tests: refactoring of the gcc's inner functions, because clang doesn't support them

This commit is contained in:
Andrei Safronov
2021-09-02 03:45:19 +03:00
parent 59f6087b55
commit 9159aa58d3
7 changed files with 357 additions and 360 deletions

View File

@@ -472,21 +472,20 @@ TEST_CASE("MCPWM timer swsync test", "[mcpwm]")
} }
// ------------------------------------------------------------------------------------- // -------------------------------------------------------------------------------------
typedef struct {
static void mcpwm_capture_test(mcpwm_unit_t unit, mcpwm_capture_signal_t cap_chan)
{
typedef struct {
mcpwm_unit_t unit; mcpwm_unit_t unit;
TaskHandle_t task_hdl; TaskHandle_t task_hdl;
} test_capture_callback_data_t; } test_capture_callback_data_t;
bool test_mcpwm_intr_handler(mcpwm_unit_t mcpwm, mcpwm_capture_channel_id_t cap_sig, const cap_event_data_t *edata, void *arg) { static bool test_mcpwm_intr_handler(mcpwm_unit_t mcpwm, mcpwm_capture_channel_id_t cap_sig, const cap_event_data_t *edata, void *arg) {
BaseType_t high_task_wakeup = pdFALSE; BaseType_t high_task_wakeup = pdFALSE;
test_capture_callback_data_t *cb_data = (test_capture_callback_data_t *)arg; test_capture_callback_data_t *cb_data = (test_capture_callback_data_t *)arg;
vTaskNotifyGiveFromISR(cb_data->task_hdl, &high_task_wakeup); vTaskNotifyGiveFromISR(cb_data->task_hdl, &high_task_wakeup);
return high_task_wakeup == pdTRUE; return high_task_wakeup == pdTRUE;
} }
static void mcpwm_capture_test(mcpwm_unit_t unit, mcpwm_capture_signal_t cap_chan)
{
test_capture_callback_data_t callback_data = { test_capture_callback_data_t callback_data = {
.unit = unit, .unit = unit,
.task_hdl = xTaskGetCurrentTaskHandle(), .task_hdl = xTaskGetCurrentTaskHandle(),

View File

@@ -111,13 +111,13 @@ TEST_CASE("light sleep stress test", "[deepsleep]")
vSemaphoreDelete(done); vSemaphoreDelete(done);
} }
static void timer_func(void* arg)
{
esp_rom_delay_us(50);
}
TEST_CASE("light sleep stress test with periodic esp_timer", "[deepsleep]") TEST_CASE("light sleep stress test with periodic esp_timer", "[deepsleep]")
{ {
void timer_func(void* arg)
{
esp_rom_delay_us(50);
}
SemaphoreHandle_t done = xSemaphoreCreateCounting(2, 0); SemaphoreHandle_t done = xSemaphoreCreateCounting(2, 0);
esp_sleep_enable_timer_wakeup(1000); esp_sleep_enable_timer_wakeup(1000);
esp_timer_handle_t timer; esp_timer_handle_t timer;

View File

@@ -57,12 +57,12 @@ static void teardown_overflow(void)
#endif // CONFIG_ESP_TIMER_IMPL_FRC2 #endif // CONFIG_ESP_TIMER_IMPL_FRC2
static void dummy_cb(void* arg)
{
}
TEST_CASE("esp_timer orders timers correctly", "[esp_timer]") TEST_CASE("esp_timer orders timers correctly", "[esp_timer]")
{ {
void dummy_cb(void* arg)
{
}
uint64_t timeouts[] = { 10000, 1000, 10000, 5000, 20000, 1000 }; uint64_t timeouts[] = { 10000, 1000, 10000, 5000, 20000, 1000 };
size_t indices[] = { 3, 0, 4, 2, 5, 1 }; size_t indices[] = { 3, 0, 4, 2, 5, 1 };
const size_t num_timers = sizeof(timeouts)/sizeof(timeouts[0]); const size_t num_timers = sizeof(timeouts)/sizeof(timeouts[0]);
@@ -116,12 +116,10 @@ TEST_CASE("esp_timer orders timers correctly", "[esp_timer]")
fclose(stream); fclose(stream);
} }
TEST_CASE("esp_timer_impl_set_alarm stress test", "[esp_timer]") static const int test_time_sec = 10;
{
const int test_time_sec = 10;
void set_alarm_task(void* arg) static void set_alarm_task(void* arg)
{ {
SemaphoreHandle_t done = (SemaphoreHandle_t) arg; SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
int64_t start = esp_timer_impl_get_time(); int64_t start = esp_timer_impl_get_time();
@@ -136,8 +134,10 @@ TEST_CASE("esp_timer_impl_set_alarm stress test", "[esp_timer]")
} }
xSemaphoreGive(done); xSemaphoreGive(done);
vTaskDelete(NULL); vTaskDelete(NULL);
} }
TEST_CASE("esp_timer_impl_set_alarm stress test", "[esp_timer]")
{
SemaphoreHandle_t done = xSemaphoreCreateCounting(portNUM_PROCESSORS, 0); SemaphoreHandle_t done = xSemaphoreCreateCounting(portNUM_PROCESSORS, 0);
setup_overflow(); setup_overflow();
xTaskCreatePinnedToCore(&set_alarm_task, "set_alarm_0", 4096, done, UNITY_FREERTOS_PRIORITY, NULL, 0); xTaskCreatePinnedToCore(&set_alarm_task, "set_alarm_0", 4096, done, UNITY_FREERTOS_PRIORITY, NULL, 0);
@@ -153,18 +153,18 @@ TEST_CASE("esp_timer_impl_set_alarm stress test", "[esp_timer]")
vSemaphoreDelete(done); vSemaphoreDelete(done);
} }
TEST_CASE("esp_timer produces correct delay", "[esp_timer]") static void test_correct_delay_timer_func(void* arg)
{ {
void timer_func(void* arg)
{
int64_t* p_end = (int64_t*) arg; int64_t* p_end = (int64_t*) arg;
*p_end = ref_clock_get(); *p_end = ref_clock_get();
} }
TEST_CASE("esp_timer produces correct delay", "[esp_timer]")
{
int64_t t_end; int64_t t_end;
esp_timer_handle_t timer1; esp_timer_handle_t timer1;
esp_timer_create_args_t args = { esp_timer_create_args_t args = {
.callback = &timer_func, .callback = &test_correct_delay_timer_func,
.arg = &t_end, .arg = &t_end,
.name = "timer1" .name = "timer1"
}; };
@@ -196,22 +196,20 @@ TEST_CASE("esp_timer produces correct delay", "[esp_timer]")
esp_timer_delete(timer1); esp_timer_delete(timer1);
} }
TEST_CASE("periodic esp_timer produces correct delays", "[esp_timer]") // no, we can't make this a const size_t (§6.7.5.2)
{
// no, we can't make this a const size_t (§6.7.5.2)
#define NUM_INTERVALS 16 #define NUM_INTERVALS 16
typedef struct { typedef struct {
esp_timer_handle_t timer; esp_timer_handle_t timer;
size_t cur_interval; size_t cur_interval;
int intervals[NUM_INTERVALS]; int intervals[NUM_INTERVALS];
int64_t t_start; int64_t t_start;
SemaphoreHandle_t done; SemaphoreHandle_t done;
} test_args_t; } test_periodic_correct_delays_args_t;
void timer_func(void* arg) static void test_periodic_correct_delays_timer_func(void* arg)
{ {
test_args_t* p_args = (test_args_t*) arg; test_periodic_correct_delays_args_t* p_args = (test_periodic_correct_delays_args_t*) arg;
int64_t t_end = ref_clock_get(); int64_t t_end = ref_clock_get();
int32_t ms_diff = (t_end - p_args->t_start) / 1000; int32_t ms_diff = (t_end - p_args->t_start) / 1000;
printf("timer #%d %dms\n", p_args->cur_interval, ms_diff); printf("timer #%d %dms\n", p_args->cur_interval, ms_diff);
@@ -224,13 +222,15 @@ TEST_CASE("periodic esp_timer produces correct delays", "[esp_timer]")
TEST_ESP_OK(esp_timer_stop(p_args->timer)); TEST_ESP_OK(esp_timer_stop(p_args->timer));
xSemaphoreGive(p_args->done); xSemaphoreGive(p_args->done);
} }
} }
TEST_CASE("periodic esp_timer produces correct delays", "[esp_timer]")
{
const int delay_ms = 100; const int delay_ms = 100;
test_args_t args = {0}; test_periodic_correct_delays_args_t args = {0};
esp_timer_handle_t timer1; esp_timer_handle_t timer1;
esp_timer_create_args_t create_args = { esp_timer_create_args_t create_args = {
.callback = &timer_func, .callback = &test_periodic_correct_delays_timer_func,
.arg = &args, .arg = &args,
.name = "timer1", .name = "timer1",
}; };
@@ -254,32 +254,31 @@ TEST_CASE("periodic esp_timer produces correct delays", "[esp_timer]")
TEST_ESP_OK( esp_timer_delete(timer1) ); TEST_ESP_OK( esp_timer_delete(timer1) );
vSemaphoreDelete(args.done); vSemaphoreDelete(args.done);
#undef NUM_INTERVALS
} }
#undef NUM_INTERVALS
TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
{
#define N 5 #define N 5
typedef struct { typedef struct {
const int order[N * 3]; const int order[N * 3];
size_t count; size_t count;
} test_common_t; } test_timers_ordered_correctly_common_t;
typedef struct { typedef struct {
int timer_index; int timer_index;
const int intervals[N]; const int intervals[N];
size_t intervals_count; size_t intervals_count;
esp_timer_handle_t timer; esp_timer_handle_t timer;
test_common_t* common; test_timers_ordered_correctly_common_t* common;
bool pass; bool pass;
SemaphoreHandle_t done; SemaphoreHandle_t done;
int64_t t_start; int64_t t_start;
} test_args_t; } test_timers_ordered_correctly_args_t;
void timer_func(void* arg) static void test_timers_ordered_correctly_timer_func(void* arg)
{ {
test_args_t* p_args = (test_args_t*) arg; test_timers_ordered_correctly_args_t* p_args = (test_timers_ordered_correctly_args_t*) arg;
// check order // check order
size_t count = p_args->common->count; size_t count = p_args->common->count;
int expected_index = p_args->common->order[count]; int expected_index = p_args->common->order[count];
@@ -302,10 +301,11 @@ TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
printf("starting timer %d interval #%d, %d ms\n", printf("starting timer %d interval #%d, %d ms\n",
p_args->timer_index, p_args->intervals_count, next_interval); p_args->timer_index, p_args->intervals_count, next_interval);
esp_timer_start_once(p_args->timer, next_interval * 1000); esp_timer_start_once(p_args->timer, next_interval * 1000);
} }
TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
test_common_t common = { {
test_timers_ordered_correctly_common_t common = {
.order = {1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 3, 3, 2}, .order = {1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 3, 3, 2},
.count = 0 .count = 0
}; };
@@ -315,7 +315,7 @@ TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
ref_clock_init(); ref_clock_init();
int64_t now = ref_clock_get(); int64_t now = ref_clock_get();
test_args_t args1 = { test_timers_ordered_correctly_args_t args1 = {
.timer_index = 1, .timer_index = 1,
.intervals = {10, 40, 20, 40, 30}, .intervals = {10, 40, 20, 40, 30},
.common = &common, .common = &common,
@@ -324,7 +324,7 @@ TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
.t_start = now .t_start = now
}; };
test_args_t args2 = { test_timers_ordered_correctly_args_t args2 = {
.timer_index = 2, .timer_index = 2,
.intervals = {20, 20, 60, 30, 40}, .intervals = {20, 20, 60, 30, 40},
.common = &common, .common = &common,
@@ -333,7 +333,7 @@ TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
.t_start = now .t_start = now
}; };
test_args_t args3 = { test_timers_ordered_correctly_args_t args3 = {
.timer_index = 3, .timer_index = 3,
.intervals = {30, 30, 60, 30, 10}, .intervals = {30, 30, 60, 30, 10},
.common = &common, .common = &common,
@@ -344,7 +344,7 @@ TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
esp_timer_create_args_t create_args = { esp_timer_create_args_t create_args = {
.callback = &timer_func, .callback = &test_timers_ordered_correctly_timer_func,
.arg = &args1, .arg = &args1,
.name = "1" .name = "1"
}; };
@@ -378,8 +378,14 @@ TEST_CASE("multiple timers are ordered correctly", "[esp_timer]")
TEST_ESP_OK( esp_timer_delete(args1.timer) ); TEST_ESP_OK( esp_timer_delete(args1.timer) );
TEST_ESP_OK( esp_timer_delete(args2.timer) ); TEST_ESP_OK( esp_timer_delete(args2.timer) );
TEST_ESP_OK( esp_timer_delete(args3.timer) ); TEST_ESP_OK( esp_timer_delete(args3.timer) );
}
#undef N #undef N
static void test_short_intervals_timer_func(void* arg) {
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
xSemaphoreGive(done);
printf(".");
} }
/* Create two timers, start them around the same time, and search through /* Create two timers, start them around the same time, and search through
@@ -390,14 +396,8 @@ TEST_CASE("esp_timer for very short intervals", "[esp_timer]")
{ {
SemaphoreHandle_t semaphore = xSemaphoreCreateCounting(2, 0); SemaphoreHandle_t semaphore = xSemaphoreCreateCounting(2, 0);
void timer_func(void* arg) {
SemaphoreHandle_t done = (SemaphoreHandle_t) arg;
xSemaphoreGive(done);
printf(".");
}
esp_timer_create_args_t timer_args = { esp_timer_create_args_t timer_args = {
.callback = &timer_func, .callback = &test_short_intervals_timer_func,
.arg = (void*) semaphore, .arg = (void*) semaphore,
.name = "foo" .name = "foo"
}; };
@@ -444,9 +444,7 @@ static int64_t IRAM_ATTR __attribute__((noinline)) get_clock_diff(void)
return hs_time - ref_time; return hs_time - ref_time;
} }
TEST_CASE("esp_timer_get_time returns monotonic values", "[esp_timer]") typedef struct {
{
typedef struct {
SemaphoreHandle_t done; SemaphoreHandle_t done;
bool pass; bool pass;
int test_cnt; int test_cnt;
@@ -454,10 +452,10 @@ TEST_CASE("esp_timer_get_time returns monotonic values", "[esp_timer]")
int64_t max_error; int64_t max_error;
int64_t avg_diff; int64_t avg_diff;
int64_t dummy; int64_t dummy;
} test_state_t; } test_monotonic_values_state_t;
void timer_test_task(void* arg) { static void timer_test_monotonic_values_task(void* arg) {
test_state_t* state = (test_state_t*) arg; test_monotonic_values_state_t* state = (test_monotonic_values_state_t*) arg;
state->pass = true; state->pass = true;
/* make sure both functions are in cache */ /* make sure both functions are in cache */
@@ -498,14 +496,16 @@ TEST_CASE("esp_timer_get_time returns monotonic values", "[esp_timer]")
vTaskDelete(NULL); vTaskDelete(NULL);
} }
TEST_CASE("esp_timer_get_time returns monotonic values", "[esp_timer]")
{
ref_clock_init(); ref_clock_init();
setup_overflow(); setup_overflow();
test_state_t states[portNUM_PROCESSORS] = {0}; test_monotonic_values_state_t states[portNUM_PROCESSORS] = {0};
SemaphoreHandle_t done = xSemaphoreCreateCounting(portNUM_PROCESSORS, 0); SemaphoreHandle_t done = xSemaphoreCreateCounting(portNUM_PROCESSORS, 0);
for (int i = 0; i < portNUM_PROCESSORS; ++i) { for (int i = 0; i < portNUM_PROCESSORS; ++i) {
states[i].done = done; states[i].done = done;
xTaskCreatePinnedToCore(&timer_test_task, "test", 4096, &states[i], 6, NULL, i); xTaskCreatePinnedToCore(&timer_test_monotonic_values_task, "test", 4096, &states[i], 6, NULL, i);
} }
for (int i = 0; i < portNUM_PROCESSORS; ++i) { for (int i = 0; i < portNUM_PROCESSORS; ++i) {
@@ -530,27 +530,27 @@ TEST_CASE("Can dump esp_timer stats", "[esp_timer]")
esp_timer_dump(stdout); esp_timer_dump(stdout);
} }
TEST_CASE("Can delete timer from callback", "[esp_timer]") typedef struct {
{
typedef struct {
SemaphoreHandle_t notify_from_timer_cb; SemaphoreHandle_t notify_from_timer_cb;
esp_timer_handle_t timer; esp_timer_handle_t timer;
} test_arg_t; } test_delete_from_callback_arg_t;
void timer_func(void* varg) static void test_delete_from_callback_timer_func(void* varg)
{ {
test_arg_t arg = *(test_arg_t*) varg; test_delete_from_callback_arg_t arg = *(test_delete_from_callback_arg_t*) varg;
esp_timer_delete(arg.timer); esp_timer_delete(arg.timer);
printf("Timer %p is deleted\n", arg.timer); printf("Timer %p is deleted\n", arg.timer);
xSemaphoreGive(arg.notify_from_timer_cb); xSemaphoreGive(arg.notify_from_timer_cb);
} }
test_arg_t args = { TEST_CASE("Can delete timer from callback", "[esp_timer]")
{
test_delete_from_callback_arg_t args = {
.notify_from_timer_cb = xSemaphoreCreateBinary(), .notify_from_timer_cb = xSemaphoreCreateBinary(),
}; };
esp_timer_create_args_t timer_args = { esp_timer_create_args_t timer_args = {
.callback = &timer_func, .callback = &test_delete_from_callback_timer_func,
.arg = &args, .arg = &args,
.name = "self_deleter" .name = "self_deleter"
}; };
@@ -630,24 +630,23 @@ TEST_CASE("esp_timer_impl_advance moves time base correctly", "[esp_timer]")
TEST_ASSERT_INT_WITHIN(1000, diff_us, (int) t_delta); TEST_ASSERT_INT_WITHIN(1000, diff_us, (int) t_delta);
} }
typedef struct {
int64_t cb_time;
} test_run_when_expected_state_t;
static void test_run_when_expected_timer_func(void* varg) {
test_run_when_expected_state_t* arg = (test_run_when_expected_state_t*) varg;
arg->cb_time = ref_clock_get();
}
TEST_CASE("after esp_timer_impl_advance, timers run when expected", "[esp_timer]") TEST_CASE("after esp_timer_impl_advance, timers run when expected", "[esp_timer]")
{ {
typedef struct {
int64_t cb_time;
} test_state_t;
void timer_func(void* varg) {
test_state_t* arg = (test_state_t*) varg;
arg->cb_time = ref_clock_get();
}
ref_clock_init(); ref_clock_init();
test_state_t state = { 0 }; test_run_when_expected_state_t state = { 0 };
esp_timer_create_args_t timer_args = { esp_timer_create_args_t timer_args = {
.callback = &timer_func, .callback = &test_run_when_expected_timer_func,
.arg = &state .arg = &state
}; };
esp_timer_handle_t timer; esp_timer_handle_t timer;
@@ -695,15 +694,15 @@ static void IRAM_ATTR test_tick_hook(void)
} }
} }
static void test_start_stop_timer_func(void* arg)
{
printf("timer cb\n");
}
TEST_CASE("Can start/stop timer from ISR context", "[esp_timer]") TEST_CASE("Can start/stop timer from ISR context", "[esp_timer]")
{ {
void timer_func(void* arg)
{
printf("timer cb\n");
}
esp_timer_create_args_t create_args = { esp_timer_create_args_t create_args = {
.callback = &timer_func, .callback = &test_start_stop_timer_func,
}; };
TEST_ESP_OK(esp_timer_create(&create_args, &timer1)); TEST_ESP_OK(esp_timer_create(&create_args, &timer1));
sem = xSemaphoreCreateBinary(); sem = xSemaphoreCreateBinary();

View File

@@ -20,14 +20,14 @@
#include "esp32h2/rom/ets_sys.h" #include "esp32h2/rom/ets_sys.h"
#endif #endif
TEST_CASE("ets_timer produces correct delay", "[ets_timer]") static void test_correct_delay_timer_func(void* arg)
{ {
void timer_func(void* arg)
{
struct timeval* ptv = (struct timeval*) arg; struct timeval* ptv = (struct timeval*) arg;
gettimeofday(ptv, NULL); gettimeofday(ptv, NULL);
} }
TEST_CASE("ets_timer produces correct delay", "[ets_timer]")
{
ETSTimer timer1 = {0}; ETSTimer timer1 = {0};
const int delays_ms[] = {20, 100, 200, 250}; const int delays_ms[] = {20, 100, 200, 250};
@@ -36,7 +36,7 @@ TEST_CASE("ets_timer produces correct delay", "[ets_timer]")
for (size_t i = 0; i < delays_count; ++i) { for (size_t i = 0; i < delays_count; ++i) {
struct timeval tv_end = {0}; struct timeval tv_end = {0};
ets_timer_setfn(&timer1, &timer_func, &tv_end); ets_timer_setfn(&timer1, &test_correct_delay_timer_func, &tv_end);
struct timeval tv_start; struct timeval tv_start;
gettimeofday(&tv_start, NULL); gettimeofday(&tv_start, NULL);
@@ -54,20 +54,19 @@ TEST_CASE("ets_timer produces correct delay", "[ets_timer]")
ets_timer_done(&timer1); ets_timer_done(&timer1);
} }
TEST_CASE("periodic ets_timer produces correct delays", "[ets_timer]") // no, we can't make this a const size_t (§6.7.5.2)
{
// no, we can't make this a const size_t (§6.7.5.2)
#define NUM_INTERVALS 16 #define NUM_INTERVALS 16
typedef struct { typedef struct {
ETSTimer *timer; ETSTimer *timer;
size_t cur_interval; size_t cur_interval;
int intervals[NUM_INTERVALS]; int intervals[NUM_INTERVALS];
struct timeval tv_start; struct timeval tv_start;
} test_args_t; } test_periodic_correct_delays_args_t;
void timer_func(void *arg) { static void test_periodic_correct_delays_timer_func(void* arg)
test_args_t *p_args = (test_args_t *) arg; {
test_periodic_correct_delays_args_t *p_args = (test_periodic_correct_delays_args_t *) arg;
struct timeval tv_now; struct timeval tv_now;
gettimeofday(&tv_now, NULL); gettimeofday(&tv_now, NULL);
int32_t ms_diff = (tv_now.tv_sec - p_args->tv_start.tv_sec) * 1000 + int32_t ms_diff = (tv_now.tv_sec - p_args->tv_start.tv_sec) * 1000 +
@@ -81,15 +80,17 @@ TEST_CASE("periodic ets_timer produces correct delays", "[ets_timer]")
printf("done\n"); printf("done\n");
ets_timer_disarm(p_args->timer); ets_timer_disarm(p_args->timer);
} }
} }
TEST_CASE("periodic ets_timer produces correct delays", "[ets_timer]")
{
const int delay_ms = 100; const int delay_ms = 100;
ETSTimer timer1 = {0}; ETSTimer timer1 = {0};
test_args_t args = {0}; test_periodic_correct_delays_args_t args = {0};
args.timer = &timer1; args.timer = &timer1;
gettimeofday(&args.tv_start, NULL); gettimeofday(&args.tv_start, NULL);
ets_timer_setfn(&timer1, &timer_func, &args); ets_timer_setfn(&timer1, &test_periodic_correct_delays_timer_func, &args);
ets_timer_arm(&timer1, delay_ms, true); ets_timer_arm(&timer1, delay_ms, true);
vTaskDelay(delay_ms * (NUM_INTERVALS + 1)); vTaskDelay(delay_ms * (NUM_INTERVALS + 1));
@@ -98,32 +99,29 @@ TEST_CASE("periodic ets_timer produces correct delays", "[ets_timer]")
TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]); TEST_ASSERT_INT32_WITHIN(portTICK_PERIOD_MS, (i + 1) * delay_ms, args.intervals[i]);
} }
ets_timer_done(&timer1); ets_timer_done(&timer1);
#undef NUM_INTERVALS
} }
#undef NUM_INTERVALS
TEST_CASE("multiple ETSTimers are ordered correctly", "[ets_timer]")
{
#define N 5 #define N 5
typedef struct { typedef struct {
const int order[N * 3]; const int order[N * 3];
size_t count; size_t count;
} test_common_t; } test_timers_ordered_correctly_common_t;
typedef struct { typedef struct {
int timer_index; int timer_index;
const int intervals[N]; const int intervals[N];
size_t intervals_count; size_t intervals_count;
ETSTimer* timer; ETSTimer* timer;
test_common_t* common; test_timers_ordered_correctly_common_t* common;
bool pass; bool pass;
SemaphoreHandle_t done; SemaphoreHandle_t done;
} test_args_t; } test_timers_ordered_correctly_args_t;
void timer_func(void* arg) static void test_timers_ordered_correctly_timer_func(void* arg)
{ {
test_args_t* p_args = (test_args_t*) arg; test_timers_ordered_correctly_args_t* p_args = (test_timers_ordered_correctly_args_t*) arg;
// check order // check order
size_t count = p_args->common->count; size_t count = p_args->common->count;
int expected_index = p_args->common->order[count]; int expected_index = p_args->common->order[count];
@@ -145,20 +143,22 @@ TEST_CASE("multiple ETSTimers are ordered correctly", "[ets_timer]")
printf("timer %d interval #%d, %d ms\n", printf("timer %d interval #%d, %d ms\n",
p_args->timer_index, p_args->intervals_count, next_interval); p_args->timer_index, p_args->intervals_count, next_interval);
ets_timer_arm(p_args->timer, next_interval, false); ets_timer_arm(p_args->timer, next_interval, false);
} }
TEST_CASE("multiple ETSTimers are ordered correctly", "[ets_timer]")
{
ETSTimer timer1; ETSTimer timer1;
ETSTimer timer2; ETSTimer timer2;
ETSTimer timer3; ETSTimer timer3;
test_common_t common = { test_timers_ordered_correctly_common_t common = {
.order = {1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 3, 3, 2}, .order = {1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 2, 1, 3, 3, 2},
.count = 0 .count = 0
}; };
SemaphoreHandle_t done = xSemaphoreCreateCounting(3, 0); SemaphoreHandle_t done = xSemaphoreCreateCounting(3, 0);
test_args_t args1 = { test_timers_ordered_correctly_args_t args1 = {
.timer_index = 1, .timer_index = 1,
.intervals = {10, 40, 20, 40, 30}, .intervals = {10, 40, 20, 40, 30},
.timer = &timer1, .timer = &timer1,
@@ -167,7 +167,7 @@ TEST_CASE("multiple ETSTimers are ordered correctly", "[ets_timer]")
.done = done .done = done
}; };
test_args_t args2 = { test_timers_ordered_correctly_args_t args2 = {
.timer_index = 2, .timer_index = 2,
.intervals = {20, 20, 60, 30, 40}, .intervals = {20, 20, 60, 30, 40},
.timer = &timer2, .timer = &timer2,
@@ -176,7 +176,7 @@ TEST_CASE("multiple ETSTimers are ordered correctly", "[ets_timer]")
.done = done .done = done
}; };
test_args_t args3 = { test_timers_ordered_correctly_args_t args3 = {
.timer_index = 3, .timer_index = 3,
.intervals = {30, 30, 60, 30, 10}, .intervals = {30, 30, 60, 30, 10},
.timer = &timer3, .timer = &timer3,
@@ -185,9 +185,9 @@ TEST_CASE("multiple ETSTimers are ordered correctly", "[ets_timer]")
.done = done .done = done
}; };
ets_timer_setfn(&timer1, &timer_func, &args1); ets_timer_setfn(&timer1, &test_timers_ordered_correctly_timer_func, &args1);
ets_timer_setfn(&timer2, &timer_func, &args2); ets_timer_setfn(&timer2, &test_timers_ordered_correctly_timer_func, &args2);
ets_timer_setfn(&timer3, &timer_func, &args3); ets_timer_setfn(&timer3, &test_timers_ordered_correctly_timer_func, &args3);
ets_timer_arm(&timer1, args1.intervals[0], false); ets_timer_arm(&timer1, args1.intervals[0], false);
ets_timer_arm(&timer2, args2.intervals[0], false); ets_timer_arm(&timer2, args2.intervals[0], false);
@@ -204,25 +204,24 @@ TEST_CASE("multiple ETSTimers are ordered correctly", "[ets_timer]")
ets_timer_done(&timer1); ets_timer_done(&timer1);
ets_timer_done(&timer2); ets_timer_done(&timer2);
ets_timer_done(&timer3); ets_timer_done(&timer3);
}
#undef N #undef N
static void IRAM_ATTR test_iram_timer_func(void* arg)
{
volatile bool *b = (volatile bool *)arg;
*b = true;
} }
/* WiFi/BT coexistence will sometimes arm/disarm /* WiFi/BT coexistence will sometimes arm/disarm
timers from an ISR where flash may be disabled. */ timers from an ISR where flash may be disabled. */
IRAM_ATTR TEST_CASE("ETSTimers arm & disarm run from IRAM", "[ets_timer]") IRAM_ATTR TEST_CASE("ETSTimers arm & disarm run from IRAM", "[ets_timer]")
{ {
void timer_func(void* arg)
{
volatile bool *b = (volatile bool *)arg;
*b = true;
}
volatile bool flag = false; volatile bool flag = false;
ETSTimer timer1; ETSTimer timer1;
const int INTERVAL = 5; const int INTERVAL = 5;
ets_timer_setfn(&timer1, &timer_func, (void *)&flag); ets_timer_setfn(&timer1, &test_iram_timer_func, (void *)&flag);
/* arm a disabled timer, then disarm a live timer */ /* arm a disabled timer, then disarm a live timer */

View File

@@ -46,12 +46,9 @@
#if portNUM_PROCESSORS == 2 #if portNUM_PROCESSORS == 2
// https://github.com/espressif/arduino-esp32/issues/120 // This runs on APP CPU:
TEST_CASE("Reading RTC registers on APP CPU doesn't affect clock", "[newlib]") static void time_adc_test_task(void* arg)
{ {
// This runs on APP CPU:
void time_adc_test_task(void* arg)
{
for (int i = 0; i < 200000; ++i) { for (int i = 0; i < 200000; ++i) {
// wait for 20us, reading one of RTC registers // wait for 20us, reading one of RTC registers
uint32_t ccount = xthal_get_ccount(); uint32_t ccount = xthal_get_ccount();
@@ -64,8 +61,11 @@ TEST_CASE("Reading RTC registers on APP CPU doesn't affect clock", "[newlib]")
xSemaphoreGive(*p_done); xSemaphoreGive(*p_done);
vTaskDelay(1); vTaskDelay(1);
vTaskDelete(NULL); vTaskDelete(NULL);
} }
// https://github.com/espressif/arduino-esp32/issues/120
TEST_CASE("Reading RTC registers on APP CPU doesn't affect clock", "[newlib]")
{
SemaphoreHandle_t done = xSemaphoreCreateBinary(); SemaphoreHandle_t done = xSemaphoreCreateBinary();
xTaskCreatePinnedToCore(&time_adc_test_task, "time_adc", 4096, &done, 5, NULL, 1); xTaskCreatePinnedToCore(&time_adc_test_task, "time_adc", 4096, &done, 5, NULL, 1);

View File

@@ -131,38 +131,38 @@ TEST_CASE("CRs are removed from the stdin correctly", "[vfs]")
TEST_ASSERT_EQUAL_UINT8_ARRAY("4\n", dst, 2); TEST_ASSERT_EQUAL_UINT8_ARRAY("4\n", dst, 2);
} }
TEST_CASE("can write to UART while another task is reading", "[vfs]") struct read_task_arg_t {
{
struct read_task_arg_t {
char* out_buffer; char* out_buffer;
size_t out_buffer_len; size_t out_buffer_len;
SemaphoreHandle_t ready; SemaphoreHandle_t ready;
SemaphoreHandle_t done; SemaphoreHandle_t done;
}; };
struct write_task_arg_t { struct write_task_arg_t {
const char* str; const char* str;
SemaphoreHandle_t done; SemaphoreHandle_t done;
}; };
void read_task_fn(void* varg) static void read_task_fn(void* varg)
{ {
struct read_task_arg_t* parg = (struct read_task_arg_t*) varg; struct read_task_arg_t* parg = (struct read_task_arg_t*) varg;
parg->out_buffer[0] = 0; parg->out_buffer[0] = 0;
fgets(parg->out_buffer, parg->out_buffer_len, stdin); fgets(parg->out_buffer, parg->out_buffer_len, stdin);
xSemaphoreGive(parg->done); xSemaphoreGive(parg->done);
vTaskDelete(NULL); vTaskDelete(NULL);
} }
void write_task_fn(void* varg) static void write_task_fn(void* varg)
{ {
struct write_task_arg_t* parg = (struct write_task_arg_t*) varg; struct write_task_arg_t* parg = (struct write_task_arg_t*) varg;
fwrite_str_loopback(parg->str, strlen(parg->str)); fwrite_str_loopback(parg->str, strlen(parg->str));
xSemaphoreGive(parg->done); xSemaphoreGive(parg->done);
vTaskDelete(NULL); vTaskDelete(NULL);
} }
TEST_CASE("can write to UART while another task is reading", "[vfs]")
{
char out_buffer[32]; char out_buffer[32];
size_t out_buffer_len = sizeof(out_buffer); size_t out_buffer_len = sizeof(out_buffer);

View File

@@ -78,7 +78,7 @@ extern "C" {
* @param value : the performance value. * @param value : the performance value.
*/ */
#define IDF_LOG_PERFORMANCE(item, value_fmt, value, ...) \ #define IDF_LOG_PERFORMANCE(item, value_fmt, value, ...) \
printf("[Performance][%s]: "value_fmt"\n", item, value, ##__VA_ARGS__) printf("[Performance][%s]: " value_fmt "\n", item, value, ##__VA_ARGS__)
/* Some definitions applicable to Unity running in FreeRTOS */ /* Some definitions applicable to Unity running in FreeRTOS */