diff --git a/components/newlib/CMakeLists.txt b/components/newlib/CMakeLists.txt index cac5347de2..8a3463b63d 100644 --- a/components/newlib/CMakeLists.txt +++ b/components/newlib/CMakeLists.txt @@ -20,6 +20,7 @@ list(APPEND ldfragments newlib.lf) idf_component_register(SRCS "${srcs}" INCLUDE_DIRS "${include_dirs}" + PRIV_INCLUDE_DIRS priv_include PRIV_REQUIRES soc esp_timer LDFRAGMENTS "${ldfragments}") @@ -40,3 +41,5 @@ target_link_libraries(${COMPONENT_LIB} INTERFACE "${EXTRA_LINK_FLAGS}") if(CONFIG_NEWLIB_NANO_FORMAT) target_link_libraries(${COMPONENT_LIB} INTERFACE "--specs=nano.specs") endif() + +add_subdirectory(port) diff --git a/components/newlib/component.mk b/components/newlib/component.mk index eb66a19e15..d86f3a5ebc 100644 --- a/components/newlib/component.mk +++ b/components/newlib/component.mk @@ -12,6 +12,9 @@ ifdef CONFIG_SPIRAM_CACHE_WORKAROUND COMPONENT_ADD_LDFRAGMENTS := esp32-spiram-rom-functions-c.lf endif +COMPONENT_PRIV_INCLUDEDIRS := priv_include +COMPONENT_SRCDIRS := . port + # Forces the linker to include locks, heap, and syscalls from this component, # instead of the implementations provided by newlib. COMPONENT_ADD_LDFLAGS += -u newlib_include_locks_impl diff --git a/components/newlib/platform_include/esp_newlib.h b/components/newlib/platform_include/esp_newlib.h index 11658776a6..c43d6ec204 100644 --- a/components/newlib/platform_include/esp_newlib.h +++ b/components/newlib/platform_include/esp_newlib.h @@ -17,6 +17,11 @@ #include +/* + * Initialize newlib time functions + */ +void esp_newlib_time_init(void); + /** * Replacement for newlib's _REENT_INIT_PTR and __sinit. * diff --git a/components/newlib/port/CMakeLists.txt b/components/newlib/port/CMakeLists.txt new file mode 100644 index 0000000000..adac67103b --- /dev/null +++ b/components/newlib/port/CMakeLists.txt @@ -0,0 +1 @@ +target_sources(${COMPONENT_LIB} PRIVATE "${CMAKE_CURRENT_LIST_DIR}/esp_time_impl.c") \ No newline at end of file diff --git a/components/newlib/port/esp_time_impl.c b/components/newlib/port/esp_time_impl.c new file mode 100644 index 0000000000..4a7a800565 --- /dev/null +++ b/components/newlib/port/esp_time_impl.c @@ -0,0 +1,207 @@ +// Copyright 2020 Espressif Systems (Shanghai) PTE LTD +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +#include +#include +#include + +#include "esp_timer.h" + +#include "esp_system.h" + +#include "soc/spinlock.h" +#include "soc/rtc.h" +#include "esp_rom_sys.h" + +#include "esp_time_impl.h" + +#include "sdkconfig.h" + +#if CONFIG_IDF_TARGET_ESP32 +#include "esp32/rom/rtc.h" +#include "esp32/clk.h" +#elif CONFIG_IDF_TARGET_ESP32S2 +#include "esp32s2/rom/rtc.h" +#include "esp32s2/clk.h" +#endif + +#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) \ + || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) \ + || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC ) \ + || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 ) +#define WITH_RTC 1 +#endif + +#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) \ + || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) \ + || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_FRC1 ) \ + || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 ) +#define WITH_FRC 1 +#endif + +// Offset between FRC timer and the RTC. +// Initialized after reset or light sleep. +#if defined(WITH_RTC) && defined(WITH_FRC) +uint64_t s_microseconds_offset; +#endif + +#ifndef WITH_RTC +static uint64_t s_boot_time; // when RTC is used to persist time, two RTC_STORE registers are used to store boot time instead +#endif + +static spinlock_t s_time_lock = SPINLOCK_INITIALIZER; + +#ifdef WITH_RTC +static uint64_t get_rtc_time_us(void) +{ + const uint64_t ticks = rtc_time_get(); + const uint32_t cal = esp_clk_slowclk_cal_get(); + /* RTC counter result is up to 2^48, calibration factor is up to 2^24, + * for a 32kHz clock. We need to calculate (assuming no overflow): + * (ticks * cal) >> RTC_CLK_CAL_FRACT + * + * An overflow in the (ticks * cal) multiplication would cause time to + * wrap around after approximately 13 days, which is probably not enough + * for some applications. + * Therefore multiplication is split into two terms, for the lower 32-bit + * and the upper 16-bit parts of "ticks", i.e.: + * ((ticks_low + 2^32 * ticks_high) * cal) >> RTC_CLK_CAL_FRACT + */ + const uint64_t ticks_low = ticks & UINT32_MAX; + const uint64_t ticks_high = ticks >> 32; + return ((ticks_low * cal) >> RTC_CLK_CAL_FRACT) + + ((ticks_high * cal) << (32 - RTC_CLK_CAL_FRACT)); +} +#endif // WITH_RTC + +#if defined( WITH_FRC ) || defined( WITH_RTC ) +uint64_t esp_time_impl_get_time_since_boot(void) +{ + uint64_t microseconds = 0; + +#ifdef WITH_FRC +#ifdef WITH_RTC + microseconds = s_microseconds_offset + esp_timer_get_time(); +#else + microseconds = esp_timer_get_time(); +#endif // WITH_RTC +#elif defined(WITH_RTC) + microseconds = get_rtc_time_us(); +#endif // WITH_FRC + return microseconds; +} + +uint64_t esp_time_impl_get_time(void) +{ +#if defined( WITH_FRC ) + return esp_timer_get_time(); +#elif defined( WITH_RTC ) + return get_rtc_time_us(); +#endif // WITH_FRC +} +#endif // defined( WITH_FRC ) || defined( WITH_RTC ) + + +void esp_time_impl_set_boot_time(uint64_t time_us) +{ + spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER); +#ifdef WITH_RTC + REG_WRITE(RTC_BOOT_TIME_LOW_REG, (uint32_t) (time_us & 0xffffffff)); + REG_WRITE(RTC_BOOT_TIME_HIGH_REG, (uint32_t) (time_us >> 32)); +#else + s_boot_time = time_us; +#endif + spinlock_release(&s_time_lock); +} + +uint64_t esp_clk_rtc_time(void) +{ +#ifdef WITH_RTC + return esp_rtc_get_time_us(); +#else + return 0; +#endif +} + +uint64_t esp_time_impl_get_boot_time(void) +{ + uint64_t result; + spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER); +#ifdef WITH_RTC + result = ((uint64_t) REG_READ(RTC_BOOT_TIME_LOW_REG)) + (((uint64_t) REG_READ(RTC_BOOT_TIME_HIGH_REG)) << 32); +#else + result = s_boot_time; +#endif + spinlock_release(&s_time_lock); + return result; +} + +uint32_t esp_clk_slowclk_cal_get(void) +{ + return REG_READ(RTC_SLOW_CLK_CAL_REG); +} + +void esp_clk_slowclk_cal_set(uint32_t new_cal) +{ +#if defined(WITH_RTC) + /* To force monotonic time values even when clock calibration value changes, + * we adjust boot time, given current time and the new calibration value: + * T = boot_time_old + cur_cal * ticks / 2^19 + * T = boot_time_adj + new_cal * ticks / 2^19 + * which results in: + * boot_time_adj = boot_time_old + ticks * (cur_cal - new_cal) / 2^19 + */ + const int64_t ticks = (int64_t) rtc_time_get(); + const uint32_t cur_cal = REG_READ(RTC_SLOW_CLK_CAL_REG); + int32_t cal_diff = (int32_t) (cur_cal - new_cal); + int64_t boot_time_diff = ticks * cal_diff / (1LL << RTC_CLK_CAL_FRACT); + uint64_t boot_time_adj = esp_time_impl_get_boot_time() + boot_time_diff; + esp_time_impl_set_boot_time(boot_time_adj); +#endif // WITH_RTC + REG_WRITE(RTC_SLOW_CLK_CAL_REG, new_cal); +} + +void esp_set_time_from_rtc(void) +{ +#if defined( WITH_FRC ) && defined( WITH_RTC ) + // initialize time from RTC clock + s_microseconds_offset = get_rtc_time_us() - esp_timer_get_time(); +#endif // WITH_FRC && WITH_RTC +} + +void esp_sync_counters_rtc_and_frc(void) +{ +#if defined( WITH_FRC ) && defined( WITH_RTC ) + struct timeval tv; + gettimeofday(&tv, NULL); + settimeofday(&tv, NULL); + int64_t s_microseconds_offset_cur = get_rtc_time_us() - esp_timer_get_time(); + esp_time_impl_set_boot_time(esp_time_impl_get_boot_time() + ((int64_t)s_microseconds_offset - s_microseconds_offset_cur)); +#endif +} + +void esp_time_impl_init(void) +{ + esp_set_time_from_rtc(); +} + +uint32_t esp_time_impl_get_time_resolution(void) +{ +#if defined( WITH_FRC ) + return 1L; +#elif defined( WITH_RTC ) + uint32_t rtc_freq = rtc_clk_slow_freq_get_hz(); + assert(rtc_freq != 0); + return 1000000L / rtc_freq; +#endif // WITH_FRC +} \ No newline at end of file diff --git a/components/newlib/priv_include/esp_time_impl.h b/components/newlib/priv_include/esp_time_impl.h new file mode 100644 index 0000000000..638e692911 --- /dev/null +++ b/components/newlib/priv_include/esp_time_impl.h @@ -0,0 +1,26 @@ +// Copyright 2020 Espressif Systems (Shanghai) PTE LTD +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +#pragma once + +void esp_time_impl_init(void); + +uint64_t esp_time_impl_get_time(void); + +uint64_t esp_time_impl_get_time_since_boot(void); + +uint32_t esp_time_impl_get_time_resolution(void); + +void esp_time_impl_set_boot_time(uint64_t t); + +uint64_t esp_time_impl_get_boot_time(void); \ No newline at end of file diff --git a/components/newlib/test/test_time.c b/components/newlib/test/test_time.c index 8a761f9f4b..d5aa58c097 100644 --- a/components/newlib/test/test_time.c +++ b/components/newlib/test/test_time.c @@ -13,6 +13,13 @@ #include "test_utils.h" #include "esp_log.h" #include "esp_rom_sys.h" +#include "esp_system.h" + +#if CONFIG_IDF_TARGET_ESP32 +#include "esp32/clk.h" +#elif CONFIG_IDF_TARGET_ESP32S2 +#include "esp32s2/clk.h" +#endif #if portNUM_PROCESSORS == 2 @@ -379,8 +386,8 @@ void test_posix_timers_clock (void) ts.tv_nsec = 100000000L; TEST_ASSERT(clock_settime(CLOCK_REALTIME, &ts) == 0); TEST_ASSERT(gettimeofday(&now, NULL) == 0); - TEST_ASSERT(now.tv_sec == ts.tv_sec); - TEST_ASSERT_INT_WITHIN(5000L, now.tv_usec, ts.tv_nsec / 1000L); + TEST_ASSERT_EQUAL(ts.tv_sec, now.tv_sec); + TEST_ASSERT_INT_WITHIN(5000L, ts.tv_nsec / 1000L, now.tv_usec); TEST_ASSERT(clock_settime(CLOCK_MONOTONIC, &ts) == -1); diff --git a/components/newlib/time.c b/components/newlib/time.c index 8a7429cea9..91f6bfc6c8 100644 --- a/components/newlib/time.c +++ b/components/newlib/time.c @@ -21,26 +21,18 @@ #include #include #include -#include + #include "esp_attr.h" -#include "esp_intr_alloc.h" -#include "esp_timer.h" -#include "soc/soc.h" -#include "soc/rtc.h" -#include "soc/frc_timer_reg.h" + #include "freertos/FreeRTOS.h" -#include "freertos/xtensa_api.h" #include "freertos/task.h" -#include "limits.h" + +#include "soc/spinlock.h" +#include "soc/rtc.h" + +#include "esp_time_impl.h" + #include "sdkconfig.h" -#include "esp_rom_sys.h" -#if CONFIG_IDF_TARGET_ESP32 -#include "esp32/clk.h" -#include "esp32/rom/rtc.h" -#elif CONFIG_IDF_TARGET_ESP32S2 -#include "esp32s2/clk.h" -#include "esp32s2/rom/rtc.h" -#endif #ifdef CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS _Static_assert(sizeof(time_t) == 8, "The toolchain does not support time_t wide 64-bits"); @@ -48,161 +40,95 @@ _Static_assert(sizeof(time_t) == 8, "The toolchain does not support time_t wide _Static_assert(sizeof(time_t) == 4, "The toolchain supports time_t wide 64-bits. Please enable CONFIG_SDK_TOOLCHAIN_SUPPORTS_TIME_WIDE_64_BITS."); #endif -#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 ) -#define WITH_RTC 1 +#if !CONFIG_ESP32_TIME_SYSCALL_USE_NONE && !CONFIG_ESP32S2_TIME_SYSCALL_USE_NONE +#define IMPL_NEWLIB_TIME_FUNCS 1 #endif -#if defined( CONFIG_ESP32_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32_TIME_SYSCALL_USE_RTC_FRC1 ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_FRC1 ) || defined( CONFIG_ESP32S2_TIME_SYSCALL_USE_RTC_FRC1 ) -#define WITH_FRC 1 -#endif - -#ifdef WITH_RTC -static uint64_t get_rtc_time_us(void) -{ - const uint64_t ticks = rtc_time_get(); - const uint32_t cal = esp_clk_slowclk_cal_get(); - /* RTC counter result is up to 2^48, calibration factor is up to 2^24, - * for a 32kHz clock. We need to calculate (assuming no overflow): - * (ticks * cal) >> RTC_CLK_CAL_FRACT - * - * An overflow in the (ticks * cal) multiplication would cause time to - * wrap around after approximately 13 days, which is probably not enough - * for some applications. - * Therefore multiplication is split into two terms, for the lower 32-bit - * and the upper 16-bit parts of "ticks", i.e.: - * ((ticks_low + 2^32 * ticks_high) * cal) >> RTC_CLK_CAL_FRACT - */ - const uint64_t ticks_low = ticks & UINT32_MAX; - const uint64_t ticks_high = ticks >> 32; - return ((ticks_low * cal) >> RTC_CLK_CAL_FRACT) + - ((ticks_high * cal) << (32 - RTC_CLK_CAL_FRACT)); -} -#endif // WITH_RTC - - -// s_boot_time: time from Epoch to the first boot time -#ifdef WITH_RTC -// when RTC is used to persist time, two RTC_STORE registers are used to store boot time -#elif defined(WITH_FRC) -static uint64_t s_boot_time; -#endif // WITH_RTC - -#if defined(WITH_RTC) || defined(WITH_FRC) -static _lock_t s_boot_time_lock; -static _lock_t s_adjust_time_lock; +#if IMPL_NEWLIB_TIME_FUNCS // stores the start time of the slew -static uint64_t adjtime_start = 0; +static uint64_t s_adjtime_start_us; // is how many microseconds total to slew -static int64_t adjtime_total_correction = 0; -#define ADJTIME_CORRECTION_FACTOR 6 -static uint64_t get_time_since_boot(void); -#endif -// Offset between FRC timer and the RTC. -// Initialized after reset or light sleep. -#if defined(WITH_RTC) && defined(WITH_FRC) -uint64_t s_microseconds_offset; -#endif +static int64_t s_adjtime_total_correction_us; -#if defined(WITH_RTC) || defined(WITH_FRC) -static void set_boot_time(uint64_t time_us) -{ - _lock_acquire(&s_boot_time_lock); -#ifdef WITH_RTC - REG_WRITE(RTC_BOOT_TIME_LOW_REG, (uint32_t) (time_us & 0xffffffff)); - REG_WRITE(RTC_BOOT_TIME_HIGH_REG, (uint32_t) (time_us >> 32)); -#else - s_boot_time = time_us; -#endif - _lock_release(&s_boot_time_lock); -} - -static uint64_t get_boot_time(void) -{ - uint64_t result; - _lock_acquire(&s_boot_time_lock); -#ifdef WITH_RTC - result = ((uint64_t) REG_READ(RTC_BOOT_TIME_LOW_REG)) + (((uint64_t) REG_READ(RTC_BOOT_TIME_HIGH_REG)) << 32); -#else - result = s_boot_time; -#endif - _lock_release(&s_boot_time_lock); - return result; -} +static spinlock_t s_time_lock = SPINLOCK_INITIALIZER; // This function gradually changes boot_time to the correction value and immediately updates it. static uint64_t adjust_boot_time(void) { - uint64_t boot_time = get_boot_time(); - if ((boot_time == 0) || (get_time_since_boot() < adjtime_start)) { - adjtime_start = 0; + #define ADJTIME_CORRECTION_FACTOR 6 + + uint64_t boot_time = esp_time_impl_get_boot_time(); + if ((boot_time == 0) || (esp_time_impl_get_time_since_boot() < s_adjtime_start_us)) { + s_adjtime_start_us = 0; } - if (adjtime_start > 0) { - uint64_t since_boot = get_time_since_boot(); - // If to call this function once per second, then (since_boot - adjtime_start) will be 1_000_000 (1 second), + if (s_adjtime_start_us > 0) { + uint64_t since_boot = esp_time_impl_get_time_since_boot(); + // If to call this function once per second, then (since_boot - s_adjtime_start_us) will be 1_000_000 (1 second), // and the correction will be equal to (1_000_000us >> 6) = 15_625 us. // The minimum possible correction step can be (64us >> 6) = 1us. // Example: if the time error is 1 second, then it will be compensate for 1 sec / 0,015625 = 64 seconds. - int64_t correction = (since_boot >> ADJTIME_CORRECTION_FACTOR) - (adjtime_start >> ADJTIME_CORRECTION_FACTOR); + int64_t correction = (since_boot >> ADJTIME_CORRECTION_FACTOR) - (s_adjtime_start_us >> ADJTIME_CORRECTION_FACTOR); if (correction > 0) { - adjtime_start = since_boot; - if (adjtime_total_correction < 0) { - if ((adjtime_total_correction + correction) >= 0) { - boot_time = boot_time + adjtime_total_correction; - adjtime_start = 0; + s_adjtime_start_us = since_boot; + if (s_adjtime_total_correction_us < 0) { + if ((s_adjtime_total_correction_us + correction) >= 0) { + boot_time = boot_time + s_adjtime_total_correction_us; + s_adjtime_start_us = 0; } else { - adjtime_total_correction += correction; + s_adjtime_total_correction_us += correction; boot_time -= correction; } } else { - if ((adjtime_total_correction - correction) <= 0) { - boot_time = boot_time + adjtime_total_correction; - adjtime_start = 0; + if ((s_adjtime_total_correction_us - correction) <= 0) { + boot_time = boot_time + s_adjtime_total_correction_us; + s_adjtime_start_us = 0; } else { - adjtime_total_correction -= correction; + s_adjtime_total_correction_us -= correction; boot_time += correction; } } - set_boot_time(boot_time); + esp_time_impl_set_boot_time(boot_time); } } return boot_time; } + // Get the adjusted boot time. -static uint64_t get_adjusted_boot_time (void) +static uint64_t get_adjusted_boot_time(void) { - _lock_acquire(&s_adjust_time_lock); + spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER); uint64_t adjust_time = adjust_boot_time(); - _lock_release(&s_adjust_time_lock); + spinlock_release(&s_time_lock); return adjust_time; } -// Applying the accumulated correction to boot_time and stopping the smooth time adjustment. +// Applying the accumulated correction to base_time and stopping the smooth time adjustment. static void adjtime_corr_stop (void) { - _lock_acquire(&s_adjust_time_lock); - if (adjtime_start != 0){ + spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER); + if (s_adjtime_start_us != 0){ adjust_boot_time(); - adjtime_start = 0; + s_adjtime_start_us = 0; } - _lock_release(&s_adjust_time_lock); + spinlock_release(&s_time_lock); } -#endif //defined(WITH_RTC) || defined(WITH_FRC) +#endif int adjtime(const struct timeval *delta, struct timeval *outdelta) { -#if defined( WITH_FRC ) || defined( WITH_RTC ) +#if IMPL_NEWLIB_TIME_FUNCS if(outdelta != NULL){ - _lock_acquire(&s_adjust_time_lock); + spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER); adjust_boot_time(); - if (adjtime_start != 0) { - outdelta->tv_sec = adjtime_total_correction / 1000000L; - outdelta->tv_usec = adjtime_total_correction % 1000000L; + if (s_adjtime_start_us != 0) { + outdelta->tv_sec = s_adjtime_total_correction_us / 1000000L; + outdelta->tv_usec = s_adjtime_total_correction_us % 1000000L; } else { outdelta->tv_sec = 0; outdelta->tv_usec = 0; } - _lock_release(&s_adjust_time_lock); + spinlock_release(&s_time_lock); } if(delta != NULL){ int64_t sec = delta->tv_sec; @@ -215,59 +141,16 @@ int adjtime(const struct timeval *delta, struct timeval *outdelta) * and the delta of the second call is not NULL, the earlier tuning is stopped, * but the already completed part of the adjustment is not canceled. */ - _lock_acquire(&s_adjust_time_lock); - // If correction is already in progress (adjtime_start != 0), then apply accumulated corrections. + spinlock_acquire(&s_time_lock, SPINLOCK_WAIT_FOREVER); + // If correction is already in progress (s_adjtime_start_time_us != 0), then apply accumulated corrections. adjust_boot_time(); - adjtime_start = get_time_since_boot(); - adjtime_total_correction = sec * 1000000L + usec; - _lock_release(&s_adjust_time_lock); + s_adjtime_start_us = esp_time_impl_get_time_since_boot(); + s_adjtime_total_correction_us = sec * 1000000L + usec; + spinlock_release(&s_time_lock); } - return 0; -#else - return -1; -#endif - -} - -void esp_clk_slowclk_cal_set(uint32_t new_cal) -{ -#if defined(WITH_RTC) - /* To force monotonic time values even when clock calibration value changes, - * we adjust boot time, given current time and the new calibration value: - * T = boot_time_old + cur_cal * ticks / 2^19 - * T = boot_time_adj + new_cal * ticks / 2^19 - * which results in: - * boot_time_adj = boot_time_old + ticks * (cur_cal - new_cal) / 2^19 - */ - const int64_t ticks = (int64_t) rtc_time_get(); - const uint32_t cur_cal = REG_READ(RTC_SLOW_CLK_CAL_REG); - int32_t cal_diff = (int32_t) (cur_cal - new_cal); - int64_t boot_time_diff = ticks * cal_diff / (1LL << RTC_CLK_CAL_FRACT); - uint64_t boot_time_adj = get_boot_time() + boot_time_diff; - set_boot_time(boot_time_adj); -#endif // WITH_RTC - REG_WRITE(RTC_SLOW_CLK_CAL_REG, new_cal); -} - -uint32_t esp_clk_slowclk_cal_get(void) -{ - return REG_READ(RTC_SLOW_CLK_CAL_REG); -} - -void esp_set_time_from_rtc(void) -{ -#if defined( WITH_FRC ) && defined( WITH_RTC ) - // initialize time from RTC clock - s_microseconds_offset = get_rtc_time_us() - esp_timer_get_time(); -#endif // WITH_FRC && WITH_RTC -} - -uint64_t esp_clk_rtc_time(void) -{ -#ifdef WITH_RTC - return get_rtc_time_us(); -#else return 0; +#else + return -1; #endif } @@ -283,29 +166,13 @@ clock_t IRAM_ATTR _times_r(struct _reent *r, struct tms *ptms) return (clock_t) tv.tv_sec; } -#if defined( WITH_FRC ) || defined( WITH_RTC ) -static uint64_t get_time_since_boot(void) -{ - uint64_t microseconds = 0; -#ifdef WITH_FRC -#ifdef WITH_RTC - microseconds = s_microseconds_offset + esp_timer_get_time(); -#else - microseconds = esp_timer_get_time(); -#endif // WITH_RTC -#elif defined(WITH_RTC) - microseconds = get_rtc_time_us(); -#endif // WITH_FRC - return microseconds; -} -#endif // defined( WITH_FRC ) || defined( WITH_RTC ) - int IRAM_ATTR _gettimeofday_r(struct _reent *r, struct timeval *tv, void *tz) { (void) tz; -#if defined( WITH_FRC ) || defined( WITH_RTC ) + +#if IMPL_NEWLIB_TIME_FUNCS if (tv) { - uint64_t microseconds = get_adjusted_boot_time() + get_time_since_boot(); + uint64_t microseconds = get_adjusted_boot_time() + esp_time_impl_get_time_since_boot(); tv->tv_sec = microseconds / 1000000; tv->tv_usec = microseconds % 1000000; } @@ -313,18 +180,18 @@ int IRAM_ATTR _gettimeofday_r(struct _reent *r, struct timeval *tv, void *tz) #else __errno_r(r) = ENOSYS; return -1; -#endif // defined( WITH_FRC ) || defined( WITH_RTC ) +#endif } int settimeofday(const struct timeval *tv, const struct timezone *tz) { (void) tz; -#if defined( WITH_FRC ) || defined( WITH_RTC ) +#if IMPL_NEWLIB_TIME_FUNCS if (tv) { adjtime_corr_stop(); uint64_t now = ((uint64_t) tv->tv_sec) * 1000000LL + tv->tv_usec; - uint64_t since_boot = get_time_since_boot(); - set_boot_time(now - since_boot); + uint64_t since_boot = esp_time_impl_get_time_since_boot(); + esp_time_impl_set_boot_time(now - since_boot); } return 0; #else @@ -353,48 +220,9 @@ unsigned int sleep(unsigned int seconds) return 0; } -uint32_t system_get_time(void) +int clock_settime(clockid_t clock_id, const struct timespec *tp) { -#if defined( WITH_FRC ) || defined( WITH_RTC ) - return get_time_since_boot(); -#else - return 0; -#endif -} - -uint32_t system_get_current_time(void) __attribute__((alias("system_get_time"))); - -uint32_t system_relative_time(uint32_t current_time) -{ -#if defined( WITH_FRC ) || defined( WITH_RTC ) - return get_time_since_boot() - current_time; -#else - return 0; -#endif -} - -uint64_t system_get_rtc_time(void) -{ -#ifdef WITH_RTC - return get_rtc_time_us(); -#else - return 0; -#endif -} - -void esp_sync_counters_rtc_and_frc(void) -{ -#if defined( WITH_FRC ) && defined( WITH_RTC ) - adjtime_corr_stop(); - int64_t s_microseconds_offset_cur = get_rtc_time_us() - esp_timer_get_time(); - set_boot_time(get_adjusted_boot_time() + ((int64_t)s_microseconds_offset - s_microseconds_offset_cur)); -#endif -} - - -int clock_settime (clockid_t clock_id, const struct timespec *tp) -{ -#if defined( WITH_FRC ) || defined( WITH_RTC ) +#if IMPL_NEWLIB_TIME_FUNCS if (tp == NULL) { errno = EINVAL; return -1; @@ -419,7 +247,7 @@ int clock_settime (clockid_t clock_id, const struct timespec *tp) int clock_gettime (clockid_t clock_id, struct timespec *tp) { -#if defined( WITH_FRC ) || defined( WITH_RTC ) +#if IMPL_NEWLIB_TIME_FUNCS if (tp == NULL) { errno = EINVAL; return -1; @@ -433,11 +261,7 @@ int clock_gettime (clockid_t clock_id, struct timespec *tp) tp->tv_nsec = tv.tv_usec * 1000L; break; case CLOCK_MONOTONIC: -#if defined( WITH_FRC ) - monotonic_time_us = (uint64_t) esp_timer_get_time(); -#elif defined( WITH_RTC ) - monotonic_time_us = get_rtc_time_us(); -#endif // WITH_FRC + monotonic_time_us = esp_time_impl_get_time(); tp->tv_sec = monotonic_time_us / 1000000LL; tp->tv_nsec = (monotonic_time_us % 1000000LL) * 1000L; break; @@ -454,23 +278,23 @@ int clock_gettime (clockid_t clock_id, struct timespec *tp) int clock_getres (clockid_t clock_id, struct timespec *res) { -#if defined( WITH_FRC ) || defined( WITH_RTC ) +#if IMPL_NEWLIB_TIME_FUNCS if (res == NULL) { errno = EINVAL; return -1; } -#if defined( WITH_FRC ) + res->tv_sec = 0; - res->tv_nsec = 1000L; -#elif defined( WITH_RTC ) - res->tv_sec = 0; - uint32_t rtc_freq = rtc_clk_slow_freq_get_hz(); - assert(rtc_freq != 0); - res->tv_nsec = 1000000000L / rtc_freq; -#endif // WITH_FRC + res->tv_nsec = esp_time_impl_get_time_resolution() * 1000; + return 0; #else errno = ENOSYS; return -1; #endif } + +void esp_newlib_time_init(void) +{ + esp_time_impl_init(); +} \ No newline at end of file