mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-11-04 00:51:42 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			597 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			597 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/**
 | 
						|
 * \brief  Multi-precision integer library, ESP32C hardware accelerated parts
 | 
						|
 *
 | 
						|
 *  based on mbedTLS implementation
 | 
						|
 *
 | 
						|
 *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 | 
						|
 *  Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
 | 
						|
 *  SPDX-License-Identifier: Apache-2.0
 | 
						|
 *
 | 
						|
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | 
						|
 *  not use this file except in compliance with the License.
 | 
						|
 *  You may obtain a copy of the License at
 | 
						|
 *
 | 
						|
 *  http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 *
 | 
						|
 *  Unless required by applicable law or agreed to in writing, software
 | 
						|
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | 
						|
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
 *  See the License for the specific language governing permissions and
 | 
						|
 *  limitations under the License.
 | 
						|
 *
 | 
						|
 */
 | 
						|
#include <stdio.h>
 | 
						|
#include <string.h>
 | 
						|
#include <malloc.h>
 | 
						|
#include <limits.h>
 | 
						|
#include <assert.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <sys/param.h>
 | 
						|
#include "mbedtls/bignum.h"
 | 
						|
#include "esp32s2beta/rom/bigint.h"
 | 
						|
#include "soc/hwcrypto_reg.h"
 | 
						|
#include "esp_system.h"
 | 
						|
#include "esp_log.h"
 | 
						|
#include "esp_intr.h"
 | 
						|
#include "esp_intr_alloc.h"
 | 
						|
#include "esp_attr.h"
 | 
						|
 | 
						|
#include "soc/dport_reg.h"
 | 
						|
#include "soc/periph_defs.h"
 | 
						|
 | 
						|
#include "freertos/FreeRTOS.h"
 | 
						|
#include "freertos/task.h"
 | 
						|
#include "freertos/semphr.h"
 | 
						|
 | 
						|
static const __attribute__((unused)) char *TAG = "bignum";
 | 
						|
 | 
						|
#define ciL    (sizeof(mbedtls_mpi_uint))         /* chars in limb  */
 | 
						|
#define biL    (ciL << 3)                         /* bits  in limb  */
 | 
						|
 | 
						|
 | 
						|
static _lock_t mpi_lock;
 | 
						|
 | 
						|
void esp_mpi_acquire_hardware( void )
 | 
						|
{
 | 
						|
    /* newlib locks lazy initialize on ESP-IDF */
 | 
						|
    _lock_acquire(&mpi_lock);
 | 
						|
 | 
						|
    DPORT_REG_SET_BIT(DPORT_PERIP_CLK_EN1_REG, DPORT_CRYPTO_RSA_CLK_EN);
 | 
						|
    /* also clear reset on digital signature, otherwise RSA is held in reset */
 | 
						|
    DPORT_REG_CLR_BIT(DPORT_PERIP_RST_EN1_REG, DPORT_CRYPTO_RSA_RST
 | 
						|
                      | DPORT_CRYPTO_DS_RST);
 | 
						|
 | 
						|
    DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_MEM_PD);
 | 
						|
 | 
						|
    while (DPORT_REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
 | 
						|
    }
 | 
						|
    // Note: from enabling RSA clock to here takes about 1.3us
 | 
						|
}
 | 
						|
 | 
						|
void esp_mpi_release_hardware( void )
 | 
						|
{
 | 
						|
    DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
 | 
						|
 | 
						|
    /* don't reset digital signature unit, as this resets AES also */
 | 
						|
    DPORT_REG_SET_BIT(DPORT_PERIP_RST_EN1_REG, DPORT_CRYPTO_RSA_RST);
 | 
						|
    DPORT_REG_CLR_BIT(DPORT_PERIP_CLK_EN1_REG, DPORT_CRYPTO_RSA_CLK_EN);
 | 
						|
 | 
						|
    _lock_release(&mpi_lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Convert bit count to word count
 | 
						|
 */
 | 
						|
static inline size_t bits_to_words(size_t bits)
 | 
						|
{
 | 
						|
    return (bits + 31) / 32;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Return the number of words actually used to represent an mpi
 | 
						|
   number.
 | 
						|
*/
 | 
						|
static size_t mpi_words(const mbedtls_mpi *mpi)
 | 
						|
{
 | 
						|
    for (size_t i = mpi->n; i > 0; i--) {
 | 
						|
        if (mpi->p[i - 1] != 0) {
 | 
						|
            return i;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
 | 
						|
 | 
						|
   If num_words is higher than the number of words in the bignum then
 | 
						|
   these additional words will be zeroed in the memory buffer.
 | 
						|
*/
 | 
						|
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
 | 
						|
{
 | 
						|
    uint32_t *pbase = (uint32_t *)mem_base;
 | 
						|
    uint32_t copy_words = num_words < mpi->n ? num_words : mpi->n;
 | 
						|
 | 
						|
    /* Copy MPI data to memory block registers */
 | 
						|
    for (int i = 0; i < copy_words; i++) {
 | 
						|
        pbase[i] = mpi->p[i];
 | 
						|
    }
 | 
						|
 | 
						|
    /* Zero any remaining memory block data */
 | 
						|
    for (int i = copy_words; i < num_words; i++) {
 | 
						|
        pbase[i] = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Note: not executing memw here, can do it before we start a bignum operation */
 | 
						|
}
 | 
						|
 | 
						|
/* Read mbedTLS MPI bignum back from hardware memory block.
 | 
						|
 | 
						|
   Reads num_words words from block.
 | 
						|
 | 
						|
   Can return a failure result if fails to grow the MPI result.
 | 
						|
 | 
						|
*/
 | 
						|
static inline int mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK( mbedtls_mpi_grow(x, num_words) );
 | 
						|
 | 
						|
    /* Copy data from memory block registers */
 | 
						|
    esp_dport_access_read_buffer(x->p, mem_base, num_words);
 | 
						|
    /* Zero any remaining limbs in the bignum, if the buffer is bigger
 | 
						|
       than num_words */
 | 
						|
    for (size_t i = num_words; i < x->n; i++) {
 | 
						|
        x->p[i] = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    asm volatile ("memw");
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 *
 | 
						|
 * There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1,
 | 
						|
 * where B^-1(B-1) mod N=1. Actually, only the least significant part of
 | 
						|
 * N' is needed, hence the definition N0'=N' mod b. We reproduce below the
 | 
						|
 * simple algorithm from an article by Dusse and Kaliski to efficiently
 | 
						|
 * find N0' from N0 and b
 | 
						|
 */
 | 
						|
static mbedtls_mpi_uint modular_inverse(const mbedtls_mpi *M)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    uint64_t t = 1;
 | 
						|
    uint64_t two_2_i_minus_1 = 2;   /* 2^(i-1) */
 | 
						|
    uint64_t two_2_i = 4;           /* 2^i */
 | 
						|
    uint64_t N = M->p[0];
 | 
						|
 | 
						|
    for (i = 2; i <= 32; i++) {
 | 
						|
        if ((mbedtls_mpi_uint) N * t % two_2_i >= two_2_i_minus_1) {
 | 
						|
            t += two_2_i_minus_1;
 | 
						|
        }
 | 
						|
 | 
						|
        two_2_i_minus_1 <<= 1;
 | 
						|
        two_2_i <<= 1;
 | 
						|
    }
 | 
						|
 | 
						|
    return (mbedtls_mpi_uint)(UINT32_MAX - t + 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Calculate Rinv = RR^2 mod M, where:
 | 
						|
 *
 | 
						|
 *  R = b^n where b = 2^32, n=num_words,
 | 
						|
 *  R = 2^N (where N=num_bits)
 | 
						|
 *  RR = R^2 = 2^(2*N) (where N=num_bits=num_words*32)
 | 
						|
 *
 | 
						|
 * This calculation is computationally expensive (mbedtls_mpi_mod_mpi)
 | 
						|
 * so caller should cache the result where possible.
 | 
						|
 *
 | 
						|
 * DO NOT call this function while holding esp_mpi_acquire_hardware().
 | 
						|
 *
 | 
						|
 */
 | 
						|
static int calculate_rinv(mbedtls_mpi *Rinv, const mbedtls_mpi *M, int num_words)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    size_t num_bits = num_words * 32;
 | 
						|
    mbedtls_mpi RR;
 | 
						|
    mbedtls_mpi_init(&RR);
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&RR, num_bits * 2, 1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(Rinv, &RR, M));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&RR);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Begin an RSA operation. op_reg specifies which 'START' register
 | 
						|
   to write to.
 | 
						|
*/
 | 
						|
static inline void start_op(uint32_t op_reg)
 | 
						|
{
 | 
						|
    /* Clear interrupt status */
 | 
						|
    DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
 | 
						|
    DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
 | 
						|
 | 
						|
    /* Note: above REG_WRITE includes a memw, so we know any writes
 | 
						|
       to the memory blocks are also complete. */
 | 
						|
 | 
						|
    DPORT_REG_WRITE(op_reg, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Wait for an RSA operation to complete.
 | 
						|
*/
 | 
						|
static inline void wait_op_complete(uint32_t op_reg)
 | 
						|
{
 | 
						|
    while(DPORT_REG_READ(RSA_QUERY_INTERRUPT_REG) != 1)
 | 
						|
       { }
 | 
						|
 | 
						|
    /* clear the interrupt */
 | 
						|
    DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Z = (X * Y) mod M
 | 
						|
 | 
						|
   Not an mbedTLS function
 | 
						|
*/
 | 
						|
int esp_mpi_mul_mpi_mod(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M)
 | 
						|
{
 | 
						|
 | 
						|
    int ret;
 | 
						|
    size_t y_bits = mbedtls_mpi_bitlen(Y);
 | 
						|
    size_t x_words = mpi_words(X);
 | 
						|
    size_t y_words = mpi_words(Y);
 | 
						|
    size_t m_words = mpi_words(M);
 | 
						|
    mbedtls_mpi Rinv;
 | 
						|
    mbedtls_mpi_uint Mprime;
 | 
						|
 | 
						|
    size_t num_words = MAX(MAX(m_words, x_words), y_words);
 | 
						|
 | 
						|
    if (num_words * 32 > 4096) {
 | 
						|
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Calculate and load the first stage montgomery multiplication */
 | 
						|
    mbedtls_mpi_init(&Rinv);
 | 
						|
    MBEDTLS_MPI_CHK(calculate_rinv(&Rinv, M, num_words));
 | 
						|
    Mprime = modular_inverse(M);
 | 
						|
 | 
						|
    esp_mpi_acquire_hardware();
 | 
						|
 | 
						|
    DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words-1));
 | 
						|
    DPORT_REG_WRITE(RSA_M_DASH_REG, (uint32_t)Mprime);
 | 
						|
 | 
						|
    /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
 | 
						|
    mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
 | 
						|
    mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, &Rinv, num_words);
 | 
						|
    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
 | 
						|
    mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
 | 
						|
 | 
						|
    /* Enable acceleration options */
 | 
						|
    DPORT_REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
 | 
						|
    DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 1);
 | 
						|
    DPORT_REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
 | 
						|
 | 
						|
    /* Execute first stage montgomery multiplication */
 | 
						|
    start_op(RSA_MOD_MULT_START_REG);
 | 
						|
    wait_op_complete(RSA_MOD_MULT_START_REG);
 | 
						|
 | 
						|
    DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 1);
 | 
						|
 | 
						|
    mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, m_words);
 | 
						|
 | 
						|
    esp_mpi_release_hardware();
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&Rinv);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(MBEDTLS_MPI_EXP_MOD_ALT)
 | 
						|
 | 
						|
/*
 | 
						|
 * Sliding-window exponentiation: Z = X^Y mod M  (HAC 14.85)
 | 
						|
 *
 | 
						|
 * _Rinv is optional pre-calculated version of Rinv (via calculate_rinv()).
 | 
						|
 *
 | 
						|
 * (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
 | 
						|
 *
 | 
						|
 */
 | 
						|
int mbedtls_mpi_exp_mod( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi *_Rinv )
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    size_t y_bits = mbedtls_mpi_bitlen(Y);
 | 
						|
    size_t x_words = mpi_words(X);
 | 
						|
    size_t y_words = mpi_words(Y);
 | 
						|
    size_t m_words = mpi_words(M);
 | 
						|
    size_t num_words;
 | 
						|
 | 
						|
    mbedtls_mpi Rinv_new; /* used if _Rinv == NULL */
 | 
						|
    mbedtls_mpi *Rinv;    /* points to _Rinv (if not NULL) othwerwise &RR_new */
 | 
						|
    mbedtls_mpi_uint Mprime;
 | 
						|
 | 
						|
    /* "all numbers must be the same length", so choose longest number
 | 
						|
       as cardinal length of operation...
 | 
						|
    */
 | 
						|
    num_words = MAX(m_words, MAX(x_words, y_words));
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(M, 0) <= 0 || (M->p[0] & 1) == 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(Y, 0) < 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(Y, 0) == 0) {
 | 
						|
        return mbedtls_mpi_lset(Z, 1);
 | 
						|
    }
 | 
						|
 | 
						|
    if (num_words * 32 > 4096) {
 | 
						|
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Determine RR pointer, either _RR for cached value
 | 
						|
       or local RR_new */
 | 
						|
    if (_Rinv == NULL) {
 | 
						|
        mbedtls_mpi_init(&Rinv_new);
 | 
						|
        Rinv = &Rinv_new;
 | 
						|
    } else {
 | 
						|
        Rinv = _Rinv;
 | 
						|
    }
 | 
						|
    if (Rinv->p == NULL) {
 | 
						|
        MBEDTLS_MPI_CHK(calculate_rinv(Rinv, M, num_words));
 | 
						|
    }
 | 
						|
 | 
						|
    Mprime = modular_inverse(M);
 | 
						|
 | 
						|
    esp_mpi_acquire_hardware();
 | 
						|
 | 
						|
    DPORT_REG_WRITE(RSA_LENGTH_REG, num_words - 1);
 | 
						|
 | 
						|
    /* Load M, X, Rinv, M-prime (M-prime is mod 2^32) */
 | 
						|
    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
 | 
						|
    mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
 | 
						|
    mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, num_words);
 | 
						|
    mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, num_words);
 | 
						|
    DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
 | 
						|
 | 
						|
    /* Enable acceleration options */
 | 
						|
    DPORT_REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
 | 
						|
    DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 1);
 | 
						|
    DPORT_REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
 | 
						|
 | 
						|
    start_op(RSA_MODEXP_START_REG);
 | 
						|
    wait_op_complete(RSA_MODEXP_START_REG);
 | 
						|
 | 
						|
    DPORT_REG_WRITE(RSA_SEARCH_OPEN_REG, 0);
 | 
						|
 | 
						|
    ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, m_words);
 | 
						|
 | 
						|
    esp_mpi_release_hardware();
 | 
						|
 | 
						|
    // Compensate for negative X
 | 
						|
    if (X->s == -1 && (Y->p[0] & 1) != 0) {
 | 
						|
        Z->s = -1;
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(Z, M, Z));
 | 
						|
    } else {
 | 
						|
        Z->s = 1;
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
    if (_Rinv == NULL) {
 | 
						|
        mbedtls_mpi_free(&Rinv_new);
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* MBEDTLS_MPI_EXP_MOD_ALT */
 | 
						|
 | 
						|
#if defined(MBEDTLS_MPI_MUL_MPI_ALT) /* MBEDTLS_MPI_MUL_MPI_ALT */
 | 
						|
 | 
						|
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t z_words);
 | 
						|
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t y_words, size_t z_words);
 | 
						|
 | 
						|
/* Z = X * Y */
 | 
						|
int mbedtls_mpi_mul_mpi( mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y )
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    size_t x_bits = mbedtls_mpi_bitlen(X);
 | 
						|
    size_t y_bits = mbedtls_mpi_bitlen(Y);
 | 
						|
    size_t x_words = bits_to_words(x_bits);
 | 
						|
    size_t y_words =  bits_to_words(y_bits);
 | 
						|
    size_t num_words = MAX(x_words, y_words);
 | 
						|
    size_t z_words  = x_words + y_words;
 | 
						|
 | 
						|
     /* Short-circuit eval if either argument is 0 or 1.
 | 
						|
 | 
						|
       This is needed as the mpi modular division
 | 
						|
       argument will sometimes call in here when one
 | 
						|
       argument is too large for the hardware unit, but the other
 | 
						|
       argument is zero or one.
 | 
						|
 | 
						|
       This leaks some timing information, although overall there is a
 | 
						|
       lot less timing variation than a software MPI approach.
 | 
						|
    */
 | 
						|
    if (x_bits == 0 || y_bits== 0) {
 | 
						|
        mbedtls_mpi_lset(Z, 0);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (x_bits == 1) {
 | 
						|
        ret = mbedtls_mpi_copy(Z, Y);
 | 
						|
        Z->s *= X->s;
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
    if (y_bits == 1) {
 | 
						|
        ret = mbedtls_mpi_copy(Z, X);
 | 
						|
        Z->s *= Y->s;
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /* If either factor is over 2048 bits, we can't use the standard hardware multiplier
 | 
						|
       (it assumes result is double longest factor, and result is max 4096 bits.)
 | 
						|
 | 
						|
       However, we can fail over to mod_mult for up to 4096 bits of result (modulo
 | 
						|
       multiplication doesn't have the same restriction, so result is simply the
 | 
						|
       number of bits in X plus number of bits in in Y.)
 | 
						|
    */
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    if (num_words * 32 > 2048) {
 | 
						|
        if (z_words * 32 <= 4096) {
 | 
						|
            /* Note: it's possible to use mpi_mult_mpi_overlong
 | 
						|
               for this case as well, but it's very slightly
 | 
						|
               slower and requires a memory allocation.
 | 
						|
            */
 | 
						|
            return mpi_mult_mpi_failover_mod_mult(Z, X, Y, z_words);
 | 
						|
        } else {
 | 
						|
            /* Still too long for the hardware unit... */
 | 
						|
            mbedtls_mpi_grow(Z, z_words);
 | 
						|
            if(y_words > x_words) {
 | 
						|
                return mpi_mult_mpi_overlong(Z, X, Y, y_words, z_words);
 | 
						|
            } else {
 | 
						|
                return mpi_mult_mpi_overlong(Z, Y, X, x_words, z_words);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Otherwise, we can use the (faster) multiply hardware unit */
 | 
						|
    esp_mpi_acquire_hardware();
 | 
						|
 | 
						|
    /* Copy X (right-extended) & Y (left-extended) to memory block */
 | 
						|
    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
 | 
						|
    mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + num_words * 4, Y, num_words);
 | 
						|
    /* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
 | 
						|
       This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
 | 
						|
    */
 | 
						|
 | 
						|
    DPORT_REG_WRITE(RSA_M_DASH_REG, 0);
 | 
						|
    DPORT_REG_WRITE(RSA_LENGTH_REG, (num_words*2 - 1));
 | 
						|
    start_op(RSA_MULT_START_REG);
 | 
						|
 | 
						|
    wait_op_complete(RSA_MULT_START_REG);
 | 
						|
 | 
						|
    /* Read back the result */
 | 
						|
    ret = mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
 | 
						|
 | 
						|
    Z->s = X->s * Y->s;
 | 
						|
 | 
						|
    esp_mpi_release_hardware();
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
 | 
						|
   multiplication to calculate an mbedtls_mpi_mult_mpi result where either
 | 
						|
   A or B are >2048 bits so can't use the standard multiplication method.
 | 
						|
 | 
						|
   Result (number of words, based on A bits + B bits) must still be less than 4096 bits.
 | 
						|
 | 
						|
   This case is simpler than the general case modulo multiply of
 | 
						|
   esp_mpi_mul_mpi_mod() because we can control the other arguments:
 | 
						|
 | 
						|
   * Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
 | 
						|
   isn't actually modulo anything.
 | 
						|
   * Mprime and Rinv are therefore predictable as follows:
 | 
						|
   Mprime = 1
 | 
						|
   Rinv = 1
 | 
						|
 | 
						|
   (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
 | 
						|
*/
 | 
						|
static int mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    /* Load coefficients to hardware */
 | 
						|
    esp_mpi_acquire_hardware();
 | 
						|
 | 
						|
    /* M = 2^num_words - 1, so block is entirely FF */
 | 
						|
    for (int i = 0; i < num_words; i++) {
 | 
						|
        DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Mprime = 1 */
 | 
						|
    DPORT_REG_WRITE(RSA_M_DASH_REG, 1);
 | 
						|
    DPORT_REG_WRITE(RSA_LENGTH_REG, num_words - 1);
 | 
						|
 | 
						|
    /* Load X & Y */
 | 
						|
    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, num_words);
 | 
						|
    mpi_to_mem_block(RSA_MEM_Y_BLOCK_BASE, Y, num_words);
 | 
						|
 | 
						|
    /* Rinv = 1 */
 | 
						|
    DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
 | 
						|
    for (int i = 1; i < num_words; i++) {
 | 
						|
        DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    start_op(RSA_MOD_MULT_START_REG);
 | 
						|
    wait_op_complete(RSA_MOD_MULT_START_REG);
 | 
						|
 | 
						|
    mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, num_words);
 | 
						|
 | 
						|
    esp_mpi_release_hardware();
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Deal with the case when X & Y are too long for the hardware unit, by splitting one operand
 | 
						|
   into two halves.
 | 
						|
 | 
						|
   Y must be the longer operand
 | 
						|
 | 
						|
   Slice Y into Yp, Ypp such that:
 | 
						|
   Yp = lower 'b' bits of Y
 | 
						|
   Ypp = upper 'b' bits of Y (right shifted)
 | 
						|
 | 
						|
   Such that
 | 
						|
   Z = X * Y
 | 
						|
   Z = X * (Yp + Ypp<<b)
 | 
						|
   Z = (X * Yp) + (X * Ypp<<b)
 | 
						|
 | 
						|
   Note that this function may recurse multiple times, if both X & Y
 | 
						|
   are too long for the hardware multiplication unit.
 | 
						|
*/
 | 
						|
static int mpi_mult_mpi_overlong(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t y_words, size_t z_words)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    mbedtls_mpi Ztemp;
 | 
						|
    /* Rather than slicing in two on bits we slice on limbs (32 bit words) */
 | 
						|
    const size_t words_slice = y_words / 2;
 | 
						|
    /* Yp holds lower bits of Y (declared to reuse Y's array contents to save on copying) */
 | 
						|
    const mbedtls_mpi Yp = {
 | 
						|
        .p = Y->p,
 | 
						|
        .n = words_slice,
 | 
						|
        .s = Y->s
 | 
						|
    };
 | 
						|
    /* Ypp holds upper bits of Y, right shifted (also reuses Y's array contents) */
 | 
						|
    const mbedtls_mpi Ypp = {
 | 
						|
        .p = Y->p + words_slice,
 | 
						|
        .n = y_words - words_slice,
 | 
						|
        .s = Y->s
 | 
						|
    };
 | 
						|
    mbedtls_mpi_init(&Ztemp);
 | 
						|
 | 
						|
    /* Get result Ztemp = Yp * X (need temporary variable Ztemp) */
 | 
						|
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(&Ztemp, X, &Yp) );
 | 
						|
 | 
						|
    /* Z = Ypp * Y */
 | 
						|
    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi(Z, X, &Ypp) );
 | 
						|
 | 
						|
    /* Z = Z << b */
 | 
						|
    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l(Z, words_slice * 32) );
 | 
						|
 | 
						|
    /* Z += Ztemp */
 | 
						|
    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi(Z, Z, &Ztemp) );
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&Ztemp);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* MBEDTLS_MPI_MUL_MPI_ALT */
 | 
						|
 |