mirror of
https://github.com/espressif/esp-idf.git
synced 2025-10-03 18:40:59 +02:00
feat(mbedtls/aes): Add config to support AES block and DMA modes during runtime
- Dynamically switch the AES operation modes based on the buffer operating length - Shorter AES and SHA operations can now run faster and concurrently as well Closes https://github.com/espressif/esp-idf/issues/15914
This commit is contained in:
@@ -210,14 +210,6 @@ if(CONFIG_SOC_SHA_SUPPORTED)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(CONFIG_SOC_AES_SUPPORTED)
|
||||
if(CONFIG_SOC_AES_SUPPORT_DMA)
|
||||
set(AES_PERIPHERAL_TYPE "dma")
|
||||
else()
|
||||
set(AES_PERIPHERAL_TYPE "block")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(SHA_PERIPHERAL_TYPE STREQUAL "core")
|
||||
target_include_directories(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/sha/core/include")
|
||||
|
||||
@@ -229,7 +221,7 @@ if(SHA_PERIPHERAL_TYPE STREQUAL "core")
|
||||
target_sources(mbedcrypto PRIVATE "${SHA_CORE_SRCS}")
|
||||
endif()
|
||||
|
||||
if(AES_PERIPHERAL_TYPE STREQUAL "dma")
|
||||
if(CONFIG_SOC_AES_SUPPORT_DMA)
|
||||
if(NOT CONFIG_SOC_AES_GDMA)
|
||||
set(AES_DMA_SRCS "${COMPONENT_DIR}/port/aes/dma/esp_aes_crypto_dma_impl.c")
|
||||
else()
|
||||
@@ -242,7 +234,7 @@ if(AES_PERIPHERAL_TYPE STREQUAL "dma")
|
||||
target_sources(mbedcrypto PRIVATE "${AES_DMA_SRCS}")
|
||||
endif()
|
||||
|
||||
if((SHA_PERIPHERAL_TYPE STREQUAL "core" AND CONFIG_SOC_SHA_SUPPORT_DMA) OR AES_PERIPHERAL_TYPE STREQUAL "dma")
|
||||
if((SHA_PERIPHERAL_TYPE STREQUAL "core" AND CONFIG_SOC_SHA_SUPPORT_DMA) OR CONFIG_SOC_AES_SUPPORT_DMA)
|
||||
target_link_libraries(mbedcrypto PRIVATE idf::esp_mm)
|
||||
if(CONFIG_SOC_SHA_GDMA OR CONFIG_SOC_AES_GDMA)
|
||||
if(CONFIG_SOC_AXI_DMA_EXT_MEM_ENC_ALIGNMENT)
|
||||
@@ -263,7 +255,7 @@ if(CONFIG_SOC_AES_SUPPORTED)
|
||||
target_include_directories(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/aes/include")
|
||||
target_sources(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/aes/esp_aes_xts.c"
|
||||
"${COMPONENT_DIR}/port/aes/esp_aes_common.c"
|
||||
"${COMPONENT_DIR}/port/aes/${AES_PERIPHERAL_TYPE}/esp_aes.c"
|
||||
"${COMPONENT_DIR}/port/aes/esp_aes.c"
|
||||
)
|
||||
endif()
|
||||
|
||||
|
@@ -1647,6 +1647,21 @@ menu "mbedTLS"
|
||||
priority level and any level from 1 to 3 can be selected (based on the availability).
|
||||
Note: Higher value indicates high interrupt priority.
|
||||
|
||||
config MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
bool "Enable performance optimisation for the small data length hardware AES operations"
|
||||
depends on MBEDTLS_HARDWARE_AES && SOC_AES_SUPPORT_DMA
|
||||
default y
|
||||
help
|
||||
This option enables dynamically switching between the hardware
|
||||
AES peripheral's block and DMA modes based on the length of the input data,
|
||||
thus, significantly speeding up the AES operations with shorter data lengths.
|
||||
For example, NVS encryption/decryption operations, TLS communication, etc.
|
||||
with smaller data lengths.
|
||||
|
||||
It is enabled by default due to the significant performance impact but note that
|
||||
it also increases the binary size by ~1.2 KB as it pulls in the peripheral's block
|
||||
mode code as well.
|
||||
|
||||
config MBEDTLS_PK_RSA_ALT_SUPPORT
|
||||
bool "Enable RSA alt support"
|
||||
default y
|
||||
|
@@ -48,7 +48,7 @@ target_include_directories(mbedcrypto PRIVATE ${crypto_port_inc_dirs})
|
||||
target_sources(mbedcrypto PRIVATE "${COMPONENT_DIR}/esp_tee/esp_tee_crypto_shared_gdma.c")
|
||||
|
||||
# AES implementation
|
||||
target_sources(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/aes/dma/esp_aes.c"
|
||||
target_sources(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/aes/esp_aes.c"
|
||||
"${COMPONENT_DIR}/port/aes/dma/esp_aes_dma_core.c")
|
||||
|
||||
target_sources(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/aes/esp_aes_common.c"
|
||||
|
@@ -1,579 +0,0 @@
|
||||
/**
|
||||
* \brief AES block cipher, ESP block hardware accelerated version
|
||||
* Based on mbedTLS FIPS-197 compliant version.
|
||||
*
|
||||
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
||||
* Additions Copyright (C) 2016-2017, Espressif Systems (Shanghai) PTE Ltd
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
*/
|
||||
/*
|
||||
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
|
||||
*
|
||||
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
|
||||
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
|
||||
*/
|
||||
#include <string.h>
|
||||
#include "mbedtls/aes.h"
|
||||
#include "mbedtls/platform_util.h"
|
||||
#include "esp_log.h"
|
||||
#include "aes/esp_aes.h"
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "soc/soc_caps.h"
|
||||
#include <sys/lock.h>
|
||||
#include "hal/aes_hal.h"
|
||||
#include "hal/aes_ll.h"
|
||||
#include "esp_aes_internal.h"
|
||||
|
||||
#include <freertos/FreeRTOS.h>
|
||||
|
||||
#include <stdio.h>
|
||||
#include "esp_private/esp_crypto_lock_internal.h"
|
||||
|
||||
|
||||
static const char *TAG = "esp-aes";
|
||||
/* AES uses a spinlock mux not a lock as the underlying block operation
|
||||
only takes 208 cycles (to write key & compute block), +600 cycles
|
||||
for DPORT protection but +3400 cycles again if you use a full sized lock.
|
||||
|
||||
For CBC, CFB, etc. this may mean that interrupts are disabled for a longer
|
||||
period of time for bigger lengths. However at the moment this has to happen
|
||||
anyway due to DPORT protection...
|
||||
*/
|
||||
static portMUX_TYPE aes_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
||||
|
||||
|
||||
void esp_aes_acquire_hardware( void )
|
||||
{
|
||||
portENTER_CRITICAL(&aes_spinlock);
|
||||
|
||||
/* Enable AES hardware */
|
||||
AES_RCC_ATOMIC() {
|
||||
aes_ll_enable_bus_clock(true);
|
||||
aes_ll_reset_register();
|
||||
}
|
||||
}
|
||||
|
||||
void esp_aes_release_hardware( void )
|
||||
{
|
||||
/* Disable AES hardware */
|
||||
AES_RCC_ATOMIC() {
|
||||
aes_ll_enable_bus_clock(false);
|
||||
}
|
||||
|
||||
portEXIT_CRITICAL(&aes_spinlock);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Run a single 16 byte block of AES, using the hardware engine.
|
||||
*
|
||||
* Call only while holding esp_aes_acquire_hardware().
|
||||
*
|
||||
* The function esp_aes_block zeroises the output buffer in the case of following conditions:
|
||||
* 1. If key is not written in the hardware
|
||||
* 2. If the fault injection check failed
|
||||
*/
|
||||
static int esp_aes_block(esp_aes_context *ctx, const void *input, void *output)
|
||||
{
|
||||
uint32_t i0, i1, i2, i3;
|
||||
const uint32_t *input_words = (uint32_t *)input;
|
||||
uint32_t *output_words = (uint32_t *)output;
|
||||
|
||||
/* If no key is written to hardware yet, either the user hasn't called
|
||||
mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't
|
||||
know which mode to use - or a fault skipped the
|
||||
key write to hardware. Treat this as a fatal error and zero the output block.
|
||||
*/
|
||||
if (ctx->key_in_hardware != ctx->key_bytes) {
|
||||
mbedtls_platform_zeroize(output, 16);
|
||||
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
|
||||
}
|
||||
i0 = input_words[0];
|
||||
i1 = input_words[1];
|
||||
i2 = input_words[2];
|
||||
i3 = input_words[3];
|
||||
|
||||
#ifdef CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC
|
||||
esp_aes_enable_pseudo_rounds(CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH);
|
||||
#endif /* CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC */
|
||||
|
||||
aes_hal_transform_block(input, output);
|
||||
|
||||
/* Physical security check: Verify the AES accelerator actually ran, and wasn't
|
||||
skipped due to external fault injection while starting the peripheral.
|
||||
|
||||
Note that i0,i1,i2,i3 are copied from input buffer in case input==output.
|
||||
|
||||
Bypassing this check requires at least one additional fault.
|
||||
*/
|
||||
if (i0 == output_words[0] && i1 == output_words[1] && i2 == output_words[2] && i3 == output_words[3]) {
|
||||
// calling zeroing functions to narrow the
|
||||
// window for a double-fault of the abort step, here
|
||||
memset(output, 0, 16);
|
||||
mbedtls_platform_zeroize(output, 16);
|
||||
abort();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input,
|
||||
const unsigned char *output )
|
||||
{
|
||||
if (!ctx) {
|
||||
ESP_LOGD(TAG, "No AES context supplied");
|
||||
return -1;
|
||||
}
|
||||
if (!input) {
|
||||
ESP_LOGD(TAG, "No input supplied");
|
||||
return -1;
|
||||
}
|
||||
if (!output) {
|
||||
ESP_LOGD(TAG, "No output supplied");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* AES-ECB block encryption
|
||||
*/
|
||||
int esp_internal_aes_encrypt(esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
r = esp_aes_block(ctx, input, output);
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* AES-ECB block decryption
|
||||
*/
|
||||
|
||||
int esp_internal_aes_decrypt(esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
||||
r = esp_aes_block(ctx, input, output);
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-ECB block encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ecb(esp_aes_context *ctx,
|
||||
int mode,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
r = esp_aes_block(ctx, input, output);
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* AES-CBC buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cbc(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int ret = -1;
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGD(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
uint32_t *output_words = (uint32_t *)output;
|
||||
const uint32_t *input_words = (const uint32_t *)input;
|
||||
uint32_t *iv_words = (uint32_t *)iv;
|
||||
unsigned char temp[16];
|
||||
|
||||
if ( length % 16 ) {
|
||||
return ( ERR_ESP_AES_INVALID_INPUT_LENGTH );
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
while ( length > 0 ) {
|
||||
memcpy(temp, input_words, 16);
|
||||
ret = esp_aes_block(ctx, input_words, output_words);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
output_words[0] = output_words[0] ^ iv_words[0];
|
||||
output_words[1] = output_words[1] ^ iv_words[1];
|
||||
output_words[2] = output_words[2] ^ iv_words[2];
|
||||
output_words[3] = output_words[3] ^ iv_words[3];
|
||||
|
||||
memcpy( iv_words, temp, 16 );
|
||||
|
||||
input_words += 4;
|
||||
output_words += 4;
|
||||
length -= 16;
|
||||
}
|
||||
} else { // ESP_AES_ENCRYPT
|
||||
while ( length > 0 ) {
|
||||
|
||||
output_words[0] = input_words[0] ^ iv_words[0];
|
||||
output_words[1] = input_words[1] ^ iv_words[1];
|
||||
output_words[2] = input_words[2] ^ iv_words[2];
|
||||
output_words[3] = input_words[3] ^ iv_words[3];
|
||||
|
||||
ret = esp_aes_block(ctx, output_words, output_words);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
memcpy( iv_words, output_words, 16 );
|
||||
|
||||
input_words += 4;
|
||||
output_words += 4;
|
||||
length -= 16;
|
||||
}
|
||||
}
|
||||
ret = 0;
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB128 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb128(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int ret = -1;
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv_off) {
|
||||
ESP_LOGE(TAG, "No IV offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
int c;
|
||||
size_t n = *iv_off;
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
while ( length-- ) {
|
||||
if ( n == 0 ) {
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
c = *input++;
|
||||
*output++ = (unsigned char)( c ^ iv[n] );
|
||||
iv[n] = (unsigned char) c;
|
||||
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
} else {
|
||||
while ( length-- ) {
|
||||
if ( n == 0 ) {
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
iv[n] = *output++ = (unsigned char)( iv[n] ^ *input++ );
|
||||
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
}
|
||||
|
||||
*iv_off = n;
|
||||
ret = 0;
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB8 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb8(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int ret = -1;
|
||||
unsigned char c;
|
||||
unsigned char ov[17];
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
|
||||
while ( length-- ) {
|
||||
memcpy( ov, iv, 16 );
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
ov[16] = *input;
|
||||
}
|
||||
|
||||
c = *output++ = (unsigned char)( iv[0] ^ *input++ );
|
||||
|
||||
if ( mode == ESP_AES_ENCRYPT ) {
|
||||
ov[16] = c;
|
||||
}
|
||||
|
||||
memcpy( iv, ov + 1, 16 );
|
||||
}
|
||||
ret = 0;
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CTR buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ctr(esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *nc_off,
|
||||
unsigned char nonce_counter[16],
|
||||
unsigned char stream_block[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int c, i, ret = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!stream_block) {
|
||||
ESP_LOGE(TAG, "No stream supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!nonce_counter) {
|
||||
ESP_LOGE(TAG, "No nonce supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!nc_off) {
|
||||
ESP_LOGE(TAG, "No nonce offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
size_t n = *nc_off;
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
|
||||
while ( length-- ) {
|
||||
if ( n == 0 ) {
|
||||
ret = esp_aes_block(ctx, nonce_counter, stream_block);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
for ( i = 16; i > 0; i-- ) {
|
||||
if ( ++nonce_counter[i - 1] != 0 ) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
c = *input++;
|
||||
*output++ = (unsigned char)( c ^ stream_block[n] );
|
||||
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
|
||||
*nc_off = n;
|
||||
ret = 0;
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-OFB (Output Feedback Mode) buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ofb(esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int ret = -1;
|
||||
size_t n;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv_off) {
|
||||
ESP_LOGE(TAG, "No IV offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
n = *iv_off;
|
||||
|
||||
if (n > 15) {
|
||||
return (MBEDTLS_ERR_AES_BAD_INPUT_DATA);
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
|
||||
while (length--) {
|
||||
if ( n == 0 ) {
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
*output++ = *input++ ^ iv[n];
|
||||
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
|
||||
*iv_off = n;
|
||||
ret = 0;
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return ( ret );
|
||||
}
|
@@ -1,521 +0,0 @@
|
||||
/**
|
||||
* \brief AES block cipher, ESP DMA hardware accelerated version
|
||||
* Based on mbedTLS FIPS-197 compliant version.
|
||||
*
|
||||
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
||||
* Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
*/
|
||||
/*
|
||||
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
|
||||
*
|
||||
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
|
||||
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include "mbedtls/aes.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp_crypto_lock.h"
|
||||
#include "hal/aes_hal.h"
|
||||
#include "esp_aes_internal.h"
|
||||
#include "esp_crypto_periph_clk.h"
|
||||
|
||||
#if SOC_AES_GDMA
|
||||
#define AES_LOCK() esp_crypto_sha_aes_lock_acquire()
|
||||
#define AES_RELEASE() esp_crypto_sha_aes_lock_release()
|
||||
#elif SOC_AES_CRYPTO_DMA
|
||||
#define AES_LOCK() esp_crypto_dma_lock_acquire()
|
||||
#define AES_RELEASE() esp_crypto_dma_lock_release()
|
||||
#include "hal/crypto_dma_ll.h"
|
||||
#endif
|
||||
|
||||
static const char *TAG = "esp-aes";
|
||||
|
||||
void esp_aes_acquire_hardware( void )
|
||||
{
|
||||
/* Released by esp_aes_release_hardware()*/
|
||||
AES_LOCK();
|
||||
esp_crypto_aes_enable_periph_clk(true);
|
||||
}
|
||||
|
||||
/* Function to disable AES and Crypto DMA clocks and release locks */
|
||||
void esp_aes_release_hardware( void )
|
||||
{
|
||||
esp_crypto_aes_enable_periph_clk(false);
|
||||
AES_RELEASE();
|
||||
}
|
||||
|
||||
static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
if (!ctx) {
|
||||
ESP_LOGE(TAG, "No AES context supplied");
|
||||
return -1;
|
||||
}
|
||||
if (!input) {
|
||||
ESP_LOGE(TAG, "No input supplied");
|
||||
return -1;
|
||||
}
|
||||
if (!output) {
|
||||
ESP_LOGE(TAG, "No output supplied");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* AES-ECB single block encryption
|
||||
*/
|
||||
int esp_internal_aes_encrypt(esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
||||
r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* AES-ECB single block decryption
|
||||
*/
|
||||
int esp_internal_aes_decrypt(esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
||||
r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* AES-ECB block encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ecb(esp_aes_context *ctx,
|
||||
int mode,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
||||
r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CBC buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cbc(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int r = -1;
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
/* For CBC input length should be multiple of
|
||||
* AES BLOCK BYTES
|
||||
* */
|
||||
if ( (length % AES_BLOCK_BYTES) || (length == 0) ) {
|
||||
return ERR_ESP_AES_INVALID_INPUT_LENGTH;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CBC);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
r = esp_aes_process_dma(ctx, input, output, length, NULL);
|
||||
if (r != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(iv);
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB8 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb8(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int r = -1;
|
||||
unsigned char c;
|
||||
unsigned char ov[17];
|
||||
size_t block_bytes = length - (length % AES_BLOCK_BYTES);
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
/* The DMA engine will only output correct IV if it runs
|
||||
full blocks of input in CFB8 mode
|
||||
*/
|
||||
esp_aes_acquire_hardware();
|
||||
|
||||
if (block_bytes > 0) {
|
||||
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB8);
|
||||
aes_hal_set_iv(iv);
|
||||
r = esp_aes_process_dma(ctx, input, output, block_bytes, NULL);
|
||||
if (r != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(iv);
|
||||
|
||||
length -= block_bytes;
|
||||
input += block_bytes;
|
||||
output += block_bytes;
|
||||
}
|
||||
|
||||
// Process remaining bytes block-at-a-time in ECB mode
|
||||
if (length > 0) {
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, MBEDTLS_AES_ENCRYPT);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
||||
|
||||
while ( length-- ) {
|
||||
memcpy( ov, iv, 16 );
|
||||
|
||||
r = esp_aes_process_dma(ctx, iv, iv, AES_BLOCK_BYTES, NULL);
|
||||
if (r != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if ( mode == MBEDTLS_AES_DECRYPT ) {
|
||||
ov[16] = *input;
|
||||
}
|
||||
|
||||
c = *output++ = ( iv[0] ^ *input++ );
|
||||
|
||||
if ( mode == MBEDTLS_AES_ENCRYPT ) {
|
||||
ov[16] = c;
|
||||
}
|
||||
memcpy( iv, ov + 1, 16 );
|
||||
}
|
||||
|
||||
}
|
||||
r = 0;
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB128 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb128(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
|
||||
{
|
||||
uint8_t c;
|
||||
size_t stream_bytes = 0;
|
||||
size_t n;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv_off) {
|
||||
ESP_LOGE(TAG, "No IV offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
n = *iv_off;
|
||||
|
||||
/* First process the *iv_off bytes
|
||||
* which are pending from the previous call to this API
|
||||
*/
|
||||
while (n > 0 && length > 0) {
|
||||
if (mode == MBEDTLS_AES_ENCRYPT) {
|
||||
iv[n] = *output++ = *input++ ^ iv[n];
|
||||
} else {
|
||||
c = *input++;
|
||||
*output++ = c ^ iv[n];
|
||||
iv[n] = c;
|
||||
}
|
||||
n = (n + 1) % AES_BLOCK_BYTES;
|
||||
length--;
|
||||
}
|
||||
|
||||
|
||||
if (length > 0) {
|
||||
stream_bytes = length % AES_BLOCK_BYTES;
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB128);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
int r = esp_aes_process_dma(ctx, input, output, length, iv);
|
||||
if (r != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
if (stream_bytes == 0) {
|
||||
// if we didn't need the partial 'stream block' then the new IV is in the IV register
|
||||
aes_hal_read_iv(iv);
|
||||
} else {
|
||||
// if we did process a final partial block the new IV is already processed via DMA (and has some bytes of output in it),
|
||||
// In decrypt mode any partial bytes are output plaintext (iv ^ c) and need to be swapped back to ciphertext (as the next
|
||||
// block uses ciphertext as its IV input)
|
||||
//
|
||||
// Note: It may be more efficient to not process the partial block via DMA in this case.
|
||||
if (mode == MBEDTLS_AES_DECRYPT) {
|
||||
memcpy(iv, input + length - stream_bytes, stream_bytes);
|
||||
}
|
||||
}
|
||||
esp_aes_release_hardware();
|
||||
}
|
||||
|
||||
*iv_off = n + stream_bytes;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-OFB (Output Feedback Mode) buffer encryption/decryption
|
||||
*/
|
||||
|
||||
int esp_aes_crypt_ofb(esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
size_t n;
|
||||
size_t stream_bytes = 0;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv_off) {
|
||||
ESP_LOGE(TAG, "No IV offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
n = *iv_off;
|
||||
|
||||
/* If there is an offset then use the output of the previous AES block
|
||||
(the updated IV) to calculate the new output */
|
||||
while (n > 0 && length > 0) {
|
||||
*output++ = (*input++ ^ iv[n]);
|
||||
n = (n + 1) & 0xF;
|
||||
length--;
|
||||
}
|
||||
if (length > 0) {
|
||||
stream_bytes = (length % AES_BLOCK_BYTES);
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_OFB);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
int r = esp_aes_process_dma(ctx, input, output, length, iv);
|
||||
if (r != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(iv);
|
||||
esp_aes_release_hardware();
|
||||
}
|
||||
|
||||
*iv_off = n + stream_bytes;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MBEDTLS_CIPHER_MODE_CTR
|
||||
/*
|
||||
* AES-CTR buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ctr(esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *nc_off,
|
||||
unsigned char nonce_counter[16],
|
||||
unsigned char stream_block[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
size_t n;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!stream_block) {
|
||||
ESP_LOGE(TAG, "No stream supplied");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!nonce_counter) {
|
||||
ESP_LOGE(TAG, "No nonce supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!nc_off) {
|
||||
ESP_LOGE(TAG, "No nonce offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
n = *nc_off;
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
/* Process any unprocessed bytes left in stream block from
|
||||
last operation */
|
||||
while (n > 0 && length > 0) {
|
||||
*output++ = (unsigned char)(*input++ ^ stream_block[n]);
|
||||
n = (n + 1) & 0xF;
|
||||
length--;
|
||||
}
|
||||
|
||||
if (length > 0) {
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
||||
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CTR);
|
||||
aes_hal_set_iv(nonce_counter);
|
||||
|
||||
int r = esp_aes_process_dma(ctx, input, output, length, stream_block);
|
||||
|
||||
if (r != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(nonce_counter);
|
||||
|
||||
esp_aes_release_hardware();
|
||||
|
||||
}
|
||||
*nc_off = n + (length % AES_BLOCK_BYTES);
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif /* CONFIG_MBEDTLS_CIPHER_MODE_CTR */
|
749
components/mbedtls/port/aes/esp_aes.c
Normal file
749
components/mbedtls/port/aes/esp_aes.c
Normal file
@@ -0,0 +1,749 @@
|
||||
/*
|
||||
* \brief AES block and DMA hardware accelerated version
|
||||
* Based on mbedTLS FIPS-197 compliant version.
|
||||
*
|
||||
* SPDX-FileCopyrightText: The Mbed TLS Contributors
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* SPDX-FileContributor: 2025 Espressif Systems (Shanghai) CO LTD
|
||||
*/
|
||||
/*
|
||||
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
|
||||
*
|
||||
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
|
||||
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include "mbedtls/aes.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp_crypto_lock.h"
|
||||
#include "hal/aes_hal.h"
|
||||
#include "esp_aes_internal.h"
|
||||
#include "esp_crypto_periph_clk.h"
|
||||
#include "soc/soc_caps.h"
|
||||
#include "sdkconfig.h"
|
||||
|
||||
#if SOC_AES_GDMA
|
||||
#define AES_LOCK() esp_crypto_sha_aes_lock_acquire()
|
||||
#define AES_RELEASE() esp_crypto_sha_aes_lock_release()
|
||||
#elif SOC_AES_CRYPTO_DMA
|
||||
#define AES_LOCK() esp_crypto_dma_lock_acquire()
|
||||
#define AES_RELEASE() esp_crypto_dma_lock_release()
|
||||
#include "hal/crypto_dma_ll.h"
|
||||
#endif
|
||||
|
||||
static const char *TAG = "esp-aes";
|
||||
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
#if CONFIG_IDF_TARGET_ESP32P4
|
||||
#define AES_DMA_MODE_THRESHOLD 512
|
||||
#else
|
||||
#define AES_DMA_MODE_THRESHOLD 128
|
||||
#endif
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
|
||||
#if !SOC_AES_SUPPORT_DMA
|
||||
#include <freertos/FreeRTOS.h>
|
||||
|
||||
/* AES uses a spinlock mux not a lock as the underlying block operation
|
||||
only takes 208 cycles (to write key & compute block), +600 cycles
|
||||
for DPORT protection but +3400 cycles again if you use a full sized lock.
|
||||
|
||||
For CBC, CFB, etc. this may mean that interrupts are disabled for a longer
|
||||
period of time for bigger lengths. However at the moment this has to happen
|
||||
anyway due to DPORT protection...
|
||||
*/
|
||||
static portMUX_TYPE aes_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
||||
#endif
|
||||
|
||||
void esp_aes_acquire_hardware( void )
|
||||
{
|
||||
/* Released by esp_aes_release_hardware()*/
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
AES_LOCK();
|
||||
#else
|
||||
portENTER_CRITICAL(&aes_spinlock);
|
||||
#endif
|
||||
esp_crypto_aes_enable_periph_clk(true);
|
||||
}
|
||||
|
||||
/* Function to disable AES and Crypto DMA clocks and release locks */
|
||||
void esp_aes_release_hardware( void )
|
||||
{
|
||||
esp_crypto_aes_enable_periph_clk(false);
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
AES_RELEASE();
|
||||
#else
|
||||
portEXIT_CRITICAL(&aes_spinlock);
|
||||
#endif
|
||||
}
|
||||
|
||||
static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input,
|
||||
unsigned char *output, unsigned char *iv, bool validate_iv)
|
||||
{
|
||||
if (!ctx) {
|
||||
ESP_LOGE(TAG, "No AES context supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!input) {
|
||||
ESP_LOGE(TAG, "No input supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!output) {
|
||||
ESP_LOGE(TAG, "No output supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
if (validate_iv && !iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
/* Run a single 16 byte block of AES, using the hardware engine.
|
||||
*
|
||||
* Call only while holding esp_aes_acquire_hardware().
|
||||
*
|
||||
* The function esp_aes_block zeroises the output buffer in the case of following conditions:
|
||||
* 1. If key is not written in the hardware
|
||||
* 2. If the fault injection check failed
|
||||
*/
|
||||
static int esp_aes_block(esp_aes_context *ctx, const void *input, void *output)
|
||||
{
|
||||
uint32_t i0, i1, i2, i3;
|
||||
const uint32_t *input_words = (uint32_t *)input;
|
||||
uint32_t *output_words = (uint32_t *)output;
|
||||
|
||||
/* If no key is written to hardware yet, either the user hasn't called
|
||||
mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't
|
||||
know which mode to use - or a fault skipped the
|
||||
key write to hardware. Treat this as a fatal error and zero the output block.
|
||||
*/
|
||||
if (ctx->key_in_hardware != ctx->key_bytes) {
|
||||
mbedtls_platform_zeroize(output, 16);
|
||||
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
|
||||
}
|
||||
i0 = input_words[0];
|
||||
i1 = input_words[1];
|
||||
i2 = input_words[2];
|
||||
i3 = input_words[3];
|
||||
|
||||
#ifdef CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC
|
||||
esp_aes_enable_pseudo_rounds(CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH);
|
||||
#endif /* CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC */
|
||||
|
||||
aes_hal_transform_block(input, output);
|
||||
|
||||
/* Physical security check: Verify the AES accelerator actually ran, and wasn't
|
||||
skipped due to external fault injection while starting the peripheral.
|
||||
|
||||
Note that i0,i1,i2,i3 are copied from input buffer in case input==output.
|
||||
|
||||
Bypassing this check requires at least one additional fault.
|
||||
*/
|
||||
if (i0 == output_words[0] && i1 == output_words[1] && i2 == output_words[2] && i3 == output_words[3]) {
|
||||
// calling zeroing functions to narrow the
|
||||
// window for a double-fault of the abort step, here
|
||||
memset(output, 0, 16);
|
||||
mbedtls_platform_zeroize(output, 16);
|
||||
abort();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
|
||||
/*
|
||||
* AES-ECB single block encryption
|
||||
*/
|
||||
int esp_internal_aes_encrypt(esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
return esp_aes_crypt_ecb(ctx, ESP_AES_ENCRYPT, input, output);
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-ECB single block decryption
|
||||
*/
|
||||
int esp_internal_aes_decrypt(esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
return esp_aes_crypt_ecb(ctx, ESP_AES_DECRYPT, input, output);
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-ECB block encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ecb(esp_aes_context *ctx,
|
||||
int mode,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
// Use helper for validation
|
||||
int ret = esp_aes_validate_input(ctx, input, output, NULL, false);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA && !CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
||||
ret = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
|
||||
#else
|
||||
ret = esp_aes_block(ctx, input, output);
|
||||
#endif
|
||||
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CBC buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cbc(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
// Use helpers for validation
|
||||
int ret = esp_aes_validate_input(ctx, input, output, iv, true);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* For CBC input length should be multiple of AES BLOCK BYTES */
|
||||
if ( (length % AES_BLOCK_BYTES) || (length == 0) ) {
|
||||
return ERR_ESP_AES_INVALID_INPUT_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
if (length > AES_DMA_MODE_THRESHOLD) {
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CBC);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
ret = esp_aes_process_dma(ctx, input, output, length, NULL);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(iv);
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
} else
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
{
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
|
||||
uint32_t *output_words = (uint32_t *)output;
|
||||
const uint32_t *input_words = (const uint32_t *)input;
|
||||
uint32_t *iv_words = (uint32_t *)iv;
|
||||
unsigned char temp[16];
|
||||
|
||||
if (mode == ESP_AES_DECRYPT) {
|
||||
while (length > 0) {
|
||||
memcpy(temp, input_words, 16);
|
||||
ret = esp_aes_block(ctx, input_words, output_words);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
output_words[0] = output_words[0] ^ iv_words[0];
|
||||
output_words[1] = output_words[1] ^ iv_words[1];
|
||||
output_words[2] = output_words[2] ^ iv_words[2];
|
||||
output_words[3] = output_words[3] ^ iv_words[3];
|
||||
|
||||
memcpy( iv_words, temp, 16 );
|
||||
|
||||
input_words += 4;
|
||||
output_words += 4;
|
||||
length -= 16;
|
||||
}
|
||||
} else { // ESP_AES_ENCRYPT
|
||||
while (length > 0) {
|
||||
|
||||
output_words[0] = input_words[0] ^ iv_words[0];
|
||||
output_words[1] = input_words[1] ^ iv_words[1];
|
||||
output_words[2] = input_words[2] ^ iv_words[2];
|
||||
output_words[3] = input_words[3] ^ iv_words[3];
|
||||
|
||||
ret = esp_aes_block(ctx, output_words, output_words);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
memcpy(iv_words, output_words, 16);
|
||||
|
||||
input_words += 4;
|
||||
output_words += 4;
|
||||
length -= 16;
|
||||
}
|
||||
}
|
||||
ret = 0;
|
||||
}
|
||||
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB8 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb8(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
unsigned char c;
|
||||
unsigned char ov[17];
|
||||
|
||||
// Use helpers for validation
|
||||
int ret = esp_aes_validate_input(ctx, input, output, iv, true);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
if (length > AES_DMA_MODE_THRESHOLD) {
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
size_t block_bytes = length - (length % AES_BLOCK_BYTES);
|
||||
|
||||
/* The DMA engine will only output correct IV if it runs
|
||||
full blocks of input in CFB8 mode
|
||||
*/
|
||||
if (block_bytes > 0) {
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB8);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
ret = esp_aes_process_dma(ctx, input, output, block_bytes, NULL);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(iv);
|
||||
|
||||
length -= block_bytes;
|
||||
input += block_bytes;
|
||||
output += block_bytes;
|
||||
}
|
||||
|
||||
// Process remaining bytes block-at-a-time in ECB mode
|
||||
if (length > 0) {
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
||||
|
||||
while ( length-- ) {
|
||||
memcpy( ov, iv, 16 );
|
||||
|
||||
ret = esp_aes_process_dma(ctx, iv, iv, AES_BLOCK_BYTES, NULL);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
ov[16] = *input;
|
||||
}
|
||||
|
||||
c = *output++ = ( iv[0] ^ *input++ );
|
||||
|
||||
if ( mode == ESP_AES_ENCRYPT ) {
|
||||
ov[16] = c;
|
||||
}
|
||||
memcpy( iv, ov + 1, 16 );
|
||||
}
|
||||
}
|
||||
ret = 0;
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
} else
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
{
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
while (length--) {
|
||||
memcpy( ov, iv, 16 );
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if (mode == ESP_AES_DECRYPT) {
|
||||
ov[16] = *input;
|
||||
}
|
||||
|
||||
c = *output++ = (unsigned char)(iv[0] ^ *input++);
|
||||
|
||||
if (mode == ESP_AES_ENCRYPT) {
|
||||
ov[16] = c;
|
||||
}
|
||||
|
||||
memcpy( iv, ov + 1, 16 );
|
||||
}
|
||||
ret = 0;
|
||||
}
|
||||
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB128 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb128(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
|
||||
{
|
||||
uint8_t c;
|
||||
size_t n;
|
||||
|
||||
// Use helpers for validation
|
||||
int ret = esp_aes_validate_input(ctx, input, output, iv, true);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (!iv_off) {
|
||||
ESP_LOGE(TAG, "No IV offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
n = *iv_off;
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
if (length > AES_DMA_MODE_THRESHOLD) {
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
size_t stream_bytes = 0;
|
||||
|
||||
/* First process the *iv_off bytes
|
||||
* which are pending from the previous call to this API
|
||||
*/
|
||||
while (n > 0 && length > 0) {
|
||||
if (mode == ESP_AES_ENCRYPT) {
|
||||
iv[n] = *output++ = *input++ ^ iv[n];
|
||||
} else {
|
||||
c = *input++;
|
||||
*output++ = c ^ iv[n];
|
||||
iv[n] = c;
|
||||
}
|
||||
n = (n + 1) % AES_BLOCK_BYTES;
|
||||
length--;
|
||||
}
|
||||
|
||||
if (length > 0) {
|
||||
stream_bytes = length % AES_BLOCK_BYTES;
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB128);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
ret = esp_aes_process_dma(ctx, input, output, length, iv);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (stream_bytes == 0) {
|
||||
// if we didn't need the partial 'stream block' then the new IV is in the IV register
|
||||
aes_hal_read_iv(iv);
|
||||
} else {
|
||||
// if we did process a final partial block the new IV is already processed via DMA (and has some bytes of output in it),
|
||||
// In decrypt mode any partial bytes are output plaintext (iv ^ c) and need to be swapped back to ciphertext (as the next
|
||||
// block uses ciphertext as its IV input)
|
||||
//
|
||||
// Note: It may be more efficient to not process the partial block via DMA in this case.
|
||||
if (mode == ESP_AES_DECRYPT) {
|
||||
memcpy(iv, input + length - stream_bytes, stream_bytes);
|
||||
}
|
||||
}
|
||||
esp_aes_release_hardware();
|
||||
}
|
||||
|
||||
*iv_off = n + stream_bytes;
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
} else
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
{
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
if (mode == ESP_AES_DECRYPT) {
|
||||
while (length--) {
|
||||
if (n == 0) {
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
c = *input++;
|
||||
*output++ = (unsigned char)( c ^ iv[n] );
|
||||
iv[n] = (unsigned char) c;
|
||||
n = (n + 1) & 0x0F;
|
||||
}
|
||||
} else {
|
||||
while (length--) {
|
||||
if ( n == 0 ) {
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
iv[n] = *output++ = (unsigned char)(iv[n] ^ *input++);
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
}
|
||||
|
||||
esp_aes_release_hardware();
|
||||
*iv_off = n;
|
||||
}
|
||||
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-OFB (Output Feedback Mode) buffer encryption/decryption
|
||||
*/
|
||||
|
||||
int esp_aes_crypt_ofb(esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
size_t n;
|
||||
|
||||
// Use helpers for validation
|
||||
int ret = esp_aes_validate_input(ctx, input, output, iv, true);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (!iv_off) {
|
||||
ESP_LOGE(TAG, "No IV offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
n = *iv_off;
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
if (length > AES_DMA_MODE_THRESHOLD) {
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
size_t stream_bytes = 0;
|
||||
|
||||
/* If there is an offset then use the output of the previous AES block
|
||||
(the updated IV) to calculate the new output */
|
||||
while (n > 0 && length > 0) {
|
||||
*output++ = (*input++ ^ iv[n]);
|
||||
n = (n + 1) & 0xF;
|
||||
length--;
|
||||
}
|
||||
|
||||
if (length > 0) {
|
||||
stream_bytes = (length % AES_BLOCK_BYTES);
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_OFB);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
ret = esp_aes_process_dma(ctx, input, output, length, iv);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(iv);
|
||||
esp_aes_release_hardware();
|
||||
}
|
||||
|
||||
*iv_off = n + stream_bytes;
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
} else
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
{
|
||||
// TODO: Check if this is necessary as the DMA version does not have this check
|
||||
if (n > 15) {
|
||||
return (MBEDTLS_ERR_AES_BAD_INPUT_DATA);
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
while (length--) {
|
||||
if (n == 0) {
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
*output++ = *input++ ^ iv[n];
|
||||
n = (n + 1) & 0x0F;
|
||||
}
|
||||
|
||||
esp_aes_release_hardware();
|
||||
*iv_off = n;
|
||||
}
|
||||
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CTR buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ctr(esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *nc_off,
|
||||
unsigned char nonce_counter[16],
|
||||
unsigned char stream_block[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
size_t n;
|
||||
|
||||
// Use helper for validation
|
||||
int ret = esp_aes_validate_input(ctx, input, output, NULL, false);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (!stream_block) {
|
||||
ESP_LOGE(TAG, "No stream supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!nonce_counter) {
|
||||
ESP_LOGE(TAG, "No nonce supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!nc_off) {
|
||||
ESP_LOGE(TAG, "No nonce offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
n = *nc_off;
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
if (length > AES_DMA_MODE_THRESHOLD) {
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
/* Process any unprocessed bytes left in stream block from
|
||||
last operation */
|
||||
while (n > 0 && length > 0) {
|
||||
*output++ = (unsigned char)(*input++ ^ stream_block[n]);
|
||||
n = (n + 1) & 0xF;
|
||||
length--;
|
||||
}
|
||||
|
||||
if (length > 0) {
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
||||
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CTR);
|
||||
aes_hal_set_iv(nonce_counter);
|
||||
|
||||
ret = esp_aes_process_dma(ctx, input, output, length, stream_block);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(nonce_counter);
|
||||
esp_aes_release_hardware();
|
||||
}
|
||||
|
||||
*nc_off = n + (length % AES_BLOCK_BYTES);
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
} else
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
{
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
int c, i;
|
||||
while (length--) {
|
||||
if (n == 0) {
|
||||
ret = esp_aes_block(ctx, nonce_counter, stream_block);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
for (i = 16; i > 0; i--) {
|
||||
if (++nonce_counter[i - 1] != 0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
c = *input++;
|
||||
*output++ = (unsigned char)(c ^ stream_block[n]);
|
||||
n = (n + 1) & 0x0F;
|
||||
}
|
||||
|
||||
esp_aes_release_hardware();
|
||||
*nc_off = n;
|
||||
}
|
||||
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
return 0;
|
||||
}
|
@@ -345,7 +345,6 @@ int esp_internal_aes_decrypt( esp_aes_context *ctx, const unsigned char input[16
|
||||
/** XTS-AES buffer encryption/decryption */
|
||||
int esp_aes_crypt_xts( esp_aes_xts_context *ctx, int mode, size_t length, const unsigned char data_unit[16], const unsigned char *input, unsigned char *output );
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@@ -34,6 +34,7 @@
|
||||
|
||||
#include "esp_sha_internal.h"
|
||||
#include "sha/sha_core.h"
|
||||
#include "esp_compiler.h"
|
||||
|
||||
/* Implementation that should never be optimized out by the compiler */
|
||||
static void mbedtls_zeroize(void *v, size_t n)
|
||||
@@ -119,7 +120,8 @@ int mbedtls_internal_sha1_process(mbedtls_sha1_context *ctx, const unsigned char
|
||||
esp_internal_sha_update_state(ctx);
|
||||
|
||||
#if SOC_SHA_SUPPORT_DMA
|
||||
if (sha_operation_mode(64) == SHA_DMA_MODE) {
|
||||
// Unlikely to use DMA because data size is 64 bytes which is smaller than the DMA threshold
|
||||
if (unlikely(sha_operation_mode(64) == SHA_DMA_MODE)) {
|
||||
int ret = esp_sha_dma(SHA1, data, 64, NULL, 0, ctx->first_block);
|
||||
if (ret != 0) {
|
||||
esp_sha_release_hardware();
|
||||
|
@@ -34,6 +34,7 @@
|
||||
|
||||
#include "esp_sha_internal.h"
|
||||
#include "sha/sha_core.h"
|
||||
#include "esp_compiler.h"
|
||||
|
||||
/* Implementation that should never be optimized out by the compiler */
|
||||
static void mbedtls_zeroize(void *v, size_t n)
|
||||
@@ -132,7 +133,8 @@ int mbedtls_internal_sha256_process(mbedtls_sha256_context *ctx, const unsigned
|
||||
esp_internal_sha_update_state(ctx);
|
||||
|
||||
#if SOC_SHA_SUPPORT_DMA
|
||||
if (sha_operation_mode(64) == SHA_DMA_MODE) {
|
||||
// Unlikely to use DMA because data size is 64 bytes which is smaller than the DMA threshold
|
||||
if (unlikely(sha_operation_mode(64) == SHA_DMA_MODE)) {
|
||||
int ret = esp_sha_dma(ctx->mode, data, 64, NULL, 0, ctx->first_block);
|
||||
if (ret != 0) {
|
||||
esp_sha_release_hardware();
|
||||
|
@@ -40,6 +40,7 @@
|
||||
|
||||
#include "esp_sha_internal.h"
|
||||
#include "sha/sha_core.h"
|
||||
#include "esp_compiler.h"
|
||||
|
||||
/* Implementation that should never be optimized out by the compiler */
|
||||
static void mbedtls_zeroize(void *v, size_t n)
|
||||
@@ -169,7 +170,8 @@ int mbedtls_internal_sha512_process(mbedtls_sha512_context *ctx, const unsigned
|
||||
}
|
||||
|
||||
#if SOC_SHA_SUPPORT_DMA
|
||||
if (sha_operation_mode(128) == SHA_DMA_MODE) {
|
||||
// Likely to use DMA because data size is 128 bytes which is larger or equal to the DMA threshold
|
||||
if (likely(sha_operation_mode(128) == SHA_DMA_MODE)) {
|
||||
ret = esp_sha_dma(ctx->mode, data, 128, NULL, 0, ctx->first_block);
|
||||
if (ret != 0) {
|
||||
esp_sha_release_hardware();
|
||||
|
@@ -223,6 +223,7 @@ These include:
|
||||
- Consider disabling some cipher suites listed in the ``TLS Key Exchange Methods`` sub-menu (i.e., :ref:`CONFIG_MBEDTLS_KEY_EXCHANGE_RSA`).
|
||||
- Consider disabling :ref:`CONFIG_MBEDTLS_ERROR_STRINGS` if the application is already pulling in mbedTLS error strings through using :cpp:func:`mbedtls_strerror`.
|
||||
:esp32h2: - For {IDF_TARGET_NAME} v1.2 and above, consider disabling :ref:`CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN_MASKING_CM` and :ref:`CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN_CONSTANT_TIME_CM` as the software countermeasures for the ECDSA sign operation are not required.
|
||||
:SOC_AES_SUPPORT_DMA: - Consider disabling :ref:CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM if the application does not involve or require performance optimization for operations that involve small data lengths, such as NVS encryption/decryption or TLS communication when performed on small data segments.
|
||||
|
||||
The help text for each option has some more information for reference.
|
||||
|
||||
|
@@ -223,6 +223,7 @@ MbedTLS 功能
|
||||
- 可以考虑禁用在 ``TLS Key Exchange Methods`` 子菜单中列出的一些密码套件(例如 :ref:`CONFIG_MBEDTLS_KEY_EXCHANGE_RSA`),以减小代码大小。
|
||||
- 如果应用程序已经通过使用 :cpp:func:`mbedtls_strerror` 拉取 mbedTLS 错误字符串,则可以考虑禁用 :ref:`CONFIG_MBEDTLS_ERROR_STRINGS`。
|
||||
:esp32h2: - 对于 {IDF_TARGET_NAME} v1.2 及以上版本,可以考虑禁用 :ref:`CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN_MASKING_CM` 和 :ref:`CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN_CONSTANT_TIME_CM`,因为无需再使用 ECDSA 签名的软件防护措施。
|
||||
:SOC_AES_SUPPORT_DMA: - 如果应用程序不涉及或不需要针对小数据长度操作进行性能优化,例如在处理小数据段时进行的 NVS 加密/解密操作、TLS 通信等,可以考虑禁用 :ref:`CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM`。
|
||||
|
||||
每个选项的帮助文本中都有更多信息可供参考。
|
||||
|
||||
|
@@ -470,8 +470,6 @@ components/lwip/apps/ping/ping.c
|
||||
components/lwip/include/apps/esp_ping.h
|
||||
components/lwip/include/apps/ping/ping.h
|
||||
components/mbedtls/esp_crt_bundle/test_gen_crt_bundle/test_gen_crt_bundle.py
|
||||
components/mbedtls/port/aes/block/esp_aes.c
|
||||
components/mbedtls/port/aes/dma/esp_aes.c
|
||||
components/mbedtls/port/aes/esp_aes_xts.c
|
||||
components/mbedtls/port/include/aes/esp_aes.h
|
||||
components/mbedtls/port/include/aes_alt.h
|
||||
|
Reference in New Issue
Block a user