// Copyright 2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #ifdef __cplusplus extern "C" { #endif #include #include #include "soc/rmt_struct.h" #include "soc/soc_caps.h" #define RMT_LL_HW_BASE (&RMT) #define RMT_LL_MEM_BASE (&RMTMEM) // Note: TX and RX channel number are all index from zero in the LL driver // i.e. tx_channel belongs to [0,3], and rx_channel belongs to [0,3] static inline void rmt_ll_enable_drive_clock(rmt_dev_t *dev, bool enable) { dev->sys_conf.clk_en = enable; // register clock gating dev->sys_conf.mem_clk_force_on = enable; // memory clock gating } static inline void rmt_ll_power_down_mem(rmt_dev_t *dev, bool enable) { dev->sys_conf.mem_force_pu = !enable; dev->sys_conf.mem_force_pd = enable; } static inline bool rmt_ll_is_mem_power_down(rmt_dev_t *dev) { // the RTC domain can also power down RMT memory // so it's probably not enough to detect whether it's powered down or not // mem_force_pd has higher priority than mem_force_pu return (dev->sys_conf.mem_force_pd) || !(dev->sys_conf.mem_force_pu); } static inline void rmt_ll_enable_mem_access(rmt_dev_t *dev, bool enable) { dev->sys_conf.fifo_mask = enable; } static inline void rmt_ll_set_counter_clock_src(rmt_dev_t *dev, uint32_t channel, uint8_t src, uint8_t div_num, uint8_t div_a, uint8_t div_b) { // Formula: rmt_sclk = module_clock_src / (1 + div_num + div_a / div_b) dev->sys_conf.sclk_active = 0; dev->sys_conf.sclk_sel = src; dev->sys_conf.sclk_div_num = div_num; dev->sys_conf.sclk_div_a = div_a; dev->sys_conf.sclk_div_b = div_b; dev->sys_conf.sclk_active = 1; } static inline uint32_t rmt_ll_get_counter_clock_src(rmt_dev_t *dev, uint32_t channel) { return dev->sys_conf.sclk_sel; } static inline void rmt_ll_tx_reset_counter_clock_div(rmt_dev_t *dev, uint32_t channel) { dev->ref_cnt_rst.val |= (1 << channel); dev->ref_cnt_rst.val &= ~(1 << channel); } static inline void rmt_ll_rx_reset_counter_clock_div(rmt_dev_t *dev, uint32_t channel) { dev->ref_cnt_rst.val |= (1 << (channel + 4)); dev->ref_cnt_rst.val &= ~(1 << (channel + 4)); } static inline void rmt_ll_tx_reset_pointer(rmt_dev_t *dev, uint32_t channel) { dev->tx_conf[channel].mem_rd_rst = 1; dev->tx_conf[channel].mem_rd_rst = 0; dev->tx_conf[channel].apb_mem_rst = 1; dev->tx_conf[channel].apb_mem_rst = 0; } static inline void rmt_ll_rx_reset_pointer(rmt_dev_t *dev, uint32_t channel) { dev->rx_conf[channel].conf1.mem_wr_rst = 1; dev->rx_conf[channel].conf1.mem_wr_rst = 0; dev->rx_conf[channel].conf1.apb_mem_rst = 1; dev->rx_conf[channel].conf1.apb_mem_rst = 0; } static inline void rmt_ll_tx_start(rmt_dev_t *dev, uint32_t channel) { dev->tx_conf[channel].conf_update = 1; dev->tx_conf[channel].tx_start = 1; } static inline void rmt_ll_tx_stop(rmt_dev_t *dev, uint32_t channel) { dev->tx_conf[channel].tx_stop = 1; dev->tx_conf[channel].conf_update = 1; } static inline void rmt_ll_rx_enable(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->rx_conf[channel].conf1.rx_en = enable; dev->rx_conf[channel].conf1.conf_update = 1; } static inline void rmt_ll_tx_set_mem_blocks(rmt_dev_t *dev, uint32_t channel, uint8_t block_num) { dev->tx_conf[channel].mem_size = block_num; } static inline void rmt_ll_rx_set_mem_blocks(rmt_dev_t *dev, uint32_t channel, uint8_t block_num) { dev->rx_conf[channel].conf0.mem_size = block_num; } static inline uint32_t rmt_ll_tx_get_mem_blocks(rmt_dev_t *dev, uint32_t channel) { return dev->tx_conf[channel].mem_size; } static inline uint32_t rmt_ll_rx_get_mem_blocks(rmt_dev_t *dev, uint32_t channel) { return dev->rx_conf[channel].conf0.mem_size; } static inline void rmt_ll_tx_set_counter_clock_div(rmt_dev_t *dev, uint32_t channel, uint32_t div) { dev->tx_conf[channel].div_cnt = div; } static inline void rmt_ll_rx_set_counter_clock_div(rmt_dev_t *dev, uint32_t channel, uint32_t div) { dev->rx_conf[channel].conf0.div_cnt = div; } static inline uint32_t rmt_ll_tx_get_counter_clock_div(rmt_dev_t *dev, uint32_t channel) { return dev->tx_conf[channel].div_cnt; } static inline uint32_t rmt_ll_rx_get_counter_clock_div(rmt_dev_t *dev, uint32_t channel) { return dev->rx_conf[channel].conf0.div_cnt; } static inline void rmt_ll_tx_enable_pingpong(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->tx_conf[channel].mem_tx_wrap_en = enable; } static inline void rmt_ll_rx_set_idle_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres) { dev->rx_conf[channel].conf0.idle_thres = thres; } static inline uint32_t rmt_ll_rx_get_idle_thres(rmt_dev_t *dev, uint32_t channel) { return dev->rx_conf[channel].conf0.idle_thres; } static inline void rmt_ll_rx_set_mem_owner(rmt_dev_t *dev, uint32_t channel, uint8_t owner) { dev->rx_conf[channel].conf1.mem_owner = owner; } static inline uint32_t rmt_ll_rx_get_mem_owner(rmt_dev_t *dev, uint32_t channel) { return dev->rx_conf[channel].conf1.mem_owner; } static inline void rmt_ll_tx_enable_loop(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->tx_conf[channel].tx_conti_mode = enable; } static inline bool rmt_ll_is_tx_loop_enabled(rmt_dev_t *dev, uint32_t channel) { return dev->tx_conf[channel].tx_conti_mode; } static inline void rmt_ll_tx_set_loop_count(rmt_dev_t *dev, uint32_t channel, uint32_t count) { dev->tx_lim[channel].tx_loop_num = count; } static inline void rmt_ll_tx_reset_loop(rmt_dev_t *dev, uint32_t channel) { dev->tx_lim[channel].loop_count_reset = 1; dev->tx_lim[channel].loop_count_reset = 0; } static inline void rmt_ll_tx_enable_loop_count(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->tx_lim[channel].tx_loop_cnt_en = enable; } static inline void rmt_ll_tx_enable_sync(rmt_dev_t *dev, bool enable) { dev->tx_sim.en = enable; } static inline void rmt_ll_tx_add_channel_to_group(rmt_dev_t *dev, uint32_t channel) { dev->tx_sim.val |= 1 << channel; } static inline uint32_t rmt_ll_tx_remove_channel_from_group(rmt_dev_t *dev, uint32_t channel) { dev->tx_sim.val &= ~(1 << channel); return dev->tx_sim.val & 0x0F; } static inline void rmt_ll_rx_enable_filter(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->rx_conf[channel].conf1.rx_filter_en = enable; } static inline void rmt_ll_rx_set_filter_thres(rmt_dev_t *dev, uint32_t channel, uint32_t thres) { dev->rx_conf[channel].conf1.rx_filter_thres = thres; } static inline void rmt_ll_tx_enable_idle(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->tx_conf[channel].idle_out_en = enable; } static inline bool rmt_ll_is_tx_idle_enabled(rmt_dev_t *dev, uint32_t channel) { return dev->tx_conf[channel].idle_out_en; } static inline void rmt_ll_tx_set_idle_level(rmt_dev_t *dev, uint32_t channel, uint8_t level) { dev->tx_conf[channel].idle_out_lv = level; } static inline uint32_t rmt_ll_tx_get_idle_level(rmt_dev_t *dev, uint32_t channel) { return dev->tx_conf[channel].idle_out_lv; } static inline uint32_t rmt_ll_rx_get_channel_status(rmt_dev_t *dev, uint32_t channel) { return dev->rx_status[channel].val; } static inline uint32_t rmt_ll_tx_get_channel_status(rmt_dev_t *dev, uint32_t channel) { return dev->tx_status[channel].val; } static inline void rmt_ll_tx_set_limit(rmt_dev_t *dev, uint32_t channel, uint32_t limit) { dev->tx_lim[channel].limit = limit; } static inline void rmt_ll_rx_set_limit(rmt_dev_t *dev, uint32_t channel, uint32_t limit) { dev->rx_lim[channel].rx_lim = limit; } static inline uint32_t rmt_ll_rx_get_limit(rmt_dev_t *dev, uint32_t channel) { return dev->rx_lim[channel].rx_lim; } static inline void rmt_ll_enable_tx_end_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable) { if (enable) { dev->int_ena.val |= (1 << channel); } else { dev->int_ena.val &= ~(1 << channel); } } static inline void rmt_ll_enable_tx_err_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable) { if (enable) { dev->int_ena.val |= (1 << (channel + 4)); } else { dev->int_ena.val &= ~(1 << (channel + 4)); } } static inline void rmt_ll_enable_rx_end_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable) { if (enable) { dev->int_ena.val |= (1 << (channel + 16)); } else { dev->int_ena.val &= ~(1 << (channel + 16)); } } static inline void rmt_ll_enable_rx_err_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable) { if (enable) { dev->int_ena.val |= (1 << (channel + 20)); } else { dev->int_ena.val &= ~(1 << (channel + 20)); } } static inline void rmt_ll_enable_tx_thres_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable) { if (enable) { dev->int_ena.val |= (1 << (channel + 8)); } else { dev->int_ena.val &= ~(1 << (channel + 8)); } } static inline void rmt_ll_enable_tx_loop_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable) { if (enable) { dev->int_ena.val |= (1 << (channel + 12)); } else { dev->int_ena.val &= ~(1 << (channel + 12)); } } static inline void rmt_ll_enable_rx_thres_interrupt(rmt_dev_t *dev, uint32_t channel, bool enable) { if (enable) { dev->int_ena.val |= (1 << (channel + 24)); } else { dev->int_ena.val &= ~(1 << (channel + 24)); } } static inline void rmt_ll_clear_tx_end_interrupt(rmt_dev_t *dev, uint32_t channel) { dev->int_clr.val = (1 << (channel)); } static inline void rmt_ll_clear_rx_end_interrupt(rmt_dev_t *dev, uint32_t channel) { dev->int_clr.val = (1 << (channel + 16)); } static inline void rmt_ll_clear_tx_err_interrupt(rmt_dev_t *dev, uint32_t channel) { dev->int_clr.val = (1 << (channel + 4)); } static inline void rmt_ll_clear_rx_err_interrupt(rmt_dev_t *dev, uint32_t channel) { dev->int_clr.val = (1 << (channel + 20)); } static inline void rmt_ll_clear_tx_thres_interrupt(rmt_dev_t *dev, uint32_t channel) { dev->int_clr.val = (1 << (channel + 8)); } static inline void rmt_ll_clear_tx_loop_interrupt(rmt_dev_t *dev, uint32_t channel) { dev->int_clr.val = (1 << (channel + 12)); } static inline void rmt_ll_clear_rx_thres_interrupt(rmt_dev_t *dev, uint32_t channel) { dev->int_clr.val = (1 << (channel + 24)); } static inline uint32_t rmt_ll_get_tx_end_interrupt_status(rmt_dev_t *dev) { return dev->int_st.val & 0x0F; } static inline uint32_t rmt_ll_get_rx_end_interrupt_status(rmt_dev_t *dev) { return (dev->int_st.val >> 16) & 0x0F; } static inline uint32_t rmt_ll_get_tx_err_interrupt_status(rmt_dev_t *dev) { return (dev->int_st.val >> 4) & 0x0F; } static inline uint32_t rmt_ll_get_rx_err_interrupt_status(rmt_dev_t *dev) { return (dev->int_st.val >> 20) & 0x0F; } static inline uint32_t rmt_ll_get_tx_thres_interrupt_status(rmt_dev_t *dev) { return (dev->int_st.val >> 8) & 0x0F; } static inline uint32_t rmt_ll_get_rx_thres_interrupt_status(rmt_dev_t *dev) { return (dev->int_st.val >> 24) & 0x0F; } static inline uint32_t rmt_ll_get_tx_loop_interrupt_status(rmt_dev_t *dev) { return (dev->int_st.val >> 12) & 0x0F; } static inline void rmt_ll_tx_set_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks) { // In case the compiler optimise a 32bit instruction (e.g. s32i) into two 16bit instruction (e.g. s16i, which is not allowed to access a register) // We take care of the "read-modify-write" procedure by ourselves. typeof(dev->tx_carrier[0]) reg; reg.high = high_ticks; reg.low = low_ticks; dev->tx_carrier[channel].val = reg.val; } static inline void rmt_ll_rx_set_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t high_ticks, uint32_t low_ticks) { typeof(dev->rx_carrier[0]) reg; reg.high_thres = high_ticks; reg.low_thres = low_ticks; dev->rx_carrier[channel].val = reg.val; } static inline void rmt_ll_tx_get_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t *high_ticks, uint32_t *low_ticks ) { *high_ticks = dev->tx_carrier[channel].high; *low_ticks = dev->tx_carrier[channel].low; } static inline void rmt_ll_rx_get_carrier_high_low_ticks(rmt_dev_t *dev, uint32_t channel, uint32_t *high_ticks, uint32_t *low_ticks) { *high_ticks = dev->rx_carrier[channel].high_thres; *low_ticks = dev->rx_carrier[channel].low_thres; } static inline void rmt_ll_tx_enable_carrier_modulation(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->tx_conf[channel].carrier_en = enable; } static inline void rmt_ll_rx_enable_carrier_demodulation(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->rx_conf[channel].conf0.carrier_en = enable; } static inline void rmt_ll_tx_set_carrier_level(rmt_dev_t *dev, uint32_t channel, uint8_t level) { dev->tx_conf[channel].carrier_out_lv = level; } static inline void rmt_ll_rx_set_carrier_level(rmt_dev_t *dev, uint32_t channel, uint8_t level) { dev->rx_conf[channel].conf0.carrier_out_lv = level; } // set true, enable carrier in all RMT state (idle, reading, sending) // set false, enable carrier only in sending state (i.e. there're effective data in RAM to be sent) static inline void rmt_ll_tx_set_carrier_always_on(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->tx_conf[channel].carrier_eff_en = !enable; } //Writes items to the specified TX channel memory with the given offset and writen length. //the caller should ensure that (length + off) <= (memory block * SOC_RMT_CHANNEL_MEM_WORDS) static inline void rmt_ll_write_memory(rmt_mem_t *mem, uint32_t channel, const rmt_item32_t *data, uint32_t length, uint32_t off) { for (uint32_t i = 0; i < length; i++) { mem->chan[channel].data32[i + off].val = data[i].val; } } static inline void rmt_ll_rx_enable_pingpong(rmt_dev_t *dev, uint32_t channel, bool enable) { dev->rx_conf[channel].conf1.mem_rx_wrap_en = enable; } /************************************************************************************************ * Following Low Level APIs only used for backward compatible, will be deprecated in the IDF v5.0 ***********************************************************************************************/ static inline void rmt_ll_set_intr_enable_mask(uint32_t mask) { RMT.int_ena.val |= mask; } static inline void rmt_ll_clr_intr_enable_mask(uint32_t mask) { RMT.int_ena.val &= (~mask); } #ifdef __cplusplus } #endif