mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 15:11:40 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			722 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			722 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * \brief AES block cipher, ESP32 hardware accelerated version
 | |
|  * Based on mbedTLS FIPS-197 compliant version.
 | |
|  *
 | |
|  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 | |
|  *  Additions Copyright (C) 2016-2017, Espressif Systems (Shanghai) PTE Ltd
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  *
 | |
|  */
 | |
| /*
 | |
|  *  The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
 | |
|  *
 | |
|  *  http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
 | |
|  *  http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
 | |
|  */
 | |
| #include <string.h>
 | |
| #include "mbedtls/aes.h"
 | |
| #include "hwcrypto/aes.h"
 | |
| #include "mbedtls/platform_util.h"
 | |
| #include "soc/dport_reg.h"
 | |
| #include "soc/hwcrypto_reg.h"
 | |
| #include <sys/lock.h>
 | |
| 
 | |
| #include <freertos/FreeRTOS.h>
 | |
| 
 | |
| #include "soc/cpu.h"
 | |
| #include <stdio.h>
 | |
| #include "driver/periph_ctrl.h"
 | |
| 
 | |
| 
 | |
| /* AES uses a spinlock mux not a lock as the underlying block operation
 | |
|    only takes 208 cycles (to write key & compute block), +600 cycles
 | |
|    for DPORT protection but +3400 cycles again if you use a full sized lock.
 | |
| 
 | |
|    For CBC, CFB, etc. this may mean that interrupts are disabled for a longer
 | |
|    period of time for bigger lengths. However at the moment this has to happen
 | |
|    anyway due to DPORT protection...
 | |
| */
 | |
| static portMUX_TYPE aes_spinlock = portMUX_INITIALIZER_UNLOCKED;
 | |
| 
 | |
| static inline bool valid_key_length(const esp_aes_context *ctx)
 | |
| {
 | |
|     return ctx->key_bytes == 128/8 || ctx->key_bytes == 192/8 || ctx->key_bytes == 256/8;
 | |
| }
 | |
| 
 | |
| void esp_aes_acquire_hardware( void )
 | |
| {
 | |
|     portENTER_CRITICAL(&aes_spinlock);
 | |
| 
 | |
|     /* Enable AES hardware */
 | |
|     periph_module_enable(PERIPH_AES_MODULE);
 | |
| }
 | |
| 
 | |
| void esp_aes_release_hardware( void )
 | |
| {
 | |
|     /* Disable AES hardware */
 | |
|     periph_module_disable(PERIPH_AES_MODULE);
 | |
| 
 | |
|     portEXIT_CRITICAL(&aes_spinlock);
 | |
| }
 | |
| 
 | |
| void esp_aes_init( esp_aes_context *ctx )
 | |
| {
 | |
|     bzero( ctx, sizeof( esp_aes_context ) );
 | |
| }
 | |
| 
 | |
| void esp_aes_free( esp_aes_context *ctx )
 | |
| {
 | |
|     if ( ctx == NULL ) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bzero( ctx, sizeof( esp_aes_context ) );
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * AES key schedule (same for encryption or decryption, as hardware handles schedule)
 | |
|  *
 | |
|  */
 | |
| int esp_aes_setkey( esp_aes_context *ctx, const unsigned char *key,
 | |
|                     unsigned int keybits )
 | |
| {
 | |
|     if (keybits != 128 && keybits != 192 && keybits != 256) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
|     ctx->key_bytes = keybits / 8;
 | |
|     memcpy(ctx->key, key, ctx->key_bytes);
 | |
|     ctx->key_in_hardware = 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function to copy key from esp_aes_context buffer
 | |
|  * to hardware key registers.
 | |
|  *
 | |
|  * Call only while holding esp_aes_acquire_hardware().
 | |
|  */
 | |
| static void esp_aes_setkey_hardware(esp_aes_context *ctx, int mode)
 | |
| {
 | |
|     const uint32_t MODE_DECRYPT_BIT = 4;
 | |
|     unsigned mode_reg_base = (mode == ESP_AES_ENCRYPT) ? 0 : MODE_DECRYPT_BIT;
 | |
| 
 | |
|     ctx->key_in_hardware = 0;
 | |
| 
 | |
|     for (int i = 0; i < ctx->key_bytes/4; ++i) {
 | |
|         DPORT_REG_WRITE(AES_KEY_BASE + i * 4, *(((uint32_t *)ctx->key) + i));
 | |
|         ctx->key_in_hardware += 4;
 | |
|     }
 | |
| 
 | |
|     DPORT_REG_WRITE(AES_MODE_REG, mode_reg_base + ((ctx->key_bytes / 8) - 2));
 | |
| 
 | |
|     /* Fault injection check: all words of key data should have been written to hardware */
 | |
|     if (ctx->key_in_hardware < 16
 | |
|         || ctx->key_in_hardware != ctx->key_bytes) {
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Run a single 16 byte block of AES, using the hardware engine.
 | |
|  *
 | |
|  * Call only while holding esp_aes_acquire_hardware().
 | |
|  */
 | |
| static int esp_aes_block(esp_aes_context *ctx, const void *input, void *output)
 | |
| {
 | |
|     const uint32_t *input_words = (const uint32_t *)input;
 | |
|     uint32_t i0, i1, i2, i3;
 | |
|     uint32_t *output_words = (uint32_t *)output;
 | |
| 
 | |
|     /* If no key is written to hardware yet, either the user hasn't called
 | |
|        mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't
 | |
|        know which mode to use - or a fault skipped the
 | |
|        key write to hardware. Treat this as a fatal error and zero the output block.
 | |
|     */
 | |
|     if (ctx->key_in_hardware != ctx->key_bytes) {
 | |
|         bzero(output, 16);
 | |
|         return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
 | |
|     }
 | |
| 
 | |
|     /* Storing i0,i1,i2,i3 in registers not an array
 | |
|        helps a lot with optimisations at -Os level */
 | |
|     i0 = input_words[0];
 | |
|     DPORT_REG_WRITE(AES_TEXT_BASE, i0);
 | |
| 
 | |
|     i1 = input_words[1];
 | |
|     DPORT_REG_WRITE(AES_TEXT_BASE + 4, i1);
 | |
| 
 | |
|     i2 = input_words[2];
 | |
|     DPORT_REG_WRITE(AES_TEXT_BASE + 8, i2);
 | |
| 
 | |
|     i3 = input_words[3];
 | |
|     DPORT_REG_WRITE(AES_TEXT_BASE + 12, i3);
 | |
| 
 | |
|     DPORT_REG_WRITE(AES_START_REG, 1);
 | |
| 
 | |
|     while (DPORT_REG_READ(AES_IDLE_REG) != 1) { }
 | |
| 
 | |
|     esp_dport_access_read_buffer(output_words, AES_TEXT_BASE, 4);
 | |
| 
 | |
|     /* Physical security check: Verify the AES accelerator actually ran, and wasn't
 | |
|        skipped due to external fault injection while starting the peripheral.
 | |
| 
 | |
|        Note that i0,i1,i2,i3 are copied from input buffer in case input==output.
 | |
| 
 | |
|        Bypassing this check requires at least one additional fault.
 | |
|     */
 | |
|     if(i0 == output_words[0] && i1 == output_words[1] && i2 == output_words[2] && i3 == output_words[3]) {
 | |
|         // calling zeroing functions to narrow the
 | |
|         // window for a double-fault of the abort step, here
 | |
|         memset(output, 0, 16);
 | |
|         mbedtls_platform_zeroize(output, 16);
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-ECB block encryption
 | |
|  */
 | |
| int esp_internal_aes_encrypt( esp_aes_context *ctx,
 | |
|                       const unsigned char input[16],
 | |
|                       unsigned char output[16] )
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
 | |
|     r = esp_aes_block(ctx, input, output);
 | |
|     esp_aes_release_hardware();
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| void esp_aes_encrypt( esp_aes_context *ctx,
 | |
|         const unsigned char input[16],
 | |
|         unsigned char output[16] )
 | |
| {
 | |
|     esp_internal_aes_encrypt(ctx, input, output);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-ECB block decryption
 | |
|  */
 | |
| 
 | |
| int esp_internal_aes_decrypt( esp_aes_context *ctx,
 | |
|                       const unsigned char input[16],
 | |
|                       unsigned char output[16] )
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     esp_aes_setkey_hardware(ctx, ESP_AES_DECRYPT);
 | |
|     r = esp_aes_block(ctx, input, output);
 | |
|     esp_aes_release_hardware();
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| void esp_aes_decrypt( esp_aes_context *ctx,
 | |
|                       const unsigned char input[16],
 | |
|                       unsigned char output[16] )
 | |
| {
 | |
|     esp_internal_aes_decrypt(ctx, input, output);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-ECB block encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_ecb( esp_aes_context *ctx,
 | |
|                        int mode,
 | |
|                        const unsigned char input[16],
 | |
|                        unsigned char output[16] )
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
|     esp_aes_setkey_hardware(ctx, mode);
 | |
|     r = esp_aes_block(ctx, input, output);
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * AES-CBC buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_cbc( esp_aes_context *ctx,
 | |
|                        int mode,
 | |
|                        size_t length,
 | |
|                        unsigned char iv[16],
 | |
|                        const unsigned char *input,
 | |
|                        unsigned char *output )
 | |
| {
 | |
|     int i;
 | |
|     uint32_t *output_words = (uint32_t *)output;
 | |
|     const uint32_t *input_words = (const uint32_t *)input;
 | |
|     uint32_t *iv_words = (uint32_t *)iv;
 | |
|     unsigned char temp[16];
 | |
| 
 | |
|     if ( length % 16 ) {
 | |
|         return ( ERR_ESP_AES_INVALID_INPUT_LENGTH );
 | |
|     }
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
| 
 | |
|     esp_aes_setkey_hardware(ctx, mode);
 | |
| 
 | |
|     if ( mode == ESP_AES_DECRYPT ) {
 | |
|         while ( length > 0 ) {
 | |
|             memcpy(temp, input_words, 16);
 | |
|             esp_aes_block(ctx, input_words, output_words);
 | |
| 
 | |
|             for ( i = 0; i < 4; i++ ) {
 | |
|                 output_words[i] = output_words[i] ^ iv_words[i];
 | |
|             }
 | |
| 
 | |
|             memcpy( iv_words, temp, 16 );
 | |
| 
 | |
|             input_words += 4;
 | |
|             output_words += 4;
 | |
|             length -= 16;
 | |
|         }
 | |
|     } else { // ESP_AES_ENCRYPT
 | |
|         while ( length > 0 ) {
 | |
| 
 | |
|             for ( i = 0; i < 4; i++ ) {
 | |
|                 output_words[i] = input_words[i] ^ iv_words[i];
 | |
|             }
 | |
| 
 | |
|             esp_aes_block(ctx, output_words, output_words);
 | |
|             memcpy( iv_words, output_words, 16 );
 | |
| 
 | |
|             input_words  += 4;
 | |
|             output_words += 4;
 | |
|             length -= 16;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CFB128 buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_cfb128( esp_aes_context *ctx,
 | |
|                           int mode,
 | |
|                           size_t length,
 | |
|                           size_t *iv_off,
 | |
|                           unsigned char iv[16],
 | |
|                           const unsigned char *input,
 | |
|                           unsigned char *output )
 | |
| {
 | |
|     int c;
 | |
|     size_t n = *iv_off;
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
| 
 | |
|     esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
 | |
| 
 | |
|     if ( mode == ESP_AES_DECRYPT ) {
 | |
|         while ( length-- ) {
 | |
|             if ( n == 0 ) {
 | |
|                 esp_aes_block(ctx, iv, iv );
 | |
|             }
 | |
| 
 | |
|             c = *input++;
 | |
|             *output++ = (unsigned char)( c ^ iv[n] );
 | |
|             iv[n] = (unsigned char) c;
 | |
| 
 | |
|             n = ( n + 1 ) & 0x0F;
 | |
|         }
 | |
|     } else {
 | |
|         while ( length-- ) {
 | |
|             if ( n == 0 ) {
 | |
|                 esp_aes_block(ctx, iv, iv );
 | |
|             }
 | |
| 
 | |
|             iv[n] = *output++ = (unsigned char)( iv[n] ^ *input++ );
 | |
| 
 | |
|             n = ( n + 1 ) & 0x0F;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *iv_off = n;
 | |
| 
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CFB8 buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_cfb8( esp_aes_context *ctx,
 | |
|                         int mode,
 | |
|                         size_t length,
 | |
|                         unsigned char iv[16],
 | |
|                         const unsigned char *input,
 | |
|                         unsigned char *output )
 | |
| {
 | |
|     unsigned char c;
 | |
|     unsigned char ov[17];
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
| 
 | |
|     esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
 | |
| 
 | |
|     while ( length-- ) {
 | |
|         memcpy( ov, iv, 16 );
 | |
|         esp_aes_block(ctx, iv, iv);
 | |
| 
 | |
|         if ( mode == ESP_AES_DECRYPT ) {
 | |
|             ov[16] = *input;
 | |
|         }
 | |
| 
 | |
|         c = *output++ = (unsigned char)( iv[0] ^ *input++ );
 | |
| 
 | |
|         if ( mode == ESP_AES_ENCRYPT ) {
 | |
|             ov[16] = c;
 | |
|         }
 | |
| 
 | |
|         memcpy( iv, ov + 1, 16 );
 | |
|     }
 | |
| 
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-CTR buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_ctr( esp_aes_context *ctx,
 | |
|                        size_t length,
 | |
|                        size_t *nc_off,
 | |
|                        unsigned char nonce_counter[16],
 | |
|                        unsigned char stream_block[16],
 | |
|                        const unsigned char *input,
 | |
|                        unsigned char *output )
 | |
| {
 | |
|     int c, i;
 | |
|     size_t n = *nc_off;
 | |
| 
 | |
|     if (!valid_key_length(ctx)) {
 | |
|         return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
 | |
|     }
 | |
| 
 | |
|     esp_aes_acquire_hardware();
 | |
|     ctx->key_in_hardware = 0;
 | |
| 
 | |
|     esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
 | |
| 
 | |
|     while ( length-- ) {
 | |
|         if ( n == 0 ) {
 | |
|             esp_aes_block(ctx, nonce_counter, stream_block);
 | |
| 
 | |
|             for ( i = 16; i > 0; i-- )
 | |
|                 if ( ++nonce_counter[i - 1] != 0 ) {
 | |
|                     break;
 | |
|                 }
 | |
|         }
 | |
|         c = *input++;
 | |
|         *output++ = (unsigned char)( c ^ stream_block[n] );
 | |
| 
 | |
|         n = ( n + 1 ) & 0x0F;
 | |
|     }
 | |
| 
 | |
|     *nc_off = n;
 | |
| 
 | |
|     esp_aes_release_hardware();
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Below XTS implementation is copied aes.c of mbedtls library. 
 | |
|  * When MBEDTLS_AES_ALT is defined mbedtls expects alternate
 | |
|  * definition of XTS functions to be available. Even if this 
 | |
|  * could have been avoided, it is done for consistency reason.
 | |
|  */
 | |
| 
 | |
| void esp_aes_xts_init( esp_aes_xts_context *ctx )
 | |
| {
 | |
|     esp_aes_init( &ctx->crypt );
 | |
|     esp_aes_init( &ctx->tweak );
 | |
| }
 | |
| 
 | |
| void esp_aes_xts_free( esp_aes_xts_context *ctx )
 | |
| {
 | |
|     esp_aes_free( &ctx->crypt );
 | |
|     esp_aes_free( &ctx->tweak );
 | |
| }
 | |
| 
 | |
| static int esp_aes_xts_decode_keys( const unsigned char *key,
 | |
|                                         unsigned int keybits,
 | |
|                                         const unsigned char **key1,
 | |
|                                         unsigned int *key1bits,
 | |
|                                         const unsigned char **key2,
 | |
|                                         unsigned int *key2bits )
 | |
| {
 | |
|     const unsigned int half_keybits = keybits / 2;
 | |
|     const unsigned int half_keybytes = half_keybits / 8;
 | |
| 
 | |
|     switch( keybits )
 | |
|     {
 | |
|         case 256: break;
 | |
|         case 512: break;
 | |
|         default : return( MBEDTLS_ERR_AES_INVALID_KEY_LENGTH );
 | |
|     }
 | |
| 
 | |
|     *key1bits = half_keybits;
 | |
|     *key2bits = half_keybits;
 | |
|     *key1 = &key[0];
 | |
|     *key2 = &key[half_keybytes];
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int esp_aes_xts_setkey_enc( esp_aes_xts_context *ctx,
 | |
|                                 const unsigned char *key,
 | |
|                                 unsigned int keybits)
 | |
| {
 | |
|     int ret;
 | |
|     const unsigned char *key1, *key2;
 | |
|     unsigned int key1bits, key2bits;
 | |
| 
 | |
|     ret = esp_aes_xts_decode_keys( key, keybits, &key1, &key1bits,
 | |
|                                        &key2, &key2bits );
 | |
|     if( ret != 0 )
 | |
|         return( ret );
 | |
| 
 | |
|     /* Set the tweak key. Always set tweak key for the encryption mode. */
 | |
|     ret = esp_aes_setkey( &ctx->tweak, key2, key2bits );
 | |
|     if( ret != 0 )
 | |
|         return( ret );
 | |
| 
 | |
|     /* Set crypt key for encryption. */
 | |
|     return esp_aes_setkey( &ctx->crypt, key1, key1bits );
 | |
| }
 | |
| 
 | |
| int esp_aes_xts_setkey_dec( esp_aes_xts_context *ctx,
 | |
|                                 const unsigned char *key,
 | |
|                                 unsigned int keybits)
 | |
| {
 | |
|     int ret;
 | |
|     const unsigned char *key1, *key2;
 | |
|     unsigned int key1bits, key2bits;
 | |
| 
 | |
|     ret = esp_aes_xts_decode_keys( key, keybits, &key1, &key1bits,
 | |
|                                        &key2, &key2bits );
 | |
|     if( ret != 0 )
 | |
|         return( ret );
 | |
| 
 | |
|     /* Set the tweak key. Always set tweak key for encryption. */
 | |
|     ret = esp_aes_setkey( &ctx->tweak, key2, key2bits );
 | |
|     if( ret != 0 )
 | |
|         return( ret );
 | |
| 
 | |
|     /* Set crypt key for decryption. */
 | |
|     return esp_aes_setkey( &ctx->crypt, key1, key1bits );
 | |
| }
 | |
| 
 | |
| /* Endianess with 64 bits values */
 | |
| #ifndef GET_UINT64_LE
 | |
| #define GET_UINT64_LE(n,b,i)                            \
 | |
| {                                                       \
 | |
|     (n) = ( (uint64_t) (b)[(i) + 7] << 56 )             \
 | |
|         | ( (uint64_t) (b)[(i) + 6] << 48 )             \
 | |
|         | ( (uint64_t) (b)[(i) + 5] << 40 )             \
 | |
|         | ( (uint64_t) (b)[(i) + 4] << 32 )             \
 | |
|         | ( (uint64_t) (b)[(i) + 3] << 24 )             \
 | |
|         | ( (uint64_t) (b)[(i) + 2] << 16 )             \
 | |
|         | ( (uint64_t) (b)[(i) + 1] <<  8 )             \
 | |
|         | ( (uint64_t) (b)[(i)    ]       );            \
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef PUT_UINT64_LE
 | |
| #define PUT_UINT64_LE(n,b,i)                            \
 | |
| {                                                       \
 | |
|     (b)[(i) + 7] = (unsigned char) ( (n) >> 56 );       \
 | |
|     (b)[(i) + 6] = (unsigned char) ( (n) >> 48 );       \
 | |
|     (b)[(i) + 5] = (unsigned char) ( (n) >> 40 );       \
 | |
|     (b)[(i) + 4] = (unsigned char) ( (n) >> 32 );       \
 | |
|     (b)[(i) + 3] = (unsigned char) ( (n) >> 24 );       \
 | |
|     (b)[(i) + 2] = (unsigned char) ( (n) >> 16 );       \
 | |
|     (b)[(i) + 1] = (unsigned char) ( (n) >>  8 );       \
 | |
|     (b)[(i)    ] = (unsigned char) ( (n)       );       \
 | |
| }
 | |
| #endif
 | |
| 
 | |
| typedef unsigned char esp_be128[16];
 | |
| 
 | |
| /*
 | |
|  * GF(2^128) multiplication function
 | |
|  *
 | |
|  * This function multiplies a field element by x in the polynomial field
 | |
|  * representation. It uses 64-bit word operations to gain speed but compensates
 | |
|  * for machine endianess and hence works correctly on both big and little
 | |
|  * endian machines.
 | |
|  */
 | |
| static void esp_gf128mul_x_ble( unsigned char r[16],
 | |
|                                     const unsigned char x[16] )
 | |
| {
 | |
|     uint64_t a, b, ra, rb;
 | |
| 
 | |
|     GET_UINT64_LE( a, x, 0 );
 | |
|     GET_UINT64_LE( b, x, 8 );
 | |
| 
 | |
|     ra = ( a << 1 )  ^ 0x0087 >> ( 8 - ( ( b >> 63 ) << 3 ) );
 | |
|     rb = ( a >> 63 ) | ( b << 1 );
 | |
| 
 | |
|     PUT_UINT64_LE( ra, r, 0 );
 | |
|     PUT_UINT64_LE( rb, r, 8 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AES-XTS buffer encryption/decryption
 | |
|  */
 | |
| int esp_aes_crypt_xts( esp_aes_xts_context *ctx,
 | |
|                            int mode,
 | |
|                            size_t length,
 | |
|                            const unsigned char data_unit[16],
 | |
|                            const unsigned char *input,
 | |
|                            unsigned char *output )
 | |
| {
 | |
|     int ret;
 | |
|     size_t blocks = length / 16;
 | |
|     size_t leftover = length % 16;
 | |
|     unsigned char tweak[16];
 | |
|     unsigned char prev_tweak[16];
 | |
|     unsigned char tmp[16];
 | |
| 
 | |
|     /* Sectors must be at least 16 bytes. */
 | |
|     if( length < 16 )
 | |
|         return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
 | |
| 
 | |
|     /* NIST SP 80-38E disallows data units larger than 2**20 blocks. */
 | |
|     if( length > ( 1 << 20 ) * 16 )
 | |
|         return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
 | |
| 
 | |
|     /* Compute the tweak. */
 | |
|     ret = esp_aes_crypt_ecb( &ctx->tweak, MBEDTLS_AES_ENCRYPT,
 | |
|                                  data_unit, tweak );
 | |
|     if( ret != 0 )
 | |
|         return( ret );
 | |
| 
 | |
|     while( blocks-- )
 | |
|     {
 | |
|         size_t i;
 | |
| 
 | |
|         if( leftover && ( mode == MBEDTLS_AES_DECRYPT ) && blocks == 0 )
 | |
|         {
 | |
|             /* We are on the last block in a decrypt operation that has
 | |
|              * leftover bytes, so we need to use the next tweak for this block,
 | |
|              * and this tweak for the lefover bytes. Save the current tweak for
 | |
|              * the leftovers and then update the current tweak for use on this,
 | |
|              * the last full block. */
 | |
|             memcpy( prev_tweak, tweak, sizeof( tweak ) );
 | |
|             esp_gf128mul_x_ble( tweak, tweak );
 | |
|         }
 | |
| 
 | |
|         for( i = 0; i < 16; i++ )
 | |
|             tmp[i] = input[i] ^ tweak[i];
 | |
| 
 | |
|         ret = esp_aes_crypt_ecb( &ctx->crypt, mode, tmp, tmp );
 | |
|         if( ret != 0 )
 | |
|             return( ret );
 | |
| 
 | |
|         for( i = 0; i < 16; i++ )
 | |
|             output[i] = tmp[i] ^ tweak[i];
 | |
| 
 | |
|         /* Update the tweak for the next block. */
 | |
|         esp_gf128mul_x_ble( tweak, tweak );
 | |
| 
 | |
|         output += 16;
 | |
|         input += 16;
 | |
|     }
 | |
| 
 | |
|     if( leftover )
 | |
|     {
 | |
|         /* If we are on the leftover bytes in a decrypt operation, we need to
 | |
|          * use the previous tweak for these bytes (as saved in prev_tweak). */
 | |
|         unsigned char *t = mode == MBEDTLS_AES_DECRYPT ? prev_tweak : tweak;
 | |
| 
 | |
|         /* We are now on the final part of the data unit, which doesn't divide
 | |
|          * evenly by 16. It's time for ciphertext stealing. */
 | |
|         size_t i;
 | |
|         unsigned char *prev_output = output - 16;
 | |
| 
 | |
|         /* Copy ciphertext bytes from the previous block to our output for each
 | |
|          * byte of cyphertext we won't steal. At the same time, copy the
 | |
|          * remainder of the input for this final round (since the loop bounds
 | |
|          * are the same). */
 | |
|         for( i = 0; i < leftover; i++ )
 | |
|         {
 | |
|             output[i] = prev_output[i];
 | |
|             tmp[i] = input[i] ^ t[i];
 | |
|         }
 | |
| 
 | |
|         /* Copy ciphertext bytes from the previous block for input in this
 | |
|          * round. */
 | |
|         for( ; i < 16; i++ )
 | |
|             tmp[i] = prev_output[i] ^ t[i];
 | |
| 
 | |
|         ret = esp_aes_crypt_ecb( &ctx->crypt, mode, tmp, tmp );
 | |
|         if( ret != 0 )
 | |
|             return ret;
 | |
| 
 | |
|         /* Write the result back to the previous block, overriding the previous
 | |
|          * output we copied. */
 | |
|         for( i = 0; i < 16; i++ )
 | |
|             prev_output[i] = tmp[i] ^ t[i];
 | |
|     }
 | |
| 
 | |
|     return( 0 );
 | |
| }
 |