Merge branch 'ci/sdmmc_performance_log' into 'master'

ci: add log output for the sdmmc performance test

See merge request espressif/esp-idf!13753
This commit is contained in:
Michael (XIAO Xufeng)
2021-06-22 02:45:05 +00:00
3 changed files with 224 additions and 151 deletions

View File

@@ -1,4 +1,4 @@
idf_component_register(SRC_DIRS "." idf_component_register(SRC_DIRS "."
PRIV_INCLUDE_DIRS "." PRIV_INCLUDE_DIRS "."
PRIV_REQUIRES cmock sdmmc PRIV_REQUIRES cmock sdmmc test_utils
) )

View File

@@ -18,6 +18,7 @@
#include <time.h> #include <time.h>
#include <sys/time.h> #include <sys/time.h>
#include <unistd.h> #include <unistd.h>
#include "sdkconfig.h"
#include "unity.h" #include "unity.h"
#include "driver/gpio.h" #include "driver/gpio.h"
#include "soc/soc_caps.h" #include "soc/soc_caps.h"
@@ -30,11 +31,13 @@
#include "esp_log.h" #include "esp_log.h"
#include "esp_heap_caps.h" #include "esp_heap_caps.h"
#include "esp_rom_gpio.h" #include "esp_rom_gpio.h"
#include "test_utils.h"
#define WITH_SD_TEST (SOC_SDMMC_HOST_SUPPORTED)
//Currently no runners for S2 and C3
#define WITH_SDSPI_TEST (!TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32C3))
// Can't test eMMC (slot 0) and PSRAM together // Can't test eMMC (slot 0) and PSRAM together
#ifndef CONFIG_SPIRAM #define WITH_EMMC_TEST (SOC_SDMMC_HOST_SUPPORTED && !CONFIG_SPIRAM)
#define WITH_EMMC_TEST
#endif
/* power supply enable pin */ /* power supply enable pin */
#define SD_TEST_BOARD_VSEL_EN_GPIO 27 #define SD_TEST_BOARD_VSEL_EN_GPIO 27
@@ -54,25 +57,6 @@
#define CD_WP_TEST_GPIO 18 #define CD_WP_TEST_GPIO 18
__attribute__((unused)) static void sd_test_board_power_on(void)
{
gpio_set_direction(SD_TEST_BOARD_VSEL_GPIO, GPIO_MODE_OUTPUT);
gpio_set_level(SD_TEST_BOARD_VSEL_GPIO, SD_TEST_BOARD_VSEL_3V3);
gpio_set_direction(SD_TEST_BOARD_VSEL_EN_GPIO, GPIO_MODE_OUTPUT);
gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 0);
usleep(SD_TEST_BOARD_PWR_RST_DELAY_MS * 1000);
gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 1);
usleep(SD_TEST_BOARD_PWR_ON_DELAY_MS * 1000);
}
__attribute__((unused)) static void sd_test_board_power_off(void)
{
gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 0);
gpio_set_direction(SD_TEST_BOARD_VSEL_GPIO, GPIO_MODE_INPUT);
gpio_set_level(SD_TEST_BOARD_VSEL_GPIO, 0);
gpio_set_direction(SD_TEST_BOARD_VSEL_EN_GPIO, GPIO_MODE_INPUT);
}
TEST_CASE("MMC_RSP_BITS", "[sd]") TEST_CASE("MMC_RSP_BITS", "[sd]")
{ {
uint32_t data[2] = { 0x01234567, 0x89abcdef }; uint32_t data[2] = { 0x01234567, 0x89abcdef };
@@ -83,7 +67,25 @@ TEST_CASE("MMC_RSP_BITS", "[sd]")
TEST_ASSERT_EQUAL_HEX32(0x11, MMC_RSP_BITS(data, 59, 5)); TEST_ASSERT_EQUAL_HEX32(0x11, MMC_RSP_BITS(data, 59, 5));
} }
#if SOC_SDMMC_HOST_SUPPORTED #if WITH_SD_TEST || WITH_EMMC_TEST
static void sd_test_board_power_on(void)
{
gpio_set_direction(SD_TEST_BOARD_VSEL_GPIO, GPIO_MODE_OUTPUT);
gpio_set_level(SD_TEST_BOARD_VSEL_GPIO, SD_TEST_BOARD_VSEL_3V3);
gpio_set_direction(SD_TEST_BOARD_VSEL_EN_GPIO, GPIO_MODE_OUTPUT);
gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 0);
usleep(SD_TEST_BOARD_PWR_RST_DELAY_MS * 1000);
gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 1);
usleep(SD_TEST_BOARD_PWR_ON_DELAY_MS * 1000);
}
static void sd_test_board_power_off(void)
{
gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 0);
gpio_set_direction(SD_TEST_BOARD_VSEL_GPIO, GPIO_MODE_INPUT);
gpio_set_level(SD_TEST_BOARD_VSEL_GPIO, 0);
gpio_set_direction(SD_TEST_BOARD_VSEL_EN_GPIO, GPIO_MODE_INPUT);
}
static void probe_sd(int slot, int width, int freq_khz, int ddr) static void probe_sd(int slot, int width, int freq_khz, int ddr)
{ {
@@ -117,7 +119,9 @@ static void probe_sd(int slot, int width, int freq_khz, int ddr)
free(card); free(card);
sd_test_board_power_off(); sd_test_board_power_off();
} }
#endif //WITH_SD_TEST || WITH_EMMC_TEST
#if WITH_SD_TEST
TEST_CASE("probe SD, slot 1, 4-bit", "[sd][test_env=UT_T1_SDMODE]") TEST_CASE("probe SD, slot 1, 4-bit", "[sd][test_env=UT_T1_SDMODE]")
{ {
probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_PROBING, 0); probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_PROBING, 0);
@@ -132,7 +136,23 @@ TEST_CASE("probe SD, slot 1, 1-bit", "[sd][test_env=UT_T1_SDMODE]")
probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_HIGHSPEED, 0); probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_HIGHSPEED, 0);
} }
#ifdef WITH_EMMC_TEST //No runners for slot 0
TEST_CASE("probe SD, slot 0, 4-bit", "[sd][ignore]")
{
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_HIGHSPEED, 0);
}
TEST_CASE("probe SD, slot 0, 1-bit", "[sd][ignore]")
{
probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_HIGHSPEED, 0);
}
#endif //WITH_SD_TEST
#if WITH_EMMC_TEST
TEST_CASE("probe eMMC, slot 0, 4-bit", "[sd][test_env=EMMC]") TEST_CASE("probe eMMC, slot 0, 4-bit", "[sd][test_env=EMMC]")
{ {
//Test with SDR //Test with SDR
@@ -152,24 +172,7 @@ TEST_CASE("probe eMMC, slot 0, 8-bit", "[sd][test_env=EMMC]")
} }
#endif // WITH_EMMC_TEST #endif // WITH_EMMC_TEST
TEST_CASE("probe SD, slot 0, 4-bit", "[sd][test_env=UT_T1_SDCARD][ignore]") #if WITH_SDSPI_TEST
{
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_HIGHSPEED, 0);
}
TEST_CASE("probe SD, slot 0, 1-bit", "[sd][test_env=UT_T1_SDCARD][ignore]")
{
probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_PROBING, 0);
probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_DEFAULT, 0);
probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_HIGHSPEED, 0);
}
#endif
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32C3)
//No runners
static void test_sdspi_init_bus(spi_host_device_t host, int mosi_pin, int miso_pin, int clk_pin, int dma_chan) static void test_sdspi_init_bus(spi_host_device_t host, int mosi_pin, int miso_pin, int clk_pin, int dma_chan)
{ {
spi_bus_config_t bus_config = { spi_bus_config_t bus_config = {
@@ -239,23 +242,24 @@ static void probe_spi_legacy(int freq_khz, int pin_miso, int pin_mosi, int pin_s
sd_test_board_power_off(); sd_test_board_power_off();
} }
TEST_CASE("probe SD in SPI mode, slot 1", "[sd][test_env=UT_T1_SPIMODE]") TEST_CASE("probe SD in SPI mode", "[sd][test_env=UT_T1_SPIMODE]")
{ {
probe_spi(SDMMC_FREQ_DEFAULT, 2, 15, 14, 13); probe_spi(SDMMC_FREQ_DEFAULT, 2, 15, 14, 13);
probe_spi_legacy(SDMMC_FREQ_DEFAULT, 2, 15, 14, 13); probe_spi_legacy(SDMMC_FREQ_DEFAULT, 2, 15, 14, 13);
} }
TEST_CASE("probe SD in SPI mode, slot 0", "[sd][test_env=UT_T1_SDCARD][ignore]") // No runner for this
TEST_CASE("probe SD in SPI mode, slot 0", "[sd][ignore]")
{ {
probe_spi(SDMMC_FREQ_DEFAULT, 7, 11, 6, 10); probe_spi(SDMMC_FREQ_DEFAULT, 7, 11, 6, 10);
probe_spi_legacy(SDMMC_FREQ_DEFAULT, 7, 11, 6, 10); probe_spi_legacy(SDMMC_FREQ_DEFAULT, 7, 11, 6, 10);
} }
#endif //WITH_SDSPI_TEST
#endif //DISABLED(ESP32S2) #if WITH_SD_TEST || WITH_SDSPI_TEST || WITH_EMMC_TEST
// Fill buffer pointed to by 'dst' with 'count' 32-bit ints generated // Fill buffer pointed to by 'dst' with 'count' 32-bit ints generated
// from 'rand' with the starting value of 'seed' // from 'rand' with the starting value of 'seed'
__attribute__((unused)) static void fill_buffer(uint32_t seed, uint8_t* dst, size_t count) { static void fill_buffer(uint32_t seed, uint8_t* dst, size_t count) {
srand(seed); srand(seed);
for (size_t i = 0; i < count; ++i) { for (size_t i = 0; i < count; ++i) {
uint32_t val = rand(); uint32_t val = rand();
@@ -265,7 +269,7 @@ __attribute__((unused)) static void fill_buffer(uint32_t seed, uint8_t* dst, siz
// Check if the buffer pointed to by 'dst' contains 'count' 32-bit // Check if the buffer pointed to by 'dst' contains 'count' 32-bit
// ints generated from 'rand' with the starting value of 'seed' // ints generated from 'rand' with the starting value of 'seed'
__attribute__((unused)) static void check_buffer(uint32_t seed, const uint8_t* src, size_t count) { static void check_buffer(uint32_t seed, const uint8_t* src, size_t count) {
srand(seed); srand(seed);
for (size_t i = 0; i < count; ++i) { for (size_t i = 0; i < count; ++i) {
uint32_t val; uint32_t val;
@@ -274,8 +278,8 @@ __attribute__((unused)) static void check_buffer(uint32_t seed, const uint8_t* s
} }
} }
__attribute__((unused)) static void do_single_write_read_test(sdmmc_card_t* card, static void do_single_write_read_test(sdmmc_card_t* card, size_t start_block,
size_t start_block, size_t block_count, size_t alignment) size_t block_count, size_t alignment, bool performance_log)
{ {
size_t block_size = card->csd.sector_size; size_t block_size = card->csd.sector_size;
size_t total_size = block_size * block_count; size_t total_size = block_size * block_count;
@@ -307,35 +311,69 @@ __attribute__((unused)) static void do_single_write_read_test(sdmmc_card_t* card
time_rd, total_size / (time_rd / 1000) / (1024 * 1024)); time_rd, total_size / (time_rd / 1000) / (1024 * 1024));
check_buffer(start_block, c_buffer, total_size / sizeof(buffer[0])); check_buffer(start_block, c_buffer, total_size / sizeof(buffer[0]));
free(buffer); free(buffer);
if (performance_log) {
static const char wr_speed_str[] = "SDMMC_WR_SPEED";
static const char rd_speed_str[] = "SDMMC_RD_SPEED";
int aligned = ((alignment % 4) == 0)? 1: 0;
IDF_LOG_PERFORMANCE(wr_speed_str, "%d, blk_n: %d, aligned: %d",
(int)(total_size * 1000 / time_wr), block_count, aligned);
IDF_LOG_PERFORMANCE(rd_speed_str, "%d, blk_n: %d, aligned: %d",
(int)(total_size * 1000 / time_rd), block_count, aligned);
}
} }
__attribute__((unused)) static void read_write_test(sdmmc_card_t* card) typedef void (*sd_test_func_t)(sdmmc_card_t* card);
static void test_read_write_performance(sdmmc_card_t* card)
{ {
sdmmc_card_print_info(stdout, card); sdmmc_card_print_info(stdout, card);
printf(" sector | count | align | size(kB) | wr_time(ms) | wr_speed(MB/s) | rd_time(ms) | rd_speed(MB/s)\n"); printf(" sector | count | align | size(kB) | wr_time(ms) | wr_speed(MB/s) | rd_time(ms) | rd_speed(MB/s)\n");
do_single_write_read_test(card, 0, 1, 4); const int offset = 0;
do_single_write_read_test(card, 0, 4, 4); const bool do_log = true;
do_single_write_read_test(card, 1, 16, 4); //aligned
do_single_write_read_test(card, 16, 32, 4); do_single_write_read_test(card, offset, 1, 4, do_log);
do_single_write_read_test(card, 48, 64, 4); do_single_write_read_test(card, offset, 4, 4, do_log);
do_single_write_read_test(card, 128, 128, 4); do_single_write_read_test(card, offset, 8, 4, do_log);
do_single_write_read_test(card, card->csd.capacity - 64, 32, 4); do_single_write_read_test(card, offset, 16, 4, do_log);
do_single_write_read_test(card, card->csd.capacity - 64, 64, 4); do_single_write_read_test(card, offset, 32, 4, do_log);
do_single_write_read_test(card, card->csd.capacity - 8, 1, 4); do_single_write_read_test(card, offset, 64, 4, do_log);
do_single_write_read_test(card, card->csd.capacity/2, 1, 4); do_single_write_read_test(card, offset, 128, 4, do_log);
do_single_write_read_test(card, card->csd.capacity/2, 4, 4); //unaligned
do_single_write_read_test(card, card->csd.capacity/2, 8, 4); do_single_write_read_test(card, offset, 1, 1, do_log);
do_single_write_read_test(card, card->csd.capacity/2, 16, 4); do_single_write_read_test(card, offset, 8, 1, do_log);
do_single_write_read_test(card, card->csd.capacity/2, 32, 4); do_single_write_read_test(card, offset, 128, 1, do_log);
do_single_write_read_test(card, card->csd.capacity/2, 64, 4);
do_single_write_read_test(card, card->csd.capacity/2, 128, 4);
do_single_write_read_test(card, card->csd.capacity/2, 1, 1);
do_single_write_read_test(card, card->csd.capacity/2, 8, 1);
do_single_write_read_test(card, card->csd.capacity/2, 128, 1);
} }
#if SOC_SDMMC_HOST_SUPPORTED static void test_read_write_with_offset(sdmmc_card_t* card)
void test_sd_rw_blocks(int slot, int width) {
sdmmc_card_print_info(stdout, card);
printf(" sector | count | align | size(kB) | wr_time(ms) | wr_speed(MB/s) | rd_time(ms) | rd_speed(MB/s)\n");
const bool no_log = false;;
//aligned
do_single_write_read_test(card, 1, 16, 4, no_log);
do_single_write_read_test(card, 16, 32, 4, no_log);
do_single_write_read_test(card, 48, 64, 4, no_log);
do_single_write_read_test(card, 128, 128, 4, no_log);
do_single_write_read_test(card, card->csd.capacity - 64, 32, 4, no_log);
do_single_write_read_test(card, card->csd.capacity - 64, 64, 4, no_log);
do_single_write_read_test(card, card->csd.capacity - 8, 1, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 1, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 4, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 8, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 16, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 32, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 64, 4, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 128, 4, no_log);
//unaligned
do_single_write_read_test(card, card->csd.capacity/2, 1, 1, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 8, 1, no_log);
do_single_write_read_test(card, card->csd.capacity/2, 128, 1, no_log);
}
#endif //WITH_SD_TEST || WITH_SDSPI_TEST || WITH_EMMC_TEST
#if WITH_SD_TEST || WITH_EMMC_TEST
void sd_test_rw_blocks(int slot, int width, sd_test_func_t test_func)
{ {
sdmmc_host_t config = SDMMC_HOST_DEFAULT(); sdmmc_host_t config = SDMMC_HOST_DEFAULT();
config.max_freq_khz = SDMMC_FREQ_HIGHSPEED; config.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
@@ -352,38 +390,67 @@ void test_sd_rw_blocks(int slot, int width)
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card); TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card)); TEST_ESP_OK(sdmmc_card_init(&config, card));
read_write_test(card); test_func(card);
free(card); free(card);
TEST_ESP_OK(sdmmc_host_deinit()); TEST_ESP_OK(sdmmc_host_deinit());
} }
#endif //WITH_SD_TEST || WITH_EMMC_TEST
TEST_CASE("SDMMC read/write test (SD slot 1)", "[sd][test_env=UT_T1_SDMODE]") #if WITH_SD_TEST
TEST_CASE("SDMMC performance test (SD slot 1, 4 line)", "[sd][test_env=UT_T1_SDMODE]")
{ {
sd_test_board_power_on(); sd_test_board_power_on();
test_sd_rw_blocks(1, 4); sd_test_rw_blocks(1, 4, test_read_write_performance);
sd_test_board_power_off(); sd_test_board_power_off();
} }
#ifdef WITH_EMMC_TEST TEST_CASE("SDMMC performance test (SD slot 1, 1 line)", "[sd][test_env=UT_T1_SDMODE]")
TEST_CASE("SDMMC read/write test (eMMC slot 0, 4 line DDR)", "[sd][test_env=EMMC]")
{ {
sd_test_board_power_on(); sd_test_board_power_on();
test_sd_rw_blocks(0, 4); sd_test_rw_blocks(1, 1, test_read_write_performance);
sd_test_board_power_off(); sd_test_board_power_off();
} }
TEST_CASE("SDMMC read/write test (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]") TEST_CASE("SDMMC test read/write with offset (SD slot 1)", "[sd][test_env=UT_T1_SDMODE]")
{ {
sd_test_board_power_on(); sd_test_board_power_on();
test_sd_rw_blocks(0, 8); sd_test_rw_blocks(1, 4, test_read_write_with_offset);
sd_test_board_power_off();
}
#endif //WITH_SD_TEST
#if WITH_EMMC_TEST
TEST_CASE("SDMMC performance test (eMMC slot 0, 4 line DDR)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 4, test_read_write_performance);
sd_test_board_power_off();
}
TEST_CASE("SDMMC test read/write with offset (eMMC slot 0, 4 line DDR)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 4, test_read_write_with_offset);
sd_test_board_power_off();
}
TEST_CASE("SDMMC performance test (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 8, test_read_write_performance);
sd_test_board_power_off();
}
TEST_CASE("SDMMC test read/write with offset (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]")
{
sd_test_board_power_on();
sd_test_rw_blocks(0, 8, test_read_write_with_offset);
sd_test_board_power_off(); sd_test_board_power_off();
} }
#endif // WITH_EMMC_TEST #endif // WITH_EMMC_TEST
#endif // SDMMC_HOST_SUPPORTED
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32C3) #if WITH_SDSPI_TEST
//No runners void sdspi_test_rw_blocks(sd_test_func_t test_func)
TEST_CASE("SDMMC read/write test (SD slot 1, in SPI mode)", "[sdspi][test_env=UT_T1_SPIMODE]")
{ {
sd_test_board_power_on(); sd_test_board_power_on();
@@ -401,15 +468,25 @@ TEST_CASE("SDMMC read/write test (SD slot 1, in SPI mode)", "[sdspi][test_env=UT
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card); TEST_ASSERT_NOT_NULL(card);
TEST_ESP_OK(sdmmc_card_init(&config, card)); TEST_ESP_OK(sdmmc_card_init(&config, card));
read_write_test(card); test_func(card);
TEST_ESP_OK(sdspi_host_deinit()); TEST_ESP_OK(sdspi_host_deinit());
free(card); free(card);
test_sdspi_deinit_bus(dev_config.host_id); test_sdspi_deinit_bus(dev_config.host_id);
sd_test_board_power_off(); sd_test_board_power_off();
} }
#endif //DISABLED_FOR_TARGETS(ESP32S2, ESP32C3)
#if SOC_SDMMC_HOST_SUPPORTED TEST_CASE("SDMMC performance (SPI mode)", "[sdspi][test_env=UT_T1_SPIMODE]")
{
sdspi_test_rw_blocks(test_read_write_performance);
}
TEST_CASE("SDMMC test read/write with offset (SPI mode)", "[sdspi][test_env=UT_T1_SPIMODE]")
{
sdspi_test_rw_blocks(test_read_write_with_offset);
}
#endif //WITH_SDSPI_TEST
#if WITH_SD_TEST
TEST_CASE("reads and writes with an unaligned buffer", "[sd][test_env=UT_T1_SDMODE]") TEST_CASE("reads and writes with an unaligned buffer", "[sd][test_env=UT_T1_SDMODE]")
{ {
sd_test_board_power_on(); sd_test_board_power_on();
@@ -447,9 +524,10 @@ TEST_CASE("reads and writes with an unaligned buffer", "[sd][test_env=UT_T1_SDMO
TEST_ESP_OK(sdmmc_host_deinit()); TEST_ESP_OK(sdmmc_host_deinit());
sd_test_board_power_off(); sd_test_board_power_off();
} }
#endif #endif //WITH_SD_TEST
__attribute__((unused)) static void test_cd_input(int gpio_cd_num, const sdmmc_host_t* config) #if WITH_SD_TEST || WITH_SDSPI_TEST
static void test_cd_input(int gpio_cd_num, const sdmmc_host_t* config)
{ {
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card); TEST_ASSERT_NOT_NULL(card);
@@ -473,48 +551,7 @@ __attribute__((unused)) static void test_cd_input(int gpio_cd_num, const sdmmc_h
free(card); free(card);
} }
#if SOC_SDMMC_HOST_SUPPORTED static void test_wp_input(int gpio_wp_num, const sdmmc_host_t* config)
TEST_CASE("CD input works in SD mode", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
slot_config.gpio_cd = CD_WP_TEST_GPIO;
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
test_cd_input(CD_WP_TEST_GPIO, &config);
TEST_ESP_OK(sdmmc_host_deinit());
sd_test_board_power_off();
}
#endif
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32C3)
//No runners
TEST_CASE("CD input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]")
{
sd_test_board_power_on();
sdspi_dev_handle_t handle;
sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT();
dev_config.gpio_cd = CD_WP_TEST_GPIO;
test_sdspi_init_bus(dev_config.host_id, GPIO_NUM_15, GPIO_NUM_2, GPIO_NUM_14, TEST_SDSPI_DMACHAN);
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle));
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
config.slot = handle;
test_cd_input(CD_WP_TEST_GPIO, &config);
TEST_ESP_OK(sdspi_host_deinit());
test_sdspi_deinit_bus(dev_config.host_id);
sd_test_board_power_off();
}
#endif //DISABLED_FOR_TARGETS(ESP32S2)
__attribute__((unused)) static void test_wp_input(int gpio_wp_num, const sdmmc_host_t* config)
{ {
sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t));
TEST_ASSERT_NOT_NULL(card); TEST_ASSERT_NOT_NULL(card);
@@ -546,8 +583,24 @@ __attribute__((unused)) static void test_wp_input(int gpio_wp_num, const sdmmc_h
free(data); free(data);
free(card); free(card);
} }
#endif //WITH_SD_TEST || WITH_SDSPI_TEST
#if WITH_SD_TEST
TEST_CASE("CD input works in SD mode", "[sd][test_env=UT_T1_SDMODE]")
{
sd_test_board_power_on();
sdmmc_host_t config = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
slot_config.gpio_cd = CD_WP_TEST_GPIO;
TEST_ESP_OK(sdmmc_host_init());
TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config));
test_cd_input(CD_WP_TEST_GPIO, &config);
TEST_ESP_OK(sdmmc_host_deinit());
sd_test_board_power_off();
}
#if SOC_SDMMC_HOST_SUPPORTED
TEST_CASE("WP input works in SD mode", "[sd][test_env=UT_T1_SDMODE]") TEST_CASE("WP input works in SD mode", "[sd][test_env=UT_T1_SDMODE]")
{ {
sd_test_board_power_on(); sd_test_board_power_on();
@@ -562,10 +615,30 @@ TEST_CASE("WP input works in SD mode", "[sd][test_env=UT_T1_SDMODE]")
TEST_ESP_OK(sdmmc_host_deinit()); TEST_ESP_OK(sdmmc_host_deinit());
sd_test_board_power_off(); sd_test_board_power_off();
} }
#endif #endif //WITH_SD_TEST
#if WITH_SDSPI_TEST
TEST_CASE("CD input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]")
{
sd_test_board_power_on();
sdspi_dev_handle_t handle;
sdspi_device_config_t dev_config = SDSPI_DEVICE_CONFIG_DEFAULT();
dev_config.gpio_cd = CD_WP_TEST_GPIO;
test_sdspi_init_bus(dev_config.host_id, GPIO_NUM_15, GPIO_NUM_2, GPIO_NUM_14, TEST_SDSPI_DMACHAN);
TEST_ESP_OK(sdspi_host_init());
TEST_ESP_OK(sdspi_host_init_device(&dev_config, &handle));
sdmmc_host_t config = SDSPI_HOST_DEFAULT();
config.slot = handle;
test_cd_input(CD_WP_TEST_GPIO, &config);
TEST_ESP_OK(sdspi_host_deinit());
test_sdspi_deinit_bus(dev_config.host_id);
sd_test_board_power_off();
}
#if !TEMPORARY_DISABLED_FOR_TARGETS(ESP32S2, ESP32C3)
//No runners
TEST_CASE("WP input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]") TEST_CASE("WP input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]")
{ {
sd_test_board_power_on(); sd_test_board_power_on();
@@ -587,4 +660,4 @@ TEST_CASE("WP input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]")
test_sdspi_deinit_bus(dev_config.host_id); test_sdspi_deinit_bus(dev_config.host_id);
sd_test_board_power_off(); sd_test_board_power_off();
} }
#endif //DISABLED_FOR_TARGETS(ESP32S2) #endif //WITH_SDSPI_TEST

View File

@@ -47,28 +47,28 @@ extern "C" {
#define _TEST_PERFORMANCE_ASSERT(ARG) printf("Ignoring performance test [%s]\n", PERFORMANCE_STR(ARG)) #define _TEST_PERFORMANCE_ASSERT(ARG) printf("Ignoring performance test [%s]\n", PERFORMANCE_STR(ARG))
#endif #endif
#define TEST_PERFORMANCE_LESS_THAN(name, value_fmt, value) do { \ #define TEST_PERFORMANCE_LESS_THAN(name, value_fmt, value, ...) do { \
printf("[Performance][" PERFORMANCE_STR(name) "]: "value_fmt"\n", value); \ IDF_LOG_PERFORMANCE(#name, value_fmt, value, ##__VA_ARGS__); \
_TEST_PERFORMANCE_ASSERT(value < PERFORMANCE_CON(IDF_PERFORMANCE_MAX_, name)); \ _TEST_PERFORMANCE_ASSERT(value < PERFORMANCE_CON(IDF_PERFORMANCE_MAX_, name)); \
} while(0) } while(0)
#define TEST_PERFORMANCE_GREATER_THAN(name, value_fmt, value) do { \ #define TEST_PERFORMANCE_GREATER_THAN(name, value_fmt, value, ...) do { \
printf("[Performance][" PERFORMANCE_STR(name) "]: "value_fmt"\n", value); \ IDF_LOG_PERFORMANCE(#name, value_fmt, value, ##__VA_ARGS__); \
_TEST_PERFORMANCE_ASSERT(value > PERFORMANCE_CON(IDF_PERFORMANCE_MIN_, name)); \ _TEST_PERFORMANCE_ASSERT(value > PERFORMANCE_CON(IDF_PERFORMANCE_MIN_, name)); \
} while(0) } while(0)
/* Macros to be used when performance is calculated using the cache compensated timer /* Macros to be used when performance is calculated using the cache compensated timer
will not assert if ccomp not supported */ will not assert if ccomp not supported */
#if SOC_CCOMP_TIMER_SUPPORTED #if SOC_CCOMP_TIMER_SUPPORTED
#define TEST_PERFORMANCE_CCOMP_GREATER_THAN(name, value_fmt, value) \ #define TEST_PERFORMANCE_CCOMP_GREATER_THAN(name, value_fmt, value, ...) \
TEST_PERFORMANCE_GREATER_THAN(name, value_fmt, value) TEST_PERFORMANCE_GREATER_THAN(name, value_fmt, value, ##__VA_ARGS__)
#define TEST_PERFORMANCE_CCOMP_LESS_THAN(name, value_fmt, value) \ #define TEST_PERFORMANCE_CCOMP_LESS_THAN(name, value_fmt, value, ...) \
TEST_PERFORMANCE_LESS_THAN(name, value_fmt, value) TEST_PERFORMANCE_LESS_THAN(name, value_fmt, value, ##__VA_ARGS__)
#else #else
#define TEST_PERFORMANCE_CCOMP_GREATER_THAN(name, value_fmt, value) \ #define TEST_PERFORMANCE_CCOMP_GREATER_THAN(name, value_fmt, value, ...) \
printf("[Performance][" PERFORMANCE_STR(name) "]: "value_fmt"\n", value); IDF_LOG_PERFORMANCE(#name, value_fmt, value, ##__VA_ARGS__)
#define TEST_PERFORMANCE_CCOMP_LESS_THAN(name, value_fmt, value) \ #define TEST_PERFORMANCE_CCOMP_LESS_THAN(name, value_fmt, value, ...) \
printf("[Performance][" PERFORMANCE_STR(name) "]: "value_fmt"\n", value); IDF_LOG_PERFORMANCE(#name, value_fmt, value, ##__VA_ARGS__)
#endif //SOC_CCOMP_TIMER_SUPPORTED #endif //SOC_CCOMP_TIMER_SUPPORTED
@@ -77,8 +77,8 @@ extern "C" {
* @param value_fmt: print format and unit of the value, for example: "%02fms", "%dKB" * @param value_fmt: print format and unit of the value, for example: "%02fms", "%dKB"
* @param value : the performance value. * @param value : the performance value.
*/ */
#define IDF_LOG_PERFORMANCE(item, value_fmt, value) \ #define IDF_LOG_PERFORMANCE(item, value_fmt, value, ...) \
printf("[Performance][%s]: "value_fmt"\n", item, value) printf("[Performance][%s]: "value_fmt"\n", item, value, ##__VA_ARGS__)
/* Some definitions applicable to Unity running in FreeRTOS */ /* Some definitions applicable to Unity running in FreeRTOS */