mirror of
https://github.com/espressif/esp-idf.git
synced 2025-07-30 18:57:19 +02:00
Merge branch 'test/parlio_rx_cache_safe_v5.3' into 'release/v5.3'
Reenable parlio rx cache safe test (v5.3) See merge request espressif/esp-idf!38684
This commit is contained in:
@ -298,15 +298,14 @@ esp_err_t parlio_new_tx_unit(const parlio_tx_unit_config_t *config, parlio_tx_un
|
||||
ESP_RETURN_ON_FALSE(config->flags.clk_gate_en == 0, ESP_ERR_NOT_SUPPORTED, TAG, "clock gating is not supported");
|
||||
#endif // SOC_PARLIO_TX_CLK_SUPPORT_GATING
|
||||
|
||||
// malloc unit memory
|
||||
uint32_t mem_caps = PARLIO_MEM_ALLOC_CAPS;
|
||||
unit = heap_caps_calloc(1, sizeof(parlio_tx_unit_t) + sizeof(parlio_tx_trans_desc_t) * config->trans_queue_depth, mem_caps);
|
||||
// allocate unit from internal memory because it contains atomic member
|
||||
unit = heap_caps_calloc(1, sizeof(parlio_tx_unit_t) + sizeof(parlio_tx_trans_desc_t) * config->trans_queue_depth, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
ESP_GOTO_ON_FALSE(unit, ESP_ERR_NO_MEM, err, TAG, "no memory for tx unit");
|
||||
|
||||
unit->max_transfer_bits = config->max_transfer_size * 8;
|
||||
unit->base.dir = PARLIO_DIR_TX;
|
||||
unit->data_width = data_width;
|
||||
//create transaction queue
|
||||
// create transaction queue
|
||||
ESP_GOTO_ON_ERROR(parlio_tx_create_trans_queue(unit, config), err, TAG, "create transaction queue failed");
|
||||
|
||||
// register the unit to a group
|
||||
|
@ -2,11 +2,6 @@ set(srcs "test_app_main.c"
|
||||
"test_parlio_rx.c"
|
||||
"test_parlio_tx.c")
|
||||
|
||||
# TODO: IDF-7840, semaphore in 'spi_bus_lock.c' is not IRAM safe
|
||||
if(CONFIG_PARLIO_ISR_IRAM_SAFE)
|
||||
list(REMOVE_ITEM srcs "test_parlio_rx.c")
|
||||
endif()
|
||||
|
||||
# In order for the cases defined by `TEST_CASE` to be linked into the final elf,
|
||||
# the component can be registered as WHOLE_ARCHIVE
|
||||
idf_component_register(SRCS ${srcs}
|
||||
|
@ -5,8 +5,8 @@
|
||||
*/
|
||||
|
||||
#include <string.h>
|
||||
#include <stdatomic.h>
|
||||
#include "sdkconfig.h"
|
||||
#include "stdatomic.h"
|
||||
#include "esp_types.h"
|
||||
#include "esp_attr.h"
|
||||
#include "esp_check.h"
|
||||
@ -31,6 +31,12 @@
|
||||
#include "esp_private/gdma.h"
|
||||
#endif
|
||||
|
||||
#if CONFIG_SPI_MASTER_ISR_IN_IRAM || CONFIG_SPI_SLAVE_ISR_IN_IRAM
|
||||
#define SPI_COMMON_MALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
|
||||
#else
|
||||
#define SPI_COMMON_MALLOC_CAPS (MALLOC_CAP_DEFAULT)
|
||||
#endif
|
||||
|
||||
static const char *SPI_TAG = "spi";
|
||||
|
||||
#define SPI_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, SPI_TAG, str)
|
||||
@ -265,7 +271,7 @@ esp_err_t spicommon_dma_chan_alloc(spi_host_device_t host_id, spi_dma_chan_t dma
|
||||
#endif
|
||||
|
||||
esp_err_t ret = ESP_OK;
|
||||
spi_dma_ctx_t *dma_ctx = (spi_dma_ctx_t *)calloc(1, sizeof(spi_dma_ctx_t));
|
||||
spi_dma_ctx_t *dma_ctx = (spi_dma_ctx_t *)heap_caps_calloc(1, sizeof(spi_dma_ctx_t), SPI_COMMON_MALLOC_CAPS);
|
||||
if (!dma_ctx) {
|
||||
ret = ESP_ERR_NO_MEM;
|
||||
goto cleanup;
|
||||
@ -814,7 +820,7 @@ esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *
|
||||
SPI_CHECK(spi_chan_claimed, "host_id already in use", ESP_ERR_INVALID_STATE);
|
||||
|
||||
//clean and initialize the context
|
||||
ctx = (spicommon_bus_context_t *)calloc(1, sizeof(spicommon_bus_context_t));
|
||||
ctx = (spicommon_bus_context_t *)heap_caps_calloc(1, sizeof(spicommon_bus_context_t), SPI_COMMON_MALLOC_CAPS);
|
||||
if (!ctx) {
|
||||
err = ESP_ERR_NO_MEM;
|
||||
goto cleanup;
|
||||
|
@ -133,6 +133,12 @@ We have two bits to control the interrupt:
|
||||
#include "esp_cache.h"
|
||||
#endif
|
||||
|
||||
#if CONFIG_SPI_MASTER_IN_IRAM || CONFIG_SPI_MASTER_ISR_IN_IRAM
|
||||
#define SPI_MASTER_MALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
|
||||
#else
|
||||
#define SPI_MASTER_MALLOC_CAPS (MALLOC_CAP_DEFAULT)
|
||||
#endif
|
||||
|
||||
typedef struct spi_device_t spi_device_t;
|
||||
|
||||
/// struct to hold private transaction data (like tx and rx buffer for DMA).
|
||||
@ -481,7 +487,7 @@ esp_err_t spi_bus_add_device(spi_host_device_t host_id, const spi_device_interfa
|
||||
}
|
||||
|
||||
//Allocate memory for device
|
||||
dev = malloc(sizeof(spi_device_t));
|
||||
dev = heap_caps_malloc(sizeof(spi_device_t), SPI_MASTER_MALLOC_CAPS);
|
||||
if (dev == NULL) {
|
||||
goto nomem;
|
||||
}
|
||||
|
@ -156,7 +156,8 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
|
||||
spi_chan_claimed = spicommon_periph_claim(host, "spi slave");
|
||||
SPI_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE);
|
||||
|
||||
spihost[host] = malloc(sizeof(spi_slave_t));
|
||||
// spi_slave_t contains atomic variable, memory must be allocated from internal memory
|
||||
spihost[host] = heap_caps_malloc(sizeof(spi_slave_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
if (spihost[host] == NULL) {
|
||||
ret = ESP_ERR_NO_MEM;
|
||||
goto cleanup;
|
||||
|
@ -33,7 +33,7 @@
|
||||
* This lock is designed to solve the conflicts between SPI devices (used in tasks) and
|
||||
* the background operations (ISR or cache access).
|
||||
*
|
||||
* There are N (device/task) + 1 (BG) acquiring processer candidates that may touch the bus.
|
||||
* There are N (device/task) + 1 (BG) acquiring processor candidates that may touch the bus.
|
||||
*
|
||||
* The core of the lock is a `status` atomic variable, which is always available. No intermediate
|
||||
* status is allowed. The atomic operations (mainly `atomic_fetch_and`, `atomic_fetch_or`)
|
||||
@ -49,7 +49,7 @@
|
||||
* state of devices. Either one of REQ or PENDING being active indicates the device has pending BG
|
||||
* requests. Reason of having two bits instead of one is in the appendix below.
|
||||
*
|
||||
* Acquiring processer means the current processor (task or ISR) allowed to touch the critical
|
||||
* Acquiring processor means the current processor (task or ISR) allowed to touch the critical
|
||||
* resources, or the SPI bus.
|
||||
*
|
||||
* States of the lock:
|
||||
@ -168,7 +168,7 @@ typedef struct spi_bus_lock_t spi_bus_lock_t;
|
||||
* This flag is weak, will not prevent acquiring of devices. But will help the BG to be re-enabled again after the bus is release.
|
||||
*/
|
||||
|
||||
// get the bit mask wher bit [high-1, low] are all 1'b1 s.
|
||||
// get the bit mask where bit [high-1, low] are all 1'b1 s.
|
||||
#define BIT1_MASK(high, low) ((UINT32_MAX << (high)) ^ (UINT32_MAX << (low)))
|
||||
|
||||
#define LOCK_BIT(mask) ((mask) << LOCK_SHIFT)
|
||||
@ -238,7 +238,7 @@ struct spi_bus_lock_dev_t {
|
||||
* acquire_end_core():
|
||||
* uint32_t status = lock_status_clear(lock, dev_handle->mask & LOCK_MASK);
|
||||
*
|
||||
* Becuase this is the first `spi_hdl_1`, so after this , lock_bits == 0`b0. status == 0
|
||||
* Because this is the first `spi_hdl_1`, so after this , lock_bits == 0`b0. status == 0
|
||||
*
|
||||
* 2. spi_hdl_2:
|
||||
* acquire_core:
|
||||
@ -254,7 +254,7 @@ struct spi_bus_lock_dev_t {
|
||||
*
|
||||
* 5. spi_hdl_1:
|
||||
* acquire_end_core:
|
||||
* status is 0, so it cleas the lock->acquiring_dev
|
||||
* status is 0, so it clears the lock->acquiring_dev
|
||||
*
|
||||
* 6. spi_hdl_2:
|
||||
* spi_device_polling_end:
|
||||
@ -482,7 +482,7 @@ SPI_BUS_LOCK_ISR_ATTR static inline void update_pend_core(spi_bus_lock_t *lock,
|
||||
}
|
||||
|
||||
// Clear the PEND bit (not REQ bit!) of a device, return the suggestion whether we can try to quit the ISR.
|
||||
// Lost the acquiring processor immediately when the BG bits for active device are inactive, indiciating by the return value.
|
||||
// Lost the acquiring processor immediately when the BG bits for active device are inactive, indicating by the return value.
|
||||
// Can be called only when ISR is acting as the acquiring processor.
|
||||
SPI_BUS_LOCK_ISR_ATTR static inline bool clear_pend_core(spi_bus_lock_dev_t *dev_handle)
|
||||
{
|
||||
@ -585,7 +585,7 @@ SPI_BUS_LOCK_ISR_ATTR static inline esp_err_t dev_wait(spi_bus_lock_dev_t *dev_h
|
||||
******************************************************************************/
|
||||
esp_err_t spi_bus_init_lock(spi_bus_lock_handle_t *out_lock, const spi_bus_lock_config_t *config)
|
||||
{
|
||||
spi_bus_lock_t* lock = (spi_bus_lock_t*)calloc(sizeof(spi_bus_lock_t), 1);
|
||||
spi_bus_lock_t* lock = (spi_bus_lock_t*)heap_caps_calloc(1, sizeof(spi_bus_lock_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
if (lock == NULL) {
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
@ -648,7 +648,7 @@ esp_err_t spi_bus_lock_register_dev(spi_bus_lock_handle_t lock, spi_bus_lock_dev
|
||||
if (dev_lock == NULL) {
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
dev_lock->semphr = xSemaphoreCreateBinary();
|
||||
dev_lock->semphr = xSemaphoreCreateBinaryWithCaps(MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||
if (dev_lock->semphr == NULL) {
|
||||
free(dev_lock);
|
||||
atomic_store(&lock->dev[id], (intptr_t)NULL);
|
||||
@ -676,7 +676,7 @@ void spi_bus_lock_unregister_dev(spi_bus_lock_dev_handle_t dev_handle)
|
||||
|
||||
atomic_store(&lock->dev[id], (intptr_t)NULL);
|
||||
if (dev_handle->semphr) {
|
||||
vSemaphoreDelete(dev_handle->semphr);
|
||||
vSemaphoreDeleteWithCaps(dev_handle->semphr);
|
||||
}
|
||||
|
||||
free(dev_handle);
|
||||
|
Reference in New Issue
Block a user