mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-30 06:31:42 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			265 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			265 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| 
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| #include <rom/ets_sys.h>
 | |
| 
 | |
| #include <freertos/heap_regions.h>
 | |
| 
 | |
| #include "esp_heap_alloc_caps.h"
 | |
| #include "spiram.h"
 | |
| #include "esp_log.h"
 | |
| 
 | |
| static const char* TAG = "heap_alloc_caps";
 | |
| 
 | |
| /*
 | |
| This file, combined with a region allocator that supports tags, solves the problem that the ESP32 has RAM that's 
 | |
| slightly heterogeneous. Some RAM can be byte-accessed, some allows only 32-bit accesses, some can execute memory,
 | |
| some can be remapped by the MMU to only be accessed by a certain PID etc. In order to allow the most flexible
 | |
| memory allocation possible, this code makes it possible to request memory that has certain capabilities. The
 | |
| code will then use its knowledge of how the memory is configured along with a priority scheme to allocate that
 | |
| memory in the most sane way possible. This should optimize the amount of RAM accessible to the code without
 | |
| hardwiring addresses.
 | |
| */
 | |
| 
 | |
| 
 | |
| //Amount of priority slots for the tag descriptors.
 | |
| #define NO_PRIOS 3
 | |
| 
 | |
| /*
 | |
| Tag descriptors. These describe the capabilities of a bit of memory that's tagged with the index into this table.
 | |
| Each tag contains NO_PRIOS entries; later entries are only taken if earlier ones can't fulfill the memory request.
 | |
| */
 | |
| static const uint32_t tagDesc[][NO_PRIOS]={
 | |
|     { MALLOC_CAP_DMA|MALLOC_CAP_8BIT, MALLOC_CAP_32BIT, 0 },                    //Tag 0: Plain ole D-port RAM
 | |
|     { 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_EXEC },    //Tag 1: Plain ole D-port RAM which has an alias on the I-port
 | |
|     { MALLOC_CAP_EXEC|MALLOC_CAP_32BIT, 0, 0 },                                 //Tag 2: IRAM
 | |
|     { MALLOC_CAP_PID2, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT },                   //Tag 3-8: PID 2-7 IRAM
 | |
|     { MALLOC_CAP_PID3, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT },                   //
 | |
|     { MALLOC_CAP_PID4, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT },                   //
 | |
|     { MALLOC_CAP_PID5, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT },                   //
 | |
|     { MALLOC_CAP_PID6, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT },                   //
 | |
|     { MALLOC_CAP_PID7, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT },                   //
 | |
|     { MALLOC_CAP_PID2, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT },                     //Tag 9-14: PID 2-7 DRAM
 | |
|     { MALLOC_CAP_PID3, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT },                     //
 | |
|     { MALLOC_CAP_PID4, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT },                     //
 | |
|     { MALLOC_CAP_PID5, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT },                     //
 | |
|     { MALLOC_CAP_PID6, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT },                     //
 | |
|     { MALLOC_CAP_PID7, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT },                     //
 | |
|     { MALLOC_CAP_SPISRAM, 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}, //Tag 15: SPI SRAM data
 | |
|     { MALLOC_CAP_INVALID, MALLOC_CAP_INVALID, MALLOC_CAP_INVALID } //End
 | |
| };
 | |
| 
 | |
| /*
 | |
| Region descriptors. These describe all regions of memory available, and tag them according to the
 | |
| capabilities the hardware has. This array is not marked constant; the initialization code may want to
 | |
| change the tags of some regions because eg BT is detected, applications are loaded etc.
 | |
| 
 | |
| The priorities here roughly work like this:
 | |
| - For a normal malloc (MALLOC_CAP_8BIT), give away the DRAM-only memory first, then pass off any dual-use IRAM regions,
 | |
|   finally eat into the application memory.
 | |
| - For a malloc where 32-bit-aligned-only access is okay, first allocate IRAM, then DRAM, finally application IRAM.
 | |
| - Application mallocs (PIDx) will allocate IRAM first, if possible, then DRAM.
 | |
| - Most other malloc caps only fit in one region anyway.
 | |
| 
 | |
| These region descriptors are very ESP32 specific, because they describe the memory pools available there.
 | |
| 
 | |
| Because of requirements in the coalescing code as well as the heap allocator itself, this list should always
 | |
| be sorted from low to high start address.
 | |
| 
 | |
| This array is *NOT* const because it gets modified depending on what pools are/aren't available.
 | |
| */
 | |
| static HeapRegionTagged_t regions[]={
 | |
|     { (uint8_t *)0x3F800000, 0x20000, 15, 0}, //SPI SRAM, if available
 | |
|     { (uint8_t *)0x3FFAE000, 0x2000, 0, 0}, //pool 16 <- used for rom code
 | |
|     { (uint8_t *)0x3FFB0000, 0x8000, 0, 0}, //pool 15 <- can be used for BT
 | |
|     { (uint8_t *)0x3FFB8000, 0x8000, 0, 0}, //pool 14 <- can be used for BT
 | |
|     { (uint8_t *)0x3FFC0000, 0x2000, 0, 0}, //pool 10-13, mmu page 0
 | |
|     { (uint8_t *)0x3FFC2000, 0x2000, 0, 0}, //pool 10-13, mmu page 1
 | |
|     { (uint8_t *)0x3FFC4000, 0x2000, 0, 0}, //pool 10-13, mmu page 2
 | |
|     { (uint8_t *)0x3FFC6000, 0x2000, 0, 0}, //pool 10-13, mmu page 3
 | |
|     { (uint8_t *)0x3FFC8000, 0x2000, 0, 0}, //pool 10-13, mmu page 4
 | |
|     { (uint8_t *)0x3FFCA000, 0x2000, 0, 0}, //pool 10-13, mmu page 5
 | |
|     { (uint8_t *)0x3FFCC000, 0x2000, 0, 0}, //pool 10-13, mmu page 6
 | |
|     { (uint8_t *)0x3FFCE000, 0x2000, 0, 0}, //pool 10-13, mmu page 7
 | |
|     { (uint8_t *)0x3FFD0000, 0x2000, 0, 0}, //pool 10-13, mmu page 8
 | |
|     { (uint8_t *)0x3FFD2000, 0x2000, 0, 0}, //pool 10-13, mmu page 9
 | |
|     { (uint8_t *)0x3FFD4000, 0x2000, 0, 0}, //pool 10-13, mmu page 10
 | |
|     { (uint8_t *)0x3FFD6000, 0x2000, 0, 0}, //pool 10-13, mmu page 11
 | |
|     { (uint8_t *)0x3FFD8000, 0x2000, 0, 0}, //pool 10-13, mmu page 12
 | |
|     { (uint8_t *)0x3FFDA000, 0x2000, 0, 0}, //pool 10-13, mmu page 13
 | |
|     { (uint8_t *)0x3FFDC000, 0x2000, 0, 0}, //pool 10-13, mmu page 14
 | |
|     { (uint8_t *)0x3FFDE000, 0x2000, 0, 0}, //pool 10-13, mmu page 15
 | |
|     { (uint8_t *)0x3FFE0000, 0x4000, 1, 0x400BC000}, //pool 9 blk 1
 | |
|     { (uint8_t *)0x3FFE4000, 0x4000, 1, 0x400B8000}, //pool 9 blk 0
 | |
|     { (uint8_t *)0x3FFE8000, 0x8000, 1, 0x400B0000}, //pool 8 <- can be remapped to ROM, used for MAC dump
 | |
|     { (uint8_t *)0x3FFF0000, 0x8000, 1, 0x400A8000}, //pool 7 <- can be used for MAC dump
 | |
|     { (uint8_t *)0x3FFF8000, 0x4000, 1, 0x400A4000}, //pool 6 blk 1 <- can be used as trace memory
 | |
|     { (uint8_t *)0x3FFFC000, 0x4000, 1, 0x400A0000}, //pool 6 blk 0 <- can be used as trace memory
 | |
|     { (uint8_t *)0x40070000, 0x8000, 2, 0}, //pool 0
 | |
|     { (uint8_t *)0x40078000, 0x8000, 2, 0}, //pool 1
 | |
|     { (uint8_t *)0x40080000, 0x2000, 2, 0}, //pool 2-5, mmu page 0
 | |
|     { (uint8_t *)0x40082000, 0x2000, 2, 0}, //pool 2-5, mmu page 1
 | |
|     { (uint8_t *)0x40084000, 0x2000, 2, 0}, //pool 2-5, mmu page 2
 | |
|     { (uint8_t *)0x40086000, 0x2000, 2, 0}, //pool 2-5, mmu page 3
 | |
|     { (uint8_t *)0x40088000, 0x2000, 2, 0}, //pool 2-5, mmu page 4
 | |
|     { (uint8_t *)0x4008A000, 0x2000, 2, 0}, //pool 2-5, mmu page 5
 | |
|     { (uint8_t *)0x4008C000, 0x2000, 2, 0}, //pool 2-5, mmu page 6
 | |
|     { (uint8_t *)0x4008E000, 0x2000, 2, 0}, //pool 2-5, mmu page 7
 | |
|     { (uint8_t *)0x40090000, 0x2000, 2, 0}, //pool 2-5, mmu page 8
 | |
|     { (uint8_t *)0x40092000, 0x2000, 2, 0}, //pool 2-5, mmu page 9
 | |
|     { (uint8_t *)0x40094000, 0x2000, 2, 0}, //pool 2-5, mmu page 10
 | |
|     { (uint8_t *)0x40096000, 0x2000, 2, 0}, //pool 2-5, mmu page 11
 | |
|     { (uint8_t *)0x40098000, 0x2000, 2, 0}, //pool 2-5, mmu page 12
 | |
|     { (uint8_t *)0x4009A000, 0x2000, 2, 0}, //pool 2-5, mmu page 13
 | |
|     { (uint8_t *)0x4009C000, 0x2000, 2, 0}, //pool 2-5, mmu page 14
 | |
|     { (uint8_t *)0x4009E000, 0x2000, 2, 0}, //pool 2-5, mmu page 15
 | |
|     { NULL, 0, 0, 0} //end
 | |
| };
 | |
| 
 | |
| 
 | |
| //Modify regions array to disable the given range of memory.
 | |
| static void disable_mem_region(void *from, void *to) {
 | |
|     int i;
 | |
|     //Align from and to on word boundaries
 | |
|     from=(void*)((uint32_t)from&~3);
 | |
|     to=(void*)(((uint32_t)to+3)&~3);
 | |
|     for (i=0; regions[i].xSizeInBytes!=0; i++) {
 | |
|         void *regStart=regions[i].pucStartAddress;
 | |
|         void *regEnd=regions[i].pucStartAddress+regions[i].xSizeInBytes;
 | |
|         if (regStart>=from && regEnd<=to) {
 | |
|             //Entire region falls in the range. Disable entirely.
 | |
|             regions[i].xTag=-1;
 | |
|         } else if (regStart>=from && regEnd>to && regStart<to) {
 | |
|             //Start of the region falls in the range. Modify address/len.
 | |
|             int overlap=(uint8_t *)to-(uint8_t *)regStart;
 | |
|             regions[i].pucStartAddress+=overlap;
 | |
|             regions[i].xSizeInBytes-=overlap;
 | |
|             if (regions[i].xExecAddr) regions[i].xExecAddr+=overlap;
 | |
|         } else if (regStart<from && regEnd>from && regEnd<=to) {
 | |
|             //End of the region falls in the range. Modify length.
 | |
|             regions[i].xSizeInBytes-=(uint8_t *)regEnd-(uint8_t *)from;
 | |
|         } else if (regStart<from && regEnd>to) {
 | |
|             //Range punches a hole in the region! We do not support this.
 | |
|             ESP_EARLY_LOGE(TAG, "region %d: hole punching is not supported!", i);
 | |
|             regions[i].xTag=-1; //Just disable memory region. That'll teach them!
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| ToDo: These are very dependent on the linker script, and the logic involving this works only
 | |
| because we're not using the SPI flash yet! If we enable that, this will break. ToDo: Rewrite by then.
 | |
| */
 | |
| extern int _bss_start, _heap_start;
 | |
| 
 | |
| /*
 | |
| Initialize the heap allocator. We pass it a bunch of region descriptors, but we need to modify those first to accommodate for 
 | |
| the data as loaded by the bootloader.
 | |
| ToDo: The regions are different when stuff like trace memory, BT, ... is used. Modify the regions struct on the fly for this.
 | |
| Same with loading of apps. Same with using SPI RAM.
 | |
| */
 | |
| void heap_alloc_caps_init() {
 | |
|     int i;
 | |
|     //Disable the bits of memory where this code is loaded.
 | |
|     disable_mem_region(&_bss_start, &_heap_start);
 | |
|     disable_mem_region((void*)0x3ffae000, (void*)0x3ffb0000); //knock out ROM data region
 | |
|     disable_mem_region((void*)0x40070000, (void*)0x40078000); //CPU0 cache region
 | |
|     disable_mem_region((void*)0x40078000, (void*)0x40080000); //CPU1 cache region
 | |
|     disable_mem_region((void*)0x40080000, (void*)0x400a0000); //pool 2-5
 | |
| 
 | |
|     // TODO: this region should be checked, since we don't need to knock out all region finally
 | |
|     disable_mem_region((void*)0x3ffe0000, (void*)0x3ffe8000); //knock out ROM data region
 | |
| 
 | |
| #if CONFIG_MEMMAP_BT
 | |
|     disable_mem_region((void*)0x3ffb0000, (void*)0x3ffc0000); //knock out BT data region
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_MEMMAP_TRACEMEM
 | |
| #if CONFIG_MEMMAP_TRACEMEM_TWOBANKS
 | |
|     disable_mem_region((void*)0x3fff8000, (void*)0x40000000); //knock out trace mem region
 | |
| #else
 | |
|     disable_mem_region((void*)0x3fff8000, (void*)0x3fffc000); //knock out trace mem region
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
|     enable_spi_sram();
 | |
| #else
 | |
|     disable_mem_region((void*)0x3f800000, (void*)0x3f820000); //SPI SRAM not installed
 | |
| #endif
 | |
| 
 | |
|     //The heap allocator will treat every region given to it as separate. In order to get bigger ranges of contiguous memory,
 | |
|     //it's useful to coalesce adjacent regions that have the same tag.
 | |
| 
 | |
|     for (i=1; regions[i].xSizeInBytes!=0; i++) {
 | |
|         if (regions[i].pucStartAddress == (regions[i-1].pucStartAddress + regions[i-1].xSizeInBytes) &&
 | |
|                                     regions[i].xTag == regions[i-1].xTag ) {
 | |
|             regions[i-1].xTag=-1;
 | |
|             regions[i].pucStartAddress=regions[i-1].pucStartAddress;
 | |
|             regions[i].xSizeInBytes+=regions[i-1].xSizeInBytes;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ESP_EARLY_LOGI(TAG, "Initializing heap allocator:");
 | |
|     for (i=0; regions[i].xSizeInBytes!=0; i++) {
 | |
|         if (regions[i].xTag != -1) {
 | |
|             ESP_EARLY_LOGI(TAG, "Region %02d: %08X len %08X tag %d", i,
 | |
|                     (int)regions[i].pucStartAddress, regions[i].xSizeInBytes, regions[i].xTag);
 | |
|         }
 | |
|     }
 | |
|     //Initialize the malloc implementation.
 | |
|     vPortDefineHeapRegionsTagged( regions );
 | |
| }
 | |
| 
 | |
| /*
 | |
| Standard malloc() implementation. Will return ho-hum byte-accessible data memory.
 | |
| */
 | |
| void *pvPortMalloc( size_t xWantedSize )
 | |
| {
 | |
|     return pvPortMallocCaps( xWantedSize, MALLOC_CAP_8BIT );
 | |
| }
 | |
| 
 | |
| /*
 | |
| Routine to allocate a bit of memory with certain capabilities. caps is a bitfield of MALLOC_CAP_* bits.
 | |
| */
 | |
| void *pvPortMallocCaps( size_t xWantedSize, uint32_t caps ) 
 | |
| {
 | |
|     int prio;
 | |
|     int tag, j;
 | |
|     void *ret=NULL;
 | |
|     uint32_t remCaps;
 | |
|     for (prio=0; prio<NO_PRIOS; prio++) {
 | |
|         //Iterate over tag descriptors for this priority
 | |
|         for (tag=0; tagDesc[tag][prio]!=MALLOC_CAP_INVALID; tag++) {
 | |
|             if ((tagDesc[tag][prio]&caps)!=0) {
 | |
|                 //Tag has at least one of the caps requested. If caps has other bits set that this prio
 | |
|                 //doesn't cover, see if they're available in other prios.
 | |
|                 remCaps=caps&(~tagDesc[tag][prio]); //Remaining caps to be fulfilled
 | |
|                 j=prio+1;
 | |
|                 while (remCaps!=0 && j<NO_PRIOS) {
 | |
|                     remCaps=remCaps&(~tagDesc[tag][j]);
 | |
|                     j++;
 | |
|                 }
 | |
|                 if (remCaps==0) {
 | |
|                     //This tag can satisfy all the requested capabilities. See if we can grab some memory using it.
 | |
|                     ret=pvPortMallocTagged(xWantedSize, tag);
 | |
|                     if (ret!=NULL) return ret;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     //Nothing usable found.
 | |
|     return NULL;
 | |
| }
 |