/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #pragma once #include #include "soc/soc.h" #include "soc/clk_tree_defs.h" #include "soc/system_reg.h" #include "soc/rtc_cntl_reg.h" #include "hal/regi2c_ctrl.h" #include "soc/regi2c_bbpll.h" #include "hal/assert.h" #include "hal/log.h" #include "esp32c2/rom/rtc.h" #ifdef __cplusplus extern "C" { #endif #define MHZ (1000000) #define CLK_LL_PLL_40M_FREQ_MHZ (40) #define CLK_LL_PLL_60M_FREQ_MHZ (60) #define CLK_LL_PLL_80M_FREQ_MHZ (80) #define CLK_LL_PLL_120M_FREQ_MHZ (120) #define CLK_LL_PLL_480M_FREQ_MHZ (480) #define CLK_LL_AHB_MAX_FREQ_MHZ CLK_LL_PLL_40M_FREQ_MHZ /* RC_FAST clock enable/disable wait time */ #define CLK_LL_RC_FAST_WAIT_DEFAULT 20 #define CLK_LL_RC_FAST_ENABLE_WAIT_DEFAULT 5 /** * @brief XTAL32K_CLK enable modes */ typedef enum { CLK_LL_XTAL32K_ENABLE_MODE_EXTERNAL, //!< Enable the external clock signal for XTAL32K_CLK (i.e. EXT_OSC_CLK) } clk_ll_xtal32k_enable_mode_t; /** * @brief Power up BBPLL circuit */ static inline __attribute__((always_inline)) void clk_ll_bbpll_enable(void) { REG_CLR_BIT(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PD | RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD); } /** * @brief Power down BBPLL circuit */ static inline __attribute__((always_inline)) void clk_ll_bbpll_disable(void) { REG_SET_BIT(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PD | RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD); } /** * @brief Enable the internal oscillator output for RC_FAST_CLK */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_enable(void) { CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M); REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, CLK_LL_RC_FAST_ENABLE_WAIT_DEFAULT); } /** * @brief Disable the internal oscillator output for RC_FAST_CLK */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_disable(void) { SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M); REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, CLK_LL_RC_FAST_WAIT_DEFAULT); } /** * @brief Get the state of the internal oscillator for RC_FAST_CLK * * @return True if the oscillator is enabled */ static inline __attribute__((always_inline)) bool clk_ll_rc_fast_is_enabled(void) { return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M) == 0; } /** * @brief Enable the output from the internal oscillator to be passed into a configurable divider, * which by default divides the input clock frequency by 256. i.e. RC_FAST_D256_CLK = RC_FAST_CLK / 256 * * Divider values other than 256 may be configured, but this facility is not currently needed, * so is not exposed in the code. * The output of the divider, RC_FAST_D256_CLK, is referred as 8md256 or simply d256 in reg. descriptions. */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_d256_enable(void) { CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV); } /** * @brief Disable the output from the internal oscillator to be passed into a configurable divider. * i.e. RC_FAST_D256_CLK = RC_FAST_CLK / 256 * * Disabling this divider could reduce power consumption. */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_d256_disable(void) { SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV); } /** * @brief Get the state of the divider which is applied to the output from the internal oscillator (RC_FAST_CLK) * * @return True if the divided output is enabled */ static inline __attribute__((always_inline)) bool clk_ll_rc_fast_d256_is_enabled(void) { return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV) == 0; } /** * @brief Enable the digital RC_FAST_CLK, which is used to support peripherals. */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_digi_enable(void) { SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M); } /** * @brief Disable the digital RC_FAST_CLK, which is used to support peripherals. */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_digi_disable(void) { CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M); } /** * @brief Get the state of the digital RC_FAST_CLK * * @return True if the digital RC_FAST_CLK is enabled */ static inline __attribute__((always_inline)) bool clk_ll_rc_fast_digi_is_enabled(void) { return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M); } /** * @brief Enable the digital RC_FAST_D256_CLK, which is used to support peripherals. */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_d256_digi_enable(void) { SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN_M); } /** * @brief Disable the digital RC_FAST_D256_CLK, which is used to support peripherals. */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_d256_digi_disable(void) { CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN_M); } /** * @brief Enable the digital XTAL32K_CLK, which is used to support peripherals. */ static inline __attribute__((always_inline)) void clk_ll_xtal32k_digi_enable(void) { SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN_M); } /** * @brief Disable the digital XTAL32K_CLK, which is used to support peripherals. */ static inline __attribute__((always_inline)) void clk_ll_xtal32k_digi_disable(void) { CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN_M); } /** * @brief Get the state of the digital XTAL32K_CLK * * @return True if the digital XTAL32K_CLK is enabled */ static inline __attribute__((always_inline)) bool clk_ll_xtal32k_digi_is_enabled(void) { return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN); } /** * @brief Get PLL_CLK frequency * * @return PLL clock frequency, in MHz. Returns 0 if register field value is invalid. */ static inline __attribute__((always_inline)) uint32_t clk_ll_bbpll_get_freq_mhz(void) { // ESP32C2 only support 480MHz PLL uint32_t pll_freq_sel = REG_GET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_PLL_FREQ_SEL); switch (pll_freq_sel) { case 1: // PLL_480M return CLK_LL_PLL_480M_FREQ_MHZ; default: // Invalid PLL_FREQ_SEL value return 0; } } /** * @brief Set BBPLL frequency from XTAL source (Digital part) * * @param pll_freq_mhz PLL frequency, in MHz */ static inline __attribute__((always_inline)) void clk_ll_bbpll_set_freq_mhz(uint32_t pll_freq_mhz) { // ESP32C2 only support 480MHz PLL HAL_ASSERT(pll_freq_mhz == CLK_LL_PLL_480M_FREQ_MHZ); REG_SET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_PLL_FREQ_SEL, 1); } /** * @brief Set BBPLL frequency from XTAL source (Analog part) * * @param pll_freq_mhz PLL frequency, in MHz * @param xtal_freq_mhz XTAL frequency, in MHz */ static inline __attribute__((always_inline)) void clk_ll_bbpll_set_config(uint32_t pll_freq_mhz, uint32_t xtal_freq_mhz) { (void)pll_freq_mhz; uint8_t div_ref; uint8_t div7_0; uint8_t dr1; uint8_t dr3; uint8_t dchgp; uint8_t dcur; uint8_t dbias; /* Configure 480M PLL */ switch (xtal_freq_mhz) { case SOC_XTAL_FREQ_26M: div_ref = 12; div7_0 = 236; dr1 = 4; dr3 = 4; dchgp = 0; dcur = 0; dbias = 2; break; case SOC_XTAL_FREQ_32M: div_ref = 0; div7_0 = 11; dr1 = 0; dr3 = 0; dchgp = 5; dcur = 3; dbias = 2; break; case SOC_XTAL_FREQ_40M: default: div_ref = 0; div7_0 = 8; dr1 = 0; dr3 = 0; dchgp = 5; dcur = 3; dbias = 2; break; } REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_MODE_HF, 0x6B); uint8_t i2c_bbpll_lref = (dchgp << I2C_BBPLL_OC_DCHGP_LSB) | (div_ref); uint8_t i2c_bbpll_div_7_0 = div7_0; uint8_t i2c_bbpll_dcur = (1 << I2C_BBPLL_OC_DLREF_SEL_LSB ) | (3 << I2C_BBPLL_OC_DHREF_SEL_LSB) | dcur; REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_REF_DIV, i2c_bbpll_lref); REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0); REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DR1, dr1); REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_DR3, dr3); REGI2C_WRITE(I2C_BBPLL, I2C_BBPLL_OC_DCUR, i2c_bbpll_dcur); REGI2C_WRITE_MASK(I2C_BBPLL, I2C_BBPLL_OC_VCO_DBIAS, dbias); } /** * @brief Select the clock source for CPU_CLK * * @param in_sel One of the clock sources in soc_cpu_clk_src_t */ static inline __attribute__((always_inline)) void clk_ll_cpu_set_src(soc_cpu_clk_src_t in_sel) { switch (in_sel) { case SOC_CPU_CLK_SRC_XTAL: REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_SOC_CLK_SEL, 0); break; case SOC_CPU_CLK_SRC_PLL: REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_SOC_CLK_SEL, 1); break; case SOC_CPU_CLK_SRC_RC_FAST: REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_SOC_CLK_SEL, 2); break; default: // Unsupported CPU_CLK mux input sel abort(); } } /** * @brief Get the clock source for CPU_CLK * * @return Currently selected clock source (one of soc_cpu_clk_src_t values) */ static inline __attribute__((always_inline)) soc_cpu_clk_src_t clk_ll_cpu_get_src(void) { uint32_t clk_sel = REG_GET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_SOC_CLK_SEL); switch (clk_sel) { case 0: return SOC_CPU_CLK_SRC_XTAL; case 1: return SOC_CPU_CLK_SRC_PLL; case 2: return SOC_CPU_CLK_SRC_RC_FAST; default: // Invalid SOC_CLK_SEL value return SOC_CPU_CLK_SRC_INVALID; } } /** * @brief Set CPU frequency from PLL clock * * @param cpu_mhz CPU frequency value, in MHz */ static inline __attribute__((always_inline)) void clk_ll_cpu_set_freq_mhz_from_pll(uint32_t cpu_mhz) { switch (cpu_mhz) { case CLK_LL_PLL_80M_FREQ_MHZ: REG_SET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPUPERIOD_SEL, 0); break; case CLK_LL_PLL_120M_FREQ_MHZ: REG_SET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPUPERIOD_SEL, 1); break; default: // Unsupported CPU_CLK freq from PLL abort(); } } /** * @brief Get CPU_CLK frequency from PLL_CLK source * * @return CPU clock frequency, in MHz. Returns 0 if register field value is invalid. */ static inline __attribute__((always_inline)) uint32_t clk_ll_cpu_get_freq_mhz_from_pll(void) { uint32_t cpu_freq_sel = REG_GET_FIELD(SYSTEM_CPU_PER_CONF_REG, SYSTEM_CPUPERIOD_SEL); switch (cpu_freq_sel) { case 0: return CLK_LL_PLL_80M_FREQ_MHZ; case 1: return CLK_LL_PLL_120M_FREQ_MHZ; default: // Invalid CPUPERIOD_SEL value return 0; } } /** * @brief Set CPU_CLK's XTAL/FAST_RC clock source path divider * * @param divider Divider. Usually this divider is set to 1 in bootloader stage. PRE_DIV_CNT = divider - 1. */ static inline __attribute__((always_inline)) void clk_ll_cpu_set_divider(uint32_t divider) { HAL_ASSERT(divider > 0); REG_SET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_PRE_DIV_CNT, divider - 1); } /** * @brief Get CPU_CLK's XTAL/FAST_RC clock source path divider * * @return Divider. Divider = (PRE_DIV_CNT + 1). */ static inline __attribute__((always_inline)) uint32_t clk_ll_cpu_get_divider(void) { return REG_GET_FIELD(SYSTEM_SYSCLK_CONF_REG, SYSTEM_PRE_DIV_CNT) + 1; } /** * @brief Select the clock source for RTC_SLOW_CLK * * @param in_sel One of the clock sources in soc_rtc_slow_clk_src_t */ static inline __attribute__((always_inline)) void clk_ll_rtc_slow_set_src(soc_rtc_slow_clk_src_t in_sel) { switch (in_sel) { case SOC_RTC_SLOW_CLK_SRC_RC_SLOW: REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, 0); break; case SOC_RTC_SLOW_CLK_SRC_OSC_SLOW: REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, 1); break; case SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256: REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, 2); break; default: // Unsupported RTC_SLOW_CLK mux input sel abort(); } } /** * @brief Get the clock source for RTC_SLOW_CLK * * @return Currently selected clock source (one of soc_rtc_slow_clk_src_t values) */ static inline __attribute__((always_inline)) soc_rtc_slow_clk_src_t clk_ll_rtc_slow_get_src(void) { uint32_t clk_sel = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL); switch (clk_sel) { case 0: return SOC_RTC_SLOW_CLK_SRC_RC_SLOW; case 1: return SOC_RTC_SLOW_CLK_SRC_OSC_SLOW; case 2: return SOC_RTC_SLOW_CLK_SRC_RC_FAST_D256; default: // Invalid ANA_CLK_RTC_SEL value return SOC_RTC_SLOW_CLK_SRC_INVALID; } } /** * @brief Select the clock source for RTC_FAST_CLK * * @param in_sel One of the clock sources in soc_rtc_fast_clk_src_t */ static inline __attribute__((always_inline)) void clk_ll_rtc_fast_set_src(soc_rtc_fast_clk_src_t in_sel) { switch (in_sel) { case SOC_RTC_FAST_CLK_SRC_XTAL_D2: REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL, 0); break; case SOC_RTC_FAST_CLK_SRC_RC_FAST: REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL, 1); break; default: // Unsupported RTC_FAST_CLK mux input sel abort(); } } /** * @brief Get the clock source for RTC_FAST_CLK * * @return Currently selected clock source (one of soc_rtc_fast_clk_src_t values) */ static inline __attribute__((always_inline)) soc_rtc_fast_clk_src_t clk_ll_rtc_fast_get_src(void) { uint32_t clk_sel = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL); switch (clk_sel) { case 0: return SOC_RTC_FAST_CLK_SRC_XTAL_D2; case 1: return SOC_RTC_FAST_CLK_SRC_RC_FAST; default: return SOC_RTC_FAST_CLK_SRC_INVALID; } } /** * @brief Set RC_FAST_CLK divider. The output from the divider is passed into rtc_fast_clk MUX. * * @param divider Divider of RC_FAST_CLK. Usually this divider is set to 1 (reg. value is 0) in bootloader stage. */ static inline __attribute__((always_inline)) void clk_ll_rc_fast_set_divider(uint32_t divider) { HAL_ASSERT(divider > 0); CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL_VLD); REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, divider - 1); SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL_VLD); } /** * @brief Get RC_FAST_CLK divider * * @return Divider. Divider = (CK8M_DIV_SEL + 1). */ static inline __attribute__((always_inline)) uint32_t clk_ll_rc_fast_get_divider(void) { return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL) + 1; } /** * @brief Set RC_SLOW_CLK divider * * @param divider Divider of RC_SLOW_CLK. Usually this divider is set to 1 (reg. value is 0) in bootloader stage. */ static inline __attribute__((always_inline)) void clk_ll_rc_slow_set_divider(uint32_t divider) { HAL_ASSERT(divider > 0); CLEAR_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV_VLD); REG_SET_FIELD(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV, divider - 1); SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV_VLD); } /************************* RTC STORAGE REGISTER STORE/LOAD **************************/ /** * @brief Store XTAL_CLK frequency in RTC storage register * * Value of RTC_XTAL_FREQ_REG is stored as two copies in lower and upper 16-bit * halves. These are the routines to work with that representation. * * @param xtal_freq_mhz XTAL frequency, in MHz. The frequency must necessarily be even, * otherwise there will be a conflict with the low bit, which is used to disable logs * in the ROM code. */ static inline __attribute__((always_inline)) void clk_ll_xtal_store_freq_mhz(uint32_t xtal_freq_mhz) { // Read the status of whether disabling logging from ROM code uint32_t reg = READ_PERI_REG(RTC_XTAL_FREQ_REG) & RTC_DISABLE_ROM_LOG; // If so, need to write back this setting if (reg == RTC_DISABLE_ROM_LOG) { xtal_freq_mhz |= 1; } WRITE_PERI_REG(RTC_XTAL_FREQ_REG, (xtal_freq_mhz & UINT16_MAX) | ((xtal_freq_mhz & UINT16_MAX) << 16)); } /** * @brief Load XTAL_CLK frequency from RTC storage register * * Value of RTC_XTAL_FREQ_REG is stored as two copies in lower and upper 16-bit * halves. These are the routines to work with that representation. * * @return XTAL frequency, in MHz. Returns 0 if value in reg is invalid. */ static inline __attribute__((always_inline)) uint32_t clk_ll_xtal_load_freq_mhz(void) { // Read from RTC storage register uint32_t xtal_freq_reg = READ_PERI_REG(RTC_XTAL_FREQ_REG); if ((xtal_freq_reg & 0xFFFF) == ((xtal_freq_reg >> 16) & 0xFFFF) && xtal_freq_reg != 0 && xtal_freq_reg != UINT32_MAX) { return xtal_freq_reg & ~RTC_DISABLE_ROM_LOG & UINT16_MAX; } // If the format in reg is invalid return 0; } /** * @brief Store APB_CLK frequency in RTC storage register * * Value of RTC_APB_FREQ_REG is stored as two copies in lower and upper 16-bit * halves. These are the routines to work with that representation. * * @param apb_freq_hz APB frequency, in Hz */ static inline __attribute__((always_inline)) void clk_ll_apb_store_freq_hz(uint32_t apb_freq_hz) { uint32_t val = apb_freq_hz >> 12; WRITE_PERI_REG(RTC_APB_FREQ_REG, (val & UINT16_MAX) | ((val & UINT16_MAX) << 16)); } /** * @brief Load APB_CLK frequency from RTC storage register * * Value of RTC_APB_FREQ_REG is stored as two copies in lower and upper 16-bit * halves. These are the routines to work with that representation. * * @return The stored APB frequency, in Hz */ static inline __attribute__((always_inline)) uint32_t clk_ll_apb_load_freq_hz(void) { // Read from RTC storage register uint32_t apb_freq_hz = (READ_PERI_REG(RTC_APB_FREQ_REG) & UINT16_MAX) << 12; // Round to the nearest MHz apb_freq_hz += MHZ / 2; uint32_t remainder = apb_freq_hz % MHZ; return apb_freq_hz - remainder; } /** * @brief Store RTC_SLOW_CLK calibration value in RTC storage register * * Value of RTC_SLOW_CLK_CAL_REG has to be in the same format as returned by rtc_clk_cal (microseconds, * in Q13.19 fixed-point format). * * @param cal_value The calibration value of slow clock period in microseconds, in Q13.19 fixed point format */ static inline __attribute__((always_inline)) void clk_ll_rtc_slow_store_cal(uint32_t cal_value) { REG_WRITE(RTC_SLOW_CLK_CAL_REG, cal_value); } /** * @brief Load the calibration value of RTC_SLOW_CLK frequency from RTC storage register * * This value gets updated (i.e. rtc slow clock gets calibrated) every time RTC_SLOW_CLK source switches * * @return The calibration value of slow clock period in microseconds, in Q13.19 fixed point format */ static inline __attribute__((always_inline)) uint32_t clk_ll_rtc_slow_load_cal(void) { return REG_READ(RTC_SLOW_CLK_CAL_REG); } /** * @brief Store rtc_fix_us in RTC storage register * * @param rtc_fix_us The value used to correct the time obtained from the rtc timer when the calibration value changes */ static inline __attribute__((always_inline)) void clk_ll_rtc_slow_store_rtc_fix_us(uint64_t rtc_fix_us) { REG_WRITE(RTC_FIX_US_LOW_REG, rtc_fix_us); REG_WRITE(RTC_FIX_US_HIGH_REG, rtc_fix_us >> 32); } /** * @brief Load the rtc_fix_ticks from RTC storage register * * @return The value used to correct the time obtained from the rtc timer when the calibration value changes */ static inline __attribute__((always_inline)) uint64_t clk_ll_rtc_slow_load_rtc_fix_us(void) { return REG_READ(RTC_FIX_US_LOW_REG) | ((uint64_t)REG_READ(RTC_FIX_US_HIGH_REG) << 32); } #ifdef __cplusplus } #endif