// Copyright 2015-2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "regi2c_ctrl.h" #include "soc/adc_periph.h" #include "hal/adc_types.h" #include "soc/apb_saradc_struct.h" #include "soc/sens_struct.h" #include "soc/apb_saradc_reg.h" #include "soc/rtc_cntl_struct.h" #include "soc/rtc_cntl_reg.h" #include "hal/misc.h" #ifdef __cplusplus extern "C" { #endif #define ADC_LL_CLKM_DIV_NUM_DEFAULT 15 #define ADC_LL_CLKM_DIV_B_DEFAULT 1 #define ADC_LL_CLKM_DIV_A_DEFAULT 0 typedef enum { ADC_NUM_1 = 0, /*!< SAR ADC 1 */ ADC_NUM_2 = 1, /*!< SAR ADC 2 */ ADC_NUM_MAX, } adc_ll_num_t; typedef enum { ADC_POWER_BY_FSM, /*!< ADC XPD controled by FSM. Used for polling mode */ ADC_POWER_SW_ON, /*!< ADC XPD controled by SW. power on. Used for DMA mode */ ADC_POWER_SW_OFF, /*!< ADC XPD controled by SW. power off. */ ADC_POWER_MAX, /*!< For parameter check. */ } adc_ll_power_t; typedef enum { ADC_RTC_DATA_OK = 0, ADC_RTC_CTRL_UNSELECTED = 1, ADC_RTC_CTRL_BREAK = 2, ADC_RTC_DATA_FAIL = -1, } adc_ll_rtc_raw_data_t; typedef enum { ADC_LL_CTRL_RTC = 0, ///< For ADC1. Select RTC controller. ADC_LL_CTRL_ULP = 1, ///< For ADC1 and ADC2. Select ULP controller. ADC_LL_CTRL_DIG = 2, ///< For ADC1. Select DIG controller. ADC_LL_CTRL_ARB = 4, ///< For ADC2. The controller is selected by the arbiter. } adc_ll_controller_t; typedef struct { union { struct { uint8_t atten: 2; uint8_t channel: 4; uint8_t reserved: 2; }; uint8_t val; }; } __attribute__((packed)) adc_ll_digi_pattern_table_t; #ifdef _MSC_VER #pragma pack(push, 1) #endif /* _MSC_VER */ /** * @brief Analyze whether the obtained raw data is correct. * ADC2 use arbiter by default. The arbitration result can be judged by the flag bit in the original data. * */ typedef struct { union { struct { uint16_t data: 12; /*! 0), The data is invalid. */ }; uint16_t val; }; } adc_ll_rtc_output_data_t; #ifdef _MSC_VER #pragma pack(pop) #endif /* _MSC_VER */ /*--------------------------------------------------------------- Digital controller setting ---------------------------------------------------------------*/ /** * Set adc fsm interval parameter for digital controller. These values are fixed for same platforms. * * @param rst_wait cycles between DIG ADC controller reset ADC sensor and start ADC sensor. * @param start_wait Delay time after open xpd. * @param standby_wait Delay time to close xpd. */ static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wait, uint32_t standby_wait) { // Internal FSM reset wait time HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, rstb_wait, rst_wait); // Internal FSM start wait time HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, xpd_wait, start_wait); // Internal FSM standby wait time HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, standby_wait, standby_wait); } /** * Set adc sample cycle for digital controller. * * @note Normally, please use default value. * @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor. * Range: 2 ~ 0xFF. */ static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle) { /* Should be called before writing I2C registers. */ SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU_M); CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_SAR_M); SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_SAR_CFG2_M); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle); } /** * Set SAR ADC module clock division factor. * SAR ADC clock divided from digital controller clock. * * @param div Division factor. */ static inline void adc_ll_digi_set_clk_div(uint32_t div) { /* ADC clock divided from digital controller clock clk */ HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl, sar_clk_div, div); } /** * Set adc max conversion number for digital controller. * If the number of ADC conversion is equal to the maximum, the conversion is stopped. * * @param meas_num Max conversion number. Range: 0 ~ 255. */ static inline void adc_ll_digi_set_convert_limit_num(uint32_t meas_num) { HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl2, max_meas_num, meas_num); } /** * Enable max conversion number detection for digital controller. * If the number of ADC conversion is equal to the maximum, the conversion is stopped. */ static inline void adc_ll_digi_convert_limit_enable(void) { APB_SARADC.ctrl2.meas_num_limit = 1; } /** * Disable max conversion number detection for digital controller. * If the number of ADC conversion is equal to the maximum, the conversion is stopped. */ static inline void adc_ll_digi_convert_limit_disable(void) { APB_SARADC.ctrl2.meas_num_limit = 0; } /** * Set adc conversion mode for digital controller. * * @note ESP32 only support ADC1 single mode. * * @param mode Conversion mode select. */ static inline void adc_ll_digi_set_convert_mode(adc_digi_convert_mode_t mode) { if (mode == ADC_CONV_SINGLE_UNIT_1) { APB_SARADC.ctrl.work_mode = 0; APB_SARADC.ctrl.sar_sel = 0; } else if (mode == ADC_CONV_SINGLE_UNIT_2) { APB_SARADC.ctrl.work_mode = 0; APB_SARADC.ctrl.sar_sel = 1; } else if (mode == ADC_CONV_BOTH_UNIT) { APB_SARADC.ctrl.work_mode = 1; } else if (mode == ADC_CONV_ALTER_UNIT) { APB_SARADC.ctrl.work_mode = 2; } APB_SARADC.ctrl.data_sar_sel = 1; } /** * Set pattern table length for digital controller. * The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection, * resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the * pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself. * * @param adc_n ADC unit. * @param patt_len Items range: 1 ~ 16. */ static inline void adc_ll_digi_set_pattern_table_len(adc_ll_num_t adc_n, uint32_t patt_len) { if (adc_n == ADC_NUM_1) { APB_SARADC.ctrl.sar1_patt_len = patt_len - 1; } else { // adc_n == ADC_NUM_2 APB_SARADC.ctrl.sar2_patt_len = patt_len - 1; } } /** * Set pattern table for digital controller. * The pattern table that defines the conversion rules for each SAR ADC. Each table has 12 items, in which channel selection, * resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the * pattern table one by one. For each controller the scan sequence has at most 12 different rules before repeating itself. * * @param adc_n ADC unit. * @param pattern_index Items index. Range: 0 ~ 11. * @param pattern Stored conversion rules. */ static inline void adc_ll_digi_set_pattern_table(adc_ll_num_t adc_n, uint32_t pattern_index, adc_digi_pattern_table_t table) { abort(); } /** * Reset the pattern table pointer, then take the measurement rule from table header in next measurement. * * @param adc_n ADC unit. */ static inline void adc_ll_digi_clear_pattern_table(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { APB_SARADC.ctrl.sar1_patt_p_clear = 1; APB_SARADC.ctrl.sar1_patt_p_clear = 0; } else { // adc_n == ADC_NUM_2 APB_SARADC.ctrl.sar2_patt_p_clear = 1; APB_SARADC.ctrl.sar2_patt_p_clear = 0; } } /** * Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize. * * @note Only ADC2 have arbiter function. * @param cycle range: 0 ~ 4. */ static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle) { APB_SARADC.ctrl.wait_arb_cycle = cycle; } /** * ADC Digital controller output data invert or not. * * @param adc_n ADC unit. * @param inv_en data invert or not. */ static inline void adc_ll_digi_output_invert(adc_ll_num_t adc_n, bool inv_en) { if (adc_n == ADC_NUM_1) { APB_SARADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert } else { // adc_n == ADC_NUM_2 APB_SARADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert } } /** * Set the interval clock cycle for the digital controller to trigger the measurement. * Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval. * * @note The trigger interval should not be smaller than the sampling time of the SAR ADC. * @param cycle The clock cycle (trigger interval) of the measurement. Range: 30 ~ 4095. */ static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle) { APB_SARADC.ctrl2.timer_target = cycle; } /** * Enable digital controller timer to trigger the measurement. */ static inline void adc_ll_digi_trigger_enable(void) { APB_SARADC.ctrl2.timer_sel = 1; APB_SARADC.ctrl2.timer_en = 1; } /** * Disable digital controller timer to trigger the measurement. */ static inline void adc_ll_digi_trigger_disable(void) { APB_SARADC.ctrl2.timer_en = 0; } /** * Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock. * Expression: controller_clk = (APLL or APB) / (div_num + div_a / div_b + 1). * * @param div_num Division factor. Range: 0 ~ 255. * @param div_b Division factor. Range: 1 ~ 63. * @param div_a Division factor. Range: 0 ~ 63. */ static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a) { HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.apb_adc_clkm_conf, clkm_div_num, div_num); APB_SARADC.apb_adc_clkm_conf.clkm_div_b = div_b; APB_SARADC.apb_adc_clkm_conf.clkm_div_a = div_a; } /** * Enable clock and select clock source for ADC digital controller. * * @param use_apll true: use APLL clock; false: use APB clock. */ static inline void adc_ll_digi_controller_clk_enable(bool use_apll) { if (use_apll) { APB_SARADC.apb_adc_clkm_conf.clk_sel = 1; // APLL clock } else { APB_SARADC.apb_adc_clkm_conf.clk_sel = 2; // APB clock } APB_SARADC.ctrl.sar_clk_gated = 1; } /** * Disable clock for ADC digital controller. */ static inline void adc_ll_digi_controller_clk_disable(void) { APB_SARADC.ctrl.sar_clk_gated = 0; APB_SARADC.apb_adc_clkm_conf.clk_sel = 0; } /** * Reset adc digital controller filter. * * @param adc_n ADC unit. */ static inline void adc_ll_digi_filter_reset(adc_ll_num_t adc_n) { abort(); } /** * Disable adc digital controller filter. * Filtering the ADC data to obtain smooth data at higher sampling rates. * * @note If the channel info is not supported, the filter function will not be enabled. * @param adc_n ADC unit. */ static inline void adc_ll_digi_filter_disable(adc_digi_filter_idx_t idx) { abort(); } /** * Set adc digital controller filter factor. * * @note If the channel info is not supported, the filter function will not be enabled. * @param idx ADC filter unit. * @param filter Filter config. Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64). */ static inline void adc_ll_digi_filter_set_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter) { abort(); } /** * Get adc digital controller filter factor. * * @param adc_n ADC unit. * @param factor Expression: filter_data = (k-1)/k * last_data + new_data / k. Set values: (2, 4, 8, 16, 64). */ static inline void adc_ll_digi_filter_get_factor(adc_digi_filter_idx_t idx, adc_digi_filter_t *filter) { abort(); } /** * Get the filtered data of adc digital controller filter. * The data after each measurement and filtering is updated to the DMA by the digital controller. But it can also be obtained manually through this API. * * @note The filter will filter all the enabled channel data of the each ADC unit at the same time. * @param adc_n ADC unit. * @return Filtered data. */ static inline uint32_t adc_ll_digi_filter_read_data(adc_ll_num_t adc_n) { abort(); } /** * Set monitor mode of adc digital controller. * * @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time. * @param adc_n ADC unit. * @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt. * false: If ADC_OUT < threshold, Generates monitor interrupt. */ static inline void adc_ll_digi_monitor_set_mode(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *cfg) { abort(); } /** * Enable/disable monitor of adc digital controller. * * @note If the channel info is not supported, the monitor function will not be enabled. * @param adc_n ADC unit. */ static inline void adc_ll_digi_monitor_disable(adc_digi_monitor_idx_t idx) { abort(); } /** * Set monitor threshold of adc digital controller. * * @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time. * @param adc_n ADC unit. * @param threshold Monitor threshold. */ static inline void adc_ll_digi_monitor_set_thres(adc_ll_num_t adc_n, uint32_t threshold) { abort(); } /** * Enable/disable monitor of adc digital controller. * * @note The monitor will monitor all the enabled channel data of the each ADC unit at the same time. * @param adc_n ADC unit. */ static inline void adc_ll_digi_monitor_enable(adc_ll_num_t adc_n, bool enable) { abort(); } /** * Set DMA eof num of adc digital controller. * If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated. * * @param num eof num of DMA. */ static inline void adc_ll_digi_dma_set_eof_num(uint32_t num) { HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.dma_conf, apb_adc_eof_num, num); } /** * Enable output data to DMA from adc digital controller. */ static inline void adc_ll_digi_dma_enable(void) { APB_SARADC.dma_conf.apb_adc_trans = 1; } /** * Disable output data to DMA from adc digital controller. */ static inline void adc_ll_digi_dma_disable(void) { APB_SARADC.dma_conf.apb_adc_trans = 0; } /** * Reset adc digital controller. */ static inline void adc_ll_digi_reset(void) { APB_SARADC.dma_conf.apb_adc_reset_fsm = 1; APB_SARADC.dma_conf.apb_adc_reset_fsm = 0; } /*--------------------------------------------------------------- PWDET(Power detect) controller setting ---------------------------------------------------------------*/ /** * Set adc cct for PWDET controller. * * @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY. * @param cct Range: 0 ~ 7. */ static inline void adc_ll_pwdet_set_cct(uint32_t cct) { /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */ SENS.sar_meas2_mux.sar2_pwdet_cct = cct; } /** * Get adc cct for PWDET controller. * * @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY. * @return cct Range: 0 ~ 7. */ static inline uint32_t adc_ll_pwdet_get_cct(void) { /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */ return SENS.sar_meas2_mux.sar2_pwdet_cct; } /** * Analyze whether the obtained raw data is correct. * ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data. * * @param adc_n ADC unit. * @param raw_data ADC raw data input (convert value). * @return * - 0: The data is correct to use. * - -1: The data is invalid. */ static inline adc_ll_rtc_raw_data_t adc_ll_analysis_raw_data(adc_ll_num_t adc_n, int raw_data) { if (adc_n == ADC_NUM_1) { return ADC_RTC_DATA_OK; } //The raw data API returns value without channel information. Read value directly from the register if (((APB_SARADC.apb_saradc2_data_status.adc2_data >> 12) & 0xF) > 9) { return ADC_RTC_DATA_FAIL; } return ADC_RTC_DATA_OK; } /*--------------------------------------------------------------- Common setting ---------------------------------------------------------------*/ /** * Set ADC module power management. * * @param manage Set ADC power status. */ static inline void adc_ll_set_power_manage(adc_ll_power_t manage) { if (manage == ADC_POWER_SW_ON) { SENS.sar_peri_clk_gate_conf.saradc_clk_en = 1; SENS.sar_power_xpd_sar.force_xpd_sar = 3; //SENS_FORCE_XPD_SAR_PU; APB_SARADC.ctrl.sar_clk_gated = 1; APB_SARADC.ctrl.xpd_sar_force = 3; } else if (manage == ADC_POWER_BY_FSM) { SENS.sar_peri_clk_gate_conf.saradc_clk_en = 1; SENS.sar_power_xpd_sar.force_xpd_sar = 0; //SENS_FORCE_XPD_SAR_FSM; APB_SARADC.ctrl.sar_clk_gated = 1; APB_SARADC.ctrl.xpd_sar_force = 0; } else if (manage == ADC_POWER_SW_OFF) { SENS.sar_power_xpd_sar.force_xpd_sar = 2; //SENS_FORCE_XPD_SAR_PD; SENS.sar_peri_clk_gate_conf.saradc_clk_en = 0; APB_SARADC.ctrl.sar_clk_gated = 0; APB_SARADC.ctrl.xpd_sar_force = 2; } } /** * Set ADC module controller. * There are five SAR ADC controllers: * Two digital controller: Continuous conversion mode (DMA). High performance with multiple channel scan modes; * Two RTC controller: Single conversion modes (Polling). For low power purpose working during deep sleep; * the other is dedicated for Power detect (PWDET / PKDET), Only support ADC2. * * @param adc_n ADC unit. * @param ctrl ADC controller. */ static inline void adc_ll_set_controller(adc_ll_num_t adc_n, adc_ll_controller_t ctrl) { if (adc_n == ADC_NUM_1) { switch (ctrl) { case ADC_LL_CTRL_RTC: SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control. SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start. SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map; break; case ADC_LL_CTRL_ULP: SENS.sar_meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control. SENS.sar_meas1_ctrl2.meas1_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start. SENS.sar_meas1_ctrl2.sar1_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map; break; case ADC_LL_CTRL_DIG: SENS.sar_meas1_mux.sar1_dig_force = 1; // 1: Select digital control; 0: Select RTC control. SENS.sar_meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start. SENS.sar_meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map; break; default: break; } } else { // adc_n == ADC_NUM_2 //If ADC2 is not controlled by ULP, the arbiter will decide which controller to use ADC2. switch (ctrl) { case ADC_LL_CTRL_ARB: SENS.sar_meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start. SENS.sar_meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map; break; case ADC_LL_CTRL_ULP: SENS.sar_meas2_ctrl2.meas2_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start. SENS.sar_meas2_ctrl2.sar2_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map; break; default: break; } } } /** * Set ADC2 module arbiter work mode. * The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority, * the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data. * * @note Only ADC2 support arbiter. * @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode. * * @param mode Refer to `adc_arbiter_mode_t`. */ static inline void adc_ll_set_arbiter_work_mode(adc_arbiter_mode_t mode) { if (mode == ADC_ARB_MODE_FIX) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 1; } else if (mode == ADC_ARB_MODE_LOOP) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 0; } else { // Shield arbiter. APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 1; } } /** * Set ADC2 module controller priority in arbiter. * The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority, * the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data. * * @note Only ADC2 support arbiter. * @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode. * @note Default priority: Wi-Fi(2) > RTC(1) > Digital(0); * * @param pri_rtc RTC controller priority. Range: 0 ~ 2. * @param pri_dig Digital controller priority. Range: 0 ~ 2. * @param pri_pwdet Wi-Fi controller priority. Range: 0 ~ 2. */ static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig, uint8_t pri_pwdet) { if (pri_rtc != pri_dig && pri_rtc != pri_pwdet && pri_dig != pri_pwdet) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_priority = pri_rtc; APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_priority = pri_dig; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_priority = pri_pwdet; } /* Should select highest priority controller. */ if (pri_rtc > pri_dig) { if (pri_rtc > pri_pwdet) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 1; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0; } else { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1; } } else { if (pri_dig > pri_pwdet) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 1; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0; } else { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1; } } } /** * Force switch ADC2 to RTC controller in sleep mode. Shield arbiter. * In sleep mode, the arbiter is in power-down mode. * Need to switch the controller to RTC to shield the control of the arbiter. * After waking up, it needs to switch to arbiter control. * * @note The hardware will do this automatically. In normal use, there is no need to call this interface to manually switch the controller. * @note Only support ADC2. */ static inline void adc_ll_enable_sleep_controller(void) { SENS.sar_meas2_mux.sar2_rtc_force = 1; } /** * Force switch ADC2 to arbiter in wakeup mode. * In sleep mode, the arbiter is in power-down mode. * Need to switch the controller to RTC to shield the control of the arbiter. * After waking up, it needs to switch to arbiter control. * * @note The hardware will do this automatically. In normal use, there is no need to call this interface to manually switch the controller. * @note Only support ADC2. */ static inline void adc_ll_disable_sleep_controller(void) { SENS.sar_meas2_mux.sar2_rtc_force = 0; } /** * @brief Set common calibration configuration. Should be shared with other parts (PWDET). */ static inline void adc_ll_calibration_init(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 4); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 4); } } /** * Configure the registers for ADC calibration. You need to call the ``adc_ll_calibration_finish`` interface to resume after calibration. * * @param adc_n ADC index number. * @param channel Not used * @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage. * false: Use IO external voltage as calibration voltage. */ static inline void adc_ll_calibration_prepare(adc_ll_num_t adc_n, adc_channel_t channel, bool internal_gnd) { /* Should be called before writing I2C registers. */ SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU_M); CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_SAR_M); SET_PERI_REG_MASK(ANA_CONFIG2_REG, ANA_SAR_CFG2_M); /* Enable/disable internal connect GND (for calibration). */ if (adc_n == ADC_NUM_1) { if (internal_gnd) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0); } } else { //adc_n == ADC_NUM_2 if (internal_gnd) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 1); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0); } } } /** * Resume register status after calibration. * * @param adc_n ADC index number. */ static inline void adc_ll_calibration_finish(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0); } else { //adc_n == ADC_NUM_2 REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0); } } /** * Set the calibration result to ADC. * * @note Different ADC units and different attenuation options use different calibration data (initial data). * * @param adc_n ADC index number. */ static inline void adc_ll_set_calibration_param(adc_ll_num_t adc_n, uint32_t param) { uint8_t msb = param >> 8; uint8_t lsb = param & 0xFF; if (adc_n == ADC_NUM_1) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_HIGH_ADDR, msb); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_LOW_ADDR, lsb); } } /** * Output ADC internal reference voltage to channels, only available for ADC2 on ESP32. * * This function routes the internal reference voltage of ADCn to one of * ADC2's channels. This reference voltage can then be manually measured * for calibration purposes. * * @param[in] adc ADC unit select * @param[in] channel ADC2 channel number * @param[in] en Enable/disable the reference voltage output */ static inline void adc_ll_vref_output(adc_ll_num_t adc, adc_channel_t channel, bool en) { abort(); } /*--------------------------------------------------------------- RTC controller setting ---------------------------------------------------------------*/ /** * ADC SAR clock division factor setting. ADC SAR clock devided from `RTC_FAST_CLK`. * * @param div Division factor. */ static inline void adc_ll_set_sar_clk_div(adc_ll_num_t adc_n, uint32_t div) { if (adc_n == ADC_NUM_1) { HAL_FORCE_MODIFY_U32_REG_FIELD(SENS.sar_reader1_ctrl, sar1_clk_div, div); } else { // adc_n == ADC_NUM_2 HAL_FORCE_MODIFY_U32_REG_FIELD(SENS.sar_reader2_ctrl, sar2_clk_div, div); } } /** * Set adc output data format for RTC controller. * * @note ESP32S3 RTC controller only support 13bit. * @prarm adc_n ADC unit. * @prarm bits Output data bits width option. */ static inline void adc_ll_rtc_set_output_format(adc_ll_num_t adc_n, adc_bits_width_t bits) { } /** * Enable adc channel to start convert. * * @note Only one channel can be selected for once measurement. * * @param adc_n ADC unit. * @param channel ADC channel number for each ADCn. */ static inline void adc_ll_rtc_enable_channel(adc_ll_num_t adc_n, int channel) { if (adc_n == ADC_NUM_1) { SENS.sar_meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected. } else { // adc_n == ADC_NUM_2 SENS.sar_meas2_ctrl2.sar2_en_pad = (1 << channel); //only one channel is selected. } } /** * Disable adc channel to start convert. * * @note Only one channel can be selected in once measurement. * * @param adc_n ADC unit. * @param channel ADC channel number for each ADCn. */ static inline void adc_ll_rtc_disable_channel(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { SENS.sar_meas1_ctrl2.sar1_en_pad = 0; //only one channel is selected. } else { // adc_n == ADC_NUM_2 SENS.sar_meas2_ctrl2.sar2_en_pad = 0; //only one channel is selected. } } /** * Start conversion once by software for RTC controller. * * @note It may be block to wait conversion idle for ADC1. * * @param adc_n ADC unit. * @param channel ADC channel number for each ADCn. */ static inline void adc_ll_rtc_start_convert(adc_ll_num_t adc_n, int channel) { if (adc_n == ADC_NUM_1) { while (HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_slave_addr1, meas_status) != 0) {} SENS.sar_meas1_ctrl2.meas1_start_sar = 0; SENS.sar_meas1_ctrl2.meas1_start_sar = 1; } else { // adc_n == ADC_NUM_2 SENS.sar_meas2_ctrl2.meas2_start_sar = 0; //start force 0 SENS.sar_meas2_ctrl2.meas2_start_sar = 1; //start force 1 } } /** * Check the conversion done flag for each ADCn for RTC controller. * * @param adc_n ADC unit. * @return * -true : The conversion process is finish. * -false : The conversion process is not finish. */ static inline bool adc_ll_rtc_convert_is_done(adc_ll_num_t adc_n) { bool ret = true; if (adc_n == ADC_NUM_1) { ret = (bool)SENS.sar_meas1_ctrl2.meas1_done_sar; } else { // adc_n == ADC_NUM_2 ret = (bool)SENS.sar_meas2_ctrl2.meas2_done_sar; } return ret; } /** * Get the converted value for each ADCn for RTC controller. * * @param adc_n ADC unit. * @return * - Converted value. */ static inline int adc_ll_rtc_get_convert_value(adc_ll_num_t adc_n) { int ret_val = 0; if (adc_n == ADC_NUM_1) { ret_val = HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_meas1_ctrl2, meas1_data_sar); } else { // adc_n == ADC_NUM_2 ret_val = HAL_FORCE_READ_U32_REG_FIELD(SENS.sar_meas2_ctrl2, meas2_data_sar); } return ret_val; } /** * ADC module RTC output data invert or not. * * @param adc_n ADC unit. * @param inv_en data invert or not. */ static inline void adc_ll_rtc_output_invert(adc_ll_num_t adc_n, bool inv_en) { if (adc_n == ADC_NUM_1) { SENS.sar_reader1_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert } else { // adc_n == ADC_NUM_2 SENS.sar_reader2_ctrl.sar2_data_inv = inv_en; // Enable / Disable ADC data invert } } /** * Enable ADCn conversion complete interrupt for RTC controller. * * @param adc_n ADC unit. */ static inline void adc_ll_rtc_intr_enable(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { SENS.sar_reader1_ctrl.sar1_int_en = 1; RTCCNTL.int_ena.rtc_saradc1 = 1; } else { // adc_n == ADC_NUM_2 SENS.sar_reader2_ctrl.sar2_int_en = 1; RTCCNTL.int_ena.rtc_saradc2 = 1; } } /** * Disable ADCn conversion complete interrupt for RTC controller. * * @param adc_n ADC unit. */ static inline void adc_ll_rtc_intr_disable(adc_ll_num_t adc_n) { if (adc_n == ADC_NUM_1) { SENS.sar_reader1_ctrl.sar1_int_en = 0; RTCCNTL.int_ena.rtc_saradc1 = 0; } else { // adc_n == ADC_NUM_2 SENS.sar_reader2_ctrl.sar2_int_en = 0; RTCCNTL.int_ena.rtc_saradc2 = 0; } } /** * Reset RTC controller FSM. */ static inline void adc_ll_rtc_reset(void) { SENS.sar_peri_reset_conf.saradc_reset = 1; SENS.sar_peri_reset_conf.saradc_reset = 0; } /** * Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize. * * @note Only ADC2 have arbiter function. * @param cycle range: [0,4]. */ static inline void adc_ll_rtc_set_arbiter_stable_cycle(uint32_t cycle) { SENS.sar_reader2_ctrl.sar2_wait_arb_cycle = cycle; } /** * Analyze whether the obtained raw data is correct. * ADC2 can use arbiter. The arbitration result can be judged by the flag bit in the original data. * * @param adc_n ADC unit. * @param raw_data ADC raw data input (convert value). * @return * - 0: The data is correct to use. * - 1: The data is invalid. The current controller is not enabled by the arbiter. * - 2: The data is invalid. The current controller process was interrupted by a higher priority controller. * - -1: The data is error. */ static inline adc_ll_rtc_raw_data_t adc_ll_rtc_analysis_raw_data(adc_ll_num_t adc_n, uint16_t raw_data) { /* ADC1 don't need check data */ if (adc_n == ADC_NUM_1) { return ADC_RTC_DATA_OK; } adc_ll_rtc_output_data_t *temp = (adc_ll_rtc_output_data_t *)&raw_data; if (temp->flag == 0) { return ADC_RTC_DATA_OK; } else if (temp->flag == 1) { return ADC_RTC_CTRL_UNSELECTED; } else if (temp->flag == 2) { return ADC_RTC_CTRL_BREAK; } else { return ADC_RTC_DATA_FAIL; } } /** * Set the attenuation of a particular channel on ADCn. * * @note For any given channel, this function must be called before the first time conversion. * * The default ADC full-scale voltage is 1.1V. To read higher voltages (up to the pin maximum voltage, * usually 3.3V) requires setting >0dB signal attenuation for that ADC channel. * * When VDD_A is 3.3V: * * - 0dB attenuaton (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V * - 2.5dB attenuation (ADC_ATTEN_DB_2_5) gives full-scale voltage 1.5V * - 6dB attenuation (ADC_ATTEN_DB_6) gives full-scale voltage 2.2V * - 11dB attenuation (ADC_ATTEN_DB_11) gives full-scale voltage 3.9V (see note below) * * @note The full-scale voltage is the voltage corresponding to a maximum reading (depending on ADC1 configured * bit width, this value is: 4095 for 12-bits, 2047 for 11-bits, 1023 for 10-bits, 511 for 9 bits.) * * @note At 11dB attenuation the maximum voltage is limited by VDD_A, not the full scale voltage. * * Due to ADC characteristics, most accurate results are obtained within the following approximate voltage ranges: * * - 0dB attenuaton (ADC_ATTEN_DB_0) between 100 and 950mV * - 2.5dB attenuation (ADC_ATTEN_DB_2_5) between 100 and 1250mV * - 6dB attenuation (ADC_ATTEN_DB_6) between 150 to 1750mV * - 11dB attenuation (ADC_ATTEN_DB_11) between 150 to 2450mV * * For maximum accuracy, use the ADC calibration APIs and measure voltages within these recommended ranges. * * @param adc_n ADC unit. * @param channel ADCn channel number. * @param atten The attenuation option. */ static inline void adc_ll_set_atten(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten) { if (adc_n == ADC_NUM_1) { SENS.sar_atten1 = ( SENS.sar_atten1 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2)); } else { // adc_n == ADC_NUM_2 SENS.sar_atten2 = ( SENS.sar_atten2 & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2)); } } /** * Get the attenuation of a particular channel on ADCn. * * @param adc_n ADC unit. * @param channel ADCn channel number. * @return atten The attenuation option. */ static inline adc_atten_t adc_ll_get_atten(adc_ll_num_t adc_n, adc_channel_t channel) { if (adc_n == ADC_NUM_1) { return (adc_atten_t)((SENS.sar_atten1 >> (channel * 2)) & 0x3); } else { return (adc_atten_t)((SENS.sar_atten2 >> (channel * 2)) & 0x3); } } static inline uint32_t adc_ll_adc1_read(void) { //On ESP32S3, valid data width is 12-bit return (APB_SARADC.apb_saradc1_data_status.adc1_data & 0xfff); } static inline uint32_t adc_ll_adc2_read(void) { //On ESP32S3, valid data width is 12-bit return (APB_SARADC.apb_saradc2_data_status.adc2_data & 0xfff); } #ifdef __cplusplus } #endif