psram: refactor spiram.c on esp32s2

This commit is contained in:
Armando
2022-01-12 15:03:50 +08:00
parent 9cf4126656
commit 7240ad2b3a
11 changed files with 509 additions and 413 deletions

View File

@@ -0,0 +1,78 @@
/*
* SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <sys/param.h>
#include "esp_err.h"
#include "sdkconfig.h"
#ifdef __cplusplus
extern "C" {
#endif
esp_err_t mmu_map_psram(uint32_t start_paddr, uint32_t map_length, uint32_t *out_start_vaddr);
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
extern int _instruction_reserved_start;
extern int _instruction_reserved_end;
esp_err_t mmu_config_psram_text_segment(uint32_t start_page, uint32_t psram_size, uint32_t *out_page);
/**
* @brief Get the start page number of the instruction in SPI flash
*
* @return start page number
*/
uint32_t instruction_flash_start_page_get(void);
/**
* @brief Get the end page number of the instruction in SPI flash
*
* @return end page number
*/
uint32_t instruction_flash_end_page_get(void);
/**
* @brief Get the offset of instruction from SPI flash to SPI RAM
*
* @return instruction offset
*/
int instruction_flash2spiram_offset(void);
#endif
#if CONFIG_SPIRAM_RODATA
extern int _rodata_reserved_start;
extern int _rodata_reserved_end;
esp_err_t mmu_config_psram_rodata_segment(uint32_t start_page, uint32_t psram_size, uint32_t *out_page);
/**
* @brief Get the start page number of the rodata in SPI flash
*
* @return start page number
*/
uint32_t rodata_flash_start_page_get(void);
/**
* @brief Get the end page number of the rodata in SPI flash
*
* @return end page number
*/
uint32_t rodata_flash_end_page_get(void);
/**
* @brief Get the offset number of rodata from SPI flash to SPI RAM
*
* @return rodata offset
*/
int rodata_flash2spiram_offset(void);
#endif
#ifdef __cplusplus
}
#endif

View File

@@ -1,5 +1,5 @@
/* /*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
* *
* SPDX-License-Identifier: Apache-2.0 * SPDX-License-Identifier: Apache-2.0
*/ */
@@ -24,35 +24,11 @@ extern "C" {
*/ */
esp_err_t esp_spiram_init(void); esp_err_t esp_spiram_init(void);
/**
* @brief Configure Cache/MMU for access to external SPI RAM.
*
* Normally this function is called from cpu_start, if CONFIG_SPIRAM_BOOT_INIT
* option is enabled. Applications which need to enable SPI RAM at run time
* can disable CONFIG_SPIRAM_BOOT_INIT, and call this function later.
*
* @attention this function must be called with flash cache disabled.
*/
void esp_spiram_init_cache(void);
/**
* @brief Memory test for SPI RAM. Should be called after SPI RAM is initialized and
* (in case of a dual-core system) the app CPU is online. This test overwrites the
* memory with crap, so do not call after e.g. the heap allocator has stored important
* stuff in SPI RAM.
*
* @return true on success, false on failed memory test
*/
bool esp_spiram_test(void);
/** /**
* @brief Add the initialized SPI RAM to the heap allocator. * @brief Add the initialized SPI RAM to the heap allocator.
*/ */
esp_err_t esp_spiram_add_to_heapalloc(void); esp_err_t esp_spiram_add_to_heapalloc(void);
/** /**
* @brief Get the size of the attached SPI RAM chip selected in menuconfig * @brief Get the size of the attached SPI RAM chip selected in menuconfig
* *
@@ -60,7 +36,6 @@ esp_err_t esp_spiram_add_to_heapalloc(void);
*/ */
size_t esp_spiram_get_size(void); size_t esp_spiram_get_size(void);
/** /**
* @brief Force a writeback of the data in the SPI RAM cache. This is to be called whenever * @brief Force a writeback of the data in the SPI RAM cache. This is to be called whenever
* cache is disabled, because disabling cache on the ESP32 discards the data in the SPI * cache is disabled, because disabling cache on the ESP32 discards the data in the SPI
@@ -80,7 +55,6 @@ void esp_spiram_writeback_cache(void);
*/ */
uint8_t esp_spiram_get_cs_io(void); uint8_t esp_spiram_get_cs_io(void);
/** /**
* @brief Reserve a pool of internal memory for specific DMA/internal allocations * @brief Reserve a pool of internal memory for specific DMA/internal allocations
* *
@@ -101,54 +75,6 @@ esp_err_t esp_spiram_reserve_dma_pool(size_t size);
*/ */
bool esp_spiram_is_initialized(void); bool esp_spiram_is_initialized(void);
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
extern int _instruction_reserved_start, _instruction_reserved_end;
/**
* @brief Get the start page number of the instruction in SPI flash
*
* @return start page number
*/
uint32_t instruction_flash_start_page_get(void);
/**
* @brief Get the end page number of the instruction in SPI flash
*
* @return end page number
*/
uint32_t instruction_flash_end_page_get(void);
/**
* @brief Get the offset of instruction from SPI flash to SPI RAM
*
* @return instruction offset
*/
int instruction_flash2spiram_offset(void);
#endif
#if CONFIG_SPIRAM_RODATA
extern int _rodata_reserved_start, _rodata_reserved_end;
/**
* @brief Get the start page number of the rodata in SPI flash
*
* @return start page number
*/
uint32_t rodata_flash_start_page_get(void);
/**
* @brief Get the end page number of the rodata in SPI flash
*
* @return end page number
*/
uint32_t rodata_flash_end_page_get(void);
/**
* @brief Get the offset number of rodata from SPI flash to SPI RAM
*
* @return rodata offset
*/
int rodata_flash2spiram_offset(void);
#endif
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@@ -16,3 +16,5 @@ entries:
spiram_psram (noflash) spiram_psram (noflash)
if SPIRAM_MODE_OCT = y: if SPIRAM_MODE_OCT = y:
opiram_psram (noflash) opiram_psram (noflash)
if IDF_TARGET_ESP32S2 = y:
mmu_psram (noflash)

View File

@@ -21,6 +21,7 @@ if(NOT BOOTLOADER_BUILD)
"esp_ds.c" "esp_ds.c"
"dport_access.c" "dport_access.c"
"spiram.c" "spiram.c"
"mmu_psram.c"
"spiram_psram.c") "spiram_psram.c")
endif() endif()

View File

@@ -0,0 +1,242 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <sys/param.h>
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_private/mmu_psram.h"
#include "esp32s2/rom/cache.h"
#include "esp32s2/rom/ets_sys.h"
#include "soc/cache_memory.h"
#include "soc/extmem_reg.h"
#define MMU_PAGE_TO_BYTES(page_id) ((page_id) * MMU_PAGE_SIZE)
#define BYTES_TO_MMU_PAGE(bytes) ((bytes) / MMU_PAGE_SIZE)
const static char *TAG = "mmu_psram";
//------------------------------------Copy Flash .text to PSRAM-------------------------------------//
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
static uint32_t instruction_in_spiram;
static uint32_t instr_start_page;
static uint32_t instr_end_page;
static int instr_flash2spiram_offs;
uint32_t esp_spiram_instruction_access_enabled(void);
int instruction_flash2spiram_offset(void);
uint32_t instruction_flash_start_page_get(void);
uint32_t instruction_flash_end_page_get(void);
#endif //CONFIG_SPIRAM_FETCH_INSTRUCTIONS
//------------------------------------Copy Flash .rodata to PSRAM-------------------------------------//
#if CONFIG_SPIRAM_RODATA
static uint32_t rodata_in_spiram;
static int rodata_flash2spiram_offs;
static uint32_t rodata_start_page;
static uint32_t rodata_end_page;
uint32_t esp_spiram_rodata_access_enabled(void);
int rodata_flash2spiram_offset(void);
uint32_t rodata_flash_start_page_get(void);
uint32_t rodata_flash_end_page_get(void);
#endif //#if CONFIG_SPIRAM_RODATA
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
//TODO IDF-4387
static uint32_t page0_mapped = 0;
static uint32_t page0_page = INVALID_PHY_PAGE;
#endif //#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
esp_err_t mmu_config_psram_text_segment(uint32_t start_page, uint32_t psram_size, uint32_t *out_page)
{
uint32_t page_id = start_page;
/**
* TODO IDF-4387
* `Cache_Count_Flash_Pages` seems give wrong results. Need to confirm this.
* FOR NOW, leave these logics just as it used to be.
*/
uint32_t flash_pages = 0;
flash_pages += Cache_Count_Flash_Pages(PRO_CACHE_IBUS0, &page0_mapped);
flash_pages += Cache_Count_Flash_Pages(PRO_CACHE_IBUS1, &page0_mapped);
if ((flash_pages + page_id) > BYTES_TO_MMU_PAGE(psram_size)) {
ESP_EARLY_LOGE(TAG, "PSRAM space not enough for the Flash instructions, need %d B, from %d B to %d B",
MMU_PAGE_TO_BYTES(flash_pages), MMU_PAGE_TO_BYTES(start_page), MMU_PAGE_TO_BYTES(flash_pages + page_id));
return ESP_FAIL;
}
//Enable DRAM0_BUS, which is used for copying FLASH .text to PSRAM
REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM0);
uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - (uint32_t)&_instruction_reserved_start + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
uint32_t instr_mmu_offset = ((uint32_t)&_instruction_reserved_start & BUS_ADDR_MASK) / MMU_PAGE_SIZE;
instr_start_page = ((volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS0_MMU_START))[instr_mmu_offset];
instr_start_page &= MMU_ADDRESS_MASK;
instr_end_page = instr_start_page + instr_page_cnt - 1;
instr_flash2spiram_offs = instr_start_page - page_id;
ESP_EARLY_LOGV(TAG, "Instructions from flash page%d copy to SPIRAM page%d, Offset: %d", instr_start_page, page_id, instr_flash2spiram_offs);
page_id = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS0, IRAM0_ADDRESS_LOW, page_id, &page0_page);
page_id = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS1, IRAM1_ADDRESS_LOW, page_id, &page0_page);
instruction_in_spiram = 1;
ESP_EARLY_LOGV(TAG, "after copy instruction, page_id is %d", page_id);
ESP_EARLY_LOGI(TAG, "Instructions copied and mapped to SPIRAM");
/**
* Disable DRAM0_BUS.
* .text (instructions) are mapped in `Cache_Flash_To_SPIRAM_Copy` to both `PRO_CACHE_IBUS0` and `PRO_CACHE_IBUS1`.
*
* For now, this bus (DRAM0) is only used for copying, so can be disabled. If it is used later, other code
* should be responsible for enabling it.
*/
REG_SET_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM0);
*out_page = page_id - start_page;
return ESP_OK;
}
#endif //#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
#if CONFIG_SPIRAM_RODATA
esp_err_t mmu_config_psram_rodata_segment(uint32_t start_page, uint32_t psram_size, uint32_t *out_page)
{
uint32_t page_id = start_page;
/**
* TODO IDF-4387
* `Cache_Count_Flash_Pages` seems give wrong results. Need to confirm this.
* FOR NOW, leave these logics just as it used to be.
*/
uint32_t flash_pages = 0;
flash_pages += Cache_Count_Flash_Pages(PRO_CACHE_IBUS2, &page0_mapped);
flash_pages += Cache_Count_Flash_Pages(PRO_CACHE_DBUS0, &page0_mapped);
flash_pages += Cache_Count_Flash_Pages(PRO_CACHE_DBUS1, &page0_mapped);
flash_pages += Cache_Count_Flash_Pages(PRO_CACHE_DBUS2, &page0_mapped);
if ((flash_pages + page_id) > BYTES_TO_MMU_PAGE(psram_size)) {
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the instructions, need to copy to %d B.", MMU_PAGE_TO_BYTES(flash_pages + page_id));
return ESP_FAIL;
}
//Enable DRAM0_BUS, which is used for copying FLASH .rodata to PSRAM
REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM0);
uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - (uint32_t)&_rodata_reserved_start + MMU_PAGE_SIZE - 1) / MMU_PAGE_SIZE;
uint32_t rodata_mmu_offset = ((uint32_t)&_rodata_reserved_start & BUS_ADDR_MASK) / MMU_PAGE_SIZE;
rodata_start_page = ((volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS2_MMU_START))[rodata_mmu_offset];
rodata_start_page &= MMU_ADDRESS_MASK;
rodata_end_page = rodata_start_page + rodata_page_cnt - 1;
rodata_flash2spiram_offs = rodata_start_page - page_id;
ESP_EARLY_LOGV(TAG, "Rodata from flash page%d copy to SPIRAM page%d, Offset: %d", rodata_start_page, page_id, rodata_flash2spiram_offs);
page_id = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS2, DROM0_ADDRESS_LOW, page_id, &page0_page);
page_id = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS0, DRAM0_ADDRESS_LOW, page_id, &page0_page);
page_id = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS1, DRAM1_ADDRESS_LOW, page_id, &page0_page);
page_id = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS2, DPORT_ADDRESS_LOW, page_id, &page0_page);
rodata_in_spiram = 1;
ESP_EARLY_LOGV(TAG, "after copy rodata, page_id is %d", page_id);
ESP_EARLY_LOGI(TAG, "Read only data copied and mapped to SPIRAM");
/**
* Disable DRAM0_BUS.
* .text (instructions) are mapped in `Cache_Flash_To_SPIRAM_Copy` to both `PRO_CACHE_IBUS0` and `PRO_CACHE_IBUS1`.
*
* For now, this bus (DRAM0) is only used for copying, so can be disabled. If it is used later, other code
* should be responsible for enabling it.
*/
REG_SET_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM0);
*out_page = page_id - start_page;
return ESP_OK;
}
#endif //#if CONFIG_SPIRAM_RODATA
/**
* On ESP32S2, DPORT_BUS, DRAM1_BUS, DRAM0_BUS are consecutive, from low to high
*/
esp_err_t mmu_map_psram(uint32_t start_paddr, uint32_t end_paddr, uint32_t *out_start_vaddr)
{
/**
* @note For now, this function should only run when virtual address is enough
* Decide these logics when there's a real PSRAM with larger size
*/
uint32_t map_length = end_paddr - start_paddr;
if (map_length > SOC_EXTRAM_DATA_SIZE) {
//Decide these logics when there's a real PSRAM with larger size
ESP_EARLY_LOGE(TAG, "PSRAM physical size is too large, not support mapping it yet!");
return ESP_ERR_INVALID_ARG;
}
//should be MMU page aligned
assert((start_paddr % MMU_PAGE_SIZE) == 0);
uint32_t start_vaddr = DPORT_CACHE_ADDRESS_LOW;
uint32_t end_vaddr = start_vaddr + map_length;
uint32_t cache_bus_mask = 0;
cache_bus_mask |= (end_vaddr > 0) ? EXTMEM_PRO_DCACHE_MASK_DPORT : 0;
cache_bus_mask |= (end_vaddr >= DPORT_ADDRESS_HIGH) ? EXTMEM_PRO_DCACHE_MASK_DRAM1 : 0;
cache_bus_mask |= (end_vaddr >= DRAM1_ADDRESS_HIGH) ? EXTMEM_PRO_DCACHE_MASK_DRAM0 : 0;
assert(end_vaddr <= DRAM0_CACHE_ADDRESS_HIGH);
ESP_EARLY_LOGV(TAG, "start_paddr is %x, map_length is %xB, %d pages", start_paddr, map_length, BYTES_TO_MMU_PAGE(map_length));
//No need to disable cache, this file is put in Internal RAM
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, start_vaddr, start_paddr, 64, BYTES_TO_MMU_PAGE(map_length), 0);
REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, cache_bus_mask);
*out_start_vaddr = start_vaddr;
return ESP_OK;
}
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
uint32_t esp_spiram_instruction_access_enabled(void)
{
return instruction_in_spiram;
}
int instruction_flash2spiram_offset(void)
{
return instr_flash2spiram_offs;
}
uint32_t instruction_flash_start_page_get(void)
{
return instr_start_page;
}
uint32_t instruction_flash_end_page_get(void)
{
return instr_end_page;
}
#endif //CONFIG_SPIRAM_FETCH_INSTRUCTIONS
#if CONFIG_SPIRAM_RODATA
uint32_t esp_spiram_rodata_access_enabled(void)
{
return rodata_in_spiram;
}
int rodata_flash2spiram_offset(void)
{
return rodata_flash2spiram_offs;
}
uint32_t rodata_flash_start_page_get(void)
{
return rodata_start_page;
}
uint32_t rodata_flash_end_page_get(void)
{
return rodata_end_page;
}
#endif //#if CONFIG_SPIRAM_RODATA

View File

@@ -1,5 +1,5 @@
/* /*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
* *
* SPDX-License-Identifier: Apache-2.0 * SPDX-License-Identifier: Apache-2.0
*/ */
@@ -236,52 +236,55 @@ static void set_ocode_by_efuse(int calib_version)
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_FORCE_CODE, 1); REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_FORCE_CODE, 1);
} }
/**
* TODO IDF-4141, this seems influence flash,
*/
static void calibrate_ocode(void) static void calibrate_ocode(void)
{ {
/* // /*
Bandgap output voltage is not precise when calibrate o-code by hardware sometimes, so need software o-code calibration (must turn off PLL). // Bandgap output voltage is not precise when calibrate o-code by hardware sometimes, so need software o-code calibration (must turn off PLL).
Method: // Method:
1. read current cpu config, save in old_config; // 1. read current cpu config, save in old_config;
2. switch cpu to xtal because PLL will be closed when o-code calibration; // 2. switch cpu to xtal because PLL will be closed when o-code calibration;
3. begin o-code calibration; // 3. begin o-code calibration;
4. wait o-code calibration done flag(odone_flag & bg_odone_flag) or timeout; // 4. wait o-code calibration done flag(odone_flag & bg_odone_flag) or timeout;
5. set cpu to old-config. // 5. set cpu to old-config.
*/ // */
rtc_slow_freq_t slow_clk_freq = rtc_clk_slow_freq_get(); // rtc_slow_freq_t slow_clk_freq = rtc_clk_slow_freq_get();
rtc_slow_freq_t rtc_slow_freq_x32k = RTC_SLOW_FREQ_32K_XTAL; // rtc_slow_freq_t rtc_slow_freq_x32k = RTC_SLOW_FREQ_32K_XTAL;
rtc_slow_freq_t rtc_slow_freq_8MD256 = RTC_SLOW_FREQ_8MD256; // rtc_slow_freq_t rtc_slow_freq_8MD256 = RTC_SLOW_FREQ_8MD256;
rtc_cal_sel_t cal_clk = RTC_CAL_RTC_MUX; // rtc_cal_sel_t cal_clk = RTC_CAL_RTC_MUX;
if (slow_clk_freq == (rtc_slow_freq_x32k)) { // if (slow_clk_freq == (rtc_slow_freq_x32k)) {
cal_clk = RTC_CAL_32K_XTAL; // cal_clk = RTC_CAL_32K_XTAL;
} else if (slow_clk_freq == rtc_slow_freq_8MD256) { // } else if (slow_clk_freq == rtc_slow_freq_8MD256) {
cal_clk = RTC_CAL_8MD256; // cal_clk = RTC_CAL_8MD256;
} // }
uint64_t max_delay_time_us = 10000; // uint64_t max_delay_time_us = 10000;
uint32_t slow_clk_period = rtc_clk_cal(cal_clk, 100); // uint32_t slow_clk_period = rtc_clk_cal(cal_clk, 100);
uint64_t max_delay_cycle = rtc_time_us_to_slowclk(max_delay_time_us, slow_clk_period); // uint64_t max_delay_cycle = rtc_time_us_to_slowclk(max_delay_time_us, slow_clk_period);
uint64_t cycle0 = rtc_time_get(); // uint64_t cycle0 = rtc_time_get();
uint64_t timeout_cycle = cycle0 + max_delay_cycle; // uint64_t timeout_cycle = cycle0 + max_delay_cycle;
uint64_t cycle1 = 0; // uint64_t cycle1 = 0;
rtc_cpu_freq_config_t old_config; // rtc_cpu_freq_config_t old_config;
rtc_clk_cpu_freq_get_config(&old_config); // rtc_clk_cpu_freq_get_config(&old_config);
rtc_clk_cpu_freq_set_xtal(); // rtc_clk_cpu_freq_set_xtal();
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 0); // REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 0);
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 1); // REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 1);
bool odone_flag = 0; // bool odone_flag = 0;
bool bg_odone_flag = 0; // bool bg_odone_flag = 0;
while(1) { // while(1) {
odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_O_DONE_FLAG); // odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_O_DONE_FLAG);
bg_odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_BG_O_DONE_FLAG); // bg_odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_BG_O_DONE_FLAG);
cycle1 = rtc_time_get(); // cycle1 = rtc_time_get();
if (odone_flag && bg_odone_flag) // if (odone_flag && bg_odone_flag)
break; // break;
if (cycle1 >= timeout_cycle) { // if (cycle1 >= timeout_cycle) {
SOC_LOGW(TAG, "o_code calibration fail"); // SOC_LOGW(TAG, "o_code calibration fail");
break; // break;
} // }
} // }
rtc_clk_cpu_freq_set_config(&old_config); // rtc_clk_cpu_freq_set_config(&old_config);
} }

View File

@@ -1,39 +1,32 @@
/* /*
Abstraction layer for spi-ram. For now, it's no more than a stub for the spiram_psram functions, but if * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
we add more types of external RAM memory, this can be made into a more intelligent dispatcher.
*/
/*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
* *
* SPDX-License-Identifier: Apache-2.0 * SPDX-License-Identifier: Apache-2.0
*/ */
#include <stdint.h>
#include <string.h> /*----------------------------------------------------------------------------------------------------
* Abstraction layer for PSRAM. PSRAM device related registers and MMU/Cache related code shouls be
* abstracted to lower layers.
*
* When we add more types of external RAM memory, this can be made into a more intelligent dispatcher.
*----------------------------------------------------------------------------------------------------*/
#include <sys/param.h> #include <sys/param.h>
#include "sdkconfig.h" #include "sdkconfig.h"
#include "esp_attr.h" #include "esp_attr.h"
#include "esp_err.h" #include "esp_err.h"
#include "esp32s2/spiram.h"
#include "spiram_psram.h"
#include "esp_log.h" #include "esp_log.h"
#include "freertos/FreeRTOS.h" #include "freertos/FreeRTOS.h"
#include "freertos/xtensa_api.h" #include "freertos/xtensa_api.h"
#include "soc/soc.h"
#include "esp_heap_caps_init.h" #include "esp_heap_caps_init.h"
#include "soc/soc_memory_layout.h" #include "esp32s2/spiram.h"
#include "soc/dport_reg.h" #include "esp_private/mmu_psram.h"
#include "esp32s2/rom/cache.h" #include "spiram_psram.h"
#include "soc/cache_memory.h"
#include "soc/extmem_reg.h"
#define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL #define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL
#if CONFIG_SPIRAM #if CONFIG_SPIRAM
static const char* TAG = "spiram";
#if CONFIG_SPIRAM_SPEED_40M #if CONFIG_SPIRAM_SPEED_40M
#define PSRAM_SPEED PSRAM_CACHE_S40M #define PSRAM_SPEED PSRAM_CACHE_S40M
#elif CONFIG_SPIRAM_SPEED_80M #elif CONFIG_SPIRAM_SPEED_80M
@@ -42,206 +35,23 @@ static const char* TAG = "spiram";
#define PSRAM_SPEED PSRAM_CACHE_S20M #define PSRAM_SPEED PSRAM_CACHE_S20M
#endif #endif
#define MMU_PAGE_TO_BYTES(page_id) ((page_id) << 16)
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
extern uint8_t _ext_ram_bss_start;
extern uint8_t _ext_ram_bss_end;
#endif //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
//These variables are in bytes
static uint32_t s_allocable_vaddr_start;
static uint32_t s_allocable_vaddr_end;
static bool spiram_inited=false; static bool spiram_inited=false;
static const char* TAG = "spiram";
#define DRAM0_ONLY_CACHE_SIZE BUS_IRAM0_CACHE_SIZE bool esp_spiram_test(uint32_t v_start, uint32_t size);
#define DRAM0_DRAM1_CACHE_SIZE (BUS_IRAM0_CACHE_SIZE + BUS_IRAM1_CACHE_SIZE)
#define DRAM0_DRAM1_DPORT_CACHE_SIZE (BUS_IRAM0_CACHE_SIZE + BUS_IRAM1_CACHE_SIZE + BUS_DPORT_CACHE_SIZE)
#define SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT (spiram_size - DRAM0_DRAM1_DPORT_CACHE_SIZE)
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
extern uint8_t _ext_ram_bss_start, _ext_ram_bss_end;
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
#define EXT_BSS_SIZE ((uint32_t)(&_ext_ram_bss_end - &_ext_ram_bss_start))
#define EXT_BSS_PAGE_ALIGN_SIZE (ALIGN_UP_BY(EXT_BSS_SIZE, 0x10000))
#endif
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
#define SPIRAM_MAP_PADDR_START EXT_BSS_PAGE_ALIGN_SIZE
#define FREE_DRAM0_DRAM1_DPORT_CACHE_START (DPORT_CACHE_ADDRESS_LOW + EXT_BSS_PAGE_ALIGN_SIZE)
#define FREE_DRAM0_DRAM1_DPORT_CACHE_SIZE (DRAM0_DRAM1_DPORT_CACHE_SIZE - EXT_BSS_PAGE_ALIGN_SIZE)
#else
#define SPIRAM_MAP_PADDR_START 0
#define FREE_DRAM0_DRAM1_DPORT_CACHE_START (DPORT_CACHE_ADDRESS_LOW)
#define FREE_DRAM0_DRAM1_DPORT_CACHE_SIZE (DRAM0_DRAM1_DPORT_CACHE_SIZE)
#endif // if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
#define SPIRAM_MAP_VADDR_START (DRAM0_CACHE_ADDRESS_HIGH - spiram_map_size)
#define SPIRAM_MAP_SIZE spiram_map_size
static uint32_t next_map_page_num = 0;
static uint32_t instruction_in_spiram = 0;
static uint32_t rodata_in_spiram = 0;
static size_t spiram_size = 0;
static size_t spiram_map_size = 0;
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
static int instr_flash2spiram_offs = 0;
static uint32_t instr_start_page = 0;
static uint32_t instr_end_page = 0;
#endif
#if CONFIG_SPIRAM_RODATA
static int rodata_flash2spiram_offs = 0;
static uint32_t rodata_start_page = 0;
static uint32_t rodata_end_page = 0;
#endif
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
static uint32_t page0_mapped = 0;
static uint32_t page0_page = INVALID_PHY_PAGE;
#endif
void IRAM_ATTR esp_spiram_init_cache(void)
{
spiram_map_size = spiram_size;
Cache_Suspend_DCache();
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
/*if instruction or rodata in flash will be load to spiram, some subsequent operations require the start
address to be aligned by page, so allocate N pages address space for spiram's bss*/
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, DPORT_CACHE_ADDRESS_LOW, 0, 64, EXT_BSS_PAGE_ALIGN_SIZE >> 16, 0);
REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DPORT);
next_map_page_num += (EXT_BSS_PAGE_ALIGN_SIZE >> 16);
spiram_map_size -= EXT_BSS_PAGE_ALIGN_SIZE;
#endif
/* map the address from SPIRAM end to the start, map the address in order: DRAM0, DRAM1, DPORT */
if (spiram_map_size <= DRAM0_ONLY_CACHE_SIZE) {
/* psram need to be mapped vaddr size <= 3MB + 512 KB, only map DRAM0 bus */
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SPIRAM_MAP_VADDR_START, SPIRAM_MAP_PADDR_START, 64, SPIRAM_MAP_SIZE >> 16, 0);
REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM0);
} else if (spiram_map_size <= DRAM0_DRAM1_CACHE_SIZE) {
/* psram need to be mapped vaddr size <= 7MB + 512KB, only map DRAM0 and DRAM1 bus */
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SPIRAM_MAP_VADDR_START, SPIRAM_MAP_PADDR_START, 64, SPIRAM_MAP_SIZE >> 16, 0);
REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM1 | EXTMEM_PRO_DCACHE_MASK_DRAM0);
} else if (spiram_size <= DRAM0_DRAM1_DPORT_CACHE_SIZE) { // Equivalent to {spiram_map_size < DRAM0_DRAM1_DPORT_CACHE_SIZE - (spiram_size - spiram_map_size)/*bss size*/}
/* psram need to be mapped vaddr size <= 10MB + 512KB - bss_page_align_size, map DRAM0, DRAM1, DPORT bus */
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, SPIRAM_MAP_VADDR_START, SPIRAM_MAP_PADDR_START, 64, SPIRAM_MAP_SIZE >> 16, 0);
REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM1 | EXTMEM_PRO_DCACHE_MASK_DRAM0 | EXTMEM_PRO_DCACHE_MASK_DPORT);
} else {
/* psram need to be mapped vaddr size > 10MB + 512KB - bss_page_align_size, map DRAM0, DRAM1, DPORT bus ,discard the memory in the end of spiram */
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, FREE_DRAM0_DRAM1_DPORT_CACHE_START, SPIRAM_MAP_PADDR_START, 64, FREE_DRAM0_DRAM1_DPORT_CACHE_SIZE >> 16, 0);
REG_CLR_BIT(EXTMEM_PRO_DCACHE_CTRL1_REG, EXTMEM_PRO_DCACHE_MASK_DRAM1 | EXTMEM_PRO_DCACHE_MASK_DRAM0 | EXTMEM_PRO_DCACHE_MASK_DPORT);
}
Cache_Resume_DCache(0);
}
uint32_t esp_spiram_instruction_access_enabled(void)
{
return instruction_in_spiram;
}
uint32_t esp_spiram_rodata_access_enabled(void)
{
return rodata_in_spiram;
}
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
esp_err_t esp_spiram_enable_instruction_access(void)
{
uint32_t pages_in_flash = 0;
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS0, &page0_mapped);
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS1, &page0_mapped);
if ((pages_in_flash + next_map_page_num) > (spiram_size >> 16)) {
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the instructions, has %d pages, need %d pages.", (spiram_size >> 16), (pages_in_flash + next_map_page_num));
return ESP_FAIL;
}
ESP_EARLY_LOGI(TAG, "Instructions copied and mapped to SPIRAM");
uint32_t instr_mmu_offset = ((uint32_t)&_instruction_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS0_MMU_START + instr_mmu_offset*sizeof(uint32_t));
mmu_value &= MMU_ADDRESS_MASK;
instr_flash2spiram_offs = mmu_value - next_map_page_num;
ESP_EARLY_LOGV(TAG, "Instructions from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, next_map_page_num, instr_flash2spiram_offs);
next_map_page_num = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS0, IRAM0_ADDRESS_LOW, next_map_page_num, &page0_page);
next_map_page_num = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS1, IRAM1_ADDRESS_LOW, next_map_page_num, &page0_page);
instruction_in_spiram = 1;
return ESP_OK;
}
#endif
#if CONFIG_SPIRAM_RODATA
esp_err_t esp_spiram_enable_rodata_access(void)
{
uint32_t pages_in_flash = 0;
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_IBUS2, &page0_mapped);
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS0, &page0_mapped);
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS1, &page0_mapped);
pages_in_flash += Cache_Count_Flash_Pages(PRO_CACHE_DBUS2, &page0_mapped);
if ((pages_in_flash + next_map_page_num) > (spiram_size >> 16)) {
ESP_EARLY_LOGE(TAG, "SPI RAM space not enough for the read only data.");
return ESP_FAIL;
}
ESP_EARLY_LOGI(TAG, "Read only data copied and mapped to SPIRAM");
uint32_t rodata_mmu_offset = ((uint32_t)&_rodata_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
uint32_t mmu_value = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS2_MMU_START + rodata_mmu_offset*sizeof(uint32_t));
mmu_value &= MMU_ADDRESS_MASK;
rodata_flash2spiram_offs = mmu_value - next_map_page_num;
ESP_EARLY_LOGV(TAG, "Rodata from flash page%d copy to SPIRAM page%d, Offset: %d", mmu_value, next_map_page_num, rodata_flash2spiram_offs);
next_map_page_num = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_IBUS2, DROM0_ADDRESS_LOW, next_map_page_num, &page0_page);
next_map_page_num = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS0, DRAM0_ADDRESS_LOW, next_map_page_num, &page0_page);
next_map_page_num = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS1, DRAM1_ADDRESS_LOW, next_map_page_num, &page0_page);
next_map_page_num = Cache_Flash_To_SPIRAM_Copy(PRO_CACHE_DBUS2, DPORT_ADDRESS_LOW, next_map_page_num, &page0_page);
rodata_in_spiram = 1;
return ESP_OK;
}
#endif
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
void instruction_flash_page_info_init(void)
{
uint32_t instr_page_cnt = ((uint32_t)&_instruction_reserved_end - SOC_IROM_LOW + MMU_PAGE_SIZE - 1)/MMU_PAGE_SIZE;
uint32_t instr_mmu_offset = ((uint32_t)&_instruction_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
instr_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS0_MMU_START + instr_mmu_offset*sizeof(uint32_t));
instr_start_page &= MMU_ADDRESS_MASK;
instr_end_page = instr_start_page + instr_page_cnt - 1;
}
uint32_t IRAM_ATTR instruction_flash_start_page_get(void)
{
return instr_start_page;
}
uint32_t IRAM_ATTR instruction_flash_end_page_get(void)
{
return instr_end_page;
}
int IRAM_ATTR instruction_flash2spiram_offset(void)
{
return instr_flash2spiram_offs;
}
#endif
#if CONFIG_SPIRAM_RODATA
void rodata_flash_page_info_init(void)
{
uint32_t rodata_page_cnt = ((uint32_t)&_rodata_reserved_end - SOC_DROM_LOW + MMU_PAGE_SIZE - 1)/MMU_PAGE_SIZE;
uint32_t rodata_mmu_offset = ((uint32_t)&_rodata_reserved_start & 0xFFFFFF)/MMU_PAGE_SIZE;
rodata_start_page = *(volatile uint32_t *)(DR_REG_MMU_TABLE + PRO_CACHE_IBUS2_MMU_START + rodata_mmu_offset*sizeof(uint32_t));
rodata_start_page &= MMU_ADDRESS_MASK;
rodata_end_page = rodata_start_page + rodata_page_cnt - 1;
}
uint32_t IRAM_ATTR rodata_flash_start_page_get(void)
{
return rodata_start_page;
}
uint32_t IRAM_ATTR rodata_flash_end_page_get(void)
{
return rodata_end_page;
}
int IRAM_ATTR rodata_flash2spiram_offset(void)
{
return rodata_flash2spiram_offs;
}
#endif
esp_err_t esp_spiram_init(void) esp_err_t esp_spiram_init(void)
{ {
@@ -256,8 +66,8 @@ esp_err_t esp_spiram_init(void)
spiram_inited = true; spiram_inited = true;
spiram_size = esp_spiram_get_size(); //TODO IDF-4380
size_t spiram_size = esp_spiram_get_size();
#if (CONFIG_SPIRAM_SIZE != -1) #if (CONFIG_SPIRAM_SIZE != -1)
if (spiram_size != CONFIG_SPIRAM_SIZE) { if (spiram_size != CONFIG_SPIRAM_SIZE) {
ESP_EARLY_LOGE(TAG, "Expected %dKiB chip but found %dKiB chip. Bailing out..", CONFIG_SPIRAM_SIZE/1024, spiram_size/1024); ESP_EARLY_LOGE(TAG, "Expected %dKiB chip but found %dKiB chip. Bailing out..", CONFIG_SPIRAM_SIZE/1024, spiram_size/1024);
@@ -273,62 +83,83 @@ esp_err_t esp_spiram_init(void)
(PSRAM_MODE==PSRAM_VADDR_MODE_EVENODD)?"even/odd (2-core)": \ (PSRAM_MODE==PSRAM_VADDR_MODE_EVENODD)?"even/odd (2-core)": \
(PSRAM_MODE==PSRAM_VADDR_MODE_LOWHIGH)?"low/high (2-core)": \ (PSRAM_MODE==PSRAM_VADDR_MODE_LOWHIGH)?"low/high (2-core)": \
(PSRAM_MODE==PSRAM_VADDR_MODE_NORMAL)?"normal (1-core)":"ERROR"); (PSRAM_MODE==PSRAM_VADDR_MODE_NORMAL)?"normal (1-core)":"ERROR");
uint32_t psram_available_size = spiram_size;
/**
* `start_page` is the psram physical address in MMU page size.
* MMU page size on ESP32S2 is 64KB
* e.g.: psram physical address 16 is in page 0
*
* Here we plan to copy FLASH instructions to psram physical address 0, which is the No.0 page.
*/
uint32_t start_page = 0;
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
uint32_t used_page = 0;
#endif
//------------------------------------Copy Flash .text to PSRAM-------------------------------------//
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
r = mmu_config_psram_text_segment(start_page, spiram_size, &used_page);
if (r != ESP_OK) {
ESP_EARLY_LOGE(TAG, "No enough psram memory for instructon!");
abort();
}
start_page += used_page;
psram_available_size -= MMU_PAGE_TO_BYTES(used_page);
ESP_EARLY_LOGV(TAG, "after copy .text, used page is %d, start_page is %d, psram_available_size is %d B", used_page, start_page, psram_available_size);
#endif //#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
//------------------------------------Copy Flash .rodata to PSRAM-------------------------------------//
#if CONFIG_SPIRAM_RODATA
r = mmu_config_psram_rodata_segment(start_page, spiram_size, &used_page);
if (r != ESP_OK) {
ESP_EARLY_LOGE(TAG, "No enough psram memory for rodata!");
abort();
}
start_page += used_page;
psram_available_size -= MMU_PAGE_TO_BYTES(used_page);
ESP_EARLY_LOGV(TAG, "after copy .rodata, used page is %d, start_page is %d, psram_available_size is %d B", used_page, start_page, psram_available_size);
#endif //#if CONFIG_SPIRAM_RODATA
//Map the PSRAM physical range to MMU
static DRAM_ATTR uint32_t vaddr_start = 0;
mmu_map_psram(MMU_PAGE_TO_BYTES(start_page), MMU_PAGE_TO_BYTES(start_page) + psram_available_size, &vaddr_start);
if (r != ESP_OK) {
ESP_EARLY_LOGE(TAG, "MMU PSRAM mapping wrong!");
abort();
}
#if CONFIG_SPIRAM_MEMTEST
//After mapping, simple test SPIRAM first
bool ext_ram_ok = esp_spiram_test(vaddr_start, psram_available_size);
if (!ext_ram_ok) {
ESP_EARLY_LOGE(TAG, "External RAM failed memory test!");
abort();
}
#endif //#if CONFIG_SPIRAM_MEMTEST
/*------------------------------------------------------------------------------
* After mapping, we DON'T care about the PSRAM PHYSICAL ADDRESSS ANYMORE!
*----------------------------------------------------------------------------*/
s_allocable_vaddr_start = vaddr_start;
s_allocable_vaddr_end = vaddr_start + psram_available_size;
//------------------------------------Configure .bss in PSRAM-------------------------------------//
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
//should never be negative number
uint32_t ext_bss_size = ((intptr_t)&_ext_ram_bss_end - (intptr_t)&_ext_ram_bss_start);
ESP_EARLY_LOGV(TAG, "ext_bss_size is %d", ext_bss_size);
s_allocable_vaddr_start += ext_bss_size;
#endif //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
ESP_EARLY_LOGV(TAG, "s_allocable_vaddr_start is 0x%x, s_allocable_vaddr_end is 0x%x", s_allocable_vaddr_start, s_allocable_vaddr_end);
return ESP_OK; return ESP_OK;
} }
esp_err_t esp_spiram_add_to_heapalloc(void) esp_err_t esp_spiram_add_to_heapalloc(void)
{ {
size_t recycle_pages_size = 0; return heap_caps_add_region(s_allocable_vaddr_start, s_allocable_vaddr_end - 1);
size_t map_size = 0;
intptr_t map_vaddr, map_paddr;
ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (spiram_size - (next_map_page_num << 16))/1024);
#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY
if(EXT_BSS_SIZE){
ESP_EARLY_LOGI(TAG, "Adding pool of %d Byte(spiram .bss page unused area) of external SPI memory to heap allocator", EXT_BSS_PAGE_ALIGN_SIZE - EXT_BSS_SIZE);
esp_err_t err_status = heap_caps_add_region(DPORT_CACHE_ADDRESS_LOW + EXT_BSS_SIZE, FREE_DRAM0_DRAM1_DPORT_CACHE_START - 1);
if (err_status != ESP_OK){
return err_status;
}
}
#endif
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA
/* Part of the physical address space in spiram is mapped by IRAM0/DROM0,
so the DPORT_DRAM0_DRAM1 address space of the same size can be released */
uint32_t occupied_pages_size = (next_map_page_num << 16);
recycle_pages_size = occupied_pages_size - SPIRAM_MAP_PADDR_START;
#endif
// Small size: means DPORT_DRAM0_DRAM1 bus virtrual address space larger than the spiram size
if (spiram_size <= DRAM0_DRAM1_DPORT_CACHE_SIZE) {
map_vaddr = SPIRAM_MAP_VADDR_START;
return heap_caps_add_region(map_vaddr + recycle_pages_size, map_vaddr + spiram_map_size - 1); // pass rodata & instruction section
}
// Middle size: means DPORT_DRAM0_DRAM1 bus virtrual address space less than the
// spiram size, but after releasing the virtual address space mapped
// from the rodata or instruction copied from the flash, the released
// virtual address space is enough to map the abandoned physical address
// space in spiram
if (recycle_pages_size >= SPIRAM_SIZE_EXC_DRAM0_DRAM1_DPORT) {
map_vaddr = SPIRAM_MAP_VADDR_START + recycle_pages_size;
map_paddr = SPIRAM_MAP_PADDR_START + recycle_pages_size;
map_size = SPIRAM_MAP_SIZE - recycle_pages_size;
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, map_vaddr, map_paddr, 64, map_size >> 16, 0);
return heap_caps_add_region(map_vaddr , map_vaddr + map_size - 1);
}
// Large size: means after releasing the virtual address space mapped from the rodata
// or instruction copied from the flash, the released virtual address space
// still not enough to map the abandoned physical address space in spiram,
// so use all the virtual address space as much as possible
map_vaddr = FREE_DRAM0_DRAM1_DPORT_CACHE_START;
map_paddr = SPIRAM_MAP_PADDR_START + recycle_pages_size;
map_size = FREE_DRAM0_DRAM1_DPORT_CACHE_SIZE;
Cache_Dbus_MMU_Set(MMU_ACCESS_SPIRAM, map_vaddr, map_paddr, 64, map_size >> 16, 0);
return heap_caps_add_region(map_vaddr, map_vaddr + FREE_DRAM0_DRAM1_DPORT_CACHE_SIZE -1);
} }
static uint8_t *dma_heap; static uint8_t *dma_heap;
@@ -342,6 +173,7 @@ esp_err_t esp_spiram_reserve_dma_pool(size_t size) {
return heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap+size-1); return heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap+size-1);
} }
//TODO IDF-4380
size_t esp_spiram_get_size(void) size_t esp_spiram_get_size(void)
{ {
if (!spiram_inited) { if (!spiram_inited) {
@@ -387,38 +219,34 @@ uint8_t esp_spiram_get_cs_io(void)
true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been
initialized (in a two-core system) or after the heap allocator has taken ownership of the memory. initialized (in a two-core system) or after the heap allocator has taken ownership of the memory.
*/ */
bool esp_spiram_test(void) bool esp_spiram_test(uint32_t v_start, uint32_t size)
{ {
volatile int *spiram = (volatile int*)(SOC_EXTRAM_DATA_HIGH - spiram_map_size); volatile int *spiram = (volatile int *)v_start;
size_t p;
size_t s = spiram_map_size;
int errct=0;
int initial_err=-1;
if (SOC_EXTRAM_DATA_SIZE < spiram_map_size) { size_t s = size;
ESP_EARLY_LOGW(TAG, "Only test spiram from %08x to %08x\n", SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH); size_t p;
spiram=(volatile int*)SOC_EXTRAM_DATA_LOW; int errct = 0;
s = SOC_EXTRAM_DATA_SIZE; int initial_err = -1;
for (p = 0; p < (s / sizeof(int)); p += 8) {
spiram[p] = p ^ 0xAAAAAAAA;
} }
for (p=0; p<(s/sizeof(int)); p+=8) { for (p = 0; p < (s / sizeof(int)); p += 8) {
spiram[p]=p^0xAAAAAAAA; if (spiram[p] != (p ^ 0xAAAAAAAA)) {
}
for (p=0; p<(s/sizeof(int)); p+=8) {
if (spiram[p]!=(p^0xAAAAAAAA)) {
errct++; errct++;
if (errct==1) initial_err=p*4; if (errct == 1) {
initial_err = p * 4;
}
if (errct < 4) { if (errct < 4) {
ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p^0xAAAAAAAA); ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p ^ 0xAAAAAAAA);
} }
} }
} }
if (errct) { if (errct) {
ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s/32, initial_err+SOC_EXTRAM_DATA_LOW); ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s / 32, initial_err + SOC_EXTRAM_DATA_LOW);
return false; return false;
} else { } else {
ESP_EARLY_LOGI(TAG, "SPI SRAM memory test OK");
return true; return true;
} }
} }
#endif //#if CONFIG_SPIRAM
#endif

View File

@@ -1,5 +1,5 @@
/* /*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
* *
* SPDX-License-Identifier: Apache-2.0 * SPDX-License-Identifier: Apache-2.0
*/ */
@@ -404,9 +404,12 @@ void IRAM_ATTR call_start_cpu0(void)
abort(); abort();
#endif #endif
} }
//TODO: IDF-4382
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S3
if (g_spiram_ok) { if (g_spiram_ok) {
esp_spiram_init_cache(); esp_spiram_init_cache();
} }
#endif //#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S3, //TODO: IDF-4382
#endif #endif
#if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE #if !CONFIG_ESP_SYSTEM_SINGLE_CORE_MODE
@@ -435,6 +438,8 @@ void IRAM_ATTR call_start_cpu0(void)
#endif // SOC_CPU_CORES_NUM > 1 #endif // SOC_CPU_CORES_NUM > 1
#if CONFIG_SPIRAM_MEMTEST #if CONFIG_SPIRAM_MEMTEST
//TODO: IDF-4382
#if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S3
if (g_spiram_ok) { if (g_spiram_ok) {
bool ext_ram_ok = esp_spiram_test(); bool ext_ram_ok = esp_spiram_test();
if (!ext_ram_ok) { if (!ext_ram_ok) {
@@ -442,8 +447,11 @@ void IRAM_ATTR call_start_cpu0(void)
abort(); abort();
} }
} }
#endif #endif //CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S3, //TODO: IDF-4382
#endif //CONFIG_SPIRAM_MEMTEST
//TODO: IDF-4382
#if CONFIG_IDF_TARGET_ESP32S3
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS
extern void instruction_flash_page_info_init(void); extern void instruction_flash_page_info_init(void);
instruction_flash_page_info_init(); instruction_flash_page_info_init();
@@ -462,7 +470,6 @@ void IRAM_ATTR call_start_cpu0(void)
esp_spiram_enable_rodata_access(); esp_spiram_enable_rodata_access();
#endif #endif
#if CONFIG_IDF_TARGET_ESP32S3
int s_instr_flash2spiram_off = 0; int s_instr_flash2spiram_off = 0;
int s_rodata_flash2spiram_off = 0; int s_rodata_flash2spiram_off = 0;
#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS

View File

@@ -1,5 +1,5 @@
/* /*
* SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
* *
* SPDX-License-Identifier: Apache-2.0 * SPDX-License-Identifier: Apache-2.0
*/ */
@@ -32,7 +32,7 @@
#define INVALID_PHY_PAGE 0xffff #define INVALID_PHY_PAGE 0xffff
#elif CONFIG_IDF_TARGET_ESP32S2 #elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/cache.h" #include "esp32s2/rom/cache.h"
#include "esp32s2/spiram.h" #include "esp_private/mmu_psram.h"
#include "soc/extmem_reg.h" #include "soc/extmem_reg.h"
#include "soc/cache_memory.h" #include "soc/cache_memory.h"
#include "soc/mmu.h" #include "soc/mmu.h"

View File

@@ -0,0 +1,6 @@
CONFIG_IDF_TARGET="esp32s2"
TEST_COMPONENTS=esp_hw_support esp_common
CONFIG_ESP32S2_SPIRAM_SUPPORT=y
CONFIG_SPIRAM_FETCH_INSTRUCTIONS=y
CONFIG_SPIRAM_RODATA=y
CONFIG_SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY=y

View File

@@ -0,0 +1,3 @@
CONFIG_IDF_TARGET="esp32s2"
TEST_COMPONENTS=esp_hw_support
CONFIG_ESP32S2_SPIRAM_SUPPORT=y