mirror of
https://github.com/espressif/esp-idf.git
synced 2025-10-03 02:20:57 +02:00
Merge branch 'feat/support_aes_block_and_dma_modes_during_runtime' into 'master'
Support AES block and DMA modes during runtime Closes IDFGH-15251 and IDF-2594 See merge request espressif/esp-idf!40917
This commit is contained in:
@@ -6,4 +6,7 @@ set(EXTRA_COMPONENT_DIRS "$ENV{IDF_PATH}/tools/test_apps/components")
|
||||
|
||||
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
|
||||
|
||||
# "Trim" the build. Include the minimal set of components, main, and anything it depends on.
|
||||
idf_build_set_property(MINIMAL_BUILD ON)
|
||||
|
||||
project(crypto_test)
|
||||
|
@@ -30,14 +30,13 @@ endif()
|
||||
if(CONFIG_SOC_AES_SUPPORTED)
|
||||
list(APPEND srcs "aes/test_aes.c"
|
||||
"$ENV{IDF_PATH}/components/mbedtls/port/aes/esp_aes_common.c"
|
||||
"aes/aes_block.c")
|
||||
"$ENV{IDF_PATH}/components/mbedtls/port/aes/esp_aes.c")
|
||||
|
||||
list(APPEND priv_include_dirs "$ENV{IDF_PATH}/components/mbedtls/port/include"
|
||||
"$ENV{IDF_PATH}/components/mbedtls/port/aes/include")
|
||||
|
||||
if(CONFIG_SOC_AES_SUPPORT_DMA)
|
||||
list(APPEND priv_include_dirs "$ENV{IDF_PATH}/components/mbedtls/port/aes/dma/include")
|
||||
list(APPEND srcs "$ENV{IDF_PATH}/components/mbedtls/port/aes/dma/esp_aes.c")
|
||||
|
||||
if(NOT CONFIG_SOC_AES_GDMA)
|
||||
list(APPEND srcs "$ENV{IDF_PATH}/components/mbedtls/port/aes/dma/esp_aes_crypto_dma_impl.c")
|
||||
else()
|
||||
|
@@ -1,111 +0,0 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023-2025 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: CC0-1.0
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "esp_crypto_periph_clk.h"
|
||||
#include "hal/aes_types.h"
|
||||
#include "hal/aes_hal.h"
|
||||
#include "hal/aes_ll.h"
|
||||
|
||||
#if SOC_AES_SUPPORTED
|
||||
|
||||
#include "aes_block.h"
|
||||
|
||||
void aes_crypt_cbc_block(int mode,
|
||||
uint8_t key_bytes,
|
||||
const uint8_t key[32],
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output)
|
||||
{
|
||||
uint32_t *output_words = (uint32_t *)output;
|
||||
const uint32_t *input_words = (const uint32_t *)input;
|
||||
uint32_t *iv_words = (uint32_t *)iv;
|
||||
unsigned char temp[16];
|
||||
|
||||
esp_crypto_aes_enable_periph_clk(true);
|
||||
|
||||
/* Sets the key used for AES encryption/decryption */
|
||||
aes_hal_setkey(key, key_bytes, mode);
|
||||
|
||||
if (mode == ESP_AES_DECRYPT) {
|
||||
while ( length > 0 ) {
|
||||
memcpy(temp, input_words, 16);
|
||||
aes_hal_transform_block(input_words, output_words);
|
||||
|
||||
output_words[0] = output_words[0] ^ iv_words[0];
|
||||
output_words[1] = output_words[1] ^ iv_words[1];
|
||||
output_words[2] = output_words[2] ^ iv_words[2];
|
||||
output_words[3] = output_words[3] ^ iv_words[3];
|
||||
|
||||
memcpy( iv_words, temp, 16 );
|
||||
|
||||
input_words += 4;
|
||||
output_words += 4;
|
||||
length -= 16;
|
||||
}
|
||||
} else { // ESP_AES_ENCRYPT
|
||||
while ( length > 0 ) {
|
||||
|
||||
output_words[0] = input_words[0] ^ iv_words[0];
|
||||
output_words[1] = input_words[1] ^ iv_words[1];
|
||||
output_words[2] = input_words[2] ^ iv_words[2];
|
||||
output_words[3] = input_words[3] ^ iv_words[3];
|
||||
|
||||
aes_hal_transform_block(output_words, output_words);
|
||||
memcpy( iv_words, output_words, 16 );
|
||||
|
||||
input_words += 4;
|
||||
output_words += 4;
|
||||
length -= 16;
|
||||
}
|
||||
}
|
||||
|
||||
esp_crypto_aes_enable_periph_clk(false);
|
||||
}
|
||||
|
||||
|
||||
void aes_crypt_ctr_block(uint8_t key_bytes,
|
||||
const uint8_t key[32],
|
||||
size_t length,
|
||||
size_t *nc_off,
|
||||
unsigned char nonce_counter[16],
|
||||
unsigned char stream_block[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int c, i;
|
||||
size_t n = *nc_off;
|
||||
|
||||
esp_crypto_aes_enable_periph_clk(true);
|
||||
|
||||
/* Sets the key used for AES encryption/decryption */
|
||||
aes_hal_setkey(key, key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
while (length--) {
|
||||
if ( n == 0 ) {
|
||||
aes_hal_transform_block(nonce_counter, stream_block);
|
||||
for ( i = 16; i > 0; i-- ) {
|
||||
if ( ++nonce_counter[i - 1] != 0 ) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
c = *input++;
|
||||
*output++ = (unsigned char)( c ^ stream_block[n] );
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
|
||||
*nc_off = n;
|
||||
|
||||
esp_crypto_aes_enable_periph_clk(false);
|
||||
}
|
||||
|
||||
#endif
|
@@ -1,29 +0,0 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2019-2023 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#if SOC_AES_SUPPORTED
|
||||
|
||||
void aes_crypt_cbc_block(int mode,
|
||||
uint8_t key_bytes,
|
||||
const uint8_t key[32],
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output);
|
||||
|
||||
void aes_crypt_ctr_block(uint8_t key_bytes,
|
||||
const uint8_t key[32],
|
||||
size_t length,
|
||||
size_t *nc_off,
|
||||
unsigned char nonce_counter[16],
|
||||
unsigned char stream_block[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output );
|
||||
|
||||
#endif
|
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
|
||||
* SPDX-FileCopyrightText: 2023-2025 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: CC0-1.0
|
||||
*/
|
||||
@@ -15,15 +15,10 @@
|
||||
#include "memory_checks.h"
|
||||
#include "unity_fixture.h"
|
||||
#include "esp_log.h"
|
||||
#include "aes/esp_aes.h"
|
||||
#include "aes/esp_aes_gcm.h"
|
||||
|
||||
#if SOC_AES_SUPPORTED
|
||||
|
||||
#include "aes_block.h"
|
||||
|
||||
#define AES_BUFFER_SIZE 1600
|
||||
#define AES_LONG_BUFFER_SIZE 8000
|
||||
#include "aes/esp_aes.h"
|
||||
#include "aes/esp_aes_gcm.h"
|
||||
|
||||
TEST_GROUP(aes);
|
||||
|
||||
@@ -39,17 +34,16 @@ TEST_TEAR_DOWN(aes)
|
||||
test_utils_get_leak_level(ESP_LEAK_TYPE_CRITICAL, ESP_COMP_LEAK_ALL));
|
||||
}
|
||||
|
||||
static void test_cbc_aes(bool is_dma, size_t buffer_size, const uint8_t expected_cipher_end[32])
|
||||
static void test_cbc_aes(size_t buffer_size, const uint8_t expected_cipher_end[32])
|
||||
{
|
||||
esp_aes_context ctx;
|
||||
unsigned int key_bits = 256;
|
||||
uint8_t nonce[16];
|
||||
|
||||
esp_aes_init(&ctx);
|
||||
esp_aes_setkey(&ctx, key_256, key_bits);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_setkey(&ctx, key_256, KEY_BITS));
|
||||
|
||||
uint8_t *chipertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(chipertext);
|
||||
uint8_t *ciphertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(ciphertext);
|
||||
uint8_t *plaintext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(plaintext);
|
||||
uint8_t *decryptedtext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
@@ -60,52 +54,34 @@ static void test_cbc_aes(bool is_dma, size_t buffer_size, const uint8_t expected
|
||||
|
||||
// Encrypt
|
||||
memcpy(nonce, iv, 16);
|
||||
#ifdef SOC_AES_SUPPORT_DMA
|
||||
if (is_dma) {
|
||||
esp_aes_crypt_cbc(&ctx, ESP_AES_ENCRYPT, buffer_size, nonce, plaintext, chipertext);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
aes_crypt_cbc_block(ESP_AES_ENCRYPT, key_bits / 8, key_256, buffer_size, nonce, plaintext, chipertext);
|
||||
}
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, chipertext + buffer_size - 32, 32);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_crypt_cbc(&ctx, ESP_AES_ENCRYPT, buffer_size, nonce, plaintext, ciphertext));
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, ciphertext + buffer_size - 32, 32);
|
||||
|
||||
// Decrypt
|
||||
memcpy(nonce, iv, 16);
|
||||
#ifdef SOC_AES_SUPPORT_DMA
|
||||
if (is_dma) {
|
||||
esp_aes_crypt_cbc(&ctx, ESP_AES_DECRYPT, buffer_size, nonce, chipertext, decryptedtext);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
aes_crypt_cbc_block(ESP_AES_DECRYPT, key_bits / 8, key_256, buffer_size, nonce, chipertext, decryptedtext);
|
||||
}
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_crypt_cbc(&ctx, ESP_AES_DECRYPT, buffer_size, nonce, ciphertext, decryptedtext));
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, buffer_size);
|
||||
|
||||
esp_aes_free(&ctx);
|
||||
|
||||
// Free dynamically allocated memory
|
||||
heap_caps_free(chipertext);
|
||||
heap_caps_free(ciphertext);
|
||||
heap_caps_free(plaintext);
|
||||
heap_caps_free(decryptedtext);
|
||||
}
|
||||
|
||||
static void test_ctr_aes(bool is_dma, size_t buffer_size, const uint8_t expected_cipher_end[32])
|
||||
static void test_ctr_aes(size_t buffer_size, const uint8_t expected_cipher_end[32])
|
||||
{
|
||||
|
||||
esp_aes_context ctx;
|
||||
unsigned int key_bits = 256;
|
||||
uint8_t nonce[16];
|
||||
uint8_t stream_block[16];
|
||||
size_t nc_off = 0;
|
||||
|
||||
esp_aes_init(&ctx);
|
||||
esp_aes_setkey(&ctx, key_256, key_bits);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_setkey(&ctx, key_256, KEY_BITS));
|
||||
|
||||
uint8_t *chipertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(chipertext);
|
||||
uint8_t *ciphertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(ciphertext);
|
||||
uint8_t *plaintext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(plaintext);
|
||||
uint8_t *decryptedtext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
@@ -116,53 +92,35 @@ static void test_ctr_aes(bool is_dma, size_t buffer_size, const uint8_t expected
|
||||
|
||||
// Encrypt
|
||||
memcpy(nonce, iv, 16);
|
||||
#ifdef SOC_AES_SUPPORT_DMA
|
||||
if (is_dma) {
|
||||
esp_aes_crypt_ctr(&ctx, buffer_size, &nc_off, nonce, stream_block, plaintext, chipertext);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
aes_crypt_ctr_block(key_bits / 8, key_256, buffer_size, &nc_off, nonce, stream_block, plaintext, chipertext);
|
||||
}
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, chipertext + buffer_size - 32, 32);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_crypt_ctr(&ctx, buffer_size, &nc_off, nonce, stream_block, plaintext, ciphertext));
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, ciphertext + buffer_size - 32, 32);
|
||||
|
||||
// Decrypt
|
||||
memcpy(nonce, iv, 16);
|
||||
nc_off = 0;
|
||||
#ifdef SOC_AES_SUPPORT_DMA
|
||||
if (is_dma) {
|
||||
esp_aes_crypt_ctr(&ctx, buffer_size, &nc_off, nonce, stream_block, chipertext, decryptedtext);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
aes_crypt_ctr_block(key_bits / 8, key_256, buffer_size, &nc_off, nonce, stream_block, chipertext, decryptedtext);
|
||||
}
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_crypt_ctr(&ctx, buffer_size, &nc_off, nonce, stream_block, ciphertext, decryptedtext));
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, buffer_size);
|
||||
|
||||
esp_aes_free(&ctx);
|
||||
|
||||
// Free dynamically allocated memory
|
||||
heap_caps_free(chipertext);
|
||||
heap_caps_free(ciphertext);
|
||||
heap_caps_free(plaintext);
|
||||
heap_caps_free(decryptedtext);
|
||||
}
|
||||
|
||||
#ifdef SOC_AES_SUPPORT_DMA
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
static void test_ofb_aes(size_t buffer_size, const uint8_t expected_cipher_end[32])
|
||||
{
|
||||
esp_aes_context ctx;
|
||||
unsigned int key_bits = 256;
|
||||
uint8_t nonce[16];
|
||||
size_t nc_off = 0;
|
||||
|
||||
esp_aes_init(&ctx);
|
||||
esp_aes_setkey(&ctx, key_256, key_bits);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_setkey(&ctx, key_256, KEY_BITS));
|
||||
|
||||
uint8_t *chipertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(chipertext);
|
||||
uint8_t *ciphertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(ciphertext);
|
||||
uint8_t *plaintext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(plaintext);
|
||||
uint8_t *decryptedtext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
@@ -173,19 +131,19 @@ static void test_ofb_aes(size_t buffer_size, const uint8_t expected_cipher_end[3
|
||||
|
||||
// Encrypt
|
||||
memcpy(nonce, iv, 16);
|
||||
esp_aes_crypt_ofb(&ctx, buffer_size, &nc_off, nonce, plaintext, chipertext);
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, chipertext + buffer_size - 32, 32);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_crypt_ofb(&ctx, buffer_size, &nc_off, nonce, plaintext, ciphertext));
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, ciphertext + buffer_size - 32, 32);
|
||||
|
||||
// Decrypt
|
||||
memcpy(nonce, iv, 16);
|
||||
nc_off = 0;
|
||||
esp_aes_crypt_ofb(&ctx, buffer_size, &nc_off, nonce, chipertext, decryptedtext);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_crypt_ofb(&ctx, buffer_size, &nc_off, nonce, ciphertext, decryptedtext));
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, buffer_size);
|
||||
|
||||
esp_aes_free(&ctx);
|
||||
|
||||
// Free dynamically allocated memory
|
||||
heap_caps_free(chipertext);
|
||||
heap_caps_free(ciphertext);
|
||||
heap_caps_free(plaintext);
|
||||
heap_caps_free(decryptedtext);
|
||||
}
|
||||
@@ -193,14 +151,13 @@ static void test_ofb_aes(size_t buffer_size, const uint8_t expected_cipher_end[3
|
||||
static void test_cfb8_aes(size_t buffer_size, const uint8_t expected_cipher_end[32])
|
||||
{
|
||||
esp_aes_context ctx;
|
||||
unsigned int key_bits = 256;
|
||||
uint8_t nonce[16];
|
||||
|
||||
esp_aes_init(&ctx);
|
||||
esp_aes_setkey(&ctx, key_256, key_bits);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_setkey(&ctx, key_256, KEY_BITS));
|
||||
|
||||
uint8_t *chipertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(chipertext);
|
||||
uint8_t *ciphertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(ciphertext);
|
||||
uint8_t *plaintext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(plaintext);
|
||||
uint8_t *decryptedtext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
@@ -211,18 +168,18 @@ static void test_cfb8_aes(size_t buffer_size, const uint8_t expected_cipher_end[
|
||||
|
||||
// Encrypt
|
||||
memcpy(nonce, iv, 16);
|
||||
esp_aes_crypt_cfb8(&ctx, ESP_AES_ENCRYPT, buffer_size, nonce, plaintext, chipertext);
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, chipertext + buffer_size - 32, 32);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_crypt_cfb8(&ctx, ESP_AES_ENCRYPT, buffer_size, nonce, plaintext, ciphertext));
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, ciphertext + buffer_size - 32, 32);
|
||||
|
||||
// Decrypt
|
||||
memcpy(nonce, iv, 16);
|
||||
esp_aes_crypt_cfb8(&ctx, ESP_AES_DECRYPT, buffer_size, nonce, chipertext, decryptedtext);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_crypt_cfb8(&ctx, ESP_AES_DECRYPT, buffer_size, nonce, ciphertext, decryptedtext));
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, buffer_size);
|
||||
|
||||
esp_aes_free(&ctx);
|
||||
|
||||
// Free dynamically allocated memory
|
||||
heap_caps_free(chipertext);
|
||||
heap_caps_free(ciphertext);
|
||||
heap_caps_free(plaintext);
|
||||
heap_caps_free(decryptedtext);
|
||||
}
|
||||
@@ -230,15 +187,14 @@ static void test_cfb8_aes(size_t buffer_size, const uint8_t expected_cipher_end[
|
||||
static void test_cfb128_aes(size_t buffer_size, const uint8_t expected_cipher_end[32])
|
||||
{
|
||||
esp_aes_context ctx;
|
||||
unsigned int key_bits = 256;
|
||||
uint8_t nonce[16];
|
||||
size_t nc_off = 0;
|
||||
|
||||
esp_aes_init(&ctx);
|
||||
esp_aes_setkey(&ctx, key_256, key_bits);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_setkey(&ctx, key_256, KEY_BITS));
|
||||
|
||||
uint8_t *chipertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(chipertext);
|
||||
uint8_t *ciphertext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(ciphertext);
|
||||
uint8_t *plaintext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
TEST_ASSERT_NOT_NULL(plaintext);
|
||||
uint8_t *decryptedtext = heap_caps_calloc(buffer_size, sizeof(uint8_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
@@ -249,25 +205,25 @@ static void test_cfb128_aes(size_t buffer_size, const uint8_t expected_cipher_en
|
||||
|
||||
// Encrypt
|
||||
memcpy(nonce, iv, 16);
|
||||
esp_aes_crypt_cfb128(&ctx, ESP_AES_ENCRYPT, buffer_size, &nc_off, nonce, plaintext, chipertext);
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, chipertext + buffer_size - 32, 32);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_crypt_cfb128(&ctx, ESP_AES_ENCRYPT, buffer_size, &nc_off, nonce, plaintext, ciphertext));
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher_end, ciphertext + buffer_size - 32, 32);
|
||||
|
||||
// Decrypt
|
||||
nc_off = 0;
|
||||
memcpy(nonce, iv, 16);
|
||||
esp_aes_crypt_cfb128(&ctx, ESP_AES_DECRYPT, buffer_size, &nc_off, nonce, chipertext, decryptedtext);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_crypt_cfb128(&ctx, ESP_AES_DECRYPT, buffer_size, &nc_off, nonce, ciphertext, decryptedtext));
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, buffer_size);
|
||||
|
||||
esp_aes_free(&ctx);
|
||||
|
||||
// Free dynamically allocated memory
|
||||
heap_caps_free(chipertext);
|
||||
heap_caps_free(ciphertext);
|
||||
heap_caps_free(plaintext);
|
||||
heap_caps_free(decryptedtext);
|
||||
}
|
||||
|
||||
#if SOC_GCM_SUPPORTED
|
||||
#define CIPHER_ID_AES 2
|
||||
|
||||
static void test_gcm_aes(size_t length, const uint8_t expected_last_block[16], const uint8_t expected_tag[16])
|
||||
{
|
||||
uint8_t iv[16];
|
||||
@@ -296,17 +252,17 @@ static void test_gcm_aes(size_t length, const uint8_t expected_last_block[16], c
|
||||
memcpy(iv_buf, iv, iv_length);
|
||||
|
||||
esp_aes_gcm_init(&ctx);
|
||||
TEST_ASSERT(esp_aes_gcm_setkey(&ctx, CIPHER_ID_AES, key, 8 * sizeof(key)) == 0);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_gcm_setkey(&ctx, CIPHER_ID_AES, key, 8 * sizeof(key)));
|
||||
|
||||
/* Encrypt and authenticate */
|
||||
TEST_ASSERT(esp_aes_gcm_crypt_and_tag(&ctx, ESP_AES_ENCRYPT, length, iv_buf, iv_length, add, add_length, plaintext, ciphertext, tag_len, tag_buf_encrypt) == 0);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_gcm_crypt_and_tag(&ctx, ESP_AES_ENCRYPT, length, iv_buf, iv_length, add, add_length, plaintext, ciphertext, tag_len, tag_buf_encrypt));
|
||||
size_t offset = length > 16 ? length - 16 : 0;
|
||||
/* Sanity check: make sure the last ciphertext block matches what we expect to see. */
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_last_block, ciphertext + offset, MIN(16, length));
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_tag, tag_buf_encrypt, tag_len);
|
||||
|
||||
/* Decrypt and authenticate */
|
||||
TEST_ASSERT(esp_aes_gcm_auth_decrypt(&ctx, length, iv_buf, iv_length, add, add_length, expected_tag, tag_len, ciphertext, decryptedtext) == 0);
|
||||
TEST_ASSERT_EQUAL(0, esp_aes_gcm_auth_decrypt(&ctx, length, iv_buf, iv_length, add, add_length, expected_tag, tag_len, ciphertext, decryptedtext));
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, length);
|
||||
|
||||
esp_aes_gcm_free(&ctx);
|
||||
@@ -315,148 +271,75 @@ static void test_gcm_aes(size_t length, const uint8_t expected_last_block[16], c
|
||||
heap_caps_free(ciphertext);
|
||||
heap_caps_free(decryptedtext);
|
||||
}
|
||||
#endif /* SOC_GCM_SUPPORTED */
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
|
||||
TEST(aes, cbc_aes_256_block_test)
|
||||
{
|
||||
const uint8_t expected_cipher_end[32] = {
|
||||
0x3e, 0x68, 0x8a, 0x02, 0xe6, 0xf2, 0x6a, 0x9e,
|
||||
0x9b, 0xb2, 0xc0, 0xc4, 0x63, 0x63, 0xd9, 0x25,
|
||||
0x51, 0xdc, 0xc2, 0x71, 0x96, 0xb3, 0xe5, 0xcd,
|
||||
0xbd, 0x0e, 0xf2, 0xef, 0xa9, 0xab, 0xab, 0x2d,
|
||||
};
|
||||
|
||||
test_cbc_aes(0,AES_BUFFER_SIZE, expected_cipher_end);
|
||||
test_cbc_aes(AES_BUFFER_SIZE_BLOCK_MODE, expected_cipher_end_block_cbc);
|
||||
}
|
||||
|
||||
TEST(aes, ctr_aes_256_block_test)
|
||||
{
|
||||
const uint8_t expected_cipher_end[32] = {
|
||||
0xed, 0xa4, 0xa4, 0xe0, 0xee, 0x1d, 0x73, 0x96,
|
||||
0xd3, 0xde, 0xaa, 0xe0, 0xb7, 0x76, 0x7f, 0xcb,
|
||||
0x0f, 0xe8, 0x64, 0xf0, 0xd3, 0xf1, 0xab, 0x14,
|
||||
0x5a, 0x89, 0x47, 0xb4, 0x32, 0xed, 0x41, 0x9c,
|
||||
};
|
||||
|
||||
test_ctr_aes(0, AES_BUFFER_SIZE, expected_cipher_end);
|
||||
test_ctr_aes(AES_BUFFER_SIZE_BLOCK_MODE, expected_cipher_end_block_ctr);
|
||||
}
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
|
||||
TEST(aes, cbc_aes_256_dma_test)
|
||||
{
|
||||
const uint8_t expected_cipher_end[32] = {
|
||||
0x3e, 0x68, 0x8a, 0x02, 0xe6, 0xf2, 0x6a, 0x9e,
|
||||
0x9b, 0xb2, 0xc0, 0xc4, 0x63, 0x63, 0xd9, 0x25,
|
||||
0x51, 0xdc, 0xc2, 0x71, 0x96, 0xb3, 0xe5, 0xcd,
|
||||
0xbd, 0x0e, 0xf2, 0xef, 0xa9, 0xab, 0xab, 0x2d,
|
||||
};
|
||||
test_cbc_aes(1, AES_BUFFER_SIZE, expected_cipher_end);
|
||||
test_cbc_aes(AES_BUFFER_SIZE_DMA_MODE, expected_cipher_end_dma_cbc);
|
||||
}
|
||||
|
||||
TEST(aes, ctr_aes_256_dma_test)
|
||||
{
|
||||
const uint8_t expected_cipher_end[32] = {
|
||||
0xed, 0xa4, 0xa4, 0xe0, 0xee, 0x1d, 0x73, 0x96,
|
||||
0xd3, 0xde, 0xaa, 0xe0, 0xb7, 0x76, 0x7f, 0xcb,
|
||||
0x0f, 0xe8, 0x64, 0xf0, 0xd3, 0xf1, 0xab, 0x14,
|
||||
0x5a, 0x89, 0x47, 0xb4, 0x32, 0xed, 0x41, 0x9c,
|
||||
};
|
||||
test_ctr_aes(1, AES_BUFFER_SIZE, expected_cipher_end);
|
||||
test_ctr_aes(AES_BUFFER_SIZE_DMA_MODE, expected_cipher_end_dma_ctr);
|
||||
}
|
||||
|
||||
TEST(aes, ofb_aes_256_dma_test)
|
||||
{
|
||||
const uint8_t expected_cipher_end[] = {
|
||||
0x9e, 0x12, 0x10, 0xf0, 0x3f, 0xbf, 0xf8, 0x34,
|
||||
0x08, 0x86, 0x7c, 0x02, 0x6b, 0x8a, 0x76, 0xa6,
|
||||
0x25, 0x9f, 0x34, 0x61, 0x8b, 0x89, 0x60, 0x16,
|
||||
0xe6, 0xa0, 0xa5, 0xb6, 0x5b, 0x0a, 0xeb, 0x1f,
|
||||
};
|
||||
test_ofb_aes(AES_BUFFER_SIZE, expected_cipher_end);
|
||||
test_ofb_aes(AES_BUFFER_SIZE_DMA_MODE, expected_cipher_end_dma_ofb);
|
||||
}
|
||||
|
||||
TEST(aes, cfb8_aes_256_dma_test)
|
||||
{
|
||||
const uint8_t expected_cipher_end[] = {
|
||||
0x76, 0x95, 0x22, 0x72, 0x3f, 0x44, 0x2d, 0x32,
|
||||
0x3e, 0x85, 0xb8, 0xe8, 0xf7, 0x38, 0x04, 0xd6,
|
||||
0x4a, 0xc5, 0xdb, 0x2c, 0x46, 0x5f, 0x5b, 0xa2,
|
||||
0x24, 0x4a, 0x35, 0xcb, 0xe5, 0x94, 0x71, 0x21,
|
||||
};
|
||||
test_cfb8_aes(AES_BUFFER_SIZE, expected_cipher_end);
|
||||
test_cfb8_aes(AES_BUFFER_SIZE_DMA_MODE, expected_cipher_end_dma_cfb8);
|
||||
}
|
||||
|
||||
TEST(aes, cfb128_aes_256_dma_test)
|
||||
{
|
||||
const uint8_t expected_cipher_end[] = {
|
||||
0xd0, 0x9b, 0x2e, 0x25, 0xd5, 0xeb, 0x08, 0xbd,
|
||||
0xd8, 0x7e, 0x64, 0xde, 0x35, 0x2b, 0xb1, 0x53,
|
||||
0xf8, 0x3a, 0xf7, 0xa8, 0x1e, 0x96, 0xaa, 0xce,
|
||||
0xa4, 0xf2, 0x8a, 0x2d, 0x01, 0xd5, 0x62, 0xa0,
|
||||
};
|
||||
test_cfb128_aes(AES_BUFFER_SIZE, expected_cipher_end);
|
||||
test_cfb128_aes(AES_BUFFER_SIZE_DMA_MODE, expected_cipher_end_dma_cfb128);
|
||||
}
|
||||
|
||||
#if CONFIG_CRYPTO_TESTAPP_USE_AES_INTERRUPT
|
||||
|
||||
TEST(aes, cbc_aes_256_long_dma_test)
|
||||
{
|
||||
const uint8_t expected_cipher_end[32] = {
|
||||
0xd1, 0x32, 0x62, 0x9d, 0x2f, 0x0e, 0x1d, 0x27,
|
||||
0x0e, 0x2b, 0x53, 0x0b, 0x81, 0x53, 0x92, 0x69,
|
||||
0x8a, 0x9c, 0x25, 0xb1, 0x77, 0x2b, 0xe4, 0x80,
|
||||
0x3a, 0xee, 0xdc, 0xbb, 0x80, 0xd6, 0x1a, 0x42,
|
||||
};
|
||||
test_cbc_aes(1, AES_LONG_BUFFER_SIZE, expected_cipher_end);
|
||||
test_cbc_aes(AES_BUFFER_SIZE_DMA_MODE_WITH_INTERRUPT, expected_cipher_end_dma_cbc_with_interrupt);
|
||||
}
|
||||
|
||||
TEST(aes, ctr_aes_256_long_dma_test)
|
||||
{
|
||||
const uint8_t expected_cipher_end[32] = {
|
||||
0x30, 0x8e, 0x3b, 0x27, 0x54, 0x85, 0x58, 0x20,
|
||||
0x1a, 0xa6, 0xca, 0x81, 0x12, 0x23, 0x7f, 0x01,
|
||||
0xba, 0x27, 0x72, 0x44, 0xa9, 0x00, 0x42, 0x8a,
|
||||
0x4e, 0xda, 0x26, 0xf9, 0xd9, 0x0b, 0xb1, 0xa5,
|
||||
};
|
||||
test_ctr_aes(1, AES_LONG_BUFFER_SIZE, expected_cipher_end);
|
||||
test_ctr_aes(AES_BUFFER_SIZE_DMA_MODE_WITH_INTERRUPT, expected_cipher_end_dma_ctr_with_interrupt);
|
||||
}
|
||||
|
||||
TEST(aes, ofb_aes_256_long_dma_test)
|
||||
{
|
||||
const uint8_t expected_cipher_end[] = {
|
||||
0xdc, 0xd1, 0x8a, 0x5c, 0x38, 0xb4, 0xce, 0xdf,
|
||||
0x21, 0xa0, 0xa4, 0x0b, 0x87, 0xbb, 0xdf, 0xf5,
|
||||
0x42, 0xc6, 0xe2, 0x1f, 0x9f, 0x93, 0x3b, 0xa4,
|
||||
0xdd, 0xb0, 0xce, 0xf0, 0x98, 0x47, 0x23, 0x20,
|
||||
};
|
||||
test_ofb_aes(AES_LONG_BUFFER_SIZE, expected_cipher_end);
|
||||
test_ofb_aes(AES_BUFFER_SIZE_DMA_MODE_WITH_INTERRUPT, expected_cipher_end_dma_ofb_with_interrupt);
|
||||
}
|
||||
|
||||
TEST(aes, cfb8_aes_256_long_dma_test)
|
||||
{
|
||||
const uint8_t expected_cipher_end[] = {
|
||||
0x9a, 0x2a, 0xaf, 0xec, 0xd1, 0xf3, 0xd2, 0xe2,
|
||||
0xf5, 0x62, 0x16, 0x5c, 0x42, 0x8f, 0xc1, 0xa3,
|
||||
0x34, 0x05, 0x9b, 0xa5, 0x44, 0x02, 0xff, 0xf4,
|
||||
0x6b, 0xca, 0x3c, 0xac, 0xff, 0x6e, 0xb6, 0x7a,
|
||||
};
|
||||
test_cfb8_aes(AES_LONG_BUFFER_SIZE, expected_cipher_end);
|
||||
test_cfb8_aes(AES_BUFFER_SIZE_DMA_MODE_WITH_INTERRUPT, expected_cipher_end_dma_cfb8_with_interrupt);
|
||||
}
|
||||
|
||||
TEST(aes, cfb128_aes_256_long_dma_test)
|
||||
{
|
||||
const uint8_t expected_cipher_end[] = {
|
||||
0x6c, 0x63, 0xa9, 0x19, 0x12, 0x89, 0x57, 0xeb,
|
||||
0xbe, 0x73, 0x17, 0x62, 0xc6, 0xfc, 0xf0, 0x43,
|
||||
0x6d, 0x49, 0x6b, 0xc6, 0x35, 0xf8, 0xc1, 0x48,
|
||||
0xe2, 0xb7, 0xb1, 0x6f, 0x26, 0x9f, 0x04, 0x8b,
|
||||
};
|
||||
test_cfb128_aes(AES_LONG_BUFFER_SIZE, expected_cipher_end);
|
||||
test_cfb128_aes(AES_BUFFER_SIZE_DMA_MODE_WITH_INTERRUPT, expected_cipher_end_dma_cfb128_with_interrupt);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if SOC_GCM_SUPPORTED
|
||||
TEST(aes, gcm_aes_dma_test)
|
||||
{
|
||||
size_t length = 16;
|
||||
@@ -487,6 +370,7 @@ TEST(aes, gcm_aes_long_dma_test)
|
||||
test_gcm_aes(length, expected_last_block, expected_tag);
|
||||
}
|
||||
#endif /* CONFIG_CRYPTO_TESTAPP_USE_AES_INTERRUPT */
|
||||
#endif /* SOC_GCM_SUPPORTED */
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
|
||||
TEST_GROUP_RUNNER(aes)
|
||||
@@ -506,10 +390,12 @@ TEST_GROUP_RUNNER(aes)
|
||||
RUN_TEST_CASE(aes, cfb8_aes_256_long_dma_test);
|
||||
RUN_TEST_CASE(aes, cfb128_aes_256_long_dma_test);
|
||||
#endif /* CONFIG_CRYPTO_TESTAPP_USE_AES_INTERRUPT */
|
||||
#if SOC_GCM_SUPPORTED
|
||||
RUN_TEST_CASE(aes, gcm_aes_dma_test);
|
||||
#if CONFIG_CRYPTO_TESTAPP_USE_AES_INTERRUPT
|
||||
RUN_TEST_CASE(aes, gcm_aes_long_dma_test);
|
||||
#endif /* CONFIG_CRYPTO_TESTAPP_USE_AES_INTERRUPT */
|
||||
#endif /* SOC_GCM_SUPPORTED */
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
}
|
||||
|
||||
|
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
|
||||
* SPDX-FileCopyrightText: 2023-2025 Espressif Systems (Shanghai) CO LTD
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
@@ -25,4 +25,98 @@ static const uint8_t iv[] = {
|
||||
0x10, 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09,
|
||||
0x08, 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01,
|
||||
};
|
||||
|
||||
#define AES_BUFFER_SIZE_BLOCK_MODE 128 /* Shorter data length to test the block mode */
|
||||
|
||||
const uint8_t expected_cipher_end_block_cbc[32] = {
|
||||
0x89, 0xc1, 0x6b, 0x75, 0x19, 0x03, 0x0f, 0x1d,
|
||||
0xdb, 0xfb, 0xb9, 0x90, 0x02, 0x30, 0x34, 0x3c,
|
||||
0xf0, 0x12, 0xa1, 0xa3, 0x87, 0x0f, 0x61, 0x32,
|
||||
0x58, 0xdd, 0x20, 0xbe, 0xff, 0x30, 0x58, 0x38,
|
||||
};
|
||||
|
||||
const uint8_t expected_cipher_end_block_ctr[32] = {
|
||||
0xd4, 0xf8, 0x63, 0xd3, 0x1f, 0xfa, 0xfa, 0xf5,
|
||||
0x42, 0x7e, 0x3e, 0xad, 0x63, 0x99, 0x69, 0x3d,
|
||||
0x91, 0x40, 0xfa, 0xa8, 0x74, 0x89, 0xae, 0xbe,
|
||||
0xee, 0x5c, 0xea, 0x45, 0xef, 0x77, 0x2b, 0x83,
|
||||
};
|
||||
|
||||
#define AES_BUFFER_SIZE_DMA_MODE 1600 /* Longer data length to test the DMA mode */
|
||||
|
||||
/* Expected cipher text's last 32 bytes for 1600 bytes data length */
|
||||
const uint8_t expected_cipher_end_dma_cbc[32] = {
|
||||
0x3e, 0x68, 0x8a, 0x02, 0xe6, 0xf2, 0x6a, 0x9e,
|
||||
0x9b, 0xb2, 0xc0, 0xc4, 0x63, 0x63, 0xd9, 0x25,
|
||||
0x51, 0xdc, 0xc2, 0x71, 0x96, 0xb3, 0xe5, 0xcd,
|
||||
0xbd, 0x0e, 0xf2, 0xef, 0xa9, 0xab, 0xab, 0x2d,
|
||||
};
|
||||
|
||||
const uint8_t expected_cipher_end_dma_ctr[32] = {
|
||||
0xed, 0xa4, 0xa4, 0xe0, 0xee, 0x1d, 0x73, 0x96,
|
||||
0xd3, 0xde, 0xaa, 0xe0, 0xb7, 0x76, 0x7f, 0xcb,
|
||||
0x0f, 0xe8, 0x64, 0xf0, 0xd3, 0xf1, 0xab, 0x14,
|
||||
0x5a, 0x89, 0x47, 0xb4, 0x32, 0xed, 0x41, 0x9c,
|
||||
};
|
||||
|
||||
const uint8_t expected_cipher_end_dma_ofb[32] = {
|
||||
0x9e, 0x12, 0x10, 0xf0, 0x3f, 0xbf, 0xf8, 0x34,
|
||||
0x08, 0x86, 0x7c, 0x02, 0x6b, 0x8a, 0x76, 0xa6,
|
||||
0x25, 0x9f, 0x34, 0x61, 0x8b, 0x89, 0x60, 0x16,
|
||||
0xe6, 0xa0, 0xa5, 0xb6, 0x5b, 0x0a, 0xeb, 0x1f,
|
||||
};
|
||||
|
||||
const uint8_t expected_cipher_end_dma_cfb8[32] = {
|
||||
0x76, 0x95, 0x22, 0x72, 0x3f, 0x44, 0x2d, 0x32,
|
||||
0x3e, 0x85, 0xb8, 0xe8, 0xf7, 0x38, 0x04, 0xd6,
|
||||
0x4a, 0xc5, 0xdb, 0x2c, 0x46, 0x5f, 0x5b, 0xa2,
|
||||
0x24, 0x4a, 0x35, 0xcb, 0xe5, 0x94, 0x71, 0x21,
|
||||
};
|
||||
|
||||
const uint8_t expected_cipher_end_dma_cfb128[32] = {
|
||||
0xd0, 0x9b, 0x2e, 0x25, 0xd5, 0xeb, 0x08, 0xbd,
|
||||
0xd8, 0x7e, 0x64, 0xde, 0x35, 0x2b, 0xb1, 0x53,
|
||||
0xf8, 0x3a, 0xf7, 0xa8, 0x1e, 0x96, 0xaa, 0xce,
|
||||
0xa4, 0xf2, 0x8a, 0x2d, 0x01, 0xd5, 0x62, 0xa0,
|
||||
};
|
||||
|
||||
#define AES_BUFFER_SIZE_DMA_MODE_WITH_INTERRUPT 8000
|
||||
|
||||
const uint8_t expected_cipher_end_dma_cbc_with_interrupt[32] = {
|
||||
0xd1, 0x32, 0x62, 0x9d, 0x2f, 0x0e, 0x1d, 0x27,
|
||||
0x0e, 0x2b, 0x53, 0x0b, 0x81, 0x53, 0x92, 0x69,
|
||||
0x8a, 0x9c, 0x25, 0xb1, 0x77, 0x2b, 0xe4, 0x80,
|
||||
0x3a, 0xee, 0xdc, 0xbb, 0x80, 0xd6, 0x1a, 0x42,
|
||||
};
|
||||
|
||||
const uint8_t expected_cipher_end_dma_ctr_with_interrupt[32] = {
|
||||
0x30, 0x8e, 0x3b, 0x27, 0x54, 0x85, 0x58, 0x20,
|
||||
0x1a, 0xa6, 0xca, 0x81, 0x12, 0x23, 0x7f, 0x01,
|
||||
0xba, 0x27, 0x72, 0x44, 0xa9, 0x00, 0x42, 0x8a,
|
||||
0x4e, 0xda, 0x26, 0xf9, 0xd9, 0x0b, 0xb1, 0xa5,
|
||||
};
|
||||
|
||||
const uint8_t expected_cipher_end_dma_ofb_with_interrupt[32] = {
|
||||
0xdc, 0xd1, 0x8a, 0x5c, 0x38, 0xb4, 0xce, 0xdf,
|
||||
0x21, 0xa0, 0xa4, 0x0b, 0x87, 0xbb, 0xdf, 0xf5,
|
||||
0x42, 0xc6, 0xe2, 0x1f, 0x9f, 0x93, 0x3b, 0xa4,
|
||||
0xdd, 0xb0, 0xce, 0xf0, 0x98, 0x47, 0x23, 0x20,
|
||||
};
|
||||
|
||||
const uint8_t expected_cipher_end_dma_cfb8_with_interrupt[32] = {
|
||||
0x9a, 0x2a, 0xaf, 0xec, 0xd1, 0xf3, 0xd2, 0xe2,
|
||||
0xf5, 0x62, 0x16, 0x5c, 0x42, 0x8f, 0xc1, 0xa3,
|
||||
0x34, 0x05, 0x9b, 0xa5, 0x44, 0x02, 0xff, 0xf4,
|
||||
0x6b, 0xca, 0x3c, 0xac, 0xff, 0x6e, 0xb6, 0x7a,
|
||||
};
|
||||
|
||||
const uint8_t expected_cipher_end_dma_cfb128_with_interrupt[32] = {
|
||||
0x6c, 0x63, 0xa9, 0x19, 0x12, 0x89, 0x57, 0xeb,
|
||||
0xbe, 0x73, 0x17, 0x62, 0xc6, 0xfc, 0xf0, 0x43,
|
||||
0x6d, 0x49, 0x6b, 0xc6, 0x35, 0xf8, 0xc1, 0x48,
|
||||
0xe2, 0xb7, 0xb1, 0x6f, 0x26, 0x9f, 0x04, 0x8b,
|
||||
};
|
||||
|
||||
#define KEY_BITS 256
|
||||
|
||||
#endif /* SOC_AES_SUPPORTED */
|
||||
|
@@ -6,3 +6,6 @@ CONFIG_PARTITION_TABLE_CUSTOM=y
|
||||
CONFIG_PARTITION_TABLE_CUSTOM_FILENAME="partitions.csv"
|
||||
CONFIG_PARTITION_TABLE_FILENAME="partitions.csv"
|
||||
CONFIG_PARTITION_TABLE_OFFSET=0x8000
|
||||
|
||||
# Enable block and DMA modes for AES
|
||||
CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM=y
|
||||
|
@@ -210,14 +210,6 @@ if(CONFIG_SOC_SHA_SUPPORTED)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(CONFIG_SOC_AES_SUPPORTED)
|
||||
if(CONFIG_SOC_AES_SUPPORT_DMA)
|
||||
set(AES_PERIPHERAL_TYPE "dma")
|
||||
else()
|
||||
set(AES_PERIPHERAL_TYPE "block")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(SHA_PERIPHERAL_TYPE STREQUAL "core")
|
||||
target_include_directories(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/sha/core/include")
|
||||
|
||||
@@ -229,7 +221,7 @@ if(SHA_PERIPHERAL_TYPE STREQUAL "core")
|
||||
target_sources(mbedcrypto PRIVATE "${SHA_CORE_SRCS}")
|
||||
endif()
|
||||
|
||||
if(AES_PERIPHERAL_TYPE STREQUAL "dma")
|
||||
if(CONFIG_SOC_AES_SUPPORT_DMA)
|
||||
if(NOT CONFIG_SOC_AES_GDMA)
|
||||
set(AES_DMA_SRCS "${COMPONENT_DIR}/port/aes/dma/esp_aes_crypto_dma_impl.c")
|
||||
else()
|
||||
@@ -242,7 +234,7 @@ if(AES_PERIPHERAL_TYPE STREQUAL "dma")
|
||||
target_sources(mbedcrypto PRIVATE "${AES_DMA_SRCS}")
|
||||
endif()
|
||||
|
||||
if((SHA_PERIPHERAL_TYPE STREQUAL "core" AND CONFIG_SOC_SHA_SUPPORT_DMA) OR AES_PERIPHERAL_TYPE STREQUAL "dma")
|
||||
if((SHA_PERIPHERAL_TYPE STREQUAL "core" AND CONFIG_SOC_SHA_SUPPORT_DMA) OR CONFIG_SOC_AES_SUPPORT_DMA)
|
||||
target_link_libraries(mbedcrypto PRIVATE idf::esp_mm)
|
||||
if(CONFIG_SOC_SHA_GDMA OR CONFIG_SOC_AES_GDMA)
|
||||
if(CONFIG_SOC_AXI_DMA_EXT_MEM_ENC_ALIGNMENT)
|
||||
@@ -263,7 +255,7 @@ if(CONFIG_SOC_AES_SUPPORTED)
|
||||
target_include_directories(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/aes/include")
|
||||
target_sources(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/aes/esp_aes_xts.c"
|
||||
"${COMPONENT_DIR}/port/aes/esp_aes_common.c"
|
||||
"${COMPONENT_DIR}/port/aes/${AES_PERIPHERAL_TYPE}/esp_aes.c"
|
||||
"${COMPONENT_DIR}/port/aes/esp_aes.c"
|
||||
)
|
||||
endif()
|
||||
|
||||
|
@@ -1071,42 +1071,6 @@ menu "mbedTLS"
|
||||
This reduces code size, but disables support for 192-bit and
|
||||
256-bit AES keys.
|
||||
|
||||
config MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC
|
||||
bool "Enable AES hardware's pseudo round function"
|
||||
default n
|
||||
depends on SOC_AES_SUPPORT_PSEUDO_ROUND_FUNCTION
|
||||
help
|
||||
Enables the pseudo round function of the AES peripheral.
|
||||
Enabling this would impact the performance of the AES operations.
|
||||
For more info regarding the performance impact, please checkout
|
||||
the pseudo round function section of the security guide.
|
||||
|
||||
choice MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH
|
||||
prompt "Strength of the pseudo rounds function"
|
||||
depends on MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC
|
||||
default MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_LOW
|
||||
help
|
||||
The strength of the pseudo rounds functions can be configured to low, medium and high.
|
||||
You can configure the strength of the pseudo rounds functions according to your use cases,
|
||||
for example, increasing the strength would provide higher security but would slow down the
|
||||
hardware AES encryption/decryption operations.
|
||||
|
||||
config MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_LOW
|
||||
bool "Low"
|
||||
|
||||
config MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_MEDIUM
|
||||
bool "Medium"
|
||||
|
||||
config MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_HIGH
|
||||
bool "High"
|
||||
endchoice
|
||||
|
||||
config MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH
|
||||
int
|
||||
default 1 if MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_LOW
|
||||
default 2 if MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_MEDIUM
|
||||
default 3 if MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_HIGH
|
||||
|
||||
config MBEDTLS_CMAC_C
|
||||
bool "Enable CMAC mode for block ciphers"
|
||||
default y
|
||||
@@ -1647,6 +1611,57 @@ menu "mbedTLS"
|
||||
priority level and any level from 1 to 3 can be selected (based on the availability).
|
||||
Note: Higher value indicates high interrupt priority.
|
||||
|
||||
config MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC
|
||||
bool "Enable AES hardware's pseudo round function"
|
||||
default n
|
||||
depends on SOC_AES_SUPPORT_PSEUDO_ROUND_FUNCTION && MBEDTLS_HARDWARE_AES
|
||||
help
|
||||
Enables the pseudo round function of the AES peripheral.
|
||||
Enabling this would impact the performance of the AES operations.
|
||||
For more info regarding the performance impact, please checkout
|
||||
the pseudo round function section of the security guide.
|
||||
|
||||
choice MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH
|
||||
prompt "Strength of the pseudo rounds function"
|
||||
depends on MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC
|
||||
default MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_LOW
|
||||
help
|
||||
The strength of the pseudo rounds functions can be configured to low, medium and high.
|
||||
You can configure the strength of the pseudo rounds functions according to your use cases,
|
||||
for example, increasing the strength would provide higher security but would slow down the
|
||||
hardware AES encryption/decryption operations.
|
||||
|
||||
config MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_LOW
|
||||
bool "Low"
|
||||
|
||||
config MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_MEDIUM
|
||||
bool "Medium"
|
||||
|
||||
config MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_HIGH
|
||||
bool "High"
|
||||
endchoice
|
||||
|
||||
config MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH
|
||||
int
|
||||
default 1 if MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_LOW
|
||||
default 2 if MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_MEDIUM
|
||||
default 3 if MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH_HIGH
|
||||
|
||||
config MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
bool "Enable performance optimisation for the small data length hardware AES operations"
|
||||
depends on MBEDTLS_HARDWARE_AES && SOC_AES_SUPPORT_DMA
|
||||
default y
|
||||
help
|
||||
This option enables dynamically switching between the hardware
|
||||
AES peripheral's block and DMA modes based on the length of the input data,
|
||||
thus, significantly speeding up the AES operations with shorter data lengths.
|
||||
For example, NVS encryption/decryption operations, TLS communication, etc.
|
||||
with smaller data lengths.
|
||||
|
||||
It is enabled by default due to the significant performance impact but note that
|
||||
it also increases the binary size by ~1.2 KB as it pulls in the peripheral's block
|
||||
mode code as well.
|
||||
|
||||
config MBEDTLS_PK_RSA_ALT_SUPPORT
|
||||
bool "Enable RSA alt support"
|
||||
default y
|
||||
|
@@ -48,7 +48,7 @@ target_include_directories(mbedcrypto PRIVATE ${crypto_port_inc_dirs})
|
||||
target_sources(mbedcrypto PRIVATE "${COMPONENT_DIR}/esp_tee/esp_tee_crypto_shared_gdma.c")
|
||||
|
||||
# AES implementation
|
||||
target_sources(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/aes/dma/esp_aes.c"
|
||||
target_sources(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/aes/esp_aes.c"
|
||||
"${COMPONENT_DIR}/port/aes/dma/esp_aes_dma_core.c")
|
||||
|
||||
target_sources(mbedcrypto PRIVATE "${COMPONENT_DIR}/port/aes/esp_aes_common.c"
|
||||
|
@@ -1,579 +0,0 @@
|
||||
/**
|
||||
* \brief AES block cipher, ESP block hardware accelerated version
|
||||
* Based on mbedTLS FIPS-197 compliant version.
|
||||
*
|
||||
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
||||
* Additions Copyright (C) 2016-2017, Espressif Systems (Shanghai) PTE Ltd
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
*/
|
||||
/*
|
||||
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
|
||||
*
|
||||
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
|
||||
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
|
||||
*/
|
||||
#include <string.h>
|
||||
#include "mbedtls/aes.h"
|
||||
#include "mbedtls/platform_util.h"
|
||||
#include "esp_log.h"
|
||||
#include "aes/esp_aes.h"
|
||||
#include "soc/hwcrypto_periph.h"
|
||||
#include "soc/soc_caps.h"
|
||||
#include <sys/lock.h>
|
||||
#include "hal/aes_hal.h"
|
||||
#include "hal/aes_ll.h"
|
||||
#include "esp_aes_internal.h"
|
||||
|
||||
#include <freertos/FreeRTOS.h>
|
||||
|
||||
#include <stdio.h>
|
||||
#include "esp_private/esp_crypto_lock_internal.h"
|
||||
|
||||
|
||||
static const char *TAG = "esp-aes";
|
||||
/* AES uses a spinlock mux not a lock as the underlying block operation
|
||||
only takes 208 cycles (to write key & compute block), +600 cycles
|
||||
for DPORT protection but +3400 cycles again if you use a full sized lock.
|
||||
|
||||
For CBC, CFB, etc. this may mean that interrupts are disabled for a longer
|
||||
period of time for bigger lengths. However at the moment this has to happen
|
||||
anyway due to DPORT protection...
|
||||
*/
|
||||
static portMUX_TYPE aes_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
||||
|
||||
|
||||
void esp_aes_acquire_hardware( void )
|
||||
{
|
||||
portENTER_CRITICAL(&aes_spinlock);
|
||||
|
||||
/* Enable AES hardware */
|
||||
AES_RCC_ATOMIC() {
|
||||
aes_ll_enable_bus_clock(true);
|
||||
aes_ll_reset_register();
|
||||
}
|
||||
}
|
||||
|
||||
void esp_aes_release_hardware( void )
|
||||
{
|
||||
/* Disable AES hardware */
|
||||
AES_RCC_ATOMIC() {
|
||||
aes_ll_enable_bus_clock(false);
|
||||
}
|
||||
|
||||
portEXIT_CRITICAL(&aes_spinlock);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Run a single 16 byte block of AES, using the hardware engine.
|
||||
*
|
||||
* Call only while holding esp_aes_acquire_hardware().
|
||||
*
|
||||
* The function esp_aes_block zeroises the output buffer in the case of following conditions:
|
||||
* 1. If key is not written in the hardware
|
||||
* 2. If the fault injection check failed
|
||||
*/
|
||||
static int esp_aes_block(esp_aes_context *ctx, const void *input, void *output)
|
||||
{
|
||||
uint32_t i0, i1, i2, i3;
|
||||
const uint32_t *input_words = (uint32_t *)input;
|
||||
uint32_t *output_words = (uint32_t *)output;
|
||||
|
||||
/* If no key is written to hardware yet, either the user hasn't called
|
||||
mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't
|
||||
know which mode to use - or a fault skipped the
|
||||
key write to hardware. Treat this as a fatal error and zero the output block.
|
||||
*/
|
||||
if (ctx->key_in_hardware != ctx->key_bytes) {
|
||||
mbedtls_platform_zeroize(output, 16);
|
||||
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
|
||||
}
|
||||
i0 = input_words[0];
|
||||
i1 = input_words[1];
|
||||
i2 = input_words[2];
|
||||
i3 = input_words[3];
|
||||
|
||||
#ifdef CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC
|
||||
esp_aes_enable_pseudo_rounds(CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH);
|
||||
#endif /* CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC */
|
||||
|
||||
aes_hal_transform_block(input, output);
|
||||
|
||||
/* Physical security check: Verify the AES accelerator actually ran, and wasn't
|
||||
skipped due to external fault injection while starting the peripheral.
|
||||
|
||||
Note that i0,i1,i2,i3 are copied from input buffer in case input==output.
|
||||
|
||||
Bypassing this check requires at least one additional fault.
|
||||
*/
|
||||
if (i0 == output_words[0] && i1 == output_words[1] && i2 == output_words[2] && i3 == output_words[3]) {
|
||||
// calling zeroing functions to narrow the
|
||||
// window for a double-fault of the abort step, here
|
||||
memset(output, 0, 16);
|
||||
mbedtls_platform_zeroize(output, 16);
|
||||
abort();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input,
|
||||
const unsigned char *output )
|
||||
{
|
||||
if (!ctx) {
|
||||
ESP_LOGD(TAG, "No AES context supplied");
|
||||
return -1;
|
||||
}
|
||||
if (!input) {
|
||||
ESP_LOGD(TAG, "No input supplied");
|
||||
return -1;
|
||||
}
|
||||
if (!output) {
|
||||
ESP_LOGD(TAG, "No output supplied");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* AES-ECB block encryption
|
||||
*/
|
||||
int esp_internal_aes_encrypt(esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
r = esp_aes_block(ctx, input, output);
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* AES-ECB block decryption
|
||||
*/
|
||||
|
||||
int esp_internal_aes_decrypt(esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
||||
r = esp_aes_block(ctx, input, output);
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-ECB block encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ecb(esp_aes_context *ctx,
|
||||
int mode,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
r = esp_aes_block(ctx, input, output);
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* AES-CBC buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cbc(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int ret = -1;
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGD(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
uint32_t *output_words = (uint32_t *)output;
|
||||
const uint32_t *input_words = (const uint32_t *)input;
|
||||
uint32_t *iv_words = (uint32_t *)iv;
|
||||
unsigned char temp[16];
|
||||
|
||||
if ( length % 16 ) {
|
||||
return ( ERR_ESP_AES_INVALID_INPUT_LENGTH );
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
while ( length > 0 ) {
|
||||
memcpy(temp, input_words, 16);
|
||||
ret = esp_aes_block(ctx, input_words, output_words);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
output_words[0] = output_words[0] ^ iv_words[0];
|
||||
output_words[1] = output_words[1] ^ iv_words[1];
|
||||
output_words[2] = output_words[2] ^ iv_words[2];
|
||||
output_words[3] = output_words[3] ^ iv_words[3];
|
||||
|
||||
memcpy( iv_words, temp, 16 );
|
||||
|
||||
input_words += 4;
|
||||
output_words += 4;
|
||||
length -= 16;
|
||||
}
|
||||
} else { // ESP_AES_ENCRYPT
|
||||
while ( length > 0 ) {
|
||||
|
||||
output_words[0] = input_words[0] ^ iv_words[0];
|
||||
output_words[1] = input_words[1] ^ iv_words[1];
|
||||
output_words[2] = input_words[2] ^ iv_words[2];
|
||||
output_words[3] = input_words[3] ^ iv_words[3];
|
||||
|
||||
ret = esp_aes_block(ctx, output_words, output_words);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
memcpy( iv_words, output_words, 16 );
|
||||
|
||||
input_words += 4;
|
||||
output_words += 4;
|
||||
length -= 16;
|
||||
}
|
||||
}
|
||||
ret = 0;
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB128 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb128(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int ret = -1;
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv_off) {
|
||||
ESP_LOGE(TAG, "No IV offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
int c;
|
||||
size_t n = *iv_off;
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
while ( length-- ) {
|
||||
if ( n == 0 ) {
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
c = *input++;
|
||||
*output++ = (unsigned char)( c ^ iv[n] );
|
||||
iv[n] = (unsigned char) c;
|
||||
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
} else {
|
||||
while ( length-- ) {
|
||||
if ( n == 0 ) {
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
iv[n] = *output++ = (unsigned char)( iv[n] ^ *input++ );
|
||||
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
}
|
||||
|
||||
*iv_off = n;
|
||||
ret = 0;
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB8 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb8(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int ret = -1;
|
||||
unsigned char c;
|
||||
unsigned char ov[17];
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
|
||||
while ( length-- ) {
|
||||
memcpy( ov, iv, 16 );
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
ov[16] = *input;
|
||||
}
|
||||
|
||||
c = *output++ = (unsigned char)( iv[0] ^ *input++ );
|
||||
|
||||
if ( mode == ESP_AES_ENCRYPT ) {
|
||||
ov[16] = c;
|
||||
}
|
||||
|
||||
memcpy( iv, ov + 1, 16 );
|
||||
}
|
||||
ret = 0;
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CTR buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ctr(esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *nc_off,
|
||||
unsigned char nonce_counter[16],
|
||||
unsigned char stream_block[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int c, i, ret = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!stream_block) {
|
||||
ESP_LOGE(TAG, "No stream supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!nonce_counter) {
|
||||
ESP_LOGE(TAG, "No nonce supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!nc_off) {
|
||||
ESP_LOGE(TAG, "No nonce offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
size_t n = *nc_off;
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
|
||||
while ( length-- ) {
|
||||
if ( n == 0 ) {
|
||||
ret = esp_aes_block(ctx, nonce_counter, stream_block);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
for ( i = 16; i > 0; i-- ) {
|
||||
if ( ++nonce_counter[i - 1] != 0 ) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
c = *input++;
|
||||
*output++ = (unsigned char)( c ^ stream_block[n] );
|
||||
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
|
||||
*nc_off = n;
|
||||
ret = 0;
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-OFB (Output Feedback Mode) buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ofb(esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int ret = -1;
|
||||
size_t n;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv_off) {
|
||||
ESP_LOGE(TAG, "No IV offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
n = *iv_off;
|
||||
|
||||
if (n > 15) {
|
||||
return (MBEDTLS_ERR_AES_BAD_INPUT_DATA);
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
|
||||
while (length--) {
|
||||
if ( n == 0 ) {
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
*output++ = *input++ ^ iv[n];
|
||||
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
|
||||
*iv_off = n;
|
||||
ret = 0;
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return ( ret );
|
||||
}
|
@@ -1,521 +0,0 @@
|
||||
/**
|
||||
* \brief AES block cipher, ESP DMA hardware accelerated version
|
||||
* Based on mbedTLS FIPS-197 compliant version.
|
||||
*
|
||||
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
||||
* Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
*/
|
||||
/*
|
||||
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
|
||||
*
|
||||
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
|
||||
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include "mbedtls/aes.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp_crypto_lock.h"
|
||||
#include "hal/aes_hal.h"
|
||||
#include "esp_aes_internal.h"
|
||||
#include "esp_crypto_periph_clk.h"
|
||||
|
||||
#if SOC_AES_GDMA
|
||||
#define AES_LOCK() esp_crypto_sha_aes_lock_acquire()
|
||||
#define AES_RELEASE() esp_crypto_sha_aes_lock_release()
|
||||
#elif SOC_AES_CRYPTO_DMA
|
||||
#define AES_LOCK() esp_crypto_dma_lock_acquire()
|
||||
#define AES_RELEASE() esp_crypto_dma_lock_release()
|
||||
#include "hal/crypto_dma_ll.h"
|
||||
#endif
|
||||
|
||||
static const char *TAG = "esp-aes";
|
||||
|
||||
void esp_aes_acquire_hardware( void )
|
||||
{
|
||||
/* Released by esp_aes_release_hardware()*/
|
||||
AES_LOCK();
|
||||
esp_crypto_aes_enable_periph_clk(true);
|
||||
}
|
||||
|
||||
/* Function to disable AES and Crypto DMA clocks and release locks */
|
||||
void esp_aes_release_hardware( void )
|
||||
{
|
||||
esp_crypto_aes_enable_periph_clk(false);
|
||||
AES_RELEASE();
|
||||
}
|
||||
|
||||
static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
if (!ctx) {
|
||||
ESP_LOGE(TAG, "No AES context supplied");
|
||||
return -1;
|
||||
}
|
||||
if (!input) {
|
||||
ESP_LOGE(TAG, "No input supplied");
|
||||
return -1;
|
||||
}
|
||||
if (!output) {
|
||||
ESP_LOGE(TAG, "No output supplied");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* AES-ECB single block encryption
|
||||
*/
|
||||
int esp_internal_aes_encrypt(esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
||||
r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* AES-ECB single block decryption
|
||||
*/
|
||||
int esp_internal_aes_decrypt(esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
||||
r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* AES-ECB block encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ecb(esp_aes_context *ctx,
|
||||
int mode,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
int r = -1;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
||||
r = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
|
||||
esp_aes_release_hardware();
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CBC buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cbc(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int r = -1;
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
/* For CBC input length should be multiple of
|
||||
* AES BLOCK BYTES
|
||||
* */
|
||||
if ( (length % AES_BLOCK_BYTES) || (length == 0) ) {
|
||||
return ERR_ESP_AES_INVALID_INPUT_LENGTH;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CBC);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
r = esp_aes_process_dma(ctx, input, output, length, NULL);
|
||||
if (r != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(iv);
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB8 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb8(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
int r = -1;
|
||||
unsigned char c;
|
||||
unsigned char ov[17];
|
||||
size_t block_bytes = length - (length % AES_BLOCK_BYTES);
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
/* The DMA engine will only output correct IV if it runs
|
||||
full blocks of input in CFB8 mode
|
||||
*/
|
||||
esp_aes_acquire_hardware();
|
||||
|
||||
if (block_bytes > 0) {
|
||||
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB8);
|
||||
aes_hal_set_iv(iv);
|
||||
r = esp_aes_process_dma(ctx, input, output, block_bytes, NULL);
|
||||
if (r != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(iv);
|
||||
|
||||
length -= block_bytes;
|
||||
input += block_bytes;
|
||||
output += block_bytes;
|
||||
}
|
||||
|
||||
// Process remaining bytes block-at-a-time in ECB mode
|
||||
if (length > 0) {
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, MBEDTLS_AES_ENCRYPT);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
||||
|
||||
while ( length-- ) {
|
||||
memcpy( ov, iv, 16 );
|
||||
|
||||
r = esp_aes_process_dma(ctx, iv, iv, AES_BLOCK_BYTES, NULL);
|
||||
if (r != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if ( mode == MBEDTLS_AES_DECRYPT ) {
|
||||
ov[16] = *input;
|
||||
}
|
||||
|
||||
c = *output++ = ( iv[0] ^ *input++ );
|
||||
|
||||
if ( mode == MBEDTLS_AES_ENCRYPT ) {
|
||||
ov[16] = c;
|
||||
}
|
||||
memcpy( iv, ov + 1, 16 );
|
||||
}
|
||||
|
||||
}
|
||||
r = 0;
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB128 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb128(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
|
||||
{
|
||||
uint8_t c;
|
||||
size_t stream_bytes = 0;
|
||||
size_t n;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv_off) {
|
||||
ESP_LOGE(TAG, "No IV offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
n = *iv_off;
|
||||
|
||||
/* First process the *iv_off bytes
|
||||
* which are pending from the previous call to this API
|
||||
*/
|
||||
while (n > 0 && length > 0) {
|
||||
if (mode == MBEDTLS_AES_ENCRYPT) {
|
||||
iv[n] = *output++ = *input++ ^ iv[n];
|
||||
} else {
|
||||
c = *input++;
|
||||
*output++ = c ^ iv[n];
|
||||
iv[n] = c;
|
||||
}
|
||||
n = (n + 1) % AES_BLOCK_BYTES;
|
||||
length--;
|
||||
}
|
||||
|
||||
|
||||
if (length > 0) {
|
||||
stream_bytes = length % AES_BLOCK_BYTES;
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB128);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
int r = esp_aes_process_dma(ctx, input, output, length, iv);
|
||||
if (r != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
if (stream_bytes == 0) {
|
||||
// if we didn't need the partial 'stream block' then the new IV is in the IV register
|
||||
aes_hal_read_iv(iv);
|
||||
} else {
|
||||
// if we did process a final partial block the new IV is already processed via DMA (and has some bytes of output in it),
|
||||
// In decrypt mode any partial bytes are output plaintext (iv ^ c) and need to be swapped back to ciphertext (as the next
|
||||
// block uses ciphertext as its IV input)
|
||||
//
|
||||
// Note: It may be more efficient to not process the partial block via DMA in this case.
|
||||
if (mode == MBEDTLS_AES_DECRYPT) {
|
||||
memcpy(iv, input + length - stream_bytes, stream_bytes);
|
||||
}
|
||||
}
|
||||
esp_aes_release_hardware();
|
||||
}
|
||||
|
||||
*iv_off = n + stream_bytes;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-OFB (Output Feedback Mode) buffer encryption/decryption
|
||||
*/
|
||||
|
||||
int esp_aes_crypt_ofb(esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
size_t n;
|
||||
size_t stream_bytes = 0;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!iv_off) {
|
||||
ESP_LOGE(TAG, "No IV offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
n = *iv_off;
|
||||
|
||||
/* If there is an offset then use the output of the previous AES block
|
||||
(the updated IV) to calculate the new output */
|
||||
while (n > 0 && length > 0) {
|
||||
*output++ = (*input++ ^ iv[n]);
|
||||
n = (n + 1) & 0xF;
|
||||
length--;
|
||||
}
|
||||
if (length > 0) {
|
||||
stream_bytes = (length % AES_BLOCK_BYTES);
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_OFB);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
int r = esp_aes_process_dma(ctx, input, output, length, iv);
|
||||
if (r != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(iv);
|
||||
esp_aes_release_hardware();
|
||||
}
|
||||
|
||||
*iv_off = n + stream_bytes;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MBEDTLS_CIPHER_MODE_CTR
|
||||
/*
|
||||
* AES-CTR buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ctr(esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *nc_off,
|
||||
unsigned char nonce_counter[16],
|
||||
unsigned char stream_block[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
size_t n;
|
||||
|
||||
if (esp_aes_validate_input(ctx, input, output)) {
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!stream_block) {
|
||||
ESP_LOGE(TAG, "No stream supplied");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (!nonce_counter) {
|
||||
ESP_LOGE(TAG, "No nonce supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!nc_off) {
|
||||
ESP_LOGE(TAG, "No nonce offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
n = *nc_off;
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
/* Process any unprocessed bytes left in stream block from
|
||||
last operation */
|
||||
while (n > 0 && length > 0) {
|
||||
*output++ = (unsigned char)(*input++ ^ stream_block[n]);
|
||||
n = (n + 1) & 0xF;
|
||||
length--;
|
||||
}
|
||||
|
||||
if (length > 0) {
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
||||
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CTR);
|
||||
aes_hal_set_iv(nonce_counter);
|
||||
|
||||
int r = esp_aes_process_dma(ctx, input, output, length, stream_block);
|
||||
|
||||
if (r != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return r;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(nonce_counter);
|
||||
|
||||
esp_aes_release_hardware();
|
||||
|
||||
}
|
||||
*nc_off = n + (length % AES_BLOCK_BYTES);
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif /* CONFIG_MBEDTLS_CIPHER_MODE_CTR */
|
@@ -15,6 +15,7 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
/**
|
||||
* @brief Start the DMA engine
|
||||
*
|
||||
@@ -41,6 +42,7 @@ bool esp_aes_dma_done(const crypto_dma_desc_t *output);
|
||||
*/
|
||||
void esp_aes_intr_alloc(void);
|
||||
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
749
components/mbedtls/port/aes/esp_aes.c
Normal file
749
components/mbedtls/port/aes/esp_aes.c
Normal file
@@ -0,0 +1,749 @@
|
||||
/*
|
||||
* \brief AES block and DMA hardware accelerated version
|
||||
* Based on mbedTLS FIPS-197 compliant version.
|
||||
*
|
||||
* SPDX-FileCopyrightText: The Mbed TLS Contributors
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* SPDX-FileContributor: 2025 Espressif Systems (Shanghai) CO LTD
|
||||
*/
|
||||
/*
|
||||
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
|
||||
*
|
||||
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
|
||||
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include "mbedtls/aes.h"
|
||||
#include "esp_log.h"
|
||||
#include "esp_crypto_lock.h"
|
||||
#include "hal/aes_hal.h"
|
||||
#include "esp_aes_internal.h"
|
||||
#include "esp_crypto_periph_clk.h"
|
||||
#include "soc/soc_caps.h"
|
||||
#include "sdkconfig.h"
|
||||
|
||||
#if SOC_AES_GDMA
|
||||
#define AES_LOCK() esp_crypto_sha_aes_lock_acquire()
|
||||
#define AES_RELEASE() esp_crypto_sha_aes_lock_release()
|
||||
#elif SOC_AES_CRYPTO_DMA
|
||||
#define AES_LOCK() esp_crypto_dma_lock_acquire()
|
||||
#define AES_RELEASE() esp_crypto_dma_lock_release()
|
||||
#include "hal/crypto_dma_ll.h"
|
||||
#endif
|
||||
|
||||
static const char *TAG = "esp-aes";
|
||||
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
#if CONFIG_IDF_TARGET_ESP32P4
|
||||
#define AES_DMA_MODE_THRESHOLD 512
|
||||
#else
|
||||
#define AES_DMA_MODE_THRESHOLD 128
|
||||
#endif
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
|
||||
#if !SOC_AES_SUPPORT_DMA
|
||||
#include <freertos/FreeRTOS.h>
|
||||
|
||||
/* AES uses a spinlock mux not a lock as the underlying block operation
|
||||
only takes 208 cycles (to write key & compute block), +600 cycles
|
||||
for DPORT protection but +3400 cycles again if you use a full sized lock.
|
||||
|
||||
For CBC, CFB, etc. this may mean that interrupts are disabled for a longer
|
||||
period of time for bigger lengths. However at the moment this has to happen
|
||||
anyway due to DPORT protection...
|
||||
*/
|
||||
static portMUX_TYPE aes_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
||||
#endif
|
||||
|
||||
void esp_aes_acquire_hardware( void )
|
||||
{
|
||||
/* Released by esp_aes_release_hardware()*/
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
AES_LOCK();
|
||||
#else
|
||||
portENTER_CRITICAL(&aes_spinlock);
|
||||
#endif
|
||||
esp_crypto_aes_enable_periph_clk(true);
|
||||
}
|
||||
|
||||
/* Function to disable AES and Crypto DMA clocks and release locks */
|
||||
void esp_aes_release_hardware( void )
|
||||
{
|
||||
esp_crypto_aes_enable_periph_clk(false);
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
AES_RELEASE();
|
||||
#else
|
||||
portEXIT_CRITICAL(&aes_spinlock);
|
||||
#endif
|
||||
}
|
||||
|
||||
static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input,
|
||||
unsigned char *output, unsigned char *iv, bool validate_iv)
|
||||
{
|
||||
if (!ctx) {
|
||||
ESP_LOGE(TAG, "No AES context supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!input) {
|
||||
ESP_LOGE(TAG, "No input supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!output) {
|
||||
ESP_LOGE(TAG, "No output supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!valid_key_length(ctx)) {
|
||||
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
|
||||
}
|
||||
|
||||
if (validate_iv && !iv) {
|
||||
ESP_LOGE(TAG, "No IV supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
/* Run a single 16 byte block of AES, using the hardware engine.
|
||||
*
|
||||
* Call only while holding esp_aes_acquire_hardware().
|
||||
*
|
||||
* The function esp_aes_block zeroises the output buffer in the case of following conditions:
|
||||
* 1. If key is not written in the hardware
|
||||
* 2. If the fault injection check failed
|
||||
*/
|
||||
static int esp_aes_block(esp_aes_context *ctx, const void *input, void *output)
|
||||
{
|
||||
uint32_t i0, i1, i2, i3;
|
||||
const uint32_t *input_words = (uint32_t *)input;
|
||||
uint32_t *output_words = (uint32_t *)output;
|
||||
|
||||
/* If no key is written to hardware yet, either the user hasn't called
|
||||
mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't
|
||||
know which mode to use - or a fault skipped the
|
||||
key write to hardware. Treat this as a fatal error and zero the output block.
|
||||
*/
|
||||
if (ctx->key_in_hardware != ctx->key_bytes) {
|
||||
mbedtls_platform_zeroize(output, 16);
|
||||
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
|
||||
}
|
||||
i0 = input_words[0];
|
||||
i1 = input_words[1];
|
||||
i2 = input_words[2];
|
||||
i3 = input_words[3];
|
||||
|
||||
#ifdef CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC
|
||||
esp_aes_enable_pseudo_rounds(CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC_STRENGTH);
|
||||
#endif /* CONFIG_MBEDTLS_AES_USE_PSEUDO_ROUND_FUNC */
|
||||
|
||||
aes_hal_transform_block(input, output);
|
||||
|
||||
/* Physical security check: Verify the AES accelerator actually ran, and wasn't
|
||||
skipped due to external fault injection while starting the peripheral.
|
||||
|
||||
Note that i0,i1,i2,i3 are copied from input buffer in case input==output.
|
||||
|
||||
Bypassing this check requires at least one additional fault.
|
||||
*/
|
||||
if (i0 == output_words[0] && i1 == output_words[1] && i2 == output_words[2] && i3 == output_words[3]) {
|
||||
// calling zeroing functions to narrow the
|
||||
// window for a double-fault of the abort step, here
|
||||
memset(output, 0, 16);
|
||||
mbedtls_platform_zeroize(output, 16);
|
||||
abort();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
|
||||
/*
|
||||
* AES-ECB single block encryption
|
||||
*/
|
||||
int esp_internal_aes_encrypt(esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
return esp_aes_crypt_ecb(ctx, ESP_AES_ENCRYPT, input, output);
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-ECB single block decryption
|
||||
*/
|
||||
int esp_internal_aes_decrypt(esp_aes_context *ctx,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
return esp_aes_crypt_ecb(ctx, ESP_AES_DECRYPT, input, output);
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-ECB block encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ecb(esp_aes_context *ctx,
|
||||
int mode,
|
||||
const unsigned char input[16],
|
||||
unsigned char output[16] )
|
||||
{
|
||||
// Use helper for validation
|
||||
int ret = esp_aes_validate_input(ctx, input, output, NULL, false);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA && !CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
||||
ret = esp_aes_process_dma(ctx, input, output, AES_BLOCK_BYTES, NULL);
|
||||
#else
|
||||
ret = esp_aes_block(ctx, input, output);
|
||||
#endif
|
||||
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CBC buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cbc(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
// Use helpers for validation
|
||||
int ret = esp_aes_validate_input(ctx, input, output, iv, true);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* For CBC input length should be multiple of AES BLOCK BYTES */
|
||||
if ( (length % AES_BLOCK_BYTES) || (length == 0) ) {
|
||||
return ERR_ESP_AES_INVALID_INPUT_LENGTH;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
if (length > AES_DMA_MODE_THRESHOLD) {
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CBC);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
ret = esp_aes_process_dma(ctx, input, output, length, NULL);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(iv);
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
} else
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
{
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
|
||||
uint32_t *output_words = (uint32_t *)output;
|
||||
const uint32_t *input_words = (const uint32_t *)input;
|
||||
uint32_t *iv_words = (uint32_t *)iv;
|
||||
unsigned char temp[16];
|
||||
|
||||
if (mode == ESP_AES_DECRYPT) {
|
||||
while (length > 0) {
|
||||
memcpy(temp, input_words, 16);
|
||||
ret = esp_aes_block(ctx, input_words, output_words);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
output_words[0] = output_words[0] ^ iv_words[0];
|
||||
output_words[1] = output_words[1] ^ iv_words[1];
|
||||
output_words[2] = output_words[2] ^ iv_words[2];
|
||||
output_words[3] = output_words[3] ^ iv_words[3];
|
||||
|
||||
memcpy( iv_words, temp, 16 );
|
||||
|
||||
input_words += 4;
|
||||
output_words += 4;
|
||||
length -= 16;
|
||||
}
|
||||
} else { // ESP_AES_ENCRYPT
|
||||
while (length > 0) {
|
||||
|
||||
output_words[0] = input_words[0] ^ iv_words[0];
|
||||
output_words[1] = input_words[1] ^ iv_words[1];
|
||||
output_words[2] = input_words[2] ^ iv_words[2];
|
||||
output_words[3] = input_words[3] ^ iv_words[3];
|
||||
|
||||
ret = esp_aes_block(ctx, output_words, output_words);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
memcpy(iv_words, output_words, 16);
|
||||
|
||||
input_words += 4;
|
||||
output_words += 4;
|
||||
length -= 16;
|
||||
}
|
||||
}
|
||||
ret = 0;
|
||||
}
|
||||
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB8 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb8(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
unsigned char c;
|
||||
unsigned char ov[17];
|
||||
|
||||
// Use helpers for validation
|
||||
int ret = esp_aes_validate_input(ctx, input, output, iv, true);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
if (length > AES_DMA_MODE_THRESHOLD) {
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
size_t block_bytes = length - (length % AES_BLOCK_BYTES);
|
||||
|
||||
/* The DMA engine will only output correct IV if it runs
|
||||
full blocks of input in CFB8 mode
|
||||
*/
|
||||
if (block_bytes > 0) {
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB8);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
ret = esp_aes_process_dma(ctx, input, output, block_bytes, NULL);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(iv);
|
||||
|
||||
length -= block_bytes;
|
||||
input += block_bytes;
|
||||
output += block_bytes;
|
||||
}
|
||||
|
||||
// Process remaining bytes block-at-a-time in ECB mode
|
||||
if (length > 0) {
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_ECB);
|
||||
|
||||
while ( length-- ) {
|
||||
memcpy( ov, iv, 16 );
|
||||
|
||||
ret = esp_aes_process_dma(ctx, iv, iv, AES_BLOCK_BYTES, NULL);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if ( mode == ESP_AES_DECRYPT ) {
|
||||
ov[16] = *input;
|
||||
}
|
||||
|
||||
c = *output++ = ( iv[0] ^ *input++ );
|
||||
|
||||
if ( mode == ESP_AES_ENCRYPT ) {
|
||||
ov[16] = c;
|
||||
}
|
||||
memcpy( iv, ov + 1, 16 );
|
||||
}
|
||||
}
|
||||
ret = 0;
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
} else
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
{
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
while (length--) {
|
||||
memcpy( ov, iv, 16 );
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if (mode == ESP_AES_DECRYPT) {
|
||||
ov[16] = *input;
|
||||
}
|
||||
|
||||
c = *output++ = (unsigned char)(iv[0] ^ *input++);
|
||||
|
||||
if (mode == ESP_AES_ENCRYPT) {
|
||||
ov[16] = c;
|
||||
}
|
||||
|
||||
memcpy( iv, ov + 1, 16 );
|
||||
}
|
||||
ret = 0;
|
||||
}
|
||||
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
cleanup:
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CFB128 buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_cfb128(esp_aes_context *ctx,
|
||||
int mode,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
|
||||
{
|
||||
uint8_t c;
|
||||
size_t n;
|
||||
|
||||
// Use helpers for validation
|
||||
int ret = esp_aes_validate_input(ctx, input, output, iv, true);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (!iv_off) {
|
||||
ESP_LOGE(TAG, "No IV offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
n = *iv_off;
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
if (length > AES_DMA_MODE_THRESHOLD) {
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
size_t stream_bytes = 0;
|
||||
|
||||
/* First process the *iv_off bytes
|
||||
* which are pending from the previous call to this API
|
||||
*/
|
||||
while (n > 0 && length > 0) {
|
||||
if (mode == ESP_AES_ENCRYPT) {
|
||||
iv[n] = *output++ = *input++ ^ iv[n];
|
||||
} else {
|
||||
c = *input++;
|
||||
*output++ = c ^ iv[n];
|
||||
iv[n] = c;
|
||||
}
|
||||
n = (n + 1) % AES_BLOCK_BYTES;
|
||||
length--;
|
||||
}
|
||||
|
||||
if (length > 0) {
|
||||
stream_bytes = length % AES_BLOCK_BYTES;
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CFB128);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
ret = esp_aes_process_dma(ctx, input, output, length, iv);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (stream_bytes == 0) {
|
||||
// if we didn't need the partial 'stream block' then the new IV is in the IV register
|
||||
aes_hal_read_iv(iv);
|
||||
} else {
|
||||
// if we did process a final partial block the new IV is already processed via DMA (and has some bytes of output in it),
|
||||
// In decrypt mode any partial bytes are output plaintext (iv ^ c) and need to be swapped back to ciphertext (as the next
|
||||
// block uses ciphertext as its IV input)
|
||||
//
|
||||
// Note: It may be more efficient to not process the partial block via DMA in this case.
|
||||
if (mode == ESP_AES_DECRYPT) {
|
||||
memcpy(iv, input + length - stream_bytes, stream_bytes);
|
||||
}
|
||||
}
|
||||
esp_aes_release_hardware();
|
||||
}
|
||||
|
||||
*iv_off = n + stream_bytes;
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
} else
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
{
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
if (mode == ESP_AES_DECRYPT) {
|
||||
while (length--) {
|
||||
if (n == 0) {
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
c = *input++;
|
||||
*output++ = (unsigned char)( c ^ iv[n] );
|
||||
iv[n] = (unsigned char) c;
|
||||
n = (n + 1) & 0x0F;
|
||||
}
|
||||
} else {
|
||||
while (length--) {
|
||||
if ( n == 0 ) {
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
iv[n] = *output++ = (unsigned char)(iv[n] ^ *input++);
|
||||
n = ( n + 1 ) & 0x0F;
|
||||
}
|
||||
}
|
||||
|
||||
esp_aes_release_hardware();
|
||||
*iv_off = n;
|
||||
}
|
||||
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-OFB (Output Feedback Mode) buffer encryption/decryption
|
||||
*/
|
||||
|
||||
int esp_aes_crypt_ofb(esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *iv_off,
|
||||
unsigned char iv[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
size_t n;
|
||||
|
||||
// Use helpers for validation
|
||||
int ret = esp_aes_validate_input(ctx, input, output, iv, true);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (!iv_off) {
|
||||
ESP_LOGE(TAG, "No IV offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
n = *iv_off;
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
if (length > AES_DMA_MODE_THRESHOLD) {
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
size_t stream_bytes = 0;
|
||||
|
||||
/* If there is an offset then use the output of the previous AES block
|
||||
(the updated IV) to calculate the new output */
|
||||
while (n > 0 && length > 0) {
|
||||
*output++ = (*input++ ^ iv[n]);
|
||||
n = (n + 1) & 0xF;
|
||||
length--;
|
||||
}
|
||||
|
||||
if (length > 0) {
|
||||
stream_bytes = (length % AES_BLOCK_BYTES);
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_OFB);
|
||||
aes_hal_set_iv(iv);
|
||||
|
||||
ret = esp_aes_process_dma(ctx, input, output, length, iv);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(iv);
|
||||
esp_aes_release_hardware();
|
||||
}
|
||||
|
||||
*iv_off = n + stream_bytes;
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
} else
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
{
|
||||
// TODO: Check if this is necessary as the DMA version does not have this check
|
||||
if (n > 15) {
|
||||
return (MBEDTLS_ERR_AES_BAD_INPUT_DATA);
|
||||
}
|
||||
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
while (length--) {
|
||||
if (n == 0) {
|
||||
ret = esp_aes_block(ctx, iv, iv);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
*output++ = *input++ ^ iv[n];
|
||||
n = (n + 1) & 0x0F;
|
||||
}
|
||||
|
||||
esp_aes_release_hardware();
|
||||
*iv_off = n;
|
||||
}
|
||||
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* AES-CTR buffer encryption/decryption
|
||||
*/
|
||||
int esp_aes_crypt_ctr(esp_aes_context *ctx,
|
||||
size_t length,
|
||||
size_t *nc_off,
|
||||
unsigned char nonce_counter[16],
|
||||
unsigned char stream_block[16],
|
||||
const unsigned char *input,
|
||||
unsigned char *output )
|
||||
{
|
||||
size_t n;
|
||||
|
||||
// Use helper for validation
|
||||
int ret = esp_aes_validate_input(ctx, input, output, NULL, false);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (!stream_block) {
|
||||
ESP_LOGE(TAG, "No stream supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!nonce_counter) {
|
||||
ESP_LOGE(TAG, "No nonce supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
if (!nc_off) {
|
||||
ESP_LOGE(TAG, "No nonce offset supplied");
|
||||
return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
|
||||
}
|
||||
|
||||
n = *nc_off;
|
||||
|
||||
#if SOC_AES_SUPPORT_DMA
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
if (length > AES_DMA_MODE_THRESHOLD) {
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
/* Process any unprocessed bytes left in stream block from
|
||||
last operation */
|
||||
while (n > 0 && length > 0) {
|
||||
*output++ = (unsigned char)(*input++ ^ stream_block[n]);
|
||||
n = (n + 1) & 0xF;
|
||||
length--;
|
||||
}
|
||||
|
||||
if (length > 0) {
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT);
|
||||
|
||||
aes_hal_mode_init(ESP_AES_BLOCK_MODE_CTR);
|
||||
aes_hal_set_iv(nonce_counter);
|
||||
|
||||
ret = esp_aes_process_dma(ctx, input, output, length, stream_block);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
aes_hal_read_iv(nonce_counter);
|
||||
esp_aes_release_hardware();
|
||||
}
|
||||
|
||||
*nc_off = n + (length % AES_BLOCK_BYTES);
|
||||
#if CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
} else
|
||||
#endif /* CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
#endif /* SOC_AES_SUPPORT_DMA */
|
||||
#if !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM
|
||||
{
|
||||
esp_aes_acquire_hardware();
|
||||
ctx->key_in_hardware = 0;
|
||||
ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT);
|
||||
|
||||
int c, i;
|
||||
while (length--) {
|
||||
if (n == 0) {
|
||||
ret = esp_aes_block(ctx, nonce_counter, stream_block);
|
||||
if (ret != 0) {
|
||||
esp_aes_release_hardware();
|
||||
return ret;
|
||||
}
|
||||
|
||||
for (i = 16; i > 0; i--) {
|
||||
if (++nonce_counter[i - 1] != 0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
c = *input++;
|
||||
*output++ = (unsigned char)(c ^ stream_block[n]);
|
||||
n = (n + 1) & 0x0F;
|
||||
}
|
||||
|
||||
esp_aes_release_hardware();
|
||||
*nc_off = n;
|
||||
}
|
||||
#endif /* !SOC_AES_SUPPORT_DMA || CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM */
|
||||
return 0;
|
||||
}
|
@@ -345,7 +345,6 @@ int esp_internal_aes_decrypt( esp_aes_context *ctx, const unsigned char input[16
|
||||
/** XTS-AES buffer encryption/decryption */
|
||||
int esp_aes_crypt_xts( esp_aes_xts_context *ctx, int mode, size_t length, const unsigned char data_unit[16], const unsigned char *input, unsigned char *output );
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@@ -10,12 +10,13 @@
|
||||
#include "esp_private/gdma.h"
|
||||
#include "esp_err.h"
|
||||
#include "soc/lldesc.h"
|
||||
#include "soc/soc_caps.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
#if (SOC_AES_GDMA) || (SOC_SHA_GDMA)
|
||||
/**
|
||||
* @brief Start a GDMA transfer on the shared crypto DMA channel
|
||||
* Supports AXI-DMA and AHB-DMA.
|
||||
@@ -52,6 +53,7 @@ bool esp_crypto_shared_gdma_done(void);
|
||||
* and need the DMA channel for other peripherals. An example would be doing some processing after disconnecting WiFi
|
||||
*/
|
||||
void esp_crypto_shared_gdma_free(void);
|
||||
#endif /* (SOC_AES_GDMA) || (SOC_SHA_GDMA) */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
@@ -34,6 +34,7 @@
|
||||
|
||||
#include "esp_sha_internal.h"
|
||||
#include "sha/sha_core.h"
|
||||
#include "esp_compiler.h"
|
||||
|
||||
/* Implementation that should never be optimized out by the compiler */
|
||||
static void mbedtls_zeroize(void *v, size_t n)
|
||||
@@ -119,7 +120,8 @@ int mbedtls_internal_sha1_process(mbedtls_sha1_context *ctx, const unsigned char
|
||||
esp_internal_sha_update_state(ctx);
|
||||
|
||||
#if SOC_SHA_SUPPORT_DMA
|
||||
if (sha_operation_mode(64) == SHA_DMA_MODE) {
|
||||
// Unlikely to use DMA because data size is 64 bytes which is smaller than the DMA threshold
|
||||
if (unlikely(sha_operation_mode(64) == SHA_DMA_MODE)) {
|
||||
int ret = esp_sha_dma(SHA1, data, 64, NULL, 0, ctx->first_block);
|
||||
if (ret != 0) {
|
||||
esp_sha_release_hardware();
|
||||
|
@@ -34,6 +34,7 @@
|
||||
|
||||
#include "esp_sha_internal.h"
|
||||
#include "sha/sha_core.h"
|
||||
#include "esp_compiler.h"
|
||||
|
||||
/* Implementation that should never be optimized out by the compiler */
|
||||
static void mbedtls_zeroize(void *v, size_t n)
|
||||
@@ -132,7 +133,8 @@ int mbedtls_internal_sha256_process(mbedtls_sha256_context *ctx, const unsigned
|
||||
esp_internal_sha_update_state(ctx);
|
||||
|
||||
#if SOC_SHA_SUPPORT_DMA
|
||||
if (sha_operation_mode(64) == SHA_DMA_MODE) {
|
||||
// Unlikely to use DMA because data size is 64 bytes which is smaller than the DMA threshold
|
||||
if (unlikely(sha_operation_mode(64) == SHA_DMA_MODE)) {
|
||||
int ret = esp_sha_dma(ctx->mode, data, 64, NULL, 0, ctx->first_block);
|
||||
if (ret != 0) {
|
||||
esp_sha_release_hardware();
|
||||
|
@@ -40,6 +40,7 @@
|
||||
|
||||
#include "esp_sha_internal.h"
|
||||
#include "sha/sha_core.h"
|
||||
#include "esp_compiler.h"
|
||||
|
||||
/* Implementation that should never be optimized out by the compiler */
|
||||
static void mbedtls_zeroize(void *v, size_t n)
|
||||
@@ -169,7 +170,8 @@ int mbedtls_internal_sha512_process(mbedtls_sha512_context *ctx, const unsigned
|
||||
}
|
||||
|
||||
#if SOC_SHA_SUPPORT_DMA
|
||||
if (sha_operation_mode(128) == SHA_DMA_MODE) {
|
||||
// Likely to use DMA because data size is 128 bytes which is larger or equal to the DMA threshold
|
||||
if (likely(sha_operation_mode(128) == SHA_DMA_MODE)) {
|
||||
ret = esp_sha_dma(ctx->mode, data, 128, NULL, 0, ctx->first_block);
|
||||
if (ret != 0) {
|
||||
esp_sha_release_hardware();
|
||||
|
@@ -139,22 +139,6 @@ config SOC_XTAL_CLOCK_PATH_DEPENDS_ON_TOP_DOMAIN
|
||||
bool
|
||||
default y
|
||||
|
||||
config SOC_AES_SUPPORT_DMA
|
||||
bool
|
||||
default y
|
||||
|
||||
config SOC_AES_GDMA
|
||||
bool
|
||||
default y
|
||||
|
||||
config SOC_AES_SUPPORT_AES_128
|
||||
bool
|
||||
default y
|
||||
|
||||
config SOC_AES_SUPPORT_AES_256
|
||||
bool
|
||||
default y
|
||||
|
||||
config SOC_ADC_PERIPH_NUM
|
||||
int
|
||||
default 1
|
||||
|
@@ -93,13 +93,13 @@
|
||||
#define SOC_XTAL_CLOCK_PATH_DEPENDS_ON_TOP_DOMAIN 1
|
||||
|
||||
/*-------------------------- AES CAPS -----------------------------------------*/
|
||||
#define SOC_AES_SUPPORT_DMA (1)
|
||||
// #define SOC_AES_SUPPORT_DMA (1)
|
||||
|
||||
/* Has a centralized DMA, which is shared with all peripherals */
|
||||
#define SOC_AES_GDMA (1)
|
||||
// #define SOC_AES_GDMA (1)
|
||||
|
||||
#define SOC_AES_SUPPORT_AES_128 (1)
|
||||
#define SOC_AES_SUPPORT_AES_256 (1)
|
||||
// #define SOC_AES_SUPPORT_AES_128 (1)
|
||||
// #define SOC_AES_SUPPORT_AES_256 (1)
|
||||
|
||||
/*-------------------------- ADC CAPS -------------------------------*/
|
||||
/*!< SAR ADC Module*/
|
||||
|
@@ -223,6 +223,7 @@ These include:
|
||||
- Consider disabling some cipher suites listed in the ``TLS Key Exchange Methods`` sub-menu (i.e., :ref:`CONFIG_MBEDTLS_KEY_EXCHANGE_RSA`).
|
||||
- Consider disabling :ref:`CONFIG_MBEDTLS_ERROR_STRINGS` if the application is already pulling in mbedTLS error strings through using :cpp:func:`mbedtls_strerror`.
|
||||
:esp32h2: - For {IDF_TARGET_NAME} v1.2 and above, consider disabling :ref:`CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN_MASKING_CM` and :ref:`CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN_CONSTANT_TIME_CM` as the software countermeasures for the ECDSA sign operation are not required.
|
||||
:SOC_AES_SUPPORT_DMA: - Consider disabling :ref:CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM if the application does not involve or require performance optimization for operations that involve small data lengths, such as NVS encryption/decryption or TLS communication when performed on small data segments.
|
||||
|
||||
The help text for each option has some more information for reference.
|
||||
|
||||
|
@@ -223,6 +223,7 @@ MbedTLS 功能
|
||||
- 可以考虑禁用在 ``TLS Key Exchange Methods`` 子菜单中列出的一些密码套件(例如 :ref:`CONFIG_MBEDTLS_KEY_EXCHANGE_RSA`),以减小代码大小。
|
||||
- 如果应用程序已经通过使用 :cpp:func:`mbedtls_strerror` 拉取 mbedTLS 错误字符串,则可以考虑禁用 :ref:`CONFIG_MBEDTLS_ERROR_STRINGS`。
|
||||
:esp32h2: - 对于 {IDF_TARGET_NAME} v1.2 及以上版本,可以考虑禁用 :ref:`CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN_MASKING_CM` 和 :ref:`CONFIG_MBEDTLS_HARDWARE_ECDSA_SIGN_CONSTANT_TIME_CM`,因为无需再使用 ECDSA 签名的软件防护措施。
|
||||
:SOC_AES_SUPPORT_DMA: - 如果应用程序不涉及或不需要针对小数据长度操作进行性能优化,例如在处理小数据段时进行的 NVS 加密/解密操作、TLS 通信等,可以考虑禁用 :ref:`CONFIG_MBEDTLS_AES_HW_SMALL_DATA_LEN_OPTIM`。
|
||||
|
||||
每个选项的帮助文本中都有更多信息可供参考。
|
||||
|
||||
|
@@ -470,8 +470,6 @@ components/lwip/apps/ping/ping.c
|
||||
components/lwip/include/apps/esp_ping.h
|
||||
components/lwip/include/apps/ping/ping.h
|
||||
components/mbedtls/esp_crt_bundle/test_gen_crt_bundle/test_gen_crt_bundle.py
|
||||
components/mbedtls/port/aes/block/esp_aes.c
|
||||
components/mbedtls/port/aes/dma/esp_aes.c
|
||||
components/mbedtls/port/aes/esp_aes_xts.c
|
||||
components/mbedtls/port/include/aes/esp_aes.h
|
||||
components/mbedtls/port/include/aes_alt.h
|
||||
|
Reference in New Issue
Block a user