal_get_counter_value(systimer_counter_id_t counter_id)
{
uint32_t lo, lo_start, hi;
/* Set the "update" bit and wait for acknowledgment */
systimer_ll_counter_snapshot();
while (!systimer_ll_is_counter_value_valid());
/* Read LO, HI, then LO again, check that LO returns the same value.
* This accounts for the case when an interrupt may happen between reading
* HI and LO values, and this function may get called from the ISR.
* In this case, the repeated read will return consistent values.
*/
lo_start = systimer_ll_get_counter_value_low();
do {
lo = lo_start;
hi = systimer_ll_get_counter_value_high();
lo_start = systimer_ll_get_counter_value_low();
} while (lo_start != lo);
systimer_counter_value_t result = {
.lo = lo,
.hi = hi
};
return result.val;
}
uint64_t systimer_hal_get_time(systimer_counter_id_t counter_id)
{
return systimer_hal_get_counter_value(counter_id) / SYSTIMER_TICKS_PER_US;
}
void systimer_hal_set_alarm_value(systimer_alarm_id_t alarm_id, uint64_t timestamp)
{
int64_t offset = SYSTIMER_TICKS_PER_US * 2;
uint64_t now_time = systimer_hal_get_counter_value(SYSTIMER_COUNTER_0);
systimer_counter_value_t alarm = { .val = MAX(timestamp * SYSTIMER_TICKS_PER_US, now_time + offset) };
do {
systimer_ll_disable_alarm(alarm_id);
systimer_ll_set_alarm_value(alarm_id, alarm.val);
systimer_ll_enable_alarm(alarm_id);
now_time = systimer_hal_get_counter_value(SYSTIMER_COUNTER_0);
int64_t delta = (int64_t)alarm.val - (int64_t)now_time;
if (delta <= 0 && !systimer_ll_is_alarm_int_fired(alarm_id)) {
// new alarm is less than the counter and the interrupt flag is not set
offset += -1 * delta + SYSTIMER_TICKS_PER_US * 2;
alarm.val = now_time + offset;
} else {
// finish if either (alarm > counter) or the interrupt flag is already set.
break;
}
} while (1);
}
uint64_t systimer_hal_get_alarm_value(systimer_alarm_id_t alarm_id)
{
return systimer_ll_get_alarm_value(alarm_id);
}
void systimer_hal_enable_alarm_int(systimer_alarm_id_t alarm_id)
{
systimer_ll_enable_alarm_int(alarm_id);
}
void systimer_hal_on_apb_freq_update(uint32_t apb_ticks_per_us)
{
/* If this function was called when switching APB clock to PLL, don't need
* do anything: the SYSTIMER_TIMER_PLL_STEP is already correct.
* If this was called when switching APB clock to XTAL, need to adjust
* XTAL_STEP value accordingly.
*/
if (apb_ticks_per_us != SYSTIMER_TICKS_PER_US) {
assert((SYSTIMER_TICKS_PER_US % apb_ticks_per_us) == 0 && "TICK_PER_US should be divisible by APB frequency (in MHz)");
systimer_ll_set_step_for_xtal(SYSTIMER_TICKS_PER_US / apb_ticks_per_us);
}
}
void systimer_hal_counter_value_advance(systimer_counter_id_t counter_id, int64_t time_us)
{
systimer_counter_value_t new_count = { .val = systimer_hal_get_counter_value(counter_id) + time_us * SYSTIMER_TICKS_PER_US };
systimer_ll_load_counter_value(new_count.val);
systimer_ll_apply_counter_value();
}
void systimer_hal_enable_counter(systimer_counter_id_t counter_id)
{
(void)counter_id;
}
void systimer_hal_init(void)
{
assert(rtc_clk_xtal_freq_get() == 40 && "update the step for xtal to support other XTAL:APB frequency ratios");
systimer_ll_enable_clock();
/* Configure the counter:
* - increment by 1 when running from PLL (80 ticks per microsecond),
* - increment by 2 when running from XTAL (40 ticks per microsecond).
* Note that if the APB frequency is derived from XTAL with divider != 1,
* XTAL_STEP needs to be adjusted accordingly. For example, if
* the APB frequency is XTAL/4 = 10 MHz, then XTAL_STEP should be set to 8.
* This is handled in systimer_hal_on_apb_freq_update function.
*/
systimer_ll_set_step_for_pll(1);
systimer_ll_set_step_for_xtal(2);
}
void systimer_hal_select_alarm_mode(systimer_alarm_id_t alarm_id, systimer_alarm_mode_t mode)
{
switch (mode) {
case SYSTIMER_ALARM_MODE_ONESHOT:
systimer_ll_enable_alarm_oneshot(alarm_id);
break;
case SYSTIMER_ALARM_MODE_PERIOD:
systimer_ll_enable_alarm_period(alarm_id);
break;
default:
break;
}
}
void systimer_hal_connect_alarm_counter(systimer_alarm_id_t alarm_id, systimer_counter_id_t counter_id)
{
// esp32s2 only has one counter, so there's no need to connect alarm unit to counter
(void)alarm_id;
(void)counter_id;
}

View File

@@ -1,158 +0,0 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The HAL layer for Touch Sensor (common part)
#include "hal/touch_sensor_hal.h"
#include "hal/touch_sensor_types.h"
void touch_hal_init(void)
{
touch_ll_intr_disable(TOUCH_PAD_INTR_MASK_ALL);
touch_ll_clear_channel_mask(SOC_TOUCH_SENSOR_BIT_MASK_MAX);
touch_ll_clear_trigger_status_mask();
touch_ll_set_meas_times(TOUCH_PAD_MEASURE_CYCLE_DEFAULT);
touch_ll_set_sleep_time(TOUCH_PAD_SLEEP_CYCLE_DEFAULT);
touch_ll_set_voltage_high(TOUCH_PAD_HIGH_VOLTAGE_THRESHOLD);
touch_ll_set_voltage_low(TOUCH_PAD_LOW_VOLTAGE_THRESHOLD);
touch_ll_set_voltage_attenuation(TOUCH_PAD_ATTEN_VOLTAGE_THRESHOLD);
touch_ll_set_idle_channel_connect(TOUCH_PAD_IDLE_CH_CONNECT_DEFAULT);
/* Clear touch channels to initialize the channel value (benchmark, raw_data).
* Note: Should call it after enable clock gate. */
touch_ll_clkgate(true); // Enable clock gate for touch sensor.
touch_ll_reset_benchmark(TOUCH_PAD_MAX);
touch_ll_sleep_reset_benchmark();
}
void touch_hal_deinit(void)
{
touch_ll_reset_benchmark(TOUCH_PAD_MAX);
touch_ll_sleep_reset_benchmark();
touch_ll_stop_fsm();
touch_ll_clkgate(false);
touch_ll_clear_channel_mask(SOC_TOUCH_SENSOR_BIT_MASK_MAX);
touch_ll_clear_trigger_status_mask();
touch_ll_intr_disable(TOUCH_PAD_INTR_MASK_ALL);
touch_ll_timeout_disable();
touch_ll_waterproof_disable();
touch_ll_denoise_disable();
touch_pad_t prox_pad[SOC_TOUCH_PROXIMITY_CHANNEL_NUM] = {[0 ... (SOC_TOUCH_PROXIMITY_CHANNEL_NUM - 1)] = 0};
touch_ll_proximity_set_channel_num((const touch_pad_t *)prox_pad);
touch_ll_sleep_set_channel_num(0);
touch_ll_sleep_disable_approach();
touch_ll_reset(); // Reset the touch sensor FSM.
}
void touch_hal_filter_set_config(const touch_filter_config_t *filter_info)
{
touch_ll_filter_set_filter_mode(filter_info->mode);
touch_ll_filter_set_debounce(filter_info->debounce_cnt);
touch_ll_filter_set_noise_thres(filter_info->noise_thr);
touch_ll_filter_set_jitter_step(filter_info->jitter_step);
touch_ll_filter_set_smooth_mode(filter_info->smh_lvl);
}
void touch_hal_filter_get_config(touch_filter_config_t *filter_info)
{
touch_ll_filter_get_filter_mode(&filter_info->mode);
touch_ll_filter_get_debounce(&filter_info->debounce_cnt);
touch_ll_filter_get_noise_thres(&filter_info->noise_thr);
touch_ll_filter_get_jitter_step(&filter_info->jitter_step);
touch_ll_filter_get_smooth_mode(&filter_info->smh_lvl);
}
void touch_hal_denoise_set_config(const touch_pad_denoise_t *denoise)
{
touch_ll_denoise_set_cap_level(denoise->cap_level);
touch_ll_denoise_set_grade(denoise->grade);
}
void touch_hal_denoise_get_config(touch_pad_denoise_t *denoise)
{
touch_ll_denoise_get_cap_level(&denoise->cap_level);
touch_ll_denoise_get_grade(&denoise->grade);
}
void touch_hal_denoise_enable(void)
{
touch_ll_clear_channel_mask(1U << SOC_TOUCH_DENOISE_CHANNEL);
touch_ll_denoise_enable();
}
void touch_hal_waterproof_set_config(const touch_pad_waterproof_t *waterproof)
{
touch_ll_waterproof_set_guard_pad(waterproof->guard_ring_pad);
touch_ll_waterproof_set_sheild_driver(waterproof->shield_driver);
}
void touch_hal_waterproof_get_config(touch_pad_waterproof_t *waterproof)
{
touch_ll_waterproof_get_guard_pad(&waterproof->guard_ring_pad);
touch_ll_waterproof_get_sheild_driver(&waterproof->shield_driver);
}
void touch_hal_waterproof_enable(void)
{
touch_ll_clear_channel_mask(1U << SOC_TOUCH_SHIELD_CHANNEL);
touch_ll_waterproof_enable();
}
bool touch_hal_enable_proximity(touch_pad_t touch_num, bool enabled)
{
int i = 0;
touch_pad_t ch_num[SOC_TOUCH_PROXIMITY_CHANNEL_NUM] = {0};
touch_ll_proximity_get_channel_num(ch_num);
if (enabled) {
for (i = 0; i < SOC_TOUCH_PROXIMITY_CHANNEL_NUM; i++) {
if (ch_num[i] == TOUCH_PAD_NUM0 || ch_num[i] >= TOUCH_PAD_MAX || ch_num[i] == touch_num) {
ch_num[i] = touch_num;
break;
}
}
if (i == SOC_TOUCH_PROXIMITY_CHANNEL_NUM) {
return false;
}
} else {
for (i = 0; i < SOC_TOUCH_PROXIMITY_CHANNEL_NUM; i++) {
if (ch_num[i] == touch_num) {
ch_num[i] = TOUCH_PAD_NUM0;
break;
}
}
}
touch_ll_proximity_set_channel_num(ch_num);
return true;
}
void touch_hal_sleep_channel_enable(touch_pad_t pad_num, bool enable)
{
if (enable) {
touch_ll_sleep_set_channel_num(pad_num);
touch_ll_sleep_set_threshold(SOC_TOUCH_PAD_THRESHOLD_MAX);
/* Default change touch dbias to self-dbias to save power.
Measuring the sleep pad threshold after `sleep_channel_set_config`. */
touch_ll_sleep_low_power(true);
touch_ll_sleep_reset_benchmark();
} else {
touch_ll_sleep_set_channel_num(TOUCH_PAD_NUM0);
}
}
void touch_hal_sleep_channel_get_config(touch_pad_sleep_channel_t *slp_config)
{
touch_ll_sleep_get_channel_num(&slp_config->touch_num);
slp_config->en_proximity = touch_ll_sleep_get_approach_status();
}

View File

@@ -1,26 +0,0 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "hal/usb_ll.h"
#include "hal/usb_hal.h"
void usb_hal_init(usb_hal_context_t *usb)
{
if (usb->use_external_phy) {
usb_ll_ext_phy_enable();
} else {
usb_ll_int_phy_enable();
}
}