esp32h2: copy esp_system and esp_hw_support from esp32c3

Copy the esp32c3 code without any change:
 * components/esp_hw_support/include/soc/esp32h2
 * components/esp_hw_support/port/esp32h2
 * components/esp_system/port/soc/esp32h2
This commit is contained in:
Shu Chen
2021-06-10 13:39:15 +08:00
parent 37f4cb8b4b
commit 7d4b2617e1
28 changed files with 3125 additions and 0 deletions

View File

@@ -0,0 +1,16 @@
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "esp_private/esp_clk.h"

View File

@@ -0,0 +1,24 @@
set(srcs "cpu_util_esp32c3.c"
"rtc_clk_init.c"
"rtc_clk.c"
"rtc_init.c"
"rtc_pm.c"
"rtc_sleep.c"
"rtc_time.c"
"chip_info.c"
)
if(NOT BOOTLOADER_BUILD)
list(APPEND srcs "../async_memcpy_impl_gdma.c")
endif()
add_prefix(srcs "${CMAKE_CURRENT_LIST_DIR}/" "${srcs}")
target_sources(${COMPONENT_LIB} PRIVATE "${srcs}")
target_include_directories(${COMPONENT_LIB} PUBLIC . private_include)
target_include_directories(${COMPONENT_LIB} PRIVATE ../hal)
if(NOT CMAKE_BUILD_EARLY_EXPANSION)
set_source_files_properties("${CMAKE_CURRENT_LIST_DIR}/rtc_clk.c" PROPERTIES
COMPILE_FLAGS "-fno-jump-tables -fno-tree-switch-conversion")
endif()

View File

@@ -0,0 +1,43 @@
choice ESP32C3_UNIVERSAL_MAC_ADDRESSES
bool "Number of universally administered (by IEEE) MAC address"
default ESP32C3_UNIVERSAL_MAC_ADDRESSES_FOUR
help
Configure the number of universally administered (by IEEE) MAC addresses.
During initialization, MAC addresses for each network interface are generated or derived from a
single base MAC address.
If the number of universal MAC addresses is four, all four interfaces (WiFi station, WiFi softap,
Bluetooth and Ethernet) receive a universally administered MAC address. These are generated
sequentially by adding 0, 1, 2 and 3 (respectively) to the final octet of the base MAC address.
If the number of universal MAC addresses is two, only two interfaces (WiFi station and Bluetooth)
receive a universally administered MAC address. These are generated sequentially by adding 0
and 1 (respectively) to the base MAC address. The remaining two interfaces (WiFi softap and Ethernet)
receive local MAC addresses. These are derived from the universal WiFi station and Bluetooth MAC
addresses, respectively.
When using the default (Espressif-assigned) base MAC address, either setting can be used. When using
a custom universal MAC address range, the correct setting will depend on the allocation of MAC
addresses in this range (either 2 or 4 per device.)
Note that ESP32-C3 has no integrated Ethernet MAC. Although it's possible to use the esp_read_mac()
API to return a MAC for Ethernet, this can only be used with an external MAC peripheral.
config ESP32C3_UNIVERSAL_MAC_ADDRESSES_TWO
bool "Two"
select ESP_MAC_ADDR_UNIVERSE_WIFI_STA
select ESP_MAC_ADDR_UNIVERSE_BT
config ESP32C3_UNIVERSAL_MAC_ADDRESSES_FOUR
bool "Four"
select ESP_MAC_ADDR_UNIVERSE_WIFI_STA
select ESP_MAC_ADDR_UNIVERSE_WIFI_AP
select ESP_MAC_ADDR_UNIVERSE_BT
select ESP_MAC_ADDR_UNIVERSE_ETH
endchoice
config ESP32C3_UNIVERSAL_MAC_ADDRESSES
int
default 2 if ESP32C3_UNIVERSAL_MAC_ADDRESSES_TWO
default 4 if ESP32C3_UNIVERSAL_MAC_ADDRESSES_FOUR

View File

@@ -0,0 +1,26 @@
// Copyright 2013-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "esp_chip_info.h"
#include "esp_efuse.h"
void esp_chip_info(esp_chip_info_t *out_info)
{
memset(out_info, 0, sizeof(*out_info));
out_info->model = CHIP_ESP32C3;
out_info->revision = esp_efuse_get_chip_ver();
out_info->cores = 1;
out_info->features = CHIP_FEATURE_WIFI_BGN | CHIP_FEATURE_BLE;
}

View File

@@ -0,0 +1,112 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <assert.h>
#include "soc/cpu.h"
void esp_cpu_configure_region_protection(void)
{
/* Notes on implementation:
*
* 1) Note: ESP32-C3 CPU doesn't support overlapping PMP regions
*
* 2) Therefore, we use TOR (top of range) entries to map the whole address
* space, bottom to top.
*
* 3) There are not enough entries to describe all the memory regions 100% accurately.
*
* 4) This means some gaps (invalid memory) are accessible. Priority for extending regions
* to cover gaps is to extend read-only or read-execute regions or read-only regions only
* (executing unmapped addresses should always fault with invalid instruction, read-only means
* stores will correctly fault even if reads may return some invalid value.)
*
* 5) Entries are grouped in order with some static asserts to try and verify everything is
* correct.
*/
const unsigned NONE = PMP_L | PMP_TOR;
const unsigned R = PMP_L | PMP_TOR | PMP_R;
const unsigned RW = PMP_L | PMP_TOR | PMP_R | PMP_W;
const unsigned RX = PMP_L | PMP_TOR | PMP_R | PMP_X;
const unsigned RWX = PMP_L | PMP_TOR | PMP_R | PMP_W | PMP_X;
// 1. Gap at bottom of address space
PMP_ENTRY_SET(0, SOC_DEBUG_LOW, NONE);
// 2. Debug region
PMP_ENTRY_SET(1, SOC_DEBUG_HIGH, RWX);
_Static_assert(SOC_DEBUG_LOW < SOC_DEBUG_HIGH, "Invalid CPU debug region");
// 3. Gap between debug region & DROM (flash cache)
PMP_ENTRY_SET(2, SOC_DROM_LOW, NONE);
_Static_assert(SOC_DEBUG_HIGH < SOC_DROM_LOW, "Invalid PMP entry order");
// 4. DROM (flash cache)
// 5. Gap between DROM & DRAM
// (Note: To save PMP entries these two are merged into one read-only region)
PMP_ENTRY_SET(3, SOC_DRAM_LOW, R);
_Static_assert(SOC_DROM_LOW < SOC_DROM_HIGH, "Invalid DROM region");
_Static_assert(SOC_DROM_HIGH < SOC_DRAM_LOW, "Invalid PMP entry order");
// 6. DRAM
PMP_ENTRY_SET(4, SOC_DRAM_HIGH, RW);
_Static_assert(SOC_DRAM_LOW < SOC_DRAM_HIGH, "Invalid DRAM region");
// 7. Gap between DRAM and Mask DROM
// 8. Mask DROM
// (Note: to save PMP entries these two are merged into one read-only region)
PMP_ENTRY_SET(5, SOC_DROM_MASK_HIGH, R);
_Static_assert(SOC_DRAM_HIGH < SOC_DROM_MASK_LOW, "Invalid PMP entry order");
_Static_assert(SOC_DROM_MASK_LOW < SOC_DROM_MASK_HIGH, "Invalid mask DROM region");
// 9. Gap between mask DROM and mask IROM
// 10. Mask IROM
// (Note: to save PMP entries these two are merged into one RX region)
PMP_ENTRY_SET(6, SOC_IROM_MASK_HIGH, RX);
_Static_assert(SOC_DROM_MASK_HIGH < SOC_IROM_MASK_LOW, "Invalid PMP entry order");
_Static_assert(SOC_IROM_MASK_LOW < SOC_IROM_MASK_HIGH, "Invalid mask IROM region");
// 11. Gap between mask IROM & IRAM
PMP_ENTRY_SET(7, SOC_IRAM_LOW, NONE);
_Static_assert(SOC_IROM_MASK_HIGH < SOC_IRAM_LOW, "Invalid PMP entry order");
// 12. IRAM
PMP_ENTRY_SET(8, SOC_IRAM_HIGH, RWX);
_Static_assert(SOC_IRAM_LOW < SOC_IRAM_HIGH, "Invalid IRAM region");
// 13. Gap between IRAM and IROM
// 14. IROM (flash cache)
// (Note: to save PMP entries these two are merged into one RX region)
PMP_ENTRY_SET(9, SOC_IROM_HIGH, RX);
_Static_assert(SOC_IRAM_HIGH < SOC_IROM_LOW, "Invalid PMP entry order");
_Static_assert(SOC_IROM_LOW < SOC_IROM_HIGH, "Invalid IROM region");
// 15. Gap between IROM & RTC slow memory
PMP_ENTRY_SET(10, SOC_RTC_IRAM_LOW, NONE);
_Static_assert(SOC_IROM_HIGH < SOC_RTC_IRAM_LOW, "Invalid PMP entry order");
// 16. RTC fast memory
PMP_ENTRY_SET(11, SOC_RTC_IRAM_HIGH, RWX);
_Static_assert(SOC_RTC_IRAM_LOW < SOC_RTC_IRAM_HIGH, "Invalid RTC IRAM region");
// 17. Gap between RTC fast memory & peripheral addresses
PMP_ENTRY_SET(12, SOC_PERIPHERAL_LOW, NONE);
_Static_assert(SOC_RTC_IRAM_HIGH < SOC_PERIPHERAL_LOW, "Invalid PMP entry order");
// 18. Peripheral addresses
PMP_ENTRY_SET(13, SOC_PERIPHERAL_HIGH, RW);
_Static_assert(SOC_PERIPHERAL_LOW < SOC_PERIPHERAL_HIGH, "Invalid peripheral region");
// 19. End of address space
PMP_ENTRY_SET(14, UINT32_MAX, NONE); // all but last 4 bytes
PMP_ENTRY_SET(15, UINT32_MAX, PMP_L | PMP_NA4); // last 4 bytes
}

View File

@@ -0,0 +1,30 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file i2c_brownout.h
* @brief Register definitions for brownout detector
*
* This file lists register fields of the brownout detector, located on an internal configuration
* bus. These definitions are used via macros defined in i2c_rtc_clk.h.
*/
#define I2C_BOD 0x61
#define I2C_BOD_HOSTID 1
#define I2C_BOD_THRESHOLD 0x5
#define I2C_BOD_THRESHOLD_MSB 2
#define I2C_BOD_THRESHOLD_LSB 0

View File

@@ -0,0 +1,48 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include "regi2c_ctrl.h"
/* Analog function control register */
#define ANA_CONFIG_REG 0x6000E044
#define ANA_CONFIG_S (8)
#define ANA_CONFIG_M (0x3FF)
/* Clear to enable APLL */
#define I2C_APLL_M (BIT(14))
/* Clear to enable BBPLL */
#define I2C_BBPLL_M (BIT(17))
/* ROM functions which read/write internal control bus */
uint8_t rom_i2c_readReg(uint8_t block, uint8_t host_id, uint8_t reg_add);
uint8_t rom_i2c_readReg_Mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb);
void rom_i2c_writeReg(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t data);
void rom_i2c_writeReg_Mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb, uint8_t data);
/* Convenience macros for the above functions, these use register definitions
* from i2c_apll.h/i2c_bbpll.h header files.
*/
#define I2C_WRITEREG_MASK_RTC(block, reg_add, indata) \
rom_i2c_writeReg_Mask(block, block##_HOSTID, reg_add, reg_add##_MSB, reg_add##_LSB, indata)
#define I2C_READREG_MASK_RTC(block, reg_add) \
rom_i2c_readReg_Mask(block, block##_HOSTID, reg_add, reg_add##_MSB, reg_add##_LSB)
#define I2C_WRITEREG_RTC(block, reg_add, indata) \
rom_i2c_writeReg(block, block##_HOSTID, reg_add, indata)
#define I2C_READREG_RTC(block, reg_add) \
rom_i2c_readReg(block, block##_HOSTID, reg_add)

View File

@@ -0,0 +1,183 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file regi2c_bbpll.h
* @brief Register definitions for digital PLL (BBPLL)
*
* This file lists register fields of BBPLL, located on an internal configuration
* bus. These definitions are used via macros defined in regi2c_ctrl.h, by
* rtc_clk_cpu_freq_set function in rtc_clk.c.
*/
#define I2C_BBPLL 0x66
#define I2C_BBPLL_HOSTID 0
#define I2C_BBPLL_IR_CAL_DELAY 0
#define I2C_BBPLL_IR_CAL_DELAY_MSB 3
#define I2C_BBPLL_IR_CAL_DELAY_LSB 0
#define I2C_BBPLL_IR_CAL_CK_DIV 0
#define I2C_BBPLL_IR_CAL_CK_DIV_MSB 7
#define I2C_BBPLL_IR_CAL_CK_DIV_LSB 4
#define I2C_BBPLL_IR_CAL_EXT_CAP 1
#define I2C_BBPLL_IR_CAL_EXT_CAP_MSB 3
#define I2C_BBPLL_IR_CAL_EXT_CAP_LSB 0
#define I2C_BBPLL_IR_CAL_ENX_CAP 1
#define I2C_BBPLL_IR_CAL_ENX_CAP_MSB 4
#define I2C_BBPLL_IR_CAL_ENX_CAP_LSB 4
#define I2C_BBPLL_IR_CAL_RSTB 1
#define I2C_BBPLL_IR_CAL_RSTB_MSB 5
#define I2C_BBPLL_IR_CAL_RSTB_LSB 5
#define I2C_BBPLL_IR_CAL_START 1
#define I2C_BBPLL_IR_CAL_START_MSB 6
#define I2C_BBPLL_IR_CAL_START_LSB 6
#define I2C_BBPLL_IR_CAL_UNSTOP 1
#define I2C_BBPLL_IR_CAL_UNSTOP_MSB 7
#define I2C_BBPLL_IR_CAL_UNSTOP_LSB 7
#define I2C_BBPLL_OC_REF_DIV 2
#define I2C_BBPLL_OC_REF_DIV_MSB 3
#define I2C_BBPLL_OC_REF_DIV_LSB 0
#define I2C_BBPLL_OC_DCHGP 2
#define I2C_BBPLL_OC_DCHGP_MSB 6
#define I2C_BBPLL_OC_DCHGP_LSB 4
#define I2C_BBPLL_OC_ENB_FCAL 2
#define I2C_BBPLL_OC_ENB_FCAL_MSB 7
#define I2C_BBPLL_OC_ENB_FCAL_LSB 7
#define I2C_BBPLL_OC_DIV_7_0 3
#define I2C_BBPLL_OC_DIV_7_0_MSB 7
#define I2C_BBPLL_OC_DIV_7_0_LSB 0
#define I2C_BBPLL_RSTB_DIV_ADC 4
#define I2C_BBPLL_RSTB_DIV_ADC_MSB 0
#define I2C_BBPLL_RSTB_DIV_ADC_LSB 0
#define I2C_BBPLL_MODE_HF 4
#define I2C_BBPLL_MODE_HF_MSB 1
#define I2C_BBPLL_MODE_HF_LSB 1
#define I2C_BBPLL_DIV_ADC 4
#define I2C_BBPLL_DIV_ADC_MSB 3
#define I2C_BBPLL_DIV_ADC_LSB 2
#define I2C_BBPLL_DIV_DAC 4
#define I2C_BBPLL_DIV_DAC_MSB 4
#define I2C_BBPLL_DIV_DAC_LSB 4
#define I2C_BBPLL_DIV_CPU 4
#define I2C_BBPLL_DIV_CPU_MSB 5
#define I2C_BBPLL_DIV_CPU_LSB 5
#define I2C_BBPLL_OC_ENB_VCON 4
#define I2C_BBPLL_OC_ENB_VCON_MSB 6
#define I2C_BBPLL_OC_ENB_VCON_LSB 6
#define I2C_BBPLL_OC_TSCHGP 4
#define I2C_BBPLL_OC_TSCHGP_MSB 7
#define I2C_BBPLL_OC_TSCHGP_LSB 7
#define I2C_BBPLL_OC_DR1 5
#define I2C_BBPLL_OC_DR1_MSB 2
#define I2C_BBPLL_OC_DR1_LSB 0
#define I2C_BBPLL_OC_DR3 5
#define I2C_BBPLL_OC_DR3_MSB 6
#define I2C_BBPLL_OC_DR3_LSB 4
#define I2C_BBPLL_EN_USB 5
#define I2C_BBPLL_EN_USB_MSB 7
#define I2C_BBPLL_EN_USB_LSB 7
#define I2C_BBPLL_OC_DCUR 6
#define I2C_BBPLL_OC_DCUR_MSB 2
#define I2C_BBPLL_OC_DCUR_LSB 0
#define I2C_BBPLL_INC_CUR 6
#define I2C_BBPLL_INC_CUR_MSB 3
#define I2C_BBPLL_INC_CUR_LSB 3
#define I2C_BBPLL_OC_DHREF_SEL 6
#define I2C_BBPLL_OC_DHREF_SEL_MSB 5
#define I2C_BBPLL_OC_DHREF_SEL_LSB 4
#define I2C_BBPLL_OC_DLREF_SEL 6
#define I2C_BBPLL_OC_DLREF_SEL_MSB 7
#define I2C_BBPLL_OC_DLREF_SEL_LSB 6
#define I2C_BBPLL_OR_CAL_CAP 8
#define I2C_BBPLL_OR_CAL_CAP_MSB 3
#define I2C_BBPLL_OR_CAL_CAP_LSB 0
#define I2C_BBPLL_OR_CAL_UDF 8
#define I2C_BBPLL_OR_CAL_UDF_MSB 4
#define I2C_BBPLL_OR_CAL_UDF_LSB 4
#define I2C_BBPLL_OR_CAL_OVF 8
#define I2C_BBPLL_OR_CAL_OVF_MSB 5
#define I2C_BBPLL_OR_CAL_OVF_LSB 5
#define I2C_BBPLL_OR_CAL_END 8
#define I2C_BBPLL_OR_CAL_END_MSB 6
#define I2C_BBPLL_OR_CAL_END_LSB 6
#define I2C_BBPLL_OR_LOCK 8
#define I2C_BBPLL_OR_LOCK_MSB 7
#define I2C_BBPLL_OR_LOCK_LSB 7
#define I2C_BBPLL_OC_VCO_DBIAS 9
#define I2C_BBPLL_OC_VCO_DBIAS_MSB 1
#define I2C_BBPLL_OC_VCO_DBIAS_LSB 0
#define I2C_BBPLL_BBADC_DELAY2 9
#define I2C_BBPLL_BBADC_DELAY2_MSB 3
#define I2C_BBPLL_BBADC_DELAY2_LSB 2
#define I2C_BBPLL_BBADC_DVDD 9
#define I2C_BBPLL_BBADC_DVDD_MSB 5
#define I2C_BBPLL_BBADC_DVDD_LSB 4
#define I2C_BBPLL_BBADC_DREF 9
#define I2C_BBPLL_BBADC_DREF_MSB 7
#define I2C_BBPLL_BBADC_DREF_LSB 6
#define I2C_BBPLL_BBADC_DCUR 10
#define I2C_BBPLL_BBADC_DCUR_MSB 1
#define I2C_BBPLL_BBADC_DCUR_LSB 0
#define I2C_BBPLL_BBADC_INPUT_SHORT 10
#define I2C_BBPLL_BBADC_INPUT_SHORT_MSB 2
#define I2C_BBPLL_BBADC_INPUT_SHORT_LSB 2
#define I2C_BBPLL_ENT_PLL 10
#define I2C_BBPLL_ENT_PLL_MSB 3
#define I2C_BBPLL_ENT_PLL_LSB 3
#define I2C_BBPLL_DTEST 10
#define I2C_BBPLL_DTEST_MSB 5
#define I2C_BBPLL_DTEST_LSB 4
#define I2C_BBPLL_ENT_ADC 10
#define I2C_BBPLL_ENT_ADC_MSB 7
#define I2C_BBPLL_ENT_ADC_LSB 6

View File

@@ -0,0 +1,30 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file regi2c_bias.h
* @brief Register definitions for bias
*
* This file lists register fields of BIAS. These definitions are used via macros defined in regi2c_ctrl.h, by
* bootloader_hardware_init function in bootloader_esp32c3.c.
*/
#define I2C_BIAS 0X6A
#define I2C_BIAS_HOSTID 0
#define I2C_BIAS_DREG_1P1_PVT 1
#define I2C_BIAS_DREG_1P1_PVT_MSB 3
#define I2C_BIAS_DREG_1P1_PVT_LSB 0

View File

@@ -0,0 +1,30 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file regi2c_brownout.h
* @brief Register definitions for brownout detector
*
* This file lists register fields of the brownout detector, located on an internal configuration
* bus. These definitions are used via macros defined in regi2c_ctrl.h.
*/
#define I2C_BOD 0x61
#define I2C_BOD_HOSTID 0
#define I2C_BOD_THRESHOLD 0x5
#define I2C_BOD_THRESHOLD_MSB 2
#define I2C_BOD_THRESHOLD_LSB 0

View File

@@ -0,0 +1,68 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file regi2c_dig_reg.h
* @brief Register definitions for digital to get rtc voltage & digital voltage
* by setting rtc_dbias_Wak & dig_dbias_wak or by analog self-calibration.
*/
#define I2C_DIG_REG 0x6D
#define I2C_DIG_REG_HOSTID 0
#define I2C_DIG_REG_EXT_RTC_DREG 4
#define I2C_DIG_REG_EXT_RTC_DREG_MSB 4
#define I2C_DIG_REG_EXT_RTC_DREG_LSB 0
#define I2C_DIG_REG_ENX_RTC_DREG 4
#define I2C_DIG_REG_ENX_RTC_DREG_MSB 7
#define I2C_DIG_REG_ENX_RTC_DREG_LSB 7
#define I2C_DIG_REG_EXT_RTC_DREG_SLEEP 5
#define I2C_DIG_REG_EXT_RTC_DREG_SLEEP_MSB 4
#define I2C_DIG_REG_EXT_RTC_DREG_SLEEP_LSB 0
#define I2C_DIG_REG_ENX_RTC_DREG_SLEEP 5
#define I2C_DIG_REG_ENX_RTC_DREG_SLEEP_MSB 7
#define I2C_DIG_REG_ENX_RTC_DREG_SLEEP_LSB 7
#define I2C_DIG_REG_EXT_DIG_DREG 6
#define I2C_DIG_REG_EXT_DIG_DREG_MSB 4
#define I2C_DIG_REG_EXT_DIG_DREG_LSB 0
#define I2C_DIG_REG_ENX_DIG_DREG 6
#define I2C_DIG_REG_ENX_DIG_DREG_MSB 7
#define I2C_DIG_REG_ENX_DIG_DREG_LSB 7
#define I2C_DIG_REG_EXT_DIG_DREG_SLEEP 7
#define I2C_DIG_REG_EXT_DIG_DREG_SLEEP_MSB 4
#define I2C_DIG_REG_EXT_DIG_DREG_SLEEP_LSB 0
#define I2C_DIG_REG_ENX_DIG_DREG_SLEEP 7
#define I2C_DIG_REG_ENX_DIG_DREG_SLEEP_MSB 7
#define I2C_DIG_REG_ENX_DIG_DREG_SLEEP_LSB 7
#define I2C_DIG_REG_OR_EN_CONT_CAL 9
#define I2C_DIG_REG_OR_EN_CONT_CAL_MSB 7
#define I2C_DIG_REG_OR_EN_CONT_CAL_LSB 7
#define I2C_DIG_REG_XPD_RTC_REG 13
#define I2C_DIG_REG_XPD_RTC_REG_MSB 2
#define I2C_DIG_REG_XPD_RTC_REG_LSB 2
#define I2C_DIG_REG_XPD_DIG_REG 13
#define I2C_DIG_REG_XPD_DIG_REG_MSB 3
#define I2C_DIG_REG_XPD_DIG_REG_LSB 3

View File

@@ -0,0 +1,63 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file regi2c_lp_bias.h
* @brief Register definitions for analog to calibrate o_code for getting a more precise voltage.
*
* This file lists register fields of low power dbais, located on an internal configuration
* bus. These definitions are used via macros defined in regi2c_ctrl.h, by
* rtc_init function in rtc_init.c.
*/
#define I2C_ULP 0x61
#define I2C_ULP_HOSTID 0
#define I2C_ULP_IR_RESETB 0
#define I2C_ULP_IR_RESETB_MSB 0
#define I2C_ULP_IR_RESETB_LSB 0
#define I2C_ULP_IR_FORCE_XPD_CK 0
#define I2C_ULP_IR_FORCE_XPD_CK_MSB 2
#define I2C_ULP_IR_FORCE_XPD_CK_LSB 2
#define I2C_ULP_IR_FORCE_XPD_IPH 0
#define I2C_ULP_IR_FORCE_XPD_IPH_MSB 4
#define I2C_ULP_IR_FORCE_XPD_IPH_LSB 4
#define I2C_ULP_IR_DISABLE_WATCHDOG_CK 0
#define I2C_ULP_IR_DISABLE_WATCHDOG_CK_MSB 6
#define I2C_ULP_IR_DISABLE_WATCHDOG_CK_LSB 6
#define I2C_ULP_O_DONE_FLAG 3
#define I2C_ULP_O_DONE_FLAG_MSB 0
#define I2C_ULP_O_DONE_FLAG_LSB 0
#define I2C_ULP_BG_O_DONE_FLAG 3
#define I2C_ULP_BG_O_DONE_FLAG_MSB 3
#define I2C_ULP_BG_O_DONE_FLAG_LSB 3
#define I2C_ULP_OCODE 4
#define I2C_ULP_OCODE_MSB 7
#define I2C_ULP_OCODE_LSB 0
#define I2C_ULP_IR_FORCE_CODE 5
#define I2C_ULP_IR_FORCE_CODE_MSB 6
#define I2C_ULP_IR_FORCE_CODE_LSB 6
#define I2C_ULP_EXT_CODE 6
#define I2C_ULP_EXT_CODE_MSB 7
#define I2C_ULP_EXT_CODE_LSB 0

View File

@@ -0,0 +1,87 @@
// Copyright 2019-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
/**
* @file regi2c_saradc.h
* @brief Register definitions for analog to calibrate initial code for getting a more precise voltage of SAR ADC.
*
* This file lists register fields of SAR, located on an internal configuration
* bus. These definitions are used via macros defined in regi2c_ctrl.h, by
* function in adc_ll.h.
*/
#define I2C_SAR_ADC 0X69
#define I2C_SAR_ADC_HOSTID 0
#define ADC_SAR1_ENCAL_GND_ADDR 0x7
#define ADC_SAR1_ENCAL_GND_ADDR_MSB 5
#define ADC_SAR1_ENCAL_GND_ADDR_LSB 5
#define ADC_SAR2_ENCAL_GND_ADDR 0x7
#define ADC_SAR2_ENCAL_GND_ADDR_MSB 7
#define ADC_SAR2_ENCAL_GND_ADDR_LSB 7
#define ADC_SAR1_INITIAL_CODE_HIGH_ADDR 0x1
#define ADC_SAR1_INITIAL_CODE_HIGH_ADDR_MSB 0x3
#define ADC_SAR1_INITIAL_CODE_HIGH_ADDR_LSB 0x0
#define ADC_SAR1_INITIAL_CODE_LOW_ADDR 0x0
#define ADC_SAR1_INITIAL_CODE_LOW_ADDR_MSB 0x7
#define ADC_SAR1_INITIAL_CODE_LOW_ADDR_LSB 0x0
#define ADC_SAR2_INITIAL_CODE_HIGH_ADDR 0x4
#define ADC_SAR2_INITIAL_CODE_HIGH_ADDR_MSB 0x3
#define ADC_SAR2_INITIAL_CODE_HIGH_ADDR_LSB 0x0
#define ADC_SAR2_INITIAL_CODE_LOW_ADDR 0x3
#define ADC_SAR2_INITIAL_CODE_LOW_ADDR_MSB 0x7
#define ADC_SAR2_INITIAL_CODE_LOW_ADDR_LSB 0x0
#define ADC_SAR1_DREF_ADDR 0x2
#define ADC_SAR1_DREF_ADDR_MSB 0x6
#define ADC_SAR1_DREF_ADDR_LSB 0x4
#define ADC_SAR2_DREF_ADDR 0x5
#define ADC_SAR2_DREF_ADDR_MSB 0x6
#define ADC_SAR2_DREF_ADDR_LSB 0x4
#define ADC_SAR1_SAMPLE_CYCLE_ADDR 0x2
#define ADC_SAR1_SAMPLE_CYCLE_ADDR_MSB 0x2
#define ADC_SAR1_SAMPLE_CYCLE_ADDR_LSB 0x0
#define ADC_SARADC_DTEST_RTC_ADDR 0x7
#define ADC_SARADC_DTEST_RTC_ADDR_MSB 1
#define ADC_SARADC_DTEST_RTC_ADDR_LSB 0
#define ADC_SARADC_ENT_TSENS_ADDR 0x7
#define ADC_SARADC_ENT_TSENS_ADDR_MSB 2
#define ADC_SARADC_ENT_TSENS_ADDR_LSB 2
#define ADC_SARADC_ENT_RTC_ADDR 0x7
#define ADC_SARADC_ENT_RTC_ADDR_MSB 3
#define ADC_SARADC_ENT_RTC_ADDR_LSB 3
#define ADC_SARADC1_ENCAL_REF_ADDR 0x7
#define ADC_SARADC1_ENCAL_REF_ADDR_MSB 4
#define ADC_SARADC1_ENCAL_REF_ADDR_LSB 4
#define ADC_SARADC2_ENCAL_REF_ADDR 0x7
#define ADC_SARADC2_ENCAL_REF_ADDR_MSB 6
#define ADC_SARADC2_ENCAL_REF_ADDR_LSB 6
#define I2C_SARADC_TSENS_DAC 0x6
#define I2C_SARADC_TSENS_DAC_MSB 3
#define I2C_SARADC_TSENS_DAC_LSB 0

View File

@@ -0,0 +1,109 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stdint.h>
#include "regi2c_bbpll.h"
#include "regi2c_lp_bias.h"
#include "regi2c_dig_reg.h"
#include "regi2c_bias.h"
#include "regi2c_saradc.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Analog function control register */
#define I2C_MST_ANA_CONF0_REG 0x6000E040
#define I2C_MST_BBPLL_STOP_FORCE_HIGH (BIT(2))
#define I2C_MST_BBPLL_STOP_FORCE_LOW (BIT(3))
#define ANA_CONFIG_REG 0x6000E044
#define ANA_CONFIG_S (8)
#define ANA_CONFIG_M (0x3FF)
#define ANA_I2C_SAR_FORCE_PD BIT(18)
#define ANA_I2C_BBPLL_M BIT(17) /* Clear to enable BBPLL */
#define ANA_I2C_APLL_M BIT(14) /* Clear to enable APLL */
#define ANA_CONFIG2_REG 0x6000E048
#define ANA_CONFIG2_M BIT(18)
#define ANA_I2C_SAR_FORCE_PU BIT(16)
/* ROM functions which read/write internal control bus */
uint8_t rom_i2c_readReg(uint8_t block, uint8_t host_id, uint8_t reg_add);
uint8_t rom_i2c_readReg_Mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb);
void rom_i2c_writeReg(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t data);
void rom_i2c_writeReg_Mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb, uint8_t data);
#ifdef BOOTLOADER_BUILD
/**
* If compiling for the bootloader, ROM functions can be called directly,
* without the need of a lock.
*/
#define regi2c_ctrl_read_reg rom_i2c_readReg
#define regi2c_ctrl_read_reg_mask rom_i2c_readReg_Mask
#define regi2c_ctrl_write_reg rom_i2c_writeReg
#define regi2c_ctrl_write_reg_mask rom_i2c_writeReg_Mask
#else
#define i2c_read_reg_raw rom_i2c_readReg
#define i2c_read_reg_mask_raw rom_i2c_readReg_Mask
#define i2c_write_reg_raw rom_i2c_writeReg
#define i2c_write_reg_mask_raw rom_i2c_writeReg_Mask
uint8_t regi2c_ctrl_read_reg(uint8_t block, uint8_t host_id, uint8_t reg_add);
uint8_t regi2c_ctrl_read_reg_mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb);
void regi2c_ctrl_write_reg(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t data);
void regi2c_ctrl_write_reg_mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb, uint8_t data);
#endif // BOOTLOADER_BUILD
/* Convenience macros for the above functions, these use register definitions
* from regi2c_bbpll.h/regi2c_dig_reg.h/regi2c_lp_bias.h/regi2c_bias.h header files.
*/
#define REGI2C_WRITE_MASK(block, reg_add, indata) \
regi2c_ctrl_write_reg_mask(block, block##_HOSTID, reg_add, reg_add##_MSB, reg_add##_LSB, indata)
#define REGI2C_READ_MASK(block, reg_add) \
regi2c_ctrl_read_reg_mask(block, block##_HOSTID, reg_add, reg_add##_MSB, reg_add##_LSB)
#define REGI2C_WRITE(block, reg_add, indata) \
regi2c_ctrl_write_reg(block, block##_HOSTID, reg_add, indata)
#define REGI2C_READ(block, reg_add) \
regi2c_ctrl_read_reg(block, block##_HOSTID, reg_add)
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,515 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include <assert.h>
#include <stdlib.h>
#include "sdkconfig.h"
#include "esp32c3/rom/ets_sys.h"
#include "esp32c3/rom/rtc.h"
#include "esp32c3/rom/uart.h"
#include "esp32c3/rom/gpio.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/efuse_reg.h"
#include "soc/syscon_reg.h"
#include "soc/system_reg.h"
#include "regi2c_ctrl.h"
#include "soc_log.h"
#include "rtc_clk_common.h"
#include "esp_rom_sys.h"
static const char *TAG = "rtc_clk";
#define RTC_PLL_FREQ_320M 320
#define RTC_PLL_FREQ_480M 480
#define DELAY_RTC_CLK_SWITCH 5
// Current PLL frequency, in MHZ (320 or 480). Zero if PLL is not enabled.
static int s_cur_pll_freq;
static void rtc_clk_cpu_freq_to_8m(void);
void rtc_clk_32k_enable_internal(x32k_config_t cfg)
{
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DAC_XTAL_32K, cfg.dac);
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DRES_XTAL_32K, cfg.dres);
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DGM_XTAL_32K, cfg.dgm);
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DBUF_XTAL_32K, cfg.dbuf);
SET_PERI_REG_MASK(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_XPD_XTAL_32K);
}
void rtc_clk_32k_enable(bool enable)
{
if (enable) {
x32k_config_t cfg = X32K_CONFIG_DEFAULT();
rtc_clk_32k_enable_internal(cfg);
} else {
SET_PERI_REG_MASK(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_XTAL32K_XPD_FORCE);
CLEAR_PERI_REG_MASK(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_XPD_XTAL_32K);
}
}
void rtc_clk_32k_enable_external(void)
{
/* TODO ESP32-C3 IDF-2408: external 32k source may need different settings */
x32k_config_t cfg = X32K_CONFIG_DEFAULT();
rtc_clk_32k_enable_internal(cfg);
}
void rtc_clk_32k_bootstrap(uint32_t cycle)
{
/* No special bootstrapping needed for ESP32-C3, 'cycle' argument is to keep the signature
* same as for the ESP32. Just enable the XTAL here.
*/
(void) cycle;
rtc_clk_32k_enable(true);
}
bool rtc_clk_32k_enabled(void)
{
uint32_t xtal_conf = READ_PERI_REG(RTC_CNTL_EXT_XTL_CONF_REG);
/* If xtal xpd is controlled by software */
bool xtal_xpd_sw = (xtal_conf & RTC_CNTL_XTAL32K_XPD_FORCE) >> RTC_CNTL_XTAL32K_XPD_FORCE_S;
/* If xtal xpd software control is on */
bool xtal_xpd_st = (xtal_conf & RTC_CNTL_XPD_XTAL_32K) >> RTC_CNTL_XPD_XTAL_32K_S;
bool disabled = xtal_xpd_sw && !xtal_xpd_st;
return !disabled;
}
void rtc_clk_8m_enable(bool clk_8m_en, bool d256_en)
{
if (clk_8m_en) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
/* no need to wait once enabled by software */
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CK8M_ENABLE_WAIT_DEFAULT);
esp_rom_delay_us(DELAY_8M_ENABLE);
} else {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CNTL_CK8M_WAIT_DEFAULT);
}
/* d256 should be independent configured with 8M
* Maybe we can split this function into 8m and dmd256
*/
if (d256_en) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
} else {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
}
}
bool rtc_clk_8m_enabled(void)
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M) == 0;
}
bool rtc_clk_8md256_enabled(void)
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV) == 0;
}
void rtc_clk_slow_freq_set(rtc_slow_freq_t slow_freq)
{
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, slow_freq);
/* Why we need to connect this clock to digital?
* Or maybe this clock should be connected to digital when xtal 32k clock is enabled instead?
*/
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN,
(slow_freq == RTC_SLOW_FREQ_32K_XTAL) ? 1 : 0);
/* The clk_8m_d256 will be closed when rtc_state in SLEEP,
so if the slow_clk is 8md256, clk_8m must be force power on
*/
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_FORCE_PU, (slow_freq == RTC_SLOW_FREQ_8MD256) ? 1 : 0);
esp_rom_delay_us(DELAY_SLOW_CLK_SWITCH);
}
rtc_slow_freq_t rtc_clk_slow_freq_get(void)
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL);
}
uint32_t rtc_clk_slow_freq_get_hz(void)
{
switch (rtc_clk_slow_freq_get()) {
case RTC_SLOW_FREQ_RTC: return RTC_SLOW_CLK_FREQ_150K;
case RTC_SLOW_FREQ_32K_XTAL: return RTC_SLOW_CLK_FREQ_32K;
case RTC_SLOW_FREQ_8MD256: return RTC_SLOW_CLK_FREQ_8MD256;
}
return 0;
}
void rtc_clk_fast_freq_set(rtc_fast_freq_t fast_freq)
{
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL, fast_freq);
esp_rom_delay_us(DELAY_FAST_CLK_SWITCH);
}
rtc_fast_freq_t rtc_clk_fast_freq_get(void)
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL);
}
static void rtc_clk_bbpll_disable(void)
{
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PD |
RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD);
s_cur_pll_freq = 0;
}
static void rtc_clk_bbpll_enable(void)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PD |
RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD);
}
void rtc_clk_bbpll_configure(rtc_xtal_freq_t xtal_freq, int pll_freq)
{
uint8_t div_ref;
uint8_t div7_0;
uint8_t dr1;
uint8_t dr3;
uint8_t dchgp;
uint8_t dcur;
uint8_t dbias;
CLEAR_PERI_REG_MASK(I2C_MST_ANA_CONF0_REG, I2C_MST_BBPLL_STOP_FORCE_HIGH);
SET_PERI_REG_MASK(I2C_MST_ANA_CONF0_REG, I2C_MST_BBPLL_STOP_FORCE_LOW);
if (pll_freq == RTC_PLL_FREQ_480M) {
/* Set this register to let the digital part know 480M PLL is used */
SET_PERI_REG_MASK(SYSTEM_CPU_PER_CONF_REG, SYSTEM_PLL_FREQ_SEL);
/* Configure 480M PLL */
switch (xtal_freq) {
case RTC_XTAL_FREQ_40M:
div_ref = 0;
div7_0 = 8;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 3;
dbias = 2;
break;
case RTC_XTAL_FREQ_32M:
div_ref = 1;
div7_0 = 26;
dr1 = 1;
dr3 = 1;
dchgp = 4;
dcur = 0;
dbias = 2;
break;
default:
div_ref = 0;
div7_0 = 8;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 3;
dbias = 2;
break;
}
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_MODE_HF, 0x6B);
} else {
/* Clear this register to let the digital part know 320M PLL is used */
CLEAR_PERI_REG_MASK(SYSTEM_CPU_PER_CONF_REG, SYSTEM_PLL_FREQ_SEL);
/* Configure 320M PLL */
switch (xtal_freq) {
case RTC_XTAL_FREQ_40M:
div_ref = 0;
div7_0 = 4;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 3;
dbias = 2;
break;
case RTC_XTAL_FREQ_32M:
div_ref = 1;
div7_0 = 6;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 3;
dbias = 2;
break;
default:
div_ref = 0;
div7_0 = 4;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 3;
dbias = 2;
break;
}
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_MODE_HF, 0x69);
}
uint8_t i2c_bbpll_lref = (dchgp << I2C_BBPLL_OC_DCHGP_LSB) | (div_ref);
uint8_t i2c_bbpll_div_7_0 = div7_0;
uint8_t i2c_bbpll_dcur = (2 << I2C_BBPLL_OC_DLREF_SEL_LSB ) | (1 << I2C_BBPLL_OC_DHREF_SEL_LSB) | dcur;
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_REF_DIV, i2c_bbpll_lref);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DR1, dr1);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DR3, dr3);
REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_DCUR, i2c_bbpll_dcur);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_VCO_DBIAS, dbias);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DHREF_SEL, 2);
REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DLREF_SEL, 1);
s_cur_pll_freq = pll_freq;
}
/**
* Switch to one of PLL-based frequencies. Current frequency can be XTAL or PLL.
* PLL must already be enabled.
* @param cpu_freq new CPU frequency
*/
static void rtc_clk_cpu_freq_to_pll_mhz(int cpu_freq_mhz)
{
int per_conf = DPORT_CPUPERIOD_SEL_80;
if (cpu_freq_mhz == 80) {
/* nothing to do */
} else if (cpu_freq_mhz == 160) {
per_conf = DPORT_CPUPERIOD_SEL_160;
} else {
SOC_LOGE(TAG, "invalid frequency");
abort();
}
REG_SET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPUPERIOD_SEL, per_conf);
REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_PRE_DIV_CNT, 0);
REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_SOC_CLK_SEL, DPORT_SOC_CLK_SEL_PLL);
rtc_clk_apb_freq_update(80 * MHZ);
ets_update_cpu_frequency(cpu_freq_mhz);
}
bool rtc_clk_cpu_freq_mhz_to_config(uint32_t freq_mhz, rtc_cpu_freq_config_t *out_config)
{
uint32_t source_freq_mhz;
rtc_cpu_freq_src_t source;
uint32_t divider;
uint32_t real_freq_mhz;
uint32_t xtal_freq = (uint32_t) rtc_clk_xtal_freq_get();
if (freq_mhz <= xtal_freq) {
divider = xtal_freq / freq_mhz;
real_freq_mhz = (xtal_freq + divider / 2) / divider; /* round */
if (real_freq_mhz != freq_mhz) {
// no suitable divider
return false;
}
source_freq_mhz = xtal_freq;
source = RTC_CPU_FREQ_SRC_XTAL;
} else if (freq_mhz == 80) {
real_freq_mhz = freq_mhz;
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_480M;
divider = 6;
} else if (freq_mhz == 160) {
real_freq_mhz = freq_mhz;
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_480M;
divider = 3;
} else {
// unsupported frequency
return false;
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.div = divider,
.source_freq_mhz = source_freq_mhz,
.freq_mhz = real_freq_mhz
};
return true;
}
void rtc_clk_cpu_freq_set_config(const rtc_cpu_freq_config_t *config)
{
uint32_t soc_clk_sel = REG_GET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_SOC_CLK_SEL);
if (config->source == RTC_CPU_FREQ_SRC_XTAL) {
rtc_clk_cpu_freq_to_xtal(config->freq_mhz, config->div);
if (soc_clk_sel == DPORT_SOC_CLK_SEL_PLL) {
rtc_clk_bbpll_disable();
}
} else if (config->source == RTC_CPU_FREQ_SRC_PLL) {
if (soc_clk_sel != DPORT_SOC_CLK_SEL_PLL) {
rtc_clk_bbpll_enable();
rtc_clk_bbpll_configure(rtc_clk_xtal_freq_get(), config->source_freq_mhz);
}
rtc_clk_cpu_freq_to_pll_mhz(config->freq_mhz);
} else if (config->source == RTC_CPU_FREQ_SRC_8M) {
rtc_clk_cpu_freq_to_8m();
if (soc_clk_sel == DPORT_SOC_CLK_SEL_PLL) {
rtc_clk_bbpll_disable();
}
}
}
void rtc_clk_cpu_freq_get_config(rtc_cpu_freq_config_t *out_config)
{
rtc_cpu_freq_src_t source;
uint32_t source_freq_mhz;
uint32_t div;
uint32_t freq_mhz;
uint32_t soc_clk_sel = REG_GET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_SOC_CLK_SEL);
switch (soc_clk_sel) {
case DPORT_SOC_CLK_SEL_XTAL: {
source = RTC_CPU_FREQ_SRC_XTAL;
div = REG_GET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_PRE_DIV_CNT) + 1;
source_freq_mhz = (uint32_t) rtc_clk_xtal_freq_get();
freq_mhz = source_freq_mhz / div;
}
break;
case DPORT_SOC_CLK_SEL_PLL: {
source = RTC_CPU_FREQ_SRC_PLL;
uint32_t cpuperiod_sel = REG_GET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPUPERIOD_SEL);
uint32_t pllfreq_sel = REG_GET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_PLL_FREQ_SEL);
source_freq_mhz = (pllfreq_sel) ? RTC_PLL_FREQ_480M : RTC_PLL_FREQ_320M;
if (cpuperiod_sel == DPORT_CPUPERIOD_SEL_80) {
div = (source_freq_mhz == RTC_PLL_FREQ_480M) ? 6 : 4;
freq_mhz = 80;
} else if (cpuperiod_sel == DPORT_CPUPERIOD_SEL_160) {
div = (source_freq_mhz == RTC_PLL_FREQ_480M) ? 3 : 2;
div = 3;
freq_mhz = 160;
} else {
SOC_LOGE(TAG, "unsupported frequency configuration");
abort();
}
break;
}
case DPORT_SOC_CLK_SEL_8M:
source = RTC_CPU_FREQ_SRC_8M;
source_freq_mhz = 8;
div = 1;
freq_mhz = source_freq_mhz;
break;
default:
SOC_LOGE(TAG, "unsupported frequency configuration");
abort();
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.source_freq_mhz = source_freq_mhz,
.div = div,
.freq_mhz = freq_mhz
};
}
void rtc_clk_cpu_freq_set_config_fast(const rtc_cpu_freq_config_t *config)
{
if (config->source == RTC_CPU_FREQ_SRC_XTAL) {
rtc_clk_cpu_freq_to_xtal(config->freq_mhz, config->div);
} else if (config->source == RTC_CPU_FREQ_SRC_PLL &&
s_cur_pll_freq == config->source_freq_mhz) {
rtc_clk_cpu_freq_to_pll_mhz(config->freq_mhz);
} else {
/* fallback */
rtc_clk_cpu_freq_set_config(config);
}
}
void rtc_clk_cpu_freq_set_xtal(void)
{
int freq_mhz = (int) rtc_clk_xtal_freq_get();
rtc_clk_cpu_freq_to_xtal(freq_mhz, 1);
rtc_clk_bbpll_disable();
}
/**
* Switch to XTAL frequency. Does not disable the PLL.
*/
void rtc_clk_cpu_freq_to_xtal(int freq, int div)
{
ets_update_cpu_frequency(freq);
/* Set divider from XTAL to APB clock. Need to set divider to 1 (reg. value 0) first. */
REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_PRE_DIV_CNT, 0);
REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_PRE_DIV_CNT, div - 1);
/* no need to adjust the REF_TICK */
/* switch clock source */
REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_SOC_CLK_SEL, DPORT_SOC_CLK_SEL_XTAL);
rtc_clk_apb_freq_update(freq * MHZ);
}
static void rtc_clk_cpu_freq_to_8m(void)
{
ets_update_cpu_frequency(8);
REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_PRE_DIV_CNT, 0);
REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_SOC_CLK_SEL, DPORT_SOC_CLK_SEL_8M);
rtc_clk_apb_freq_update(RTC_FAST_CLK_FREQ_8M);
}
rtc_xtal_freq_t rtc_clk_xtal_freq_get(void)
{
uint32_t xtal_freq_reg = READ_PERI_REG(RTC_XTAL_FREQ_REG);
if (!clk_val_is_valid(xtal_freq_reg)) {
SOC_LOGW(TAG, "invalid RTC_XTAL_FREQ_REG value: 0x%08x", xtal_freq_reg);
return RTC_XTAL_FREQ_40M;
}
return reg_val_to_clk_val(xtal_freq_reg);
}
void rtc_clk_xtal_freq_update(rtc_xtal_freq_t xtal_freq)
{
WRITE_PERI_REG(RTC_XTAL_FREQ_REG, clk_val_to_reg_val(xtal_freq));
}
void rtc_clk_apb_freq_update(uint32_t apb_freq)
{
WRITE_PERI_REG(RTC_APB_FREQ_REG, clk_val_to_reg_val(apb_freq >> 12));
}
uint32_t rtc_clk_apb_freq_get(void)
{
uint32_t freq_hz = reg_val_to_clk_val(READ_PERI_REG(RTC_APB_FREQ_REG)) << 12;
// round to the nearest MHz
freq_hz += MHZ / 2;
uint32_t remainder = freq_hz % MHZ;
return freq_hz - remainder;
}
void rtc_clk_divider_set(uint32_t div)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV_VLD);
REG_SET_FIELD(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV, div);
SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV_VLD);
}
void rtc_clk_8m_divider_set(uint32_t div)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL_VLD);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, div);
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL_VLD);
}
void rtc_dig_clk8m_enable(void)
{
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
esp_rom_delay_us(DELAY_RTC_CLK_SWITCH);
}
void rtc_dig_clk8m_disable(void)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M);
esp_rom_delay_us(DELAY_RTC_CLK_SWITCH);
}
/* Name used in libphy.a:phy_chip_v7.o
* TODO: update the library to use rtc_clk_xtal_freq_get
*/
rtc_xtal_freq_t rtc_get_xtal(void) __attribute__((alias("rtc_clk_xtal_freq_get")));

View File

@@ -0,0 +1,57 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#define MHZ (1000000)
#define DPORT_CPUPERIOD_SEL_80 0
#define DPORT_CPUPERIOD_SEL_160 1
#define DPORT_SOC_CLK_SEL_XTAL 0
#define DPORT_SOC_CLK_SEL_PLL 1
#define DPORT_SOC_CLK_SEL_8M 2
#define RTC_FAST_CLK_FREQ_8M 8500000
#ifdef __cplusplus
extern "C" {
#endif
void rtc_clk_cpu_freq_to_xtal(int freq, int div);
/* Values of RTC_XTAL_FREQ_REG and RTC_APB_FREQ_REG are stored as two copies in
* lower and upper 16-bit halves. These are the routines to work with such a
* representation.
*/
static inline bool clk_val_is_valid(uint32_t val)
{
return (val & 0xffff) == ((val >> 16) & 0xffff) &&
val != 0 &&
val != UINT32_MAX;
}
static inline uint32_t reg_val_to_clk_val(uint32_t val)
{
return val & UINT16_MAX;
}
static inline uint32_t clk_val_to_reg_val(uint32_t val)
{
return (val & UINT16_MAX) | ((val & UINT16_MAX) << 16);
}
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,88 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include "esp32c3/rom/ets_sys.h"
#include "esp32c3/rom/rtc.h"
#include "esp32c3/rom/uart.h"
#include "soc/rtc.h"
#include "soc/rtc_periph.h"
#include "soc/efuse_periph.h"
#include "soc/apb_ctrl_reg.h"
#include "hal/cpu_hal.h"
#include "regi2c_ctrl.h"
#include "soc_log.h"
#include "sdkconfig.h"
#include "rtc_clk_common.h"
#include "esp_rom_uart.h"
static const char *TAG = "rtc_clk_init";
void rtc_clk_init(rtc_clk_config_t cfg)
{
rtc_cpu_freq_config_t old_config, new_config;
/* Set tuning parameters for 8M and 150k clocks.
* Note: this doesn't attempt to set the clocks to precise frequencies.
* Instead, we calibrate these clocks against XTAL frequency later, when necessary.
* - SCK_DCAP value controls tuning of 150k clock.
* The higher the value of DCAP is, the lower is the frequency.
* - CK8M_DFREQ value controls tuning of 8M clock.
* CLK_8M_DFREQ constant gives the best temperature characteristics.
*/
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_SCK_DCAP, cfg.slow_clk_dcap);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DFREQ, cfg.clk_8m_dfreq);
/* Configure 150k clock division */
rtc_clk_divider_set(cfg.clk_rtc_clk_div);
/* Configure 8M clock division */
rtc_clk_8m_divider_set(cfg.clk_8m_clk_div);
/* Enable the internal bus used to configure PLLs */
SET_PERI_REG_BITS(ANA_CONFIG_REG, ANA_CONFIG_M, ANA_CONFIG_M, ANA_CONFIG_S);
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, ANA_I2C_APLL_M | ANA_I2C_BBPLL_M);
rtc_xtal_freq_t xtal_freq = cfg.xtal_freq;
esp_rom_uart_tx_wait_idle(0);
rtc_clk_xtal_freq_update(xtal_freq);
rtc_clk_apb_freq_update(xtal_freq * MHZ);
/* Set CPU frequency */
rtc_clk_cpu_freq_get_config(&old_config);
uint32_t freq_before = old_config.freq_mhz;
bool res = rtc_clk_cpu_freq_mhz_to_config(cfg.cpu_freq_mhz, &new_config);
if (!res) {
SOC_LOGE(TAG, "invalid CPU frequency value");
abort();
}
rtc_clk_cpu_freq_set_config(&new_config);
/* Re-calculate the ccount to make time calculation correct. */
cpu_hal_set_cycle_count( (uint64_t)cpu_hal_get_cycle_count() * cfg.cpu_freq_mhz / freq_before );
/* Slow & fast clocks setup */
if (cfg.slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
rtc_clk_32k_enable(true);
}
if (cfg.fast_freq == RTC_FAST_FREQ_8M) {
bool need_8md256 = cfg.slow_freq == RTC_SLOW_FREQ_8MD256;
rtc_clk_8m_enable(true, need_8md256);
}
rtc_clk_fast_freq_set(cfg.fast_freq);
rtc_clk_slow_freq_set(cfg.slow_freq);
}

View File

@@ -0,0 +1,339 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "sdkconfig.h"
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/efuse_periph.h"
#include "soc/gpio_reg.h"
#include "soc/spi_mem_reg.h"
#include "soc/extmem_reg.h"
#include "soc/system_reg.h"
#include "regi2c_ctrl.h"
#include "soc_log.h"
#include "esp_efuse.h"
#include "esp_efuse_table.h"
static const char *TAG = "rtc_init";
static void set_ocode_by_efuse(int calib_version);
static void calibrate_ocode(void);
static void set_rtc_dig_dbias(void);
void rtc_init(rtc_config_t cfg)
{
REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_XPD_DIG_REG, 0);
REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_XPD_RTC_REG, 0);
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PVTMON_PU);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_PLL_BUF_WAIT, cfg.pll_wait);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, cfg.ck8m_wait);
REG_SET_FIELD(RTC_CNTL_TIMER5_REG, RTC_CNTL_MIN_SLP_VAL, RTC_CNTL_MIN_SLP_VAL_MIN);
// set default powerup & wait time
rtc_init_config_t rtc_init_cfg = RTC_INIT_CONFIG_DEFAULT();
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_WIFI_POWERUP_TIMER, rtc_init_cfg.wifi_powerup_cycles);
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_WIFI_WAIT_TIMER, rtc_init_cfg.wifi_wait_cycles);
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_BT_POWERUP_TIMER, rtc_init_cfg.bt_powerup_cycles);
REG_SET_FIELD(RTC_CNTL_TIMER3_REG, RTC_CNTL_BT_WAIT_TIMER, rtc_init_cfg.bt_wait_cycles);
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_CPU_TOP_POWERUP_TIMER, rtc_init_cfg.cpu_top_powerup_cycles);
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_CPU_TOP_WAIT_TIMER, rtc_init_cfg.cpu_top_wait_cycles);
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_DG_WRAP_POWERUP_TIMER, rtc_init_cfg.dg_wrap_powerup_cycles);
REG_SET_FIELD(RTC_CNTL_TIMER4_REG, RTC_CNTL_DG_WRAP_WAIT_TIMER, rtc_init_cfg.dg_wrap_wait_cycles);
REG_SET_FIELD(RTC_CNTL_TIMER6_REG, RTC_CNTL_DG_PERI_POWERUP_TIMER, rtc_init_cfg.dg_peri_powerup_cycles);
REG_SET_FIELD(RTC_CNTL_TIMER6_REG, RTC_CNTL_DG_PERI_WAIT_TIMER, rtc_init_cfg.dg_peri_wait_cycles);
if (cfg.cali_ocode) {
uint32_t rtc_calib_version = 0;
esp_err_t err = esp_efuse_read_field_blob(ESP_EFUSE_BLOCK2_VERSION, &rtc_calib_version, 3);
if (err != ESP_OK) {
rtc_calib_version = 0;
SOC_LOGW(TAG, "efuse read fail, set default rtc_calib_version: %d\n", rtc_calib_version);
}
if (rtc_calib_version == 1) {
set_ocode_by_efuse(rtc_calib_version);
} else {
calibrate_ocode();
}
}
set_rtc_dig_dbias();
if (cfg.clkctl_init) {
//clear CMMU clock force on
CLEAR_PERI_REG_MASK(EXTMEM_CACHE_MMU_POWER_CTRL_REG, EXTMEM_CACHE_MMU_MEM_FORCE_ON);
//clear tag clock force on
CLEAR_PERI_REG_MASK(EXTMEM_ICACHE_TAG_POWER_CTRL_REG, EXTMEM_ICACHE_TAG_MEM_FORCE_ON);
//clear register clock force on
CLEAR_PERI_REG_MASK(SPI_MEM_CLOCK_GATE_REG(0), SPI_MEM_CLK_EN);
CLEAR_PERI_REG_MASK(SPI_MEM_CLOCK_GATE_REG(1), SPI_MEM_CLK_EN);
}
if (cfg.pwrctl_init) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_FORCE_PU);
//cancel xtal force pu if no need to force power up
//cannot cancel xtal force pu if pll is force power on
if (!(cfg.xtal_fpu | cfg.bbpll_fpu)) {
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_XTL_FORCE_PU);
} else {
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_XTL_FORCE_PU);
}
// force pd APLL
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD);
//open sar_i2c protect function to avoid sar_i2c reset when rtc_ldo is low.
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_I2C_RESET_POR_FORCE_PD);
//cancel bbpll force pu if setting no force power up
if (!cfg.bbpll_fpu) {
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_I2C_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PU);
} else {
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BBPLL_I2C_FORCE_PU);
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PU);
}
CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_REGULATOR_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_DBOOST_FORCE_PU);
if (cfg.rtc_dboost_fpd) {
SET_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_DBOOST_FORCE_PD);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_DBOOST_FORCE_PD);
}
//clear i2c_reset_protect pd force, need tested in low temperature.
//CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG,RTC_CNTL_I2C_RESET_POR_FORCE_PD);
/* If this mask is enabled, all soc memories cannot enter power down mode */
/* We should control soc memory power down mode from RTC, so we will not touch this register any more */
CLEAR_PERI_REG_MASK(SYSTEM_MEM_PD_MASK_REG, SYSTEM_LSLP_MEM_PD_MASK);
/* If this pd_cfg is set to 1, all memory won't enter low power mode during light sleep */
/* If this pd_cfg is set to 0, all memory will enter low power mode during light sleep */
rtc_sleep_pu_config_t pu_cfg = RTC_SLEEP_PU_CONFIG_ALL(0);
rtc_sleep_pu(pu_cfg);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_WRAP_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_CPU_TOP_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_PERI_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_WRAP_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_WIFI_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_BT_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_CPU_TOP_FORCE_NOISO);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PERI_FORCE_NOISO);
//cancel digital PADS force no iso
if (cfg.cpu_waiti_clk_gate) {
CLEAR_PERI_REG_MASK(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPU_WAIT_MODE_FORCE_ON);
} else {
SET_PERI_REG_MASK(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPU_WAIT_MODE_FORCE_ON);
}
/*if SYSTEM_CPU_WAIT_MODE_FORCE_ON == 0 , the cpu clk will be closed when cpu enter WAITI mode*/
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_UNHOLD);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_DG_PAD_FORCE_NOISO);
}
REG_WRITE(RTC_CNTL_INT_ENA_REG, 0);
REG_WRITE(RTC_CNTL_INT_CLR_REG, UINT32_MAX);
}
rtc_vddsdio_config_t rtc_vddsdio_get_config(void)
{
rtc_vddsdio_config_t result;
uint32_t sdio_conf_reg = REG_READ(RTC_CNTL_SDIO_CONF_REG);
result.drefh = (sdio_conf_reg & RTC_CNTL_DREFH_SDIO_M) >> RTC_CNTL_DREFH_SDIO_S;
result.drefm = (sdio_conf_reg & RTC_CNTL_DREFM_SDIO_M) >> RTC_CNTL_DREFM_SDIO_S;
result.drefl = (sdio_conf_reg & RTC_CNTL_DREFL_SDIO_M) >> RTC_CNTL_DREFL_SDIO_S;
if (sdio_conf_reg & RTC_CNTL_SDIO_FORCE) {
// Get configuration from RTC
result.force = 1;
result.enable = (sdio_conf_reg & RTC_CNTL_XPD_SDIO_REG_M) >> RTC_CNTL_XPD_SDIO_REG_S;
result.tieh = (sdio_conf_reg & RTC_CNTL_SDIO_TIEH_M) >> RTC_CNTL_SDIO_TIEH_S;
return result;
} else {
result.force = 0;
}
// Otherwise, VDD_SDIO is controlled by bootstrapping pin
uint32_t strap_reg = REG_READ(GPIO_STRAP_REG);
result.force = 0;
result.tieh = (strap_reg & BIT(5)) ? RTC_VDDSDIO_TIEH_1_8V : RTC_VDDSDIO_TIEH_3_3V;
result.enable = 1;
return result;
}
void rtc_vddsdio_set_config(rtc_vddsdio_config_t config)
{
uint32_t val = 0;
val |= (config.force << RTC_CNTL_SDIO_FORCE_S);
val |= (config.enable << RTC_CNTL_XPD_SDIO_REG_S);
val |= (config.drefh << RTC_CNTL_DREFH_SDIO_S);
val |= (config.drefm << RTC_CNTL_DREFM_SDIO_S);
val |= (config.drefl << RTC_CNTL_DREFL_SDIO_S);
val |= (config.tieh << RTC_CNTL_SDIO_TIEH_S);
val |= RTC_CNTL_SDIO_PD_EN;
REG_WRITE(RTC_CNTL_SDIO_CONF_REG, val);
}
static void set_ocode_by_efuse(int calib_version)
{
assert(calib_version == 1);
// use efuse ocode.
uint32_t ocode;
esp_err_t err = esp_efuse_read_field_blob(ESP_EFUSE_OCODE, &ocode, 8);
assert(err == ESP_OK);
(void) err;
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_EXT_CODE, ocode);
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_FORCE_CODE, 1);
}
static void calibrate_ocode(void)
{
/*
Bandgap output voltage is not precise when calibrate o-code by hardware sometimes, so need software o-code calibration (must turn off PLL).
Method:
1. read current cpu config, save in old_config;
2. switch cpu to xtal because PLL will be closed when o-code calibration;
3. begin o-code calibration;
4. wait o-code calibration done flag(odone_flag & bg_odone_flag) or timeout;
5. set cpu to old-config.
*/
rtc_slow_freq_t slow_clk_freq = rtc_clk_slow_freq_get();
rtc_slow_freq_t rtc_slow_freq_x32k = RTC_SLOW_FREQ_32K_XTAL;
rtc_slow_freq_t rtc_slow_freq_8MD256 = RTC_SLOW_FREQ_8MD256;
rtc_cal_sel_t cal_clk = RTC_CAL_RTC_MUX;
if (slow_clk_freq == (rtc_slow_freq_x32k)) {
cal_clk = RTC_CAL_32K_XTAL;
} else if (slow_clk_freq == rtc_slow_freq_8MD256) {
cal_clk = RTC_CAL_8MD256;
}
uint64_t max_delay_time_us = 10000;
uint32_t slow_clk_period = rtc_clk_cal(cal_clk, 100);
uint64_t max_delay_cycle = rtc_time_us_to_slowclk(max_delay_time_us, slow_clk_period);
uint64_t cycle0 = rtc_time_get();
uint64_t timeout_cycle = cycle0 + max_delay_cycle;
uint64_t cycle1 = 0;
rtc_cpu_freq_config_t old_config;
rtc_clk_cpu_freq_get_config(&old_config);
rtc_clk_cpu_freq_set_xtal();
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 0);
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_RESETB, 1);
bool odone_flag = 0;
bool bg_odone_flag = 0;
while (1) {
odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_O_DONE_FLAG);
bg_odone_flag = REGI2C_READ_MASK(I2C_ULP, I2C_ULP_BG_O_DONE_FLAG);
cycle1 = rtc_time_get();
if (odone_flag && bg_odone_flag) {
break;
}
if (cycle1 >= timeout_cycle) {
SOC_LOGW(TAG, "o_code calibration fail\n");
break;
}
}
rtc_clk_cpu_freq_set_config(&old_config);
}
static uint32_t get_dig_dbias_by_efuse(uint8_t chip_version)
{
assert(chip_version >= 3);
uint32_t dig_dbias = 28;
esp_err_t err = esp_efuse_read_field_blob(ESP_EFUSE_DIG_DBIAS_HVT, &dig_dbias, 5);
if (err != ESP_OK) {
dig_dbias = 28;
SOC_LOGW(TAG, "efuse read fail, set default dig_dbias value: %d\n", dig_dbias);
}
return dig_dbias;
}
uint32_t get_rtc_dbias_by_efuse(uint8_t chip_version, uint32_t dig_dbias)
{
assert(chip_version >= 3);
uint32_t rtc_dbias = 0;
signed int k_rtc_ldo = 0, k_dig_ldo = 0, v_rtc_bias20 = 0, v_dig_bias20 = 0;
esp_err_t err0 = esp_efuse_read_field_blob(ESP_EFUSE_K_RTC_LDO, &k_rtc_ldo, 7);
esp_err_t err1 = esp_efuse_read_field_blob(ESP_EFUSE_K_DIG_LDO, &k_dig_ldo, 7);
esp_err_t err2 = esp_efuse_read_field_blob(ESP_EFUSE_V_RTC_DBIAS20, &v_rtc_bias20, 8);
esp_err_t err3 = esp_efuse_read_field_blob(ESP_EFUSE_V_DIG_DBIAS20, &v_dig_bias20, 8);
if ((err0 != ESP_OK) | (err1 != ESP_OK) | (err2 != ESP_OK) | (err3 != ESP_OK)) {
k_rtc_ldo = 0;
k_dig_ldo = 0;
v_rtc_bias20 = 0;
v_dig_bias20 = 0;
SOC_LOGW(TAG, "efuse read fail, k_rtc_ldo: %d, k_dig_ldo: %d, v_rtc_bias20: %d, v_dig_bias20: %d\n", k_rtc_ldo, k_dig_ldo, v_rtc_bias20, v_dig_bias20);
}
k_rtc_ldo = ((k_rtc_ldo & BIT(6)) != 0)? -(k_rtc_ldo & 0x3f): k_rtc_ldo;
k_dig_ldo = ((k_dig_ldo & BIT(6)) != 0)? -(k_dig_ldo & 0x3f): (uint8_t)k_dig_ldo;
v_rtc_bias20 = ((v_rtc_bias20 & BIT(7)) != 0)? -(v_rtc_bias20 & 0x7f): (uint8_t)v_rtc_bias20;
v_dig_bias20 = ((v_dig_bias20 & BIT(7)) != 0)? -(v_dig_bias20 & 0x7f): (uint8_t)v_dig_bias20;
uint32_t v_rtc_dbias20_real_mul10000 = V_RTC_MID_MUL10000 + v_rtc_bias20 * 10000 / 500;
uint32_t v_dig_dbias20_real_mul10000 = V_DIG_MID_MUL10000 + v_dig_bias20 * 10000 / 500;
signed int k_rtc_ldo_real_mul10000 = K_RTC_MID_MUL10000 + k_rtc_ldo;
signed int k_dig_ldo_real_mul10000 = K_DIG_MID_MUL10000 + k_dig_ldo;
uint32_t v_dig_nearest_1v15_mul10000 = v_dig_dbias20_real_mul10000 + k_dig_ldo_real_mul10000 * (dig_dbias - 20);
uint32_t v_rtc_nearest_1v15_mul10000 = 0;
for (rtc_dbias = 15; rtc_dbias < 32; rtc_dbias++) {
v_rtc_nearest_1v15_mul10000 = v_rtc_dbias20_real_mul10000 + k_rtc_ldo_real_mul10000 * (rtc_dbias - 20);
if (v_rtc_nearest_1v15_mul10000 >= v_dig_nearest_1v15_mul10000 - 250)
break;
}
return rtc_dbias;
}
static void set_rtc_dig_dbias()
{
/*
1. a reasonable dig_dbias which by scaning pvt to make 160 CPU run successful stored in efuse;
2. also we store some value in efuse, include:
k_rtc_ldo (slope of rtc voltage & rtc_dbias);
k_dig_ldo (slope of digital voltage & digital_dbias);
v_rtc_bias20 (rtc voltage when rtc dbais is 20);
v_dig_bias20 (digital voltage when digital dbais is 20).
3. a reasonable rtc_dbias can be calculated by a certion formula.
*/
uint32_t rtc_dbias = 28, dig_dbias = 28;
uint8_t chip_version = esp_efuse_get_chip_ver();
if (chip_version >= 3) {
dig_dbias = get_dig_dbias_by_efuse(chip_version);
if (dig_dbias != 0) {
if (dig_dbias + 4 > 28) {
dig_dbias = 28;
} else {
dig_dbias += 4;
}
rtc_dbias = get_rtc_dbias_by_efuse(chip_version, dig_dbias); // already burn dig_dbias in efuse
} else {
dig_dbias = 28;
SOC_LOGD(TAG, "not burn core voltage in efuse or burn wrong voltage value in chip version: 0%d\n", chip_version);
}
}
else {
SOC_LOGD(TAG, "chip_version is less than 3, not burn core voltage in efuse\n");
}
REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_EXT_RTC_DREG, rtc_dbias);
REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_EXT_DIG_DREG, dig_dbias);
}

View File

@@ -0,0 +1,67 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <assert.h>
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/apb_ctrl_reg.h"
typedef enum {
PM_LIGHT_SLEEP = BIT(2), /*!< WiFi PD, memory in light sleep */
} pm_sleep_mode_t;
typedef enum {
PM_SW_NOREJECT = 0,
PM_SW_REJECT = 1
} pm_sw_reject_t;
/* These MAC-related functions are defined in the closed source part of
* RTC library
*/
extern void pm_mac_init(void);
extern int pm_check_mac_idle(void);
extern void pm_mac_deinit(void);
/* This sleep-related function is called from the closed source part of RTC
* library.
*/
pm_sw_reject_t pm_set_sleep_mode(pm_sleep_mode_t sleep_mode, void(*pmac_save_params)(void))
{
(void) pmac_save_params; /* unused */
pm_mac_deinit();
if (pm_check_mac_idle()) {
pm_mac_init();
return PM_SW_REJECT;
}
rtc_sleep_config_t cfg = { 0 };
switch (sleep_mode) {
case PM_LIGHT_SLEEP:
cfg.wifi_pd_en = 1;
cfg.dig_dbias_wak = 4;
cfg.dig_dbias_slp = 0;
cfg.rtc_dbias_wak = 0;
cfg.rtc_dbias_slp = 0;
rtc_sleep_init(cfg);
break;
default:
assert(0 && "unsupported sleep mode");
}
return PM_SW_NOREJECT;
}

View File

@@ -0,0 +1,254 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <stdlib.h>
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/apb_ctrl_reg.h"
#include "soc/rtc.h"
#include "soc/i2s_reg.h"
#include "soc/bb_reg.h"
#include "soc/nrx_reg.h"
#include "soc/fe_reg.h"
#include "soc/timer_group_reg.h"
#include "soc/system_reg.h"
#include "soc/rtc.h"
#include "esp32c3/rom/ets_sys.h"
#include "esp32c3/rom/rtc.h"
#include "regi2c_ctrl.h"
#include "esp_efuse.h"
/**
* Configure whether certain peripherals are powered down in deep sleep
* @param cfg power down flags as rtc_sleep_pu_config_t structure
*/
void rtc_sleep_pu(rtc_sleep_pu_config_t cfg)
{
REG_SET_FIELD(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_LSLP_MEM_FORCE_PU, cfg.dig_fpu);
REG_SET_FIELD(RTC_CNTL_PWC_REG, RTC_CNTL_FASTMEM_FORCE_LPU, cfg.rtc_fpu);
REG_SET_FIELD(APB_CTRL_FRONT_END_MEM_PD_REG, APB_CTRL_DC_MEM_FORCE_PU, cfg.fe_fpu);
REG_SET_FIELD(APB_CTRL_FRONT_END_MEM_PD_REG, APB_CTRL_PBUS_MEM_FORCE_PU, cfg.fe_fpu);
REG_SET_FIELD(APB_CTRL_FRONT_END_MEM_PD_REG, APB_CTRL_AGC_MEM_FORCE_PU, cfg.fe_fpu);
REG_SET_FIELD(BBPD_CTRL, BB_FFT_FORCE_PU, cfg.bb_fpu);
REG_SET_FIELD(BBPD_CTRL, BB_DC_EST_FORCE_PU, cfg.bb_fpu);
REG_SET_FIELD(NRXPD_CTRL, NRX_RX_ROT_FORCE_PU, cfg.nrx_fpu);
REG_SET_FIELD(NRXPD_CTRL, NRX_VIT_FORCE_PU, cfg.nrx_fpu);
REG_SET_FIELD(NRXPD_CTRL, NRX_DEMAP_FORCE_PU, cfg.nrx_fpu);
REG_SET_FIELD(FE_GEN_CTRL, FE_IQ_EST_FORCE_PU, cfg.fe_fpu);
REG_SET_FIELD(FE2_TX_INTERP_CTRL, FE2_TX_INF_FORCE_PU, cfg.fe_fpu);
if (cfg.sram_fpu) {
REG_SET_FIELD(APB_CTRL_MEM_POWER_UP_REG, APB_CTRL_SRAM_POWER_UP, APB_CTRL_SRAM_POWER_UP);
} else {
REG_SET_FIELD(APB_CTRL_MEM_POWER_UP_REG, APB_CTRL_SRAM_POWER_UP, 0);
}
if (cfg.rom_ram_fpu) {
REG_SET_FIELD(APB_CTRL_MEM_POWER_UP_REG, APB_CTRL_ROM_POWER_UP, APB_CTRL_ROM_POWER_UP);
} else {
REG_SET_FIELD(APB_CTRL_MEM_POWER_UP_REG, APB_CTRL_ROM_POWER_UP, 0);
}
}
void rtc_sleep_init(rtc_sleep_config_t cfg)
{
if (cfg.lslp_mem_inf_fpu) {
rtc_sleep_pu_config_t pu_cfg = RTC_SLEEP_PU_CONFIG_ALL(1);
rtc_sleep_pu(pu_cfg);
}
if (cfg.wifi_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_PD_EN);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_WIFI_PD_EN);
}
if (cfg.bt_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_PD_EN);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_PD_EN);
}
if (cfg.cpu_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_CPU_TOP_PD_EN);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_CPU_TOP_PD_EN);
}
if (cfg.dig_peri_pd_en) {
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_PERI_PD_EN);
} else {
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_PERI_PD_EN);
}
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_DBG_ATTEN_MONITOR, RTC_CNTL_DBG_ATTEN_MONITOR_DEFAULT);
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_BIAS_SLEEP_MONITOR, RTC_CNTL_BIASSLP_MONITOR_DEFAULT);
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_BIAS_SLEEP_DEEP_SLP, RTC_CNTL_BIASSLP_SLEEP_DEFAULT);
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_PD_CUR_MONITOR, RTC_CNTL_PD_CUR_MONITOR_DEFAULT);
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_PD_CUR_DEEP_SLP, RTC_CNTL_PD_CUR_SLEEP_DEFAULT);
if (cfg.deep_slp) {
REGI2C_WRITE_MASK(I2C_ULP, I2C_ULP_IR_FORCE_XPD_CK, 0);
CLEAR_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_REGULATOR_FORCE_PU);
unsigned atten_deep_sleep = RTC_CNTL_DBG_ATTEN_DEEPSLEEP_DEFAULT;
#if CONFIG_ESP32C3_REV_MIN < 3
if (esp_efuse_get_chip_ver() < 3) {
atten_deep_sleep = 0; /* workaround for deep sleep issue in high temp on ECO2 and below */
}
#endif
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_DBG_ATTEN_DEEP_SLP, atten_deep_sleep);
SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_WRAP_PD_EN);
CLEAR_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG,
RTC_CNTL_CKGEN_I2C_PU | RTC_CNTL_PLL_I2C_PU |
RTC_CNTL_RFRX_PBUS_PU | RTC_CNTL_TXRF_I2C_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PU);
} else {
SET_PERI_REG_MASK(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_DG_VDD_DRV_B_SLP_EN);
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_DG_VDD_DRV_B_SLP, RTC_CNTL_DG_VDD_DRV_B_SLP_DEFAULT);
SET_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_REGULATOR_FORCE_PU);
CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_DG_WRAP_PD_EN);
REG_SET_FIELD(RTC_CNTL_BIAS_CONF_REG, RTC_CNTL_DBG_ATTEN_DEEP_SLP, RTC_CNTL_DBG_ATTEN_LIGHTSLEEP_DEFAULT);
}
/* enable VDDSDIO control by state machine */
REG_CLR_BIT(RTC_CNTL_SDIO_CONF_REG, RTC_CNTL_SDIO_FORCE);
REG_SET_FIELD(RTC_CNTL_SDIO_CONF_REG, RTC_CNTL_SDIO_PD_EN, cfg.vddsdio_pd_en);
REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_EXT_RTC_DREG_SLEEP, cfg.rtc_dbias_slp);
REGI2C_WRITE_MASK(I2C_DIG_REG, I2C_DIG_REG_EXT_DIG_DREG_SLEEP, cfg.dig_dbias_slp);
REG_SET_FIELD(RTC_CNTL_SLP_REJECT_CONF_REG, RTC_CNTL_DEEP_SLP_REJECT_EN, cfg.deep_slp_reject);
REG_SET_FIELD(RTC_CNTL_SLP_REJECT_CONF_REG, RTC_CNTL_LIGHT_SLP_REJECT_EN, cfg.light_slp_reject);
/* gating XTAL clock */
REG_CLR_BIT(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_XTAL_GLOBAL_FORCE_NOGATING);
}
void rtc_sleep_low_init(uint32_t slowclk_period)
{
// set 5 PWC state machine times to fit in main state machine time
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_PLL_BUF_WAIT, RTC_CNTL_PLL_BUF_WAIT_SLP_CYCLES);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_XTL_BUF_WAIT, rtc_time_us_to_slowclk(RTC_CNTL_XTL_BUF_WAIT_SLP_US, slowclk_period));
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CNTL_CK8M_WAIT_SLP_CYCLES);
}
void rtc_sleep_set_wakeup_time(uint64_t t)
{
WRITE_PERI_REG(RTC_CNTL_SLP_TIMER0_REG, t & UINT32_MAX);
WRITE_PERI_REG(RTC_CNTL_SLP_TIMER1_REG, t >> 32);
}
static uint32_t rtc_sleep_finish(uint32_t lslp_mem_inf_fpu);
uint32_t rtc_sleep_start(uint32_t wakeup_opt, uint32_t reject_opt, uint32_t lslp_mem_inf_fpu)
{
REG_SET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_ENA, wakeup_opt);
REG_SET_FIELD(RTC_CNTL_SLP_REJECT_CONF_REG, RTC_CNTL_SLEEP_REJECT_ENA, reject_opt);
/* Start entry into sleep mode */
SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_SLEEP_EN);
while (GET_PERI_REG_MASK(RTC_CNTL_INT_RAW_REG,
RTC_CNTL_SLP_REJECT_INT_RAW | RTC_CNTL_SLP_WAKEUP_INT_RAW) == 0) {
;
}
return rtc_sleep_finish(lslp_mem_inf_fpu);
}
#define STR2(X) #X
#define STR(X) STR2(X)
uint32_t rtc_deep_sleep_start(uint32_t wakeup_opt, uint32_t reject_opt)
{
REG_SET_FIELD(RTC_CNTL_WAKEUP_STATE_REG, RTC_CNTL_WAKEUP_ENA, wakeup_opt);
WRITE_PERI_REG(RTC_CNTL_SLP_REJECT_CONF_REG, reject_opt);
/* Calculate RTC Fast Memory CRC (for wake stub) & go to deep sleep
Because we may be running from RTC memory as stack, we can't easily call any
functions to do this (as registers will spill to stack, corrupting the CRC).
Instead, load all the values we need into registers then use register ops only to calculate
the CRC value, write it to the RTC CRC value register, and immediately go into deep sleep.
*/
/* Values used to set the SYSTEM_RTC_FASTMEM_CONFIG_REG value */
const unsigned CRC_START_ADDR = 0;
const unsigned CRC_LEN = 0x7ff;
asm volatile(
/* Start CRC calculation */
"sw %1, 0(%0)\n" // set RTC_MEM_CRC_ADDR & RTC_MEM_CRC_LEN
"or t0, %1, %2\n"
"sw t0, 0(%0)\n" // set RTC_MEM_CRC_START
/* Wait for the CRC calculation to finish */
".Lwaitcrc:\n"
"fence\n"
"lw t0, 0(%0)\n"
"li t1, "STR(SYSTEM_RTC_MEM_CRC_FINISH)"\n"
"and t0, t0, t1\n"
"beqz t0, .Lwaitcrc\n"
"not %2, %2\n" // %2 -> ~DPORT_RTC_MEM_CRC_START
"and t0, t0, %2\n"
"sw t0, 0(%0)\n" // clear RTC_MEM_CRC_START
"fence\n"
"not %2, %2\n" // %2 -> DPORT_RTC_MEM_CRC_START, probably unnecessary but gcc assumes inputs unchanged
/* Store the calculated value in RTC_MEM_CRC_REG */
"lw t0, 0(%3)\n"
"sw t0, 0(%4)\n"
"fence\n"
/* Set register bit to go into deep sleep */
"lw t0, 0(%5)\n"
"or t0, t0, %6\n"
"sw t0, 0(%5)\n"
"fence\n"
/* Wait for sleep reject interrupt (never finishes if successful) */
".Lwaitsleep:"
"fence\n"
"lw t0, 0(%7)\n"
"and t0, t0, %8\n"
"beqz t0, .Lwaitsleep\n"
:
:
"r" (SYSTEM_RTC_FASTMEM_CONFIG_REG), // %0
"r" ( (CRC_START_ADDR << SYSTEM_RTC_MEM_CRC_START_S)
| (CRC_LEN << SYSTEM_RTC_MEM_CRC_LEN_S)), // %1
"r" (SYSTEM_RTC_MEM_CRC_START), // %2
"r" (SYSTEM_RTC_FASTMEM_CRC_REG), // %3
"r" (RTC_MEMORY_CRC_REG), // %4
"r" (RTC_CNTL_STATE0_REG), // %5
"r" (RTC_CNTL_SLEEP_EN), // %6
"r" (RTC_CNTL_INT_RAW_REG), // %7
"r" (RTC_CNTL_SLP_REJECT_INT_RAW | RTC_CNTL_SLP_WAKEUP_INT_RAW) // %8
: "t0", "t1" // working registers
);
return rtc_sleep_finish(0);
}
static uint32_t rtc_sleep_finish(uint32_t lslp_mem_inf_fpu)
{
/* In deep sleep mode, we never get here */
uint32_t reject = REG_GET_FIELD(RTC_CNTL_INT_RAW_REG, RTC_CNTL_SLP_REJECT_INT_RAW);
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG,
RTC_CNTL_SLP_REJECT_INT_CLR | RTC_CNTL_SLP_WAKEUP_INT_CLR);
/* restore config if it is a light sleep */
if (lslp_mem_inf_fpu) {
rtc_sleep_pu_config_t pu_cfg = RTC_SLEEP_PU_CONFIG_ALL(1);
rtc_sleep_pu(pu_cfg);
}
return reject;
}

View File

@@ -0,0 +1,189 @@
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include "esp32c3/rom/ets_sys.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/timer_group_reg.h"
#include "esp_rom_sys.h"
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
* This feature counts the number of XTAL clock cycles within a given number of
* RTC_SLOW_CLK cycles.
*
* Slow clock calibration feature has two modes of operation: one-off and cycling.
* In cycling mode (which is enabled by default on SoC reset), counting of XTAL
* cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
* using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
* once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
* enabled using TIMG_RTC_CALI_START bit.
*/
/**
* @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio
* @param cal_clk which clock to calibrate
* @param slowclk_cycles number of slow clock cycles to count
* @return number of XTAL clock cycles within the given number of slow clock cycles
*/
uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
{
/* On ESP32C3, choosing RTC_CAL_RTC_MUX results in calibration of
* the 150k RTC clock regardless of the currenlty selected SLOW_CLK.
* On the ESP32, it used the currently selected SLOW_CLK.
* The following code emulates ESP32 behavior:
*/
if (cal_clk == RTC_CAL_RTC_MUX) {
rtc_slow_freq_t slow_freq = rtc_clk_slow_freq_get();
if (slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
cal_clk = RTC_CAL_32K_XTAL;
} else if (slow_freq == RTC_SLOW_FREQ_8MD256) {
cal_clk = RTC_CAL_8MD256;
}
}
/* Enable requested clock (150k clock is always on) */
int dig_32k_xtal_state = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_state) {
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, 1);
}
if (cal_clk == RTC_CAL_8MD256) {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
}
/* Prepare calibration */
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk);
/* There may be another calibration process already running during we call this function,
* so we should wait the last process is done.
*/
if (!GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING)) {
while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY));
}
}
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING);
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles);
/* Figure out how long to wait for calibration to finish */
/* Set timeout reg and expect time delay*/
uint32_t expected_freq;
if (cal_clk == RTC_CAL_32K_XTAL) {
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_X32K_CAL_TIMEOUT_THRES(slowclk_cycles));
expected_freq = RTC_SLOW_CLK_FREQ_32K;
} else if (cal_clk == RTC_CAL_8MD256) {
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_8MD256_CAL_TIMEOUT_THRES(slowclk_cycles));
expected_freq = RTC_SLOW_CLK_FREQ_8MD256;
} else {
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_150K_CAL_TIMEOUT_THRES(slowclk_cycles));
expected_freq = RTC_SLOW_CLK_FREQ_150K;
}
uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq);
/* Start calibration */
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
/* Wait for calibration to finish up to another us_time_estimate */
esp_rom_delay_us(us_time_estimate);
uint32_t cal_val;
while (true) {
if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)) {
cal_val = REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE);
break;
}
if (GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
cal_val = 0;
break;
}
}
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, dig_32k_xtal_state);
if (cal_clk == RTC_CAL_8MD256) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
}
return cal_val;
}
uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
{
uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
uint64_t ratio_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT)) / slowclk_cycles;
uint32_t ratio = (uint32_t)(ratio_64 & UINT32_MAX);
return ratio;
}
uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
{
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider;
uint32_t period = (uint32_t)(period_64 & UINT32_MAX);
return period;
}
uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
{
/* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days.
* TODO: fix overflow.
*/
return (time_in_us << RTC_CLK_CAL_FRACT) / period;
}
uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
{
return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT;
}
uint64_t rtc_time_get(void)
{
SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE);
uint64_t t = READ_PERI_REG(RTC_CNTL_TIME0_REG);
t |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME1_REG)) << 32;
return t;
}
uint64_t rtc_light_slp_time_get(void)
{
uint64_t t_wake = READ_PERI_REG(RTC_CNTL_TIME_LOW0_REG);
t_wake |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH0_REG)) << 32;
uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
return (t_wake - t_slp);
}
uint64_t rtc_deep_slp_time_get(void)
{
uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
uint64_t t_wake = rtc_time_get();
return (t_wake - t_slp);
}
void rtc_clk_wait_for_slow_cycle(void) //This function may not by useful any more
{
SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE);
while (GET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE)) {
esp_rom_delay_us(1);
}
}
uint32_t rtc_clk_freq_cal(uint32_t cal_val)
{
if (cal_val == 0) {
return 0; // cal_val will be denominator, return 0 as the symbol of failure.
}
return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val;
}

View File

@@ -0,0 +1,11 @@
set(srcs "clk.c"
"reset_reason.c"
"system_internal.c"
"cache_err_int.c"
"apb_backup_dma.c"
"../../arch/riscv/expression_with_stack.c"
"../../arch/riscv/expression_with_stack_asm.S"
"../../arch/riscv/panic_arch.c")
add_prefix(srcs "${CMAKE_CURRENT_LIST_DIR}/" ${srcs})
target_sources(${COMPONENT_LIB} PRIVATE ${srcs})

View File

@@ -0,0 +1,48 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "soc/soc_caps.h"
#if SOC_APB_BACKUP_DMA
#include "esp_attr.h"
#include "freertos/FreeRTOS.h"
#include "freertos/portmacro.h"
#include "esp32c3/rom/apb_backup_dma.h"
static portMUX_TYPE s_apb_backup_dma_mutex = portMUX_INITIALIZER_UNLOCKED;
static void IRAM_ATTR apb_backup_dma_lock(void)
{
if (xPortInIsrContext()) {
portENTER_CRITICAL_ISR(&s_apb_backup_dma_mutex);
} else {
portENTER_CRITICAL(&s_apb_backup_dma_mutex);
}
}
static void IRAM_ATTR apb_backup_dma_unlock(void)
{
if (xPortInIsrContext()) {
portEXIT_CRITICAL_ISR(&s_apb_backup_dma_mutex);
} else {
portEXIT_CRITICAL(&s_apb_backup_dma_mutex);
}
}
void esp_apb_backup_dma_lock_init(void)
{
ets_apb_backup_init_lock_func(apb_backup_dma_lock, apb_backup_dma_unlock);
}
#endif

View File

@@ -0,0 +1,102 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
The cache has an interrupt that can be raised as soon as an access to a cached
region (flash) is done without the cache being enabled. We use that here
to panic the CPU, which from a debugging perspective is better than grabbing bad
data from the bus.
*/
#include "esp32c3/rom/ets_sys.h"
#include "esp_attr.h"
#include "esp_intr_alloc.h"
#include "soc/extmem_reg.h"
#include "soc/periph_defs.h"
#include "riscv/interrupt.h"
void esp_cache_err_int_init(void)
{
const uint32_t core_id = 0;
/* Disable cache interrupts if enabled. */
ESP_INTR_DISABLE(ETS_CACHEERR_INUM);
/**
* Bind all cache errors to ETS_CACHEERR_INUM interrupt. we will deal with
* them in handler by different types
* I) Cache access error
* 1. dbus trying to write to icache
* 2. dbus authentication fail
* 3. cpu access icache while dbus is disabled [1]
* 4. ibus authentication fail
* 5. ibus trying to write icache
* 6. cpu access icache while ibus is disabled
* II) Cache illegal error
* 1. dbus counter overflow
* 2. ibus counter overflow
* 3. mmu entry fault
* 4. icache preload configurations fault
* 5. icache sync configuration fault
*
* [1]: On ESP32C3 boards, the caches are shared but buses are still
* distinct. So, we have an ibus and a dbus sharing the same cache.
* This error can occur if the dbus performs a request but the icache
* (or simply cache) is disabled.
*/
intr_matrix_set(core_id, ETS_CACHE_IA_INTR_SOURCE, ETS_CACHEERR_INUM);
intr_matrix_set(core_id, ETS_CACHE_CORE0_ACS_INTR_SOURCE, ETS_CACHEERR_INUM);
/* Set the type and priority to cache error interrupts. */
esprv_intc_int_set_type(BIT(ETS_CACHEERR_INUM), INTR_TYPE_LEVEL);
esprv_intc_int_set_priority(ETS_CACHEERR_INUM, SOC_INTERRUPT_LEVEL_MEDIUM);
/* On the hardware side, stat by clearing all the bits reponsible for
* enabling cache access error interrupts. */
SET_PERI_REG_MASK(EXTMEM_CORE0_ACS_CACHE_INT_CLR_REG,
EXTMEM_CORE0_DBUS_WR_IC_INT_CLR |
EXTMEM_CORE0_DBUS_REJECT_INT_CLR |
EXTMEM_CORE0_DBUS_ACS_MSK_IC_INT_CLR |
EXTMEM_CORE0_IBUS_REJECT_INT_CLR |
EXTMEM_CORE0_IBUS_WR_IC_INT_CLR |
EXTMEM_CORE0_IBUS_ACS_MSK_IC_INT_CLR);
/* Enable these interrupts. */
SET_PERI_REG_MASK(EXTMEM_CORE0_ACS_CACHE_INT_ENA_REG,
EXTMEM_CORE0_DBUS_WR_IC_INT_ENA |
EXTMEM_CORE0_DBUS_REJECT_INT_ENA |
EXTMEM_CORE0_DBUS_ACS_MSK_IC_INT_ENA |
EXTMEM_CORE0_IBUS_REJECT_INT_ENA |
EXTMEM_CORE0_IBUS_WR_IC_INT_ENA |
EXTMEM_CORE0_IBUS_ACS_MSK_IC_INT_ENA);
/* Same goes for cache illegal error: start by clearing the bits and then
* set them back. */
SET_PERI_REG_MASK(EXTMEM_CACHE_ILG_INT_CLR_REG,
EXTMEM_MMU_ENTRY_FAULT_INT_CLR |
EXTMEM_ICACHE_PRELOAD_OP_FAULT_INT_CLR |
EXTMEM_ICACHE_SYNC_OP_FAULT_INT_CLR);
SET_PERI_REG_MASK(EXTMEM_CACHE_ILG_INT_ENA_REG,
EXTMEM_MMU_ENTRY_FAULT_INT_ENA |
EXTMEM_ICACHE_PRELOAD_OP_FAULT_INT_ENA |
EXTMEM_ICACHE_SYNC_OP_FAULT_INT_ENA);
/* Enable the interrupts for cache error. */
ESP_INTR_ENABLE(ETS_CACHEERR_INUM);
}
int IRAM_ATTR esp_cache_err_get_cpuid(void)
{
return 0;
}

View File

@@ -0,0 +1,2 @@
#pragma once
#include "cache_err_int.h"

View File

@@ -0,0 +1,321 @@
// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdint.h>
#include <sys/cdefs.h>
#include <sys/time.h>
#include <sys/param.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp32c3/clk.h"
#include "esp_clk_internal.h"
#include "esp32c3/rom/ets_sys.h"
#include "esp32c3/rom/uart.h"
#include "esp32c3/rom/rtc.h"
#include "soc/system_reg.h"
#include "soc/dport_access.h"
#include "soc/soc.h"
#include "soc/rtc.h"
#include "soc/rtc_periph.h"
#include "soc/i2s_reg.h"
#include "hal/cpu_hal.h"
#include "hal/wdt_hal.h"
#include "driver/periph_ctrl.h"
#include "bootloader_clock.h"
#include "soc/syscon_reg.h"
#include "esp_rom_uart.h"
/* Number of cycles to wait from the 32k XTAL oscillator to consider it running.
* Larger values increase startup delay. Smaller values may cause false positive
* detection (i.e. oscillator runs for a few cycles and then stops).
*/
#define SLOW_CLK_CAL_CYCLES CONFIG_ESP32C3_RTC_CLK_CAL_CYCLES
#define MHZ (1000000)
/* Lower threshold for a reasonably-looking calibration value for a 32k XTAL.
* The ideal value (assuming 32768 Hz frequency) is 1000000/32768*(2**19) = 16*10^6.
*/
#define MIN_32K_XTAL_CAL_VAL 15000000L
/* Indicates that this 32k oscillator gets input from external oscillator, rather
* than a crystal.
*/
#define EXT_OSC_FLAG BIT(3)
/* This is almost the same as rtc_slow_freq_t, except that we define
* an extra enum member for the external 32k oscillator.
* For convenience, lower 2 bits should correspond to rtc_slow_freq_t values.
*/
typedef enum {
SLOW_CLK_RTC = RTC_SLOW_FREQ_RTC, //!< Internal 150 kHz RC oscillator
SLOW_CLK_32K_XTAL = RTC_SLOW_FREQ_32K_XTAL, //!< External 32 kHz XTAL
SLOW_CLK_8MD256 = RTC_SLOW_FREQ_8MD256, //!< Internal 8 MHz RC oscillator, divided by 256
SLOW_CLK_32K_EXT_OSC = RTC_SLOW_FREQ_32K_XTAL | EXT_OSC_FLAG //!< External 32k oscillator connected to 32K_XP pin
} slow_clk_sel_t;
static void select_rtc_slow_clk(slow_clk_sel_t slow_clk);
static const char *TAG = "clk";
__attribute__((weak)) void esp_clk_init(void)
{
#if !CONFIG_IDF_ENV_FPGA
rtc_config_t cfg = RTC_CONFIG_DEFAULT();
RESET_REASON rst_reas;
rst_reas = rtc_get_reset_reason(0);
if (rst_reas == POWERON_RESET) {
cfg.cali_ocode = 1;
}
rtc_init(cfg);
assert(rtc_clk_xtal_freq_get() == RTC_XTAL_FREQ_40M);
rtc_clk_fast_freq_set(RTC_FAST_FREQ_8M);
#endif
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// WDT uses a SLOW_CLK clock source. After a function select_rtc_slow_clk a frequency of this source can changed.
// If the frequency changes from 150kHz to 32kHz, then the timeout set for the WDT will increase 4.6 times.
// Therefore, for the time of frequency change, set a new lower timeout value (1.6 sec).
// This prevents excessive delay before resetting in case the supply voltage is drawdown.
// (If frequency is changed from 150kHz to 32kHz then WDT timeout will increased to 1.6sec * 150/32 = 7.5 sec).
wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL};
uint32_t stage_timeout_ticks = (uint32_t)(1600ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_feed(&rtc_wdt_ctx);
//Bootloader has enabled RTC WDT until now. We're only modifying timeout, so keep the stage and timeout action the same
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
#endif
#if defined(CONFIG_ESP32C3_RTC_CLK_SRC_EXT_CRYS)
select_rtc_slow_clk(SLOW_CLK_32K_XTAL);
#elif defined(CONFIG_ESP32C3_RTC_CLK_SRC_EXT_OSC)
select_rtc_slow_clk(SLOW_CLK_32K_EXT_OSC);
#elif defined(CONFIG_ESP32C3_RTC_CLK_SRC_INT_8MD256)
select_rtc_slow_clk(SLOW_CLK_8MD256);
#else
select_rtc_slow_clk(RTC_SLOW_FREQ_RTC);
#endif
#ifdef CONFIG_BOOTLOADER_WDT_ENABLE
// After changing a frequency WDT timeout needs to be set for new frequency.
stage_timeout_ticks = (uint32_t)((uint64_t)CONFIG_BOOTLOADER_WDT_TIME_MS * rtc_clk_slow_freq_get_hz() / 1000);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_feed(&rtc_wdt_ctx);
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
#endif
rtc_cpu_freq_config_t old_config, new_config;
rtc_clk_cpu_freq_get_config(&old_config);
const uint32_t old_freq_mhz = old_config.freq_mhz;
const uint32_t new_freq_mhz = CONFIG_ESP32C3_DEFAULT_CPU_FREQ_MHZ;
bool res = rtc_clk_cpu_freq_mhz_to_config(new_freq_mhz, &new_config);
assert(res);
// Wait for UART TX to finish, otherwise some UART output will be lost
// when switching APB frequency
esp_rom_uart_tx_wait_idle(CONFIG_ESP_CONSOLE_UART_NUM);
if (res) {
rtc_clk_cpu_freq_set_config(&new_config);
}
// Re calculate the ccount to make time calculation correct.
cpu_hal_set_cycle_count( (uint64_t)cpu_hal_get_cycle_count() * new_freq_mhz / old_freq_mhz );
}
static void select_rtc_slow_clk(slow_clk_sel_t slow_clk)
{
rtc_slow_freq_t rtc_slow_freq = slow_clk & RTC_CNTL_ANA_CLK_RTC_SEL_V;
uint32_t cal_val = 0;
/* number of times to repeat 32k XTAL calibration
* before giving up and switching to the internal RC
*/
int retry_32k_xtal = 3;
do {
if (rtc_slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
/* 32k XTAL oscillator needs to be enabled and running before it can
* be used. Hardware doesn't have a direct way of checking if the
* oscillator is running. Here we use rtc_clk_cal function to count
* the number of main XTAL cycles in the given number of 32k XTAL
* oscillator cycles. If the 32k XTAL has not started up, calibration
* will time out, returning 0.
*/
ESP_EARLY_LOGD(TAG, "waiting for 32k oscillator to start up");
if (slow_clk == SLOW_CLK_32K_XTAL) {
rtc_clk_32k_enable(true);
} else if (slow_clk == SLOW_CLK_32K_EXT_OSC) {
rtc_clk_32k_enable_external();
}
// When SLOW_CLK_CAL_CYCLES is set to 0, clock calibration will not be performed at startup.
if (SLOW_CLK_CAL_CYCLES > 0) {
cal_val = rtc_clk_cal(RTC_CAL_32K_XTAL, SLOW_CLK_CAL_CYCLES);
if (cal_val == 0 || cal_val < MIN_32K_XTAL_CAL_VAL) {
if (retry_32k_xtal-- > 0) {
continue;
}
ESP_EARLY_LOGW(TAG, "32 kHz XTAL not found, switching to internal 150 kHz oscillator");
rtc_slow_freq = RTC_SLOW_FREQ_RTC;
}
}
} else if (rtc_slow_freq == RTC_SLOW_FREQ_8MD256) {
rtc_clk_8m_enable(true, true);
}
rtc_clk_slow_freq_set(rtc_slow_freq);
if (SLOW_CLK_CAL_CYCLES > 0) {
/* TODO: 32k XTAL oscillator has some frequency drift at startup.
* Improve calibration routine to wait until the frequency is stable.
*/
cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, SLOW_CLK_CAL_CYCLES);
} else {
const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL;
cal_val = (uint32_t) (cal_dividend / rtc_clk_slow_freq_get_hz());
}
} while (cal_val == 0);
ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %d", cal_val);
esp_clk_slowclk_cal_set(cal_val);
}
void rtc_clk_select_rtc_slow_clk(void)
{
select_rtc_slow_clk(RTC_SLOW_FREQ_32K_XTAL);
}
/* This function is not exposed as an API at this point.
* All peripheral clocks are default enabled after chip is powered on.
* This function disables some peripheral clocks when cpu starts.
* These peripheral clocks are enabled when the peripherals are initialized
* and disabled when they are de-initialized.
*/
__attribute__((weak)) void esp_perip_clk_init(void)
{
uint32_t common_perip_clk, hwcrypto_perip_clk, wifi_bt_sdio_clk = 0;
uint32_t common_perip_clk1 = 0;
#if CONFIG_FREERTOS_UNICORE
RESET_REASON rst_reas[1];
#else
RESET_REASON rst_reas[2];
#endif
rst_reas[0] = rtc_get_reset_reason(0);
#if !CONFIG_FREERTOS_UNICORE
rst_reas[1] = rtc_get_reset_reason(1);
#endif
/* For reason that only reset CPU, do not disable the clocks
* that have been enabled before reset.
*/
/* For reason that only reset CPU, do not disable the clocks
* that have been enabled before reset.
*/
if ((rst_reas[0] >= TG0WDT_CPU_RESET && rst_reas[0] <= TG0WDT_CPU_RESET && rst_reas[0] != RTCWDT_BROWN_OUT_RESET)
#if !CONFIG_FREERTOS_UNICORE
|| (rst_reas[1] >= TG0WDT_CPU_RESET && rst_reas[1] <= RTCWDT_CPU_RESET)
#endif
) {
common_perip_clk = ~READ_PERI_REG(SYSTEM_PERIP_CLK_EN0_REG);
hwcrypto_perip_clk = ~READ_PERI_REG(SYSTEM_PERIP_CLK_EN1_REG);
wifi_bt_sdio_clk = ~READ_PERI_REG(SYSTEM_WIFI_CLK_EN_REG);
} else {
common_perip_clk = SYSTEM_WDG_CLK_EN |
SYSTEM_I2S0_CLK_EN |
#if CONFIG_CONSOLE_UART_NUM != 0
SYSTEM_UART_CLK_EN |
#endif
#if CONFIG_CONSOLE_UART_NUM != 1
SYSTEM_UART1_CLK_EN |
#endif
SYSTEM_SPI2_CLK_EN |
SYSTEM_I2C_EXT0_CLK_EN |
SYSTEM_UHCI0_CLK_EN |
SYSTEM_RMT_CLK_EN |
SYSTEM_LEDC_CLK_EN |
SYSTEM_TIMERGROUP1_CLK_EN |
SYSTEM_SPI3_CLK_EN |
SYSTEM_SPI4_CLK_EN |
SYSTEM_TWAI_CLK_EN |
SYSTEM_I2S1_CLK_EN |
SYSTEM_SPI2_DMA_CLK_EN |
SYSTEM_SPI3_DMA_CLK_EN;
common_perip_clk1 = 0;
hwcrypto_perip_clk = SYSTEM_CRYPTO_AES_CLK_EN |
SYSTEM_CRYPTO_SHA_CLK_EN |
SYSTEM_CRYPTO_RSA_CLK_EN;
wifi_bt_sdio_clk = SYSTEM_WIFI_CLK_WIFI_EN |
SYSTEM_WIFI_CLK_BT_EN_M |
SYSTEM_WIFI_CLK_UNUSED_BIT5 |
SYSTEM_WIFI_CLK_UNUSED_BIT12;
}
//Reset the communication peripherals like I2C, SPI, UART, I2S and bring them to known state.
common_perip_clk |= SYSTEM_I2S0_CLK_EN |
#if CONFIG_CONSOLE_UART_NUM != 0
SYSTEM_UART_CLK_EN |
#endif
#if CONFIG_CONSOLE_UART_NUM != 1
SYSTEM_UART1_CLK_EN |
#endif
SYSTEM_SPI2_CLK_EN |
SYSTEM_I2C_EXT0_CLK_EN |
SYSTEM_UHCI0_CLK_EN |
SYSTEM_RMT_CLK_EN |
SYSTEM_UHCI1_CLK_EN |
SYSTEM_SPI3_CLK_EN |
SYSTEM_SPI4_CLK_EN |
SYSTEM_I2C_EXT1_CLK_EN |
SYSTEM_I2S1_CLK_EN |
SYSTEM_SPI2_DMA_CLK_EN |
SYSTEM_SPI3_DMA_CLK_EN;
common_perip_clk1 = 0;
/* Change I2S clock to audio PLL first. Because if I2S uses 160MHz clock,
* the current is not reduced when disable I2S clock.
*/
// TOCK(check replacement)
// REG_SET_FIELD(I2S_CLKM_CONF_REG(0), I2S_CLK_SEL, I2S_CLK_AUDIO_PLL);
// REG_SET_FIELD(I2S_CLKM_CONF_REG(1), I2S_CLK_SEL, I2S_CLK_AUDIO_PLL);
/* Disable some peripheral clocks. */
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN0_REG, common_perip_clk);
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN0_REG, common_perip_clk);
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN1_REG, common_perip_clk1);
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, common_perip_clk1);
/* Disable hardware crypto clocks. */
CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN1_REG, hwcrypto_perip_clk);
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, hwcrypto_perip_clk);
/* Disable WiFi/BT/SDIO clocks. */
CLEAR_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, wifi_bt_sdio_clk);
SET_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, SYSTEM_WIFI_CLK_EN);
/* Set WiFi light sleep clock source to RTC slow clock */
REG_SET_FIELD(SYSTEM_BT_LPCK_DIV_INT_REG, SYSTEM_BT_LPCK_DIV_NUM, 0);
CLEAR_PERI_REG_MASK(SYSTEM_BT_LPCK_DIV_FRAC_REG, SYSTEM_LPCLK_SEL_8M);
SET_PERI_REG_MASK(SYSTEM_BT_LPCK_DIV_FRAC_REG, SYSTEM_LPCLK_SEL_RTC_SLOW);
/* Enable RNG clock. */
periph_module_enable(PERIPH_RNG_MODULE);
}

View File

@@ -0,0 +1,119 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp_system.h"
#include "esp32c3/rom/rtc.h"
#include "esp_private/system_internal.h"
#include "soc/rtc_periph.h"
static void esp_reset_reason_clear_hint(void);
static esp_reset_reason_t s_reset_reason;
static esp_reset_reason_t get_reset_reason(RESET_REASON rtc_reset_reason, esp_reset_reason_t reset_reason_hint)
{
switch (rtc_reset_reason) {
case POWERON_RESET:
return ESP_RST_POWERON;
case RTC_SW_CPU_RESET:
case RTC_SW_SYS_RESET:
if (reset_reason_hint == ESP_RST_PANIC ||
reset_reason_hint == ESP_RST_BROWNOUT ||
reset_reason_hint == ESP_RST_TASK_WDT ||
reset_reason_hint == ESP_RST_INT_WDT) {
return reset_reason_hint;
}
return ESP_RST_SW;
case DEEPSLEEP_RESET:
return ESP_RST_DEEPSLEEP;
case TG0WDT_SYS_RESET:
return ESP_RST_TASK_WDT;
case TG1WDT_SYS_RESET:
return ESP_RST_INT_WDT;
case RTCWDT_SYS_RESET:
case RTCWDT_RTC_RESET:
case SUPER_WDT_RESET:
case RTCWDT_CPU_RESET: /* unused */
case TG0WDT_CPU_RESET: /* unused */
case TG1WDT_CPU_RESET: /* unused */
return ESP_RST_WDT;
case RTCWDT_BROWN_OUT_RESET:
return ESP_RST_BROWNOUT;
case INTRUSION_RESET: /* unused */
default:
return ESP_RST_UNKNOWN;
}
}
static void __attribute__((constructor)) esp_reset_reason_init(void)
{
esp_reset_reason_t hint = esp_reset_reason_get_hint();
s_reset_reason = get_reset_reason(rtc_get_reset_reason(PRO_CPU_NUM),
hint);
if (hint != ESP_RST_UNKNOWN) {
esp_reset_reason_clear_hint();
}
}
esp_reset_reason_t esp_reset_reason(void)
{
return s_reset_reason;
}
/* Reset reason hint is stored in RTC_RESET_CAUSE_REG, a.k.a. RTC_CNTL_STORE6_REG,
* a.k.a. RTC_ENTRY_ADDR_REG. It is safe to use this register both for the
* deep sleep wake stub entry address and for reset reason hint, since wake stub
* is only used for deep sleep reset, and in this case the reason provided by
* rtc_get_reset_reason is unambiguous.
*
* Same layout is used as for RTC_APB_FREQ_REG (a.k.a. RTC_CNTL_STORE5_REG):
* the value is replicated in low and high half-words. In addition to that,
* MSB is set to 1, which doesn't happen when RTC_CNTL_STORE6_REG contains
* deep sleep wake stub address.
*/
#define RST_REASON_BIT 0x80000000
#define RST_REASON_MASK 0x7FFF
#define RST_REASON_SHIFT 16
/* in IRAM, can be called from panic handler */
void IRAM_ATTR esp_reset_reason_set_hint(esp_reset_reason_t hint)
{
assert((hint & (~RST_REASON_MASK)) == 0);
uint32_t val = hint | (hint << RST_REASON_SHIFT) | RST_REASON_BIT;
REG_WRITE(RTC_RESET_CAUSE_REG, val);
}
/* in IRAM, can be called from panic handler */
esp_reset_reason_t IRAM_ATTR esp_reset_reason_get_hint(void)
{
uint32_t reset_reason_hint = REG_READ(RTC_RESET_CAUSE_REG);
uint32_t high = (reset_reason_hint >> RST_REASON_SHIFT) & RST_REASON_MASK;
uint32_t low = reset_reason_hint & RST_REASON_MASK;
if ((reset_reason_hint & RST_REASON_BIT) == 0 || high != low) {
return ESP_RST_UNKNOWN;
}
return (esp_reset_reason_t) low;
}
static inline void esp_reset_reason_clear_hint(void)
{
REG_WRITE(RTC_RESET_CAUSE_REG, 0);
}

View File

@@ -0,0 +1,144 @@
// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "sdkconfig.h"
#include "esp_system.h"
#include "esp_private/system_internal.h"
#include "esp_attr.h"
#include "esp_efuse.h"
#include "esp_log.h"
#include "riscv/riscv_interrupts.h"
#include "riscv/interrupt.h"
#include "esp_rom_uart.h"
#include "soc/gpio_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/timer_group_reg.h"
#include "soc/cpu.h"
#include "soc/rtc.h"
#include "soc/rtc_periph.h"
#include "soc/syscon_reg.h"
#include "soc/system_reg.h"
#include "hal/wdt_hal.h"
#include "cache_err_int.h"
#include "esp32c3/rom/cache.h"
#include "esp32c3/rom/rtc.h"
/* "inner" restart function for after RTOS, interrupts & anything else on this
* core are already stopped. Stalls other core, resets hardware,
* triggers restart.
*/
void IRAM_ATTR esp_restart_noos(void)
{
// Disable interrupts
riscv_global_interrupts_disable();
// Enable RTC watchdog for 1 second
wdt_hal_context_t rtc_wdt_ctx;
wdt_hal_init(&rtc_wdt_ctx, WDT_RWDT, 0, false);
uint32_t stage_timeout_ticks = (uint32_t)(1000ULL * rtc_clk_slow_freq_get_hz() / 1000ULL);
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_SYSTEM);
wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE1, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC);
//Enable flash boot mode so that flash booting after restart is protected by the RTC WDT.
wdt_hal_set_flashboot_en(&rtc_wdt_ctx, true);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
// Reset and stall the other CPU.
// CPU must be reset before stalling, in case it was running a s32c1i
// instruction. This would cause memory pool to be locked by arbiter
// to the stalled CPU, preventing current CPU from accessing this pool.
const uint32_t core_id = cpu_hal_get_core_id();
#if !CONFIG_FREERTOS_UNICORE
const uint32_t other_core_id = (core_id == 0) ? 1 : 0;
esp_cpu_reset(other_core_id);
esp_cpu_stall(other_core_id);
#endif
// Disable TG0/TG1 watchdogs
wdt_hal_context_t wdt0_context = {.inst = WDT_MWDT0, .mwdt_dev = &TIMERG0};
wdt_hal_write_protect_disable(&wdt0_context);
wdt_hal_disable(&wdt0_context);
wdt_hal_write_protect_enable(&wdt0_context);
wdt_hal_context_t wdt1_context = {.inst = WDT_MWDT1, .mwdt_dev = &TIMERG1};
wdt_hal_write_protect_disable(&wdt1_context);
wdt_hal_disable(&wdt1_context);
wdt_hal_write_protect_enable(&wdt1_context);
// Flush any data left in UART FIFOs
esp_rom_uart_tx_wait_idle(0);
esp_rom_uart_tx_wait_idle(1);
// Disable cache
Cache_Disable_ICache();
// 2nd stage bootloader reconfigures SPI flash signals.
// Reset them to the defaults expected by ROM.
WRITE_PERI_REG(GPIO_FUNC0_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC1_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC2_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC3_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC4_IN_SEL_CFG_REG, 0x30);
WRITE_PERI_REG(GPIO_FUNC5_IN_SEL_CFG_REG, 0x30);
// Reset wifi/bluetooth/ethernet/sdio (bb/mac)
SET_PERI_REG_MASK(SYSTEM_CORE_RST_EN_REG,
SYSTEM_BB_RST | SYSTEM_FE_RST | SYSTEM_MAC_RST |
SYSTEM_BT_RST | SYSTEM_BTMAC_RST | SYSTEM_SDIO_RST |
SYSTEM_EMAC_RST | SYSTEM_MACPWR_RST |
SYSTEM_RW_BTMAC_RST | SYSTEM_RW_BTLP_RST | BLE_REG_REST_BIT
|BLE_PWR_REG_REST_BIT | BLE_BB_REG_REST_BIT);
REG_WRITE(SYSTEM_CORE_RST_EN_REG, 0);
// Reset timer/spi/uart
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN0_REG,
SYSTEM_TIMERS_RST | SYSTEM_SPI01_RST | SYSTEM_UART_RST);
REG_WRITE(SYSTEM_PERIP_RST_EN0_REG, 0);
// Reset dma
SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, SYSTEM_DMA_RST);
REG_WRITE(SYSTEM_PERIP_RST_EN1_REG, 0);
// Set CPU back to XTAL source, no PLL, same as hard reset
#if !CONFIG_IDF_ENV_FPGA
rtc_clk_cpu_freq_set_xtal();
#endif
#if !CONFIG_FREERTOS_UNICORE
// Clear entry point for APP CPU
REG_WRITE(SYSTEM_CORE_1_CONTROL_1_REG, 0);
#endif
// Reset CPUs
if (core_id == 0) {
// Running on PRO CPU: APP CPU is stalled. Can reset both CPUs.
#if !CONFIG_FREERTOS_UNICORE
esp_cpu_reset(1);
#endif
esp_cpu_reset(0);
}
#if !CONFIG_FREERTOS_UNICORE
else {
// Running on APP CPU: need to reset PRO CPU and unstall it,
// then reset APP CPU
esp_cpu_reset(0);
esp_cpu_unstall(0);
esp_cpu_reset(1);
}
#endif
while (true) {
;
}
}