mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 15:11:40 +01:00 
			
		
		
		
	bringup esp32-s3 on FPGA
This commit is contained in:
		
							
								
								
									
										840
									
								
								components/ulp/include/esp32s3/ulp.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										840
									
								
								components/ulp/include/esp32s3/ulp.h
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,840 @@ | ||||
| // Copyright 2016-2018 Espressif Systems (Shanghai) PTE LTD | ||||
| // | ||||
| // Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| // you may not use this file except in compliance with the License. | ||||
| // You may obtain a copy of the License at | ||||
| // | ||||
| //     http://www.apache.org/licenses/LICENSE-2.0 | ||||
| // | ||||
| // Unless required by applicable law or agreed to in writing, software | ||||
| // distributed under the License is distributed on an "AS IS" BASIS, | ||||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| // See the License for the specific language governing permissions and | ||||
| // limitations under the License. | ||||
|  | ||||
| #pragma once | ||||
| #include <stdint.h> | ||||
| #include <stddef.h> | ||||
| #include <stdlib.h> | ||||
| #include "esp_err.h" | ||||
| #include "soc/soc.h" | ||||
| #include "ulp_common.h" | ||||
|  | ||||
| #ifdef __cplusplus | ||||
| extern "C" { | ||||
| #endif | ||||
|  | ||||
| #define ULP_FSM_PREPARE_SLEEP_CYCLES 2    /*!< Cycles spent by FSM preparing ULP for sleep */ | ||||
| #define ULP_FSM_WAKEUP_SLEEP_CYCLES  2    /*!< Cycles spent by FSM waking up ULP from sleep */ | ||||
|  | ||||
| /** | ||||
|  * @defgroup ulp_registers ULP coprocessor registers | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
|  | ||||
| #define R0 0    /*!< general purpose register 0 */ | ||||
| #define R1 1    /*!< general purpose register 1 */ | ||||
| #define R2 2    /*!< general purpose register 2 */ | ||||
| #define R3 3    /*!< general purpose register 3 */ | ||||
| /**@}*/ | ||||
|  | ||||
| /** @defgroup ulp_opcodes ULP coprocessor opcodes, sub opcodes, and various modifiers/flags | ||||
|  * | ||||
|  * These definitions are not intended to be used directly. | ||||
|  * They are used in definitions of instructions later on. | ||||
|  * | ||||
|  * @{ | ||||
|  */ | ||||
|  | ||||
| #define OPCODE_WR_REG 1         /*!< Instruction: write peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */ | ||||
|  | ||||
| #define OPCODE_RD_REG 2         /*!< Instruction: read peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */ | ||||
|  | ||||
| #define RD_REG_PERIPH_RTC_CNTL 0    /*!< Identifier of RTC_CNTL peripheral for RD_REG and WR_REG instructions */ | ||||
| #define RD_REG_PERIPH_RTC_IO   1    /*!< Identifier of RTC_IO peripheral for RD_REG and WR_REG instructions */ | ||||
| #define RD_REG_PERIPH_SENS     2    /*!< Identifier of SARADC peripheral for RD_REG and WR_REG instructions */ | ||||
| #define RD_REG_PERIPH_RTC_I2C  3    /*!< Identifier of RTC_I2C peripheral for RD_REG and WR_REG instructions */ | ||||
|  | ||||
| #define OPCODE_I2C 3            /*!< Instruction: read/write I2C (not implemented yet) */ | ||||
|  | ||||
| #define OPCODE_DELAY 4          /*!< Instruction: delay (nop) for a given number of cycles */ | ||||
|  | ||||
| #define OPCODE_ADC 5            /*!< Instruction: SAR ADC measurement (not implemented yet) */ | ||||
|  | ||||
| #define OPCODE_ST 6             /*!< Instruction: store indirect to RTC memory */ | ||||
| #define SUB_OPCODE_ST 4         /*!< Store 32 bits, 16 MSBs contain PC, 16 LSBs contain value from source register */ | ||||
|  | ||||
| #define OPCODE_ALU 7            /*!< Arithmetic instructions */ | ||||
| #define SUB_OPCODE_ALU_REG 0    /*!< Arithmetic instruction, both source values are in register */ | ||||
| #define SUB_OPCODE_ALU_IMM 1    /*!< Arithmetic instruction, one source value is an immediate */ | ||||
| #define SUB_OPCODE_ALU_CNT 2    /*!< Arithmetic instruction between counter register and an immediate (not implemented yet)*/ | ||||
| #define ALU_SEL_ADD 0           /*!< Addition */ | ||||
| #define ALU_SEL_SUB 1           /*!< Subtraction */ | ||||
| #define ALU_SEL_AND 2           /*!< Logical AND */ | ||||
| #define ALU_SEL_OR  3           /*!< Logical OR */ | ||||
| #define ALU_SEL_MOV 4           /*!< Copy value (immediate to destination register or source register to destination register */ | ||||
| #define ALU_SEL_LSH 5           /*!< Shift left by given number of bits */ | ||||
| #define ALU_SEL_RSH 6           /*!< Shift right by given number of bits */ | ||||
|  | ||||
| #define OPCODE_BRANCH 8         /*!< Branch instructions */ | ||||
| #define SUB_OPCODE_BX  0        /*!< Branch to absolute PC (immediate or in register) */ | ||||
| #define BX_JUMP_TYPE_DIRECT 0   /*!< Unconditional jump */ | ||||
| #define BX_JUMP_TYPE_ZERO 1     /*!< Branch if last ALU result is zero */ | ||||
| #define BX_JUMP_TYPE_OVF 2      /*!< Branch if last ALU operation caused and overflow */ | ||||
| #define SUB_OPCODE_B  1         /*!< Branch to a relative offset */ | ||||
| #define B_CMP_L 0               /*!< Branch if R0 is less than an immediate */ | ||||
| #define B_CMP_GE 1              /*!< Branch if R0 is greater than or equal to an immediate */ | ||||
|  | ||||
| #define OPCODE_END 9            /*!< Stop executing the program */ | ||||
| #define SUB_OPCODE_END 0        /*!< Stop executing the program and optionally wake up the chip */ | ||||
| #define SUB_OPCODE_SLEEP 1      /*!< Stop executing the program and run it again after selected interval */ | ||||
|  | ||||
| #define OPCODE_TSENS 10         /*!< Instruction: temperature sensor measurement (not implemented yet) */ | ||||
|  | ||||
| #define OPCODE_HALT 11          /*!< Halt the coprocessor */ | ||||
|  | ||||
| #define OPCODE_LD 13            /*!< Indirect load lower 16 bits from RTC memory */ | ||||
|  | ||||
| #define OPCODE_MACRO 15         /*!< Not a real opcode. Used to identify labels and branches in the program */ | ||||
| #define SUB_OPCODE_MACRO_LABEL 0    /*!< Label macro */ | ||||
| #define SUB_OPCODE_MACRO_BRANCH 1   /*!< Branch macro */ | ||||
| /**@}*/ | ||||
|  | ||||
| /** | ||||
|  * @brief Instruction format structure | ||||
|  * | ||||
|  * All ULP instructions are 32 bit long. | ||||
|  * This union contains field layouts used by all of the supported instructions. | ||||
|  * This union also includes a special "macro" instruction layout. | ||||
|  * This is not a real instruction which can be executed by the CPU. It acts | ||||
|  * as a token which is removed from the program by the | ||||
|  * ulp_process_macros_and_load function. | ||||
|  * | ||||
|  * These structures are not intended to be used directly. | ||||
|  * Preprocessor definitions provided below fill the fields of these structure with | ||||
|  * the right arguments. | ||||
|  */ | ||||
| union ulp_insn { | ||||
|  | ||||
|     struct { | ||||
|         uint32_t cycles : 16;       /*!< Number of cycles to sleep */ | ||||
|         uint32_t unused : 12;       /*!< Unused */ | ||||
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_DELAY) */ | ||||
|     } delay;                        /*!< Format of DELAY instruction */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t dreg : 2;          /*!< Register which contains data to store */ | ||||
|         uint32_t sreg : 2;          /*!< Register which contains address in RTC memory (expressed in words) */ | ||||
|         uint32_t unused1 : 6;       /*!< Unused */ | ||||
|         uint32_t offset : 11;       /*!< Offset to add to sreg */ | ||||
|         uint32_t unused2 : 4;       /*!< Unused */ | ||||
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_ST) */ | ||||
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_ST) */ | ||||
|     } st;                           /*!< Format of ST instruction */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t dreg : 2;          /*!< Register where the data should be loaded to */ | ||||
|         uint32_t sreg : 2;          /*!< Register which contains address in RTC memory (expressed in words) */ | ||||
|         uint32_t unused1 : 6;       /*!< Unused */ | ||||
|         uint32_t offset : 11;       /*!< Offset to add to sreg */ | ||||
|         uint32_t unused2 : 7;       /*!< Unused */ | ||||
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_LD) */ | ||||
|     } ld;                           /*!< Format of LD instruction */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t unused : 28;       /*!< Unused */ | ||||
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_HALT) */ | ||||
|     } halt;                         /*!< Format of HALT instruction */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t dreg : 2;          /*!< Register which contains target PC, expressed in words (used if .reg == 1) */ | ||||
|         uint32_t addr : 11;         /*!< Target PC, expressed in words (used if .reg == 0) */ | ||||
|         uint32_t unused : 8;        /*!< Unused */ | ||||
|         uint32_t reg : 1;           /*!< Target PC in register (1) or immediate (0) */ | ||||
|         uint32_t type : 3;          /*!< Jump condition (BX_JUMP_TYPE_xxx) */ | ||||
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_BX) */ | ||||
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_BRANCH) */ | ||||
|     } bx;                           /*!< Format of BRANCH instruction (absolute address) */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t imm : 16;          /*!< Immediate value to compare against */ | ||||
|         uint32_t cmp : 1;           /*!< Comparison to perform: B_CMP_L or B_CMP_GE */ | ||||
|         uint32_t offset : 7;        /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */ | ||||
|         uint32_t sign : 1;          /*!< Sign of target PC offset: 0: positive, 1: negative */ | ||||
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_B) */ | ||||
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_BRANCH) */ | ||||
|     } b;                            /*!< Format of BRANCH instruction (relative address) */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t dreg : 2;          /*!< Destination register */ | ||||
|         uint32_t sreg : 2;          /*!< Register with operand A */ | ||||
|         uint32_t treg : 2;          /*!< Register with operand B */ | ||||
|         uint32_t unused : 15;       /*!< Unused */ | ||||
|         uint32_t sel : 4;           /*!< Operation to perform, one of ALU_SEL_xxx */ | ||||
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_ALU_REG) */ | ||||
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_ALU) */ | ||||
|     } alu_reg;                      /*!< Format of ALU instruction (both sources are registers) */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t dreg : 2;          /*!< Destination register */ | ||||
|         uint32_t sreg : 2;          /*!< Register with operand A */ | ||||
|         uint32_t imm : 16;          /*!< Immediate value of operand B */ | ||||
|         uint32_t unused : 1;        /*!< Unused */ | ||||
|         uint32_t sel : 4;           /*!< Operation to perform, one of ALU_SEL_xxx */ | ||||
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_ALU_IMM) */ | ||||
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_ALU) */ | ||||
|     } alu_imm;                      /*!< Format of ALU instruction (one source is an immediate) */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t addr : 8;          /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */ | ||||
|         uint32_t periph_sel : 2;    /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */ | ||||
|         uint32_t data : 8;          /*!< 8 bits of data to write */ | ||||
|         uint32_t low : 5;           /*!< Low bit */ | ||||
|         uint32_t high : 5;          /*!< High bit */ | ||||
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_WR_REG) */ | ||||
|     } wr_reg;                       /*!< Format of WR_REG instruction */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t addr : 8;          /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */ | ||||
|         uint32_t periph_sel : 2;    /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */ | ||||
|         uint32_t unused : 8;        /*!< Unused */ | ||||
|         uint32_t low : 5;           /*!< Low bit */ | ||||
|         uint32_t high : 5;          /*!< High bit */ | ||||
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_WR_REG) */ | ||||
|     } rd_reg;                       /*!< Format of RD_REG instruction */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t dreg : 2;          /*!< Register where to store ADC result */ | ||||
|         uint32_t mux : 4;           /*!< Select SARADC pad (mux + 1) */ | ||||
|         uint32_t sar_sel : 1;       /*!< Select SARADC0 (0) or SARADC1 (1) */ | ||||
|         uint32_t unused1 : 1;       /*!< Unused */ | ||||
|         uint32_t cycles : 16;       /*!< TBD, cycles used for measurement */ | ||||
|         uint32_t unused2 : 4;       /*!< Unused */ | ||||
|         uint32_t opcode: 4;         /*!< Opcode (OPCODE_ADC) */ | ||||
|     } adc;                          /*!< Format of ADC instruction */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t dreg : 2;          /*!< Register where to store temperature measurement result */ | ||||
|         uint32_t wait_delay: 14;    /*!< Cycles to wait after measurement is done */ | ||||
|         uint32_t reserved: 12;      /*!< Reserved, set to 0 */ | ||||
|         uint32_t opcode: 4;         /*!< Opcode (OPCODE_TSENS) */ | ||||
|     } tsens;                        /*!< Format of TSENS instruction */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t i2c_addr : 8;      /*!< I2C slave address */ | ||||
|         uint32_t data : 8;          /*!< Data to read or write */ | ||||
|         uint32_t low_bits : 3;      /*!< TBD */ | ||||
|         uint32_t high_bits : 3;     /*!< TBD */ | ||||
|         uint32_t i2c_sel : 4;       /*!< TBD, select reg_i2c_slave_address[7:0] */ | ||||
|         uint32_t unused : 1;        /*!< Unused */ | ||||
|         uint32_t rw : 1;            /*!< Write (1) or read (0) */ | ||||
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_I2C) */ | ||||
|     } i2c;                          /*!< Format of I2C instruction */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t wakeup : 1;        /*!< Set to 1 to wake up chip */ | ||||
|         uint32_t unused : 24;       /*!< Unused */ | ||||
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_WAKEUP) */ | ||||
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_END) */ | ||||
|     } end;                          /*!< Format of END instruction with wakeup */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t cycle_sel : 4;     /*!< Select which one of SARADC_ULP_CP_SLEEP_CYCx_REG to get the sleep duration from */ | ||||
|         uint32_t unused : 21;       /*!< Unused */ | ||||
|         uint32_t sub_opcode : 3;    /*!< Sub opcode (SUB_OPCODE_SLEEP) */ | ||||
|         uint32_t opcode : 4;        /*!< Opcode (OPCODE_END) */ | ||||
|     } sleep;                        /*!< Format of END instruction with sleep */ | ||||
|  | ||||
|     struct { | ||||
|         uint32_t label : 16;        /*!< Label number */ | ||||
|         uint32_t unused : 8;        /*!< Unused */ | ||||
|         uint32_t sub_opcode : 4;    /*!< SUB_OPCODE_MACRO_LABEL or SUB_OPCODE_MACRO_BRANCH */ | ||||
|         uint32_t opcode: 4;         /*!< Opcode (OPCODE_MACRO) */ | ||||
|     } macro;                        /*!< Format of tokens used by LABEL and BRANCH macros */ | ||||
|  | ||||
| }; | ||||
|  | ||||
| typedef union ulp_insn ulp_insn_t; | ||||
|  | ||||
| _Static_assert(sizeof(ulp_insn_t) == 4, "ULP coprocessor instruction size should be 4 bytes"); | ||||
|  | ||||
| /** | ||||
|  * Delay (nop) for a given number of cycles | ||||
|  */ | ||||
| #define I_DELAY(cycles_) { .delay = {\ | ||||
|     .cycles = cycles_, \ | ||||
|     .unused = 0, \ | ||||
|     .opcode = OPCODE_DELAY } } | ||||
|  | ||||
| /** | ||||
|  * Halt the coprocessor. | ||||
|  * | ||||
|  * This instruction halts the coprocessor, but keeps ULP timer active. | ||||
|  * As such, ULP program will be restarted again by timer. | ||||
|  * To stop the program and prevent the timer from restarting the program, | ||||
|  * use I_END(0) instruction. | ||||
|  */ | ||||
| #define I_HALT() { .halt = {\ | ||||
|     .unused = 0, \ | ||||
|     .opcode = OPCODE_HALT } } | ||||
|  | ||||
| /** | ||||
|  * Map SoC peripheral register to periph_sel field of RD_REG and WR_REG | ||||
|  * instructions. | ||||
|  * | ||||
|  * @param reg peripheral register in RTC_CNTL_, RTC_IO_, SENS_, RTC_I2C peripherals. | ||||
|  * @return periph_sel value for the peripheral to which this register belongs. | ||||
|  */ | ||||
| static inline uint32_t SOC_REG_TO_ULP_PERIPH_SEL(uint32_t reg) | ||||
| { | ||||
|     uint32_t ret = 3; | ||||
|     if (reg < DR_REG_RTCCNTL_BASE) { | ||||
|         assert(0 && "invalid register base"); | ||||
|     } else if (reg < DR_REG_RTCIO_BASE) { | ||||
|         ret = RD_REG_PERIPH_RTC_CNTL; | ||||
|     } else if (reg < DR_REG_SENS_BASE) { | ||||
|         ret = RD_REG_PERIPH_RTC_IO; | ||||
|     } else if (reg < DR_REG_RTC_I2C_BASE) { | ||||
|         ret = RD_REG_PERIPH_SENS; | ||||
|     } else if (reg < DR_REG_IO_MUX_BASE) { | ||||
|         ret = RD_REG_PERIPH_RTC_I2C; | ||||
|     } else { | ||||
|         assert(0 && "invalid register base"); | ||||
|     } | ||||
|     return ret; | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Write literal value to a peripheral register | ||||
|  * | ||||
|  * reg[high_bit : low_bit] = val | ||||
|  * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers. | ||||
|  */ | ||||
| #define I_WR_REG(reg, low_bit, high_bit, val) {.wr_reg = {\ | ||||
|     .addr = (reg & 0xff) / sizeof(uint32_t), \ | ||||
|     .periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \ | ||||
|     .data = val, \ | ||||
|     .low = low_bit, \ | ||||
|     .high = high_bit, \ | ||||
|     .opcode = OPCODE_WR_REG } } | ||||
|  | ||||
| /** | ||||
|  * Read from peripheral register into R0 | ||||
|  * | ||||
|  * R0 = reg[high_bit : low_bit] | ||||
|  * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers. | ||||
|  */ | ||||
| #define I_RD_REG(reg, low_bit, high_bit) {.rd_reg = {\ | ||||
|     .addr = (reg & 0xff) / sizeof(uint32_t), \ | ||||
|     .periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \ | ||||
|     .unused = 0, \ | ||||
|     .low = low_bit, \ | ||||
|     .high = high_bit, \ | ||||
|     .opcode = OPCODE_RD_REG } } | ||||
|  | ||||
| /** | ||||
|  * Set or clear a bit in the peripheral register. | ||||
|  * | ||||
|  * Sets bit (1 << shift) of register reg to value val. | ||||
|  * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers. | ||||
|  */ | ||||
| #define I_WR_REG_BIT(reg, shift, val) I_WR_REG(reg, shift, shift, val) | ||||
|  | ||||
| /** | ||||
|  * Wake the SoC from deep sleep. | ||||
|  * | ||||
|  * This instruction initiates wake up from deep sleep. | ||||
|  * Use esp_deep_sleep_enable_ulp_wakeup to enable deep sleep wakeup | ||||
|  * triggered by the ULP before going into deep sleep. | ||||
|  * Note that ULP program will still keep running until the I_HALT | ||||
|  * instruction, and it will still be restarted by timer at regular | ||||
|  * intervals, even when the SoC is woken up. | ||||
|  * | ||||
|  * To stop the ULP program, use I_HALT instruction. | ||||
|  * | ||||
|  * To disable the timer which start ULP program, use I_END() | ||||
|  * instruction. I_END instruction clears the | ||||
|  * RTC_CNTL_ULP_CP_SLP_TIMER_EN_S bit of RTC_CNTL_STATE0_REG | ||||
|  * register, which controls the ULP timer. | ||||
|  */ | ||||
| #define I_WAKE() { .end = { \ | ||||
|         .wakeup = 1, \ | ||||
|         .unused = 0, \ | ||||
|         .sub_opcode = SUB_OPCODE_END, \ | ||||
|         .opcode = OPCODE_END } } | ||||
|  | ||||
| /** | ||||
|  * Stop ULP program timer. | ||||
|  * | ||||
|  * This is a convenience macro which disables the ULP program timer. | ||||
|  * Once this instruction is used, ULP program will not be restarted | ||||
|  * anymore until ulp_run function is called. | ||||
|  * | ||||
|  * ULP program will continue running after this instruction. To stop | ||||
|  * the currently running program, use I_HALT(). | ||||
|  */ | ||||
| #define I_END() \ | ||||
|     I_WR_REG_BIT(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN_S, 0) | ||||
| /** | ||||
|  * Select the time interval used to run ULP program. | ||||
|  * | ||||
|  * This instructions selects which of the SENS_SLEEP_CYCLES_Sx | ||||
|  * registers' value is used by the ULP program timer. | ||||
|  * When the ULP program stops at I_HALT instruction, ULP program | ||||
|  * timer start counting. When the counter reaches the value of | ||||
|  * the selected SENS_SLEEP_CYCLES_Sx register, ULP program | ||||
|  * start running again from the start address (passed to the ulp_run | ||||
|  * function). | ||||
|  * There are 5 SENS_SLEEP_CYCLES_Sx registers, so 0 <= timer_idx < 5. | ||||
|  * | ||||
|  * By default, SENS_SLEEP_CYCLES_S0 register is used by the ULP | ||||
|  * program timer. | ||||
|  */ | ||||
| #define I_SLEEP_CYCLE_SEL(timer_idx) { .sleep = { \ | ||||
|         .cycle_sel = timer_idx, \ | ||||
|         .unused = 0, \ | ||||
|         .sub_opcode = SUB_OPCODE_SLEEP, \ | ||||
|         .opcode = OPCODE_END } } | ||||
|  | ||||
| /** | ||||
|  * Perform temperature sensor measurement and store it into reg_dest. | ||||
|  * | ||||
|  * Delay can be set between 1 and ((1 << 14) - 1). Higher values give | ||||
|  * higher measurement resolution. | ||||
|  */ | ||||
| #define I_TSENS(reg_dest, delay) { .tsens = { \ | ||||
|         .dreg = reg_dest, \ | ||||
|         .wait_delay = delay, \ | ||||
|         .reserved = 0, \ | ||||
|         .opcode = OPCODE_TSENS } } | ||||
|  | ||||
| /** | ||||
|  * Perform ADC measurement and store result in reg_dest. | ||||
|  * | ||||
|  * adc_idx selects ADC (0 or 1). | ||||
|  * pad_idx selects ADC pad (0 - 7). | ||||
|  */ | ||||
| #define I_ADC(reg_dest, adc_idx, pad_idx) { .adc = {\ | ||||
|         .dreg = reg_dest, \ | ||||
|         .mux = pad_idx + 1, \ | ||||
|         .sar_sel = adc_idx, \ | ||||
|         .unused1 = 0, \ | ||||
|         .cycles = 0, \ | ||||
|         .unused2 = 0, \ | ||||
|         .opcode = OPCODE_ADC } } | ||||
|  | ||||
| /** | ||||
|  * Store value from register reg_val into RTC memory. | ||||
|  * | ||||
|  * The value is written to an offset calculated by adding value of | ||||
|  * reg_addr register and offset_ field (this offset is expressed in 32-bit words). | ||||
|  * 32 bits written to RTC memory are built as follows: | ||||
|  * - bits [31:21] hold the PC of current instruction, expressed in 32-bit words | ||||
|  * - bits [20:16] = 5'b1 | ||||
|  * - bits [15:0] are assigned the contents of reg_val | ||||
|  * | ||||
|  * RTC_SLOW_MEM[addr + offset_] = { 5'b0, insn_PC[10:0], val[15:0] } | ||||
|  */ | ||||
| #define I_ST(reg_val, reg_addr, offset_) { .st = { \ | ||||
|     .dreg = reg_val, \ | ||||
|     .sreg = reg_addr, \ | ||||
|     .unused1 = 0, \ | ||||
|     .offset = offset_, \ | ||||
|     .unused2 = 0, \ | ||||
|     .sub_opcode = SUB_OPCODE_ST, \ | ||||
|     .opcode = OPCODE_ST } } | ||||
|  | ||||
|  | ||||
| /** | ||||
|  * Load value from RTC memory into reg_dest register. | ||||
|  * | ||||
|  * Loads 16 LSBs from RTC memory word given by the sum of value in reg_addr and | ||||
|  * value of offset_. | ||||
|  */ | ||||
| #define I_LD(reg_dest, reg_addr, offset_) { .ld = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_addr, \ | ||||
|     .unused1 = 0, \ | ||||
|     .offset = offset_, \ | ||||
|     .unused2 = 0, \ | ||||
|     .opcode = OPCODE_LD } } | ||||
|  | ||||
|  | ||||
| /** | ||||
|  *  Branch relative if R0 less than immediate value. | ||||
|  * | ||||
|  *  pc_offset is expressed in words, and can be from -127 to 127 | ||||
|  *  imm_value is a 16-bit value to compare R0 against | ||||
|  */ | ||||
| #define I_BL(pc_offset, imm_value) { .b = { \ | ||||
|     .imm = imm_value, \ | ||||
|     .cmp = B_CMP_L, \ | ||||
|     .offset = abs(pc_offset), \ | ||||
|     .sign = (pc_offset >= 0) ? 0 : 1, \ | ||||
|     .sub_opcode = SUB_OPCODE_B, \ | ||||
|     .opcode = OPCODE_BRANCH } } | ||||
|  | ||||
| /** | ||||
|  *  Branch relative if R0 greater or equal than immediate value. | ||||
|  * | ||||
|  *  pc_offset is expressed in words, and can be from -127 to 127 | ||||
|  *  imm_value is a 16-bit value to compare R0 against | ||||
|  */ | ||||
| #define I_BGE(pc_offset, imm_value) { .b = { \ | ||||
|     .imm = imm_value, \ | ||||
|     .cmp = B_CMP_GE, \ | ||||
|     .offset = abs(pc_offset), \ | ||||
|     .sign = (pc_offset >= 0) ? 0 : 1, \ | ||||
|     .sub_opcode = SUB_OPCODE_B, \ | ||||
|     .opcode = OPCODE_BRANCH } } | ||||
|  | ||||
| /** | ||||
|  * Unconditional branch to absolute PC, address in register. | ||||
|  * | ||||
|  * reg_pc is the register which contains address to jump to. | ||||
|  * Address is expressed in 32-bit words. | ||||
|  */ | ||||
| #define I_BXR(reg_pc) { .bx = { \ | ||||
|     .dreg = reg_pc, \ | ||||
|     .addr = 0, \ | ||||
|     .unused = 0, \ | ||||
|     .reg = 1, \ | ||||
|     .type = BX_JUMP_TYPE_DIRECT, \ | ||||
|     .sub_opcode = SUB_OPCODE_BX, \ | ||||
|     .opcode = OPCODE_BRANCH } } | ||||
|  | ||||
| /** | ||||
|  *  Unconditional branch to absolute PC, immediate address. | ||||
|  * | ||||
|  *  Address imm_pc is expressed in 32-bit words. | ||||
|  */ | ||||
| #define I_BXI(imm_pc) { .bx = { \ | ||||
|     .dreg = 0, \ | ||||
|     .addr = imm_pc, \ | ||||
|     .unused = 0, \ | ||||
|     .reg = 0, \ | ||||
|     .type = BX_JUMP_TYPE_DIRECT, \ | ||||
|     .sub_opcode = SUB_OPCODE_BX, \ | ||||
|     .opcode = OPCODE_BRANCH } } | ||||
|  | ||||
| /** | ||||
|  * Branch to absolute PC if ALU result is zero, address in register. | ||||
|  * | ||||
|  * reg_pc is the register which contains address to jump to. | ||||
|  * Address is expressed in 32-bit words. | ||||
|  */ | ||||
| #define I_BXZR(reg_pc) { .bx = { \ | ||||
|     .dreg = reg_pc, \ | ||||
|     .addr = 0, \ | ||||
|     .unused = 0, \ | ||||
|     .reg = 1, \ | ||||
|     .type = BX_JUMP_TYPE_ZERO, \ | ||||
|     .sub_opcode = SUB_OPCODE_BX, \ | ||||
|     .opcode = OPCODE_BRANCH } } | ||||
|  | ||||
| /** | ||||
|  * Branch to absolute PC if ALU result is zero, immediate address. | ||||
|  * | ||||
|  * Address imm_pc is expressed in 32-bit words. | ||||
|  */ | ||||
| #define I_BXZI(imm_pc) { .bx = { \ | ||||
|     .dreg = 0, \ | ||||
|     .addr = imm_pc, \ | ||||
|     .unused = 0, \ | ||||
|     .reg = 0, \ | ||||
|     .type = BX_JUMP_TYPE_ZERO, \ | ||||
|     .sub_opcode = SUB_OPCODE_BX, \ | ||||
|     .opcode = OPCODE_BRANCH } } | ||||
|  | ||||
| /** | ||||
|  * Branch to absolute PC if ALU overflow, address in register | ||||
|  * | ||||
|  * reg_pc is the register which contains address to jump to. | ||||
|  * Address is expressed in 32-bit words. | ||||
|  */ | ||||
| #define I_BXFR(reg_pc) { .bx = { \ | ||||
|     .dreg = reg_pc, \ | ||||
|     .addr = 0, \ | ||||
|     .unused = 0, \ | ||||
|     .reg = 1, \ | ||||
|     .type = BX_JUMP_TYPE_OVF, \ | ||||
|     .sub_opcode = SUB_OPCODE_BX, \ | ||||
|     .opcode = OPCODE_BRANCH } } | ||||
|  | ||||
| /** | ||||
|  * Branch to absolute PC if ALU overflow, immediate address | ||||
|  * | ||||
|  * Address imm_pc is expressed in 32-bit words. | ||||
|  */ | ||||
| #define I_BXFI(imm_pc) { .bx = { \ | ||||
|     .dreg = 0, \ | ||||
|     .addr = imm_pc, \ | ||||
|     .unused = 0, \ | ||||
|     .reg = 0, \ | ||||
|     .type = BX_JUMP_TYPE_OVF, \ | ||||
|     .sub_opcode = SUB_OPCODE_BX, \ | ||||
|     .opcode = OPCODE_BRANCH } } | ||||
|  | ||||
|  | ||||
| /** | ||||
|  * Addition: dest = src1 + src2 | ||||
|  */ | ||||
| #define I_ADDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_src1, \ | ||||
|     .treg = reg_src2, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_ADD, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_REG, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
| /** | ||||
|  * Subtraction: dest = src1 - src2 | ||||
|  */ | ||||
| #define I_SUBR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_src1, \ | ||||
|     .treg = reg_src2, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_SUB, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_REG, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
| /** | ||||
|  * Logical AND: dest = src1 & src2 | ||||
|  */ | ||||
| #define I_ANDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_src1, \ | ||||
|     .treg = reg_src2, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_AND, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_REG, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
| /** | ||||
|  * Logical OR: dest = src1 | src2 | ||||
|  */ | ||||
| #define I_ORR(reg_dest, reg_src1, reg_src2)  { .alu_reg = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_src1, \ | ||||
|     .treg = reg_src2, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_OR, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_REG, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
| /** | ||||
|  * Copy: dest = src | ||||
|  */ | ||||
| #define I_MOVR(reg_dest, reg_src) { .alu_reg = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_src, \ | ||||
|     .treg = 0, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_MOV, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_REG, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
| /** | ||||
|  * Logical shift left: dest = src << shift | ||||
|  */ | ||||
| #define I_LSHR(reg_dest, reg_src, reg_shift)  { .alu_reg = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_src, \ | ||||
|     .treg = reg_shift, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_LSH, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_REG, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
|  | ||||
| /** | ||||
|  * Logical shift right: dest = src >> shift | ||||
|  */ | ||||
| #define I_RSHR(reg_dest, reg_src, reg_shift)  { .alu_reg = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_src, \ | ||||
|     .treg = reg_shift, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_RSH, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_REG, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
| /** | ||||
|  * Add register and an immediate value: dest = src1 + imm | ||||
|  */ | ||||
| #define I_ADDI(reg_dest, reg_src, imm_) { .alu_imm = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_src, \ | ||||
|     .imm = imm_, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_ADD, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
|  | ||||
| /** | ||||
|  *  Subtract register and an immediate value: dest = src - imm | ||||
|  */ | ||||
| #define I_SUBI(reg_dest, reg_src, imm_) { .alu_imm = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_src, \ | ||||
|     .imm = imm_, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_SUB, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
| /** | ||||
|  * Logical AND register and an immediate value: dest = src & imm | ||||
|  */ | ||||
| #define I_ANDI(reg_dest, reg_src, imm_) { .alu_imm = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_src, \ | ||||
|     .imm = imm_, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_AND, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
| /** | ||||
|  * Logical OR register and an immediate value: dest = src | imm | ||||
|  */ | ||||
| #define I_ORI(reg_dest, reg_src, imm_) { .alu_imm = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_src, \ | ||||
|     .imm = imm_, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_OR, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
| /** | ||||
|  * Copy an immediate value into register: dest = imm | ||||
|  */ | ||||
| #define I_MOVI(reg_dest, imm_) { .alu_imm = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = 0, \ | ||||
|     .imm = imm_, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_MOV, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
| /** | ||||
|  * Logical shift left register value by an immediate: dest = src << imm | ||||
|  */ | ||||
| #define I_LSHI(reg_dest, reg_src, imm_) { .alu_imm = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_src, \ | ||||
|     .imm = imm_, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_LSH, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
|  | ||||
| /** | ||||
|  * Logical shift right register value by an immediate: dest = val >> imm | ||||
|  */ | ||||
| #define I_RSHI(reg_dest, reg_src, imm_) { .alu_imm = { \ | ||||
|     .dreg = reg_dest, \ | ||||
|     .sreg = reg_src, \ | ||||
|     .imm = imm_, \ | ||||
|     .unused = 0, \ | ||||
|     .sel = ALU_SEL_RSH, \ | ||||
|     .sub_opcode = SUB_OPCODE_ALU_IMM, \ | ||||
|     .opcode = OPCODE_ALU } } | ||||
|  | ||||
| /** | ||||
|  * Define a label with number label_num. | ||||
|  * | ||||
|  * This is a macro which doesn't generate a real instruction. | ||||
|  * The token generated by this macro is removed by ulp_process_macros_and_load | ||||
|  * function. Label defined using this macro can be used in branch macros defined | ||||
|  * below. | ||||
|  */ | ||||
| #define M_LABEL(label_num) { .macro = { \ | ||||
|     .label = label_num, \ | ||||
|     .unused = 0, \ | ||||
|     .sub_opcode = SUB_OPCODE_MACRO_LABEL, \ | ||||
|     .opcode = OPCODE_MACRO } } | ||||
|  | ||||
| /** | ||||
|  * Token macro used by M_B and M_BX macros. Not to be used directly. | ||||
|  */ | ||||
| #define M_BRANCH(label_num) { .macro = { \ | ||||
|     .label = label_num, \ | ||||
|     .unused = 0, \ | ||||
|     .sub_opcode = SUB_OPCODE_MACRO_BRANCH, \ | ||||
|     .opcode = OPCODE_MACRO } } | ||||
|  | ||||
| /** | ||||
|  * Macro: branch to label label_num if R0 is less than immediate value. | ||||
|  * | ||||
|  * This macro generates two ulp_insn_t values separated by a comma, and should | ||||
|  * be used when defining contents of ulp_insn_t arrays. First value is not a | ||||
|  * real instruction; it is a token which is removed by ulp_process_macros_and_load | ||||
|  * function. | ||||
|  */ | ||||
| #define M_BL(label_num, imm_value) \ | ||||
|     M_BRANCH(label_num), \ | ||||
|     I_BL(0, imm_value) | ||||
|  | ||||
| /** | ||||
|  * Macro: branch to label label_num if R0 is greater or equal than immediate value | ||||
|  * | ||||
|  * This macro generates two ulp_insn_t values separated by a comma, and should | ||||
|  * be used when defining contents of ulp_insn_t arrays. First value is not a | ||||
|  * real instruction; it is a token which is removed by ulp_process_macros_and_load | ||||
|  * function. | ||||
|  */ | ||||
| #define M_BGE(label_num, imm_value) \ | ||||
|     M_BRANCH(label_num), \ | ||||
|     I_BGE(0, imm_value) | ||||
|  | ||||
| /** | ||||
|  * Macro: unconditional branch to label | ||||
|  * | ||||
|  * This macro generates two ulp_insn_t values separated by a comma, and should | ||||
|  * be used when defining contents of ulp_insn_t arrays. First value is not a | ||||
|  * real instruction; it is a token which is removed by ulp_process_macros_and_load | ||||
|  * function. | ||||
|  */ | ||||
| #define M_BX(label_num) \ | ||||
|     M_BRANCH(label_num), \ | ||||
|     I_BXI(0) | ||||
|  | ||||
| /** | ||||
|  * Macro: branch to label if ALU result is zero | ||||
|  * | ||||
|  * This macro generates two ulp_insn_t values separated by a comma, and should | ||||
|  * be used when defining contents of ulp_insn_t arrays. First value is not a | ||||
|  * real instruction; it is a token which is removed by ulp_process_macros_and_load | ||||
|  * function. | ||||
|  */ | ||||
| #define M_BXZ(label_num) \ | ||||
|     M_BRANCH(label_num), \ | ||||
|     I_BXZI(0) | ||||
|  | ||||
| /** | ||||
|  * Macro: branch to label if ALU overflow | ||||
|  * | ||||
|  * This macro generates two ulp_insn_t values separated by a comma, and should | ||||
|  * be used when defining contents of ulp_insn_t arrays. First value is not a | ||||
|  * real instruction; it is a token which is removed by ulp_process_macros_and_load | ||||
|  * function. | ||||
|  */ | ||||
| #define M_BXF(label_num) \ | ||||
|     M_BRANCH(label_num), \ | ||||
|     I_BXFI(0) | ||||
|  | ||||
|  | ||||
|  | ||||
| #define RTC_SLOW_MEM ((uint32_t*) 0x50000000)       /*!< RTC slow memory, 8k size */ | ||||
|  | ||||
| #ifdef __cplusplus | ||||
| } | ||||
| #endif | ||||
		Reference in New Issue
	
	Block a user