mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-11-04 09:01:40 +01:00 
			
		
		
		
	Closes https://github.com/espressif/esp-idf/pull/10226 - Drop the atomic usage - Return the xSemaphoreTake for ask back - Refactoring
		
			
				
	
	
		
			202 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			202 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
 | 
						|
 *
 | 
						|
 * SPDX-License-Identifier: Apache-2.0
 | 
						|
 */
 | 
						|
 | 
						|
#include <stddef.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <assert.h>
 | 
						|
#include "esp_err.h"
 | 
						|
#include "esp_ipc.h"
 | 
						|
#include "esp_private/esp_ipc_isr.h"
 | 
						|
#include "esp_attr.h"
 | 
						|
 | 
						|
#include "freertos/FreeRTOS.h"
 | 
						|
#include "freertos/task.h"
 | 
						|
#include "freertos/semphr.h"
 | 
						|
 | 
						|
#if !defined(CONFIG_FREERTOS_UNICORE) || defined(CONFIG_APPTRACE_GCOV_ENABLE)
 | 
						|
 | 
						|
#if CONFIG_COMPILER_OPTIMIZATION_NONE
 | 
						|
#define IPC_STACK_SIZE (CONFIG_ESP_IPC_TASK_STACK_SIZE + 0x100)
 | 
						|
#else
 | 
						|
#define IPC_STACK_SIZE (CONFIG_ESP_IPC_TASK_STACK_SIZE)
 | 
						|
#endif //CONFIG_COMPILER_OPTIMIZATION_NONE
 | 
						|
 | 
						|
static DRAM_ATTR StaticSemaphore_t s_ipc_mutex_buffer[portNUM_PROCESSORS];
 | 
						|
static DRAM_ATTR StaticSemaphore_t s_ipc_ack_buffer[portNUM_PROCESSORS];
 | 
						|
 | 
						|
static TaskHandle_t s_ipc_task_handle[portNUM_PROCESSORS];
 | 
						|
static SemaphoreHandle_t s_ipc_mutex[portNUM_PROCESSORS];    // This mutex is used as a global lock for esp_ipc_* APIs
 | 
						|
static SemaphoreHandle_t s_ipc_ack[portNUM_PROCESSORS];      // Semaphore used to acknowledge that task was woken up,
 | 
						|
static volatile esp_ipc_func_t s_func[portNUM_PROCESSORS] = { 0 };   // Function which should be called by high priority task
 | 
						|
static void * volatile s_func_arg[portNUM_PROCESSORS];       // Argument to pass into s_func
 | 
						|
typedef enum {
 | 
						|
    IPC_WAIT_NO = 0,
 | 
						|
    IPC_WAIT_FOR_START,
 | 
						|
    IPC_WAIT_FOR_END,
 | 
						|
} esp_ipc_wait_t;
 | 
						|
 | 
						|
#if CONFIG_APPTRACE_GCOV_ENABLE
 | 
						|
static volatile esp_ipc_func_t s_gcov_func = NULL;           // Gcov dump starter function which should be called by high priority task
 | 
						|
static void * volatile s_gcov_func_arg;                      // Argument to pass into s_gcov_func
 | 
						|
#endif
 | 
						|
 | 
						|
static void IRAM_ATTR ipc_task(void* arg)
 | 
						|
{
 | 
						|
    const int cpuid = (int) arg;
 | 
						|
 | 
						|
    assert(cpuid == xPortGetCoreID());
 | 
						|
#ifdef CONFIG_ESP_IPC_ISR_ENABLE
 | 
						|
    esp_ipc_isr_init();
 | 
						|
#endif
 | 
						|
 | 
						|
    while (true) {
 | 
						|
        uint32_t ipc_wait;
 | 
						|
        xTaskNotifyWait(0, ULONG_MAX, &ipc_wait, portMAX_DELAY);
 | 
						|
 | 
						|
#if CONFIG_APPTRACE_GCOV_ENABLE
 | 
						|
        if (s_gcov_func) {
 | 
						|
            (*s_gcov_func)(s_gcov_func_arg);
 | 
						|
            s_gcov_func = NULL;
 | 
						|
            /* we can not interfer with IPC calls so no need for further processing */
 | 
						|
            // esp_ipc API and gcov_from_isr APIs can be processed together if they came at the same time
 | 
						|
            if (ipc_wait == IPC_WAIT_NO) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
        }
 | 
						|
#endif // CONFIG_APPTRACE_GCOV_ENABLE
 | 
						|
 | 
						|
#ifndef CONFIG_FREERTOS_UNICORE
 | 
						|
        if (s_func[cpuid]) {
 | 
						|
            // we need to cache s_func, s_func_arg and ipc_ack variables locally
 | 
						|
            // because they can be changed by a subsequent IPC call (after xTaskNotify(caller_task_handle)).
 | 
						|
            esp_ipc_func_t func = s_func[cpuid];
 | 
						|
            s_func[cpuid] = NULL;
 | 
						|
            void* func_arg = s_func_arg[cpuid];
 | 
						|
            SemaphoreHandle_t ipc_ack = s_ipc_ack[cpuid];
 | 
						|
 | 
						|
            if (ipc_wait == IPC_WAIT_FOR_START) {
 | 
						|
                xSemaphoreGive(ipc_ack);
 | 
						|
                (*func)(func_arg);
 | 
						|
            } else if (ipc_wait == IPC_WAIT_FOR_END) {
 | 
						|
                (*func)(func_arg);
 | 
						|
                xSemaphoreGive(ipc_ack);
 | 
						|
            } else {
 | 
						|
                abort();
 | 
						|
            }
 | 
						|
        }
 | 
						|
#endif // !CONFIG_FREERTOS_UNICORE
 | 
						|
    }
 | 
						|
    // TODO: currently this is unreachable code. Introduce esp_ipc_uninit
 | 
						|
    // function which will signal to both tasks that they can shut down.
 | 
						|
    // Not critical at this point, we don't have a use case for stopping
 | 
						|
    // IPC yet.
 | 
						|
    // Also need to delete the semaphore here.
 | 
						|
    vTaskDelete(NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize inter-processor call module. This function is called automatically
 | 
						|
 * on CPU start and should not be called from the application.
 | 
						|
 *
 | 
						|
 * This function start two tasks, one on each CPU. These tasks are started
 | 
						|
 * with high priority. These tasks are normally inactive, waiting until one of
 | 
						|
 * the esp_ipc_call_* functions to be used. One of these tasks will be
 | 
						|
 * woken up to execute the callback provided to esp_ipc_call_nonblocking or
 | 
						|
 * esp_ipc_call_blocking.
 | 
						|
 */
 | 
						|
static void esp_ipc_init(void) __attribute__((constructor));
 | 
						|
 | 
						|
static void esp_ipc_init(void)
 | 
						|
{
 | 
						|
    char task_name[] = "ipcX"; // up to 10 ipc tasks/cores (0-9)
 | 
						|
 | 
						|
    for (int i = 0; i < portNUM_PROCESSORS; ++i) {
 | 
						|
        task_name[3] = i + (char)'0';
 | 
						|
        s_ipc_mutex[i] = xSemaphoreCreateMutexStatic(&s_ipc_mutex_buffer[i]);
 | 
						|
        s_ipc_ack[i] = xSemaphoreCreateBinaryStatic(&s_ipc_ack_buffer[i]);
 | 
						|
        portBASE_TYPE res = xTaskCreatePinnedToCore(ipc_task, task_name, IPC_STACK_SIZE, (void*) i,
 | 
						|
                                                    configMAX_PRIORITIES - 1, &s_ipc_task_handle[i], i);
 | 
						|
        assert(res == pdTRUE);
 | 
						|
        (void)res;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static esp_err_t esp_ipc_call_and_wait(uint32_t cpu_id, esp_ipc_func_t func, void* arg, esp_ipc_wait_t wait_for)
 | 
						|
{
 | 
						|
    if (cpu_id >= portNUM_PROCESSORS) {
 | 
						|
        return ESP_ERR_INVALID_ARG;
 | 
						|
    }
 | 
						|
    if (s_ipc_task_handle[cpu_id] == NULL) {
 | 
						|
        return ESP_ERR_INVALID_STATE;
 | 
						|
    }
 | 
						|
    if (xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) {
 | 
						|
        return ESP_ERR_INVALID_STATE;
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef CONFIG_ESP_IPC_USES_CALLERS_PRIORITY
 | 
						|
    TaskHandle_t task_handler = xTaskGetCurrentTaskHandle();
 | 
						|
    UBaseType_t priority_of_current_task = uxTaskPriorityGet(task_handler);
 | 
						|
    UBaseType_t priority_of_running_ipc_task = uxTaskPriorityGet(s_ipc_task_handle[cpu_id]);
 | 
						|
    if (priority_of_running_ipc_task < priority_of_current_task) {
 | 
						|
        vTaskPrioritySet(s_ipc_task_handle[cpu_id], priority_of_current_task);
 | 
						|
    }
 | 
						|
 | 
						|
    xSemaphoreTake(s_ipc_mutex[cpu_id], portMAX_DELAY);
 | 
						|
    vTaskPrioritySet(s_ipc_task_handle[cpu_id], priority_of_current_task);
 | 
						|
#else
 | 
						|
    xSemaphoreTake(s_ipc_mutex[0], portMAX_DELAY);
 | 
						|
#endif
 | 
						|
 | 
						|
    s_func[cpu_id] = func;
 | 
						|
    s_func_arg[cpu_id] = arg;
 | 
						|
    xTaskNotify(s_ipc_task_handle[cpu_id], wait_for, eSetValueWithOverwrite);
 | 
						|
    xSemaphoreTake(s_ipc_ack[cpu_id], portMAX_DELAY);
 | 
						|
 | 
						|
#ifdef CONFIG_ESP_IPC_USES_CALLERS_PRIORITY
 | 
						|
    xSemaphoreGive(s_ipc_mutex[cpu_id]);
 | 
						|
#else
 | 
						|
    xSemaphoreGive(s_ipc_mutex[0]);
 | 
						|
#endif
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t esp_ipc_call(uint32_t cpu_id, esp_ipc_func_t func, void* arg)
 | 
						|
{
 | 
						|
    return esp_ipc_call_and_wait(cpu_id, func, arg, IPC_WAIT_FOR_START);
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t esp_ipc_call_blocking(uint32_t cpu_id, esp_ipc_func_t func, void* arg)
 | 
						|
{
 | 
						|
    return esp_ipc_call_and_wait(cpu_id, func, arg, IPC_WAIT_FOR_END);
 | 
						|
}
 | 
						|
 | 
						|
// currently this is only called from gcov component
 | 
						|
// the top level guarantees that the next call will be only after the previous one has completed
 | 
						|
#if CONFIG_APPTRACE_GCOV_ENABLE
 | 
						|
esp_err_t esp_ipc_start_gcov_from_isr(uint32_t cpu_id, esp_ipc_func_t func, void* arg)
 | 
						|
{
 | 
						|
    if (xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) {
 | 
						|
        return ESP_ERR_INVALID_STATE;
 | 
						|
    }
 | 
						|
 | 
						|
    // Since it is called from an interrupt, it can not wait for a mutex to be released.
 | 
						|
    if (s_gcov_func == NULL) {
 | 
						|
        s_gcov_func_arg = arg;
 | 
						|
        s_gcov_func = func;
 | 
						|
 | 
						|
        // If the target task already has a notification pending then its notification value is not updated (WithoutOverwrite).
 | 
						|
        xTaskNotifyFromISR(s_ipc_task_handle[cpu_id], IPC_WAIT_NO, eSetValueWithoutOverwrite, NULL);
 | 
						|
        return ESP_OK;
 | 
						|
    }
 | 
						|
 | 
						|
    // the previous call was not completed
 | 
						|
    return ESP_FAIL;
 | 
						|
}
 | 
						|
#endif // CONFIG_APPTRACE_GCOV_ENABLE
 | 
						|
 | 
						|
#endif // !defined(CONFIG_FREERTOS_UNICORE) || defined(CONFIG_APPTRACE_GCOV_ENABLE)
 |