mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 15:11:40 +01:00 
			
		
		
		
	Several driver improvements according to coverify scan report See merge request espressif/esp-idf!17708
		
			
				
	
	
		
			812 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			812 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2020-2022 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| // #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <sys/cdefs.h>
 | |
| #include "sdkconfig.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/task.h"
 | |
| #include "soc/soc_caps.h"
 | |
| #include "soc/periph_defs.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_check.h"
 | |
| #include "esp_heap_caps.h"
 | |
| #include "hal/gdma_hal.h"
 | |
| #include "hal/gdma_ll.h"
 | |
| #include "soc/gdma_periph.h"
 | |
| #include "esp_memory_utils.h"
 | |
| #include "esp_private/periph_ctrl.h"
 | |
| #include "esp_private/gdma.h"
 | |
| 
 | |
| static const char *TAG = "gdma";
 | |
| 
 | |
| #if CONFIG_GDMA_ISR_IRAM_SAFE || CONFIG_GDMA_CTRL_FUNC_IN_IRAM
 | |
| #define GDMA_MEM_ALLOC_CAPS    (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
 | |
| #else
 | |
| #define GDMA_MEM_ALLOC_CAPS    MALLOC_CAP_DEFAULT
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_GDMA_ISR_IRAM_SAFE
 | |
| #define GDMA_INTR_ALLOC_FLAGS  (ESP_INTR_FLAG_IRAM | ESP_INTR_FLAG_INTRDISABLED)
 | |
| #else
 | |
| #define GDMA_INTR_ALLOC_FLAGS  ESP_INTR_FLAG_INTRDISABLED
 | |
| #endif
 | |
| 
 | |
| #define GDMA_INVALID_PERIPH_TRIG  (0x3F)
 | |
| #define SEARCH_REQUEST_RX_CHANNEL (1 << 0)
 | |
| #define SEARCH_REQUEST_TX_CHANNEL (1 << 1)
 | |
| 
 | |
| typedef struct gdma_platform_t gdma_platform_t;
 | |
| typedef struct gdma_group_t gdma_group_t;
 | |
| typedef struct gdma_pair_t gdma_pair_t;
 | |
| typedef struct gdma_channel_t gdma_channel_t;
 | |
| typedef struct gdma_tx_channel_t gdma_tx_channel_t;
 | |
| typedef struct gdma_rx_channel_t gdma_rx_channel_t;
 | |
| 
 | |
| /**
 | |
|  * GDMA driver consists of there object class, namely: Group, Pair and Channel.
 | |
|  * Channel is allocated when user calls `gdma_new_channel`, its lifecycle is maintained by user.
 | |
|  * Pair and Group are all lazy allocated, their life cycles are maintained by this driver.
 | |
|  * We use reference count to track their life cycles, i.e. the driver will free their memory only when their reference count reached to 0.
 | |
|  *
 | |
|  * We don't use an all-in-one spin lock in this driver, instead, we created different spin locks at different level.
 | |
|  * For platform, it has a spinlock, which is used to protect the group handle slots and reference count of each group.
 | |
|  * For group, it has a spinlock, which is used to protect group level stuffs, e.g. hal object, pair handle slots and reference count of each pair.
 | |
|  * For pair, it has a spinlock, which is used to protect pair level stuffs, e.g. channel handle slots, occupy code.
 | |
|  */
 | |
| 
 | |
| struct gdma_platform_t {
 | |
|     portMUX_TYPE spinlock;                 // platform level spinlock
 | |
|     gdma_group_t *groups[SOC_GDMA_GROUPS]; // array of GDMA group instances
 | |
|     int group_ref_counts[SOC_GDMA_GROUPS]; // reference count used to protect group install/uninstall
 | |
| };
 | |
| 
 | |
| struct gdma_group_t {
 | |
|     int group_id;           // Group ID, index from 0
 | |
|     gdma_hal_context_t hal; // HAL instance is at group level
 | |
|     portMUX_TYPE spinlock;  // group level spinlock
 | |
|     gdma_pair_t *pairs[SOC_GDMA_PAIRS_PER_GROUP];  // handles of GDMA pairs
 | |
|     int pair_ref_counts[SOC_GDMA_PAIRS_PER_GROUP]; // reference count used to protect pair install/uninstall
 | |
| };
 | |
| 
 | |
| struct gdma_pair_t {
 | |
|     gdma_group_t *group;        // which group the pair belongs to
 | |
|     int pair_id;                // Pair ID, index from 0
 | |
|     gdma_tx_channel_t *tx_chan; // pointer of tx channel in the pair
 | |
|     gdma_rx_channel_t *rx_chan; // pointer of rx channel in the pair
 | |
|     int occupy_code;            // each bit indicates which channel has been occupied (an occupied channel will be skipped during channel search)
 | |
|     portMUX_TYPE spinlock;      // pair level spinlock
 | |
| };
 | |
| 
 | |
| struct gdma_channel_t {
 | |
|     gdma_pair_t *pair;  // which pair the channel belongs to
 | |
|     intr_handle_t intr; // per-channel interrupt handle
 | |
|     portMUX_TYPE spinlock;  // channel level spinlock
 | |
|     gdma_channel_direction_t direction; // channel direction
 | |
|     int periph_id; // Peripheral instance ID, indicates which peripheral is connected to this GDMA channel
 | |
|     size_t sram_alignment;  // alignment for memory in SRAM
 | |
|     size_t psram_alignment; // alignment for memory in PSRAM
 | |
|     esp_err_t (*del)(gdma_channel_t *channel); // channel deletion function, it's polymorphic, see `gdma_del_tx_channel` or `gdma_del_rx_channel`
 | |
| };
 | |
| 
 | |
| struct gdma_tx_channel_t {
 | |
|     gdma_channel_t base; // GDMA channel, base class
 | |
|     void *user_data;     // user registered DMA event data
 | |
|     gdma_event_callback_t on_trans_eof; // TX EOF callback
 | |
| };
 | |
| 
 | |
| struct gdma_rx_channel_t {
 | |
|     gdma_channel_t base; // GDMA channel, base class
 | |
|     void *user_data;     // user registered DMA event data
 | |
|     gdma_event_callback_t on_recv_eof; // RX EOF callback
 | |
| };
 | |
| 
 | |
| static gdma_group_t *gdma_acquire_group_handle(int group_id);
 | |
| static gdma_pair_t *gdma_acquire_pair_handle(gdma_group_t *group, int pair_id);
 | |
| static void gdma_release_group_handle(gdma_group_t *group);
 | |
| static void gdma_release_pair_handle(gdma_pair_t *pair);
 | |
| static esp_err_t gdma_del_tx_channel(gdma_channel_t *dma_channel);
 | |
| static esp_err_t gdma_del_rx_channel(gdma_channel_t *dma_channel);
 | |
| static esp_err_t gdma_install_rx_interrupt(gdma_rx_channel_t *rx_chan);
 | |
| static esp_err_t gdma_install_tx_interrupt(gdma_tx_channel_t *tx_chan);
 | |
| 
 | |
| // gdma driver platform
 | |
| static gdma_platform_t s_platform = {
 | |
|     .spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED,
 | |
|     .groups = {} // groups will be lazy installed
 | |
| };
 | |
| 
 | |
| esp_err_t gdma_new_channel(const gdma_channel_alloc_config_t *config, gdma_channel_handle_t *ret_chan)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_tx_channel_t *alloc_tx_channel = NULL;
 | |
|     gdma_rx_channel_t *alloc_rx_channel = NULL;
 | |
|     int search_code = 0;
 | |
|     gdma_pair_t *pair = NULL;
 | |
|     gdma_group_t *group = NULL;
 | |
|     ESP_GOTO_ON_FALSE(config && ret_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
| 
 | |
|     if (config->flags.reserve_sibling) {
 | |
|         search_code = SEARCH_REQUEST_RX_CHANNEL | SEARCH_REQUEST_TX_CHANNEL; // search for a pair of channels
 | |
|     }
 | |
|     if (config->direction == GDMA_CHANNEL_DIRECTION_TX) {
 | |
|         search_code |= SEARCH_REQUEST_TX_CHANNEL; // search TX only
 | |
|         alloc_tx_channel = heap_caps_calloc(1, sizeof(gdma_tx_channel_t), GDMA_MEM_ALLOC_CAPS);
 | |
|         ESP_GOTO_ON_FALSE(alloc_tx_channel, ESP_ERR_NO_MEM, err, TAG, "no mem for gdma tx channel");
 | |
|     } else if (config->direction == GDMA_CHANNEL_DIRECTION_RX) {
 | |
|         search_code |= SEARCH_REQUEST_RX_CHANNEL; // search RX only
 | |
|         alloc_rx_channel = heap_caps_calloc(1, sizeof(gdma_rx_channel_t), GDMA_MEM_ALLOC_CAPS);
 | |
|         ESP_GOTO_ON_FALSE(alloc_rx_channel, ESP_ERR_NO_MEM, err, TAG, "no mem for gdma rx channel");
 | |
|     }
 | |
| 
 | |
|     if (config->sibling_chan) {
 | |
|         pair = config->sibling_chan->pair;
 | |
|         ESP_GOTO_ON_FALSE(pair, ESP_ERR_INVALID_ARG, err, TAG, "invalid sibling channel");
 | |
|         ESP_GOTO_ON_FALSE(config->sibling_chan->direction != config->direction, ESP_ERR_INVALID_ARG, err, TAG, "sibling channel should have a different direction");
 | |
|         group = pair->group;
 | |
|         portENTER_CRITICAL(&group->spinlock);
 | |
|         group->pair_ref_counts[pair->pair_id]++; // channel obtains a reference to pair
 | |
|         portEXIT_CRITICAL(&group->spinlock);
 | |
|         goto search_done; // skip the search path below if user has specify a sibling channel
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < SOC_GDMA_GROUPS && search_code; i++) { // loop to search group
 | |
|         group = gdma_acquire_group_handle(i);
 | |
|         ESP_GOTO_ON_FALSE(group, ESP_ERR_NO_MEM, err, TAG, "no mem for group(%d)", i);
 | |
|         for (int j = 0; j < SOC_GDMA_PAIRS_PER_GROUP && search_code; j++) { // loop to search pair
 | |
|             pair = gdma_acquire_pair_handle(group, j);
 | |
|             ESP_GOTO_ON_FALSE(pair, ESP_ERR_NO_MEM, err, TAG, "no mem for pair(%d,%d)", i, j);
 | |
|             portENTER_CRITICAL(&pair->spinlock);
 | |
|             if (!(search_code & pair->occupy_code)) { // pair has suitable position for acquired channel(s)
 | |
|                 pair->occupy_code |= search_code;
 | |
|                 search_code = 0; // exit search loop
 | |
|             }
 | |
|             portEXIT_CRITICAL(&pair->spinlock);
 | |
|             if (search_code) {
 | |
|                 gdma_release_pair_handle(pair);
 | |
|                 pair = NULL;
 | |
|             }
 | |
|         } // loop used to search pair
 | |
|         if (search_code) {
 | |
|             gdma_release_group_handle(group);
 | |
|             group = NULL;
 | |
|         }
 | |
|     } // loop used to search group
 | |
|     ESP_GOTO_ON_FALSE(search_code == 0, ESP_ERR_NOT_FOUND, err, TAG, "no free gdma channel, search code=%d", search_code);
 | |
|     assert(pair && group); // pair and group handle shouldn't be NULL
 | |
| search_done:
 | |
|     // register TX channel
 | |
|     if (alloc_tx_channel) {
 | |
|         pair->tx_chan = alloc_tx_channel;
 | |
|         alloc_tx_channel->base.pair = pair;
 | |
|         alloc_tx_channel->base.direction = GDMA_CHANNEL_DIRECTION_TX;
 | |
|         alloc_tx_channel->base.periph_id = GDMA_INVALID_PERIPH_TRIG;
 | |
|         alloc_tx_channel->base.del = gdma_del_tx_channel; // set channel deletion function
 | |
|         *ret_chan = &alloc_tx_channel->base; // return the installed channel
 | |
|     }
 | |
| 
 | |
|     // register RX channel
 | |
|     if (alloc_rx_channel) {
 | |
|         pair->rx_chan = alloc_rx_channel;
 | |
|         alloc_rx_channel->base.pair = pair;
 | |
|         alloc_rx_channel->base.direction = GDMA_CHANNEL_DIRECTION_RX;
 | |
|         alloc_rx_channel->base.periph_id = GDMA_INVALID_PERIPH_TRIG;
 | |
|         alloc_rx_channel->base.del = gdma_del_rx_channel; // set channel deletion function
 | |
|         *ret_chan = &alloc_rx_channel->base; // return the installed channel
 | |
|     }
 | |
| 
 | |
|     (*ret_chan)->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
 | |
|     ESP_LOGD(TAG, "new %s channel (%d,%d) at %p", (config->direction == GDMA_CHANNEL_DIRECTION_TX) ? "tx" : "rx",
 | |
|              group->group_id, pair->pair_id, *ret_chan);
 | |
|     return ESP_OK;
 | |
| 
 | |
| err:
 | |
|     if (alloc_tx_channel) {
 | |
|         free(alloc_tx_channel);
 | |
|     }
 | |
|     if (alloc_rx_channel) {
 | |
|         free(alloc_rx_channel);
 | |
|     }
 | |
|     if (pair) {
 | |
|         gdma_release_pair_handle(pair);
 | |
|     }
 | |
|     if (group) {
 | |
|         gdma_release_group_handle(group);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t gdma_del_channel(gdma_channel_handle_t dma_chan)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     ESP_GOTO_ON_FALSE(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
| 
 | |
|     ret = dma_chan->del(dma_chan); // call `gdma_del_tx_channel` or `gdma_del_rx_channel`
 | |
| 
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t gdma_get_channel_id(gdma_channel_handle_t dma_chan, int *channel_id)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_pair_t *pair = NULL;
 | |
|     ESP_GOTO_ON_FALSE(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
|     pair = dma_chan->pair;
 | |
|     *channel_id = pair->pair_id;
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t gdma_connect(gdma_channel_handle_t dma_chan, gdma_trigger_t trig_periph)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_pair_t *pair = NULL;
 | |
|     gdma_group_t *group = NULL;
 | |
|     ESP_GOTO_ON_FALSE(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
|     ESP_GOTO_ON_FALSE(dma_chan->periph_id == GDMA_INVALID_PERIPH_TRIG, ESP_ERR_INVALID_STATE, err, TAG, "channel is using by peripheral: %d", dma_chan->periph_id);
 | |
|     pair = dma_chan->pair;
 | |
|     group = pair->group;
 | |
| 
 | |
|     dma_chan->periph_id = trig_periph.instance_id;
 | |
|     // enable/disable m2m mode
 | |
|     gdma_ll_enable_m2m_mode(group->hal.dev, pair->pair_id, trig_periph.periph == GDMA_TRIG_PERIPH_M2M);
 | |
| 
 | |
|     if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX) {
 | |
|         gdma_ll_tx_reset_channel(group->hal.dev, pair->pair_id); // reset channel
 | |
|         if (trig_periph.periph != GDMA_TRIG_PERIPH_M2M) {
 | |
|             gdma_ll_tx_connect_to_periph(group->hal.dev, pair->pair_id, trig_periph.instance_id);
 | |
|         }
 | |
|     } else {
 | |
|         gdma_ll_rx_reset_channel(group->hal.dev, pair->pair_id); // reset channel
 | |
|         if (trig_periph.periph != GDMA_TRIG_PERIPH_M2M) {
 | |
|             gdma_ll_rx_connect_to_periph(group->hal.dev, pair->pair_id, trig_periph.instance_id);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t gdma_disconnect(gdma_channel_handle_t dma_chan)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_pair_t *pair = NULL;
 | |
|     gdma_group_t *group = NULL;
 | |
|     ESP_GOTO_ON_FALSE(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
|     ESP_GOTO_ON_FALSE(dma_chan->periph_id != GDMA_INVALID_PERIPH_TRIG, ESP_ERR_INVALID_STATE, err, TAG, "no peripheral is connected to the channel");
 | |
|     pair = dma_chan->pair;
 | |
|     group = pair->group;
 | |
| 
 | |
|     dma_chan->periph_id = GDMA_INVALID_PERIPH_TRIG;
 | |
|     if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX) {
 | |
|         gdma_ll_tx_connect_to_periph(group->hal.dev, pair->pair_id, GDMA_INVALID_PERIPH_TRIG);
 | |
|     } else {
 | |
|         gdma_ll_rx_connect_to_periph(group->hal.dev, pair->pair_id, GDMA_INVALID_PERIPH_TRIG);
 | |
|     }
 | |
| 
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t gdma_set_transfer_ability(gdma_channel_handle_t dma_chan, const gdma_transfer_ability_t *ability)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_pair_t *pair = NULL;
 | |
|     gdma_group_t *group = NULL;
 | |
|     bool en_burst = true;
 | |
|     ESP_GOTO_ON_FALSE(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
|     pair = dma_chan->pair;
 | |
|     group = pair->group;
 | |
|     size_t sram_alignment = ability->sram_trans_align;
 | |
|     size_t psram_alignment = ability->psram_trans_align;
 | |
|     // alignment should be 2^n
 | |
|     ESP_GOTO_ON_FALSE((sram_alignment & (sram_alignment - 1)) == 0, ESP_ERR_INVALID_ARG, err, TAG, "invalid sram alignment: %zu", sram_alignment);
 | |
| 
 | |
| #if SOC_GDMA_SUPPORT_PSRAM
 | |
|     int block_size_index = 0;
 | |
|     switch (psram_alignment) {
 | |
|     case 64: // 64 Bytes alignment
 | |
|         block_size_index = GDMA_LL_EXT_MEM_BK_SIZE_64B;
 | |
|         break;
 | |
|     case 32: // 32 Bytes alignment
 | |
|         block_size_index = GDMA_LL_EXT_MEM_BK_SIZE_32B;
 | |
|         break;
 | |
|     case 16: // 16 Bytes alignment
 | |
|         block_size_index = GDMA_LL_EXT_MEM_BK_SIZE_16B;
 | |
|         break;
 | |
|     case 0: // no alignment is requirement
 | |
|         block_size_index = GDMA_LL_EXT_MEM_BK_SIZE_16B;
 | |
|         psram_alignment = SOC_GDMA_PSRAM_MIN_ALIGN; // fall back to minimal alignment
 | |
|         break;
 | |
|     default:
 | |
|         ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "invalid psram alignment: %zu", psram_alignment);
 | |
|         break;
 | |
|     }
 | |
| #endif // #if SOC_GDMA_SUPPORT_PSRAM
 | |
| 
 | |
|     if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX) {
 | |
|         // TX channel can always enable burst mode, no matter data alignment
 | |
|         gdma_ll_tx_enable_data_burst(group->hal.dev, pair->pair_id, true);
 | |
|         gdma_ll_tx_enable_descriptor_burst(group->hal.dev, pair->pair_id, true);
 | |
| #if SOC_GDMA_SUPPORT_PSRAM
 | |
|         gdma_ll_tx_set_block_size_psram(group->hal.dev, pair->pair_id, block_size_index);
 | |
| #endif // #if SOC_GDMA_SUPPORT_PSRAM
 | |
|     } else {
 | |
|         // RX channel burst mode depends on specific data alignment
 | |
|         en_burst = sram_alignment >= 4;
 | |
|         gdma_ll_rx_enable_data_burst(group->hal.dev, pair->pair_id, en_burst);
 | |
|         gdma_ll_rx_enable_descriptor_burst(group->hal.dev, pair->pair_id, en_burst);
 | |
| #if SOC_GDMA_SUPPORT_PSRAM
 | |
|         gdma_ll_rx_set_block_size_psram(group->hal.dev, pair->pair_id, block_size_index);
 | |
| #endif // #if SOC_GDMA_SUPPORT_PSRAM
 | |
|     }
 | |
| 
 | |
|     dma_chan->sram_alignment = sram_alignment;
 | |
|     dma_chan->psram_alignment = psram_alignment;
 | |
|     ESP_LOGD(TAG, "%s channel (%d,%d), (%zu:%zu) bytes aligned, burst %s", dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX ? "tx" : "rx",
 | |
|              group->group_id, pair->pair_id, sram_alignment, psram_alignment, en_burst ? "enabled" : "disabled");
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t gdma_apply_strategy(gdma_channel_handle_t dma_chan, const gdma_strategy_config_t *config)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_pair_t *pair = NULL;
 | |
|     gdma_group_t *group = NULL;
 | |
|     ESP_GOTO_ON_FALSE(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
|     pair = dma_chan->pair;
 | |
|     group = pair->group;
 | |
| 
 | |
|     if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX) {
 | |
|         gdma_ll_tx_enable_owner_check(group->hal.dev, pair->pair_id, config->owner_check);
 | |
|         gdma_ll_tx_enable_auto_write_back(group->hal.dev, pair->pair_id, config->auto_update_desc);
 | |
|     } else {
 | |
|         gdma_ll_rx_enable_owner_check(group->hal.dev, pair->pair_id, config->owner_check);
 | |
|     }
 | |
| 
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t gdma_register_tx_event_callbacks(gdma_channel_handle_t dma_chan, gdma_tx_event_callbacks_t *cbs, void *user_data)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_pair_t *pair = NULL;
 | |
|     gdma_group_t *group = NULL;
 | |
|     ESP_GOTO_ON_FALSE(dma_chan && dma_chan->direction == GDMA_CHANNEL_DIRECTION_TX, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
|     pair = dma_chan->pair;
 | |
|     group = pair->group;
 | |
|     gdma_tx_channel_t *tx_chan = __containerof(dma_chan, gdma_tx_channel_t, base);
 | |
| 
 | |
| #if CONFIG_GDMA_ISR_IRAM_SAFE
 | |
|     if (cbs->on_trans_eof) {
 | |
|         ESP_GOTO_ON_FALSE(esp_ptr_in_iram(cbs->on_trans_eof), ESP_ERR_INVALID_ARG, err, TAG, "on_trans_eof not in IRAM");
 | |
|     }
 | |
|     if (user_data) {
 | |
|         ESP_GOTO_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, err, TAG, "user context not in internal RAM");
 | |
|     }
 | |
| #endif // CONFIG_GDMA_ISR_IRAM_SAFE
 | |
| 
 | |
|     // lazy install interrupt service
 | |
|     ESP_GOTO_ON_ERROR(gdma_install_tx_interrupt(tx_chan), err, TAG, "install interrupt service failed");
 | |
| 
 | |
|     // enable/disable GDMA interrupt events for TX channel
 | |
|     portENTER_CRITICAL(&pair->spinlock);
 | |
|     gdma_ll_tx_enable_interrupt(group->hal.dev, pair->pair_id, GDMA_LL_EVENT_TX_EOF, cbs->on_trans_eof != NULL);
 | |
|     portEXIT_CRITICAL(&pair->spinlock);
 | |
| 
 | |
|     tx_chan->on_trans_eof = cbs->on_trans_eof;
 | |
|     tx_chan->user_data = user_data;
 | |
| 
 | |
|     ESP_GOTO_ON_ERROR(esp_intr_enable(dma_chan->intr), err, TAG, "enable interrupt failed");
 | |
| 
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t gdma_register_rx_event_callbacks(gdma_channel_handle_t dma_chan, gdma_rx_event_callbacks_t *cbs, void *user_data)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_pair_t *pair = NULL;
 | |
|     gdma_group_t *group = NULL;
 | |
|     ESP_GOTO_ON_FALSE(dma_chan && dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
|     pair = dma_chan->pair;
 | |
|     group = pair->group;
 | |
|     gdma_rx_channel_t *rx_chan = __containerof(dma_chan, gdma_rx_channel_t, base);
 | |
| 
 | |
| #if CONFIG_GDMA_ISR_IRAM_SAFE
 | |
|     if (cbs->on_recv_eof) {
 | |
|         ESP_GOTO_ON_FALSE(esp_ptr_in_iram(cbs->on_recv_eof), ESP_ERR_INVALID_ARG, err, TAG, "on_recv_eof not in IRAM");
 | |
|     }
 | |
|     if (user_data) {
 | |
|         ESP_GOTO_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, err, TAG, "user context not in internal RAM");
 | |
|     }
 | |
| #endif // CONFIG_GDMA_ISR_IRAM_SAFE
 | |
| 
 | |
|     // lazy install interrupt service
 | |
|     ESP_GOTO_ON_ERROR(gdma_install_rx_interrupt(rx_chan), err, TAG, "install interrupt service failed");
 | |
| 
 | |
|     // enable/disable GDMA interrupt events for RX channel
 | |
|     portENTER_CRITICAL(&pair->spinlock);
 | |
|     gdma_ll_rx_enable_interrupt(group->hal.dev, pair->pair_id, GDMA_LL_EVENT_RX_SUC_EOF, cbs->on_recv_eof != NULL);
 | |
|     portEXIT_CRITICAL(&pair->spinlock);
 | |
| 
 | |
|     rx_chan->on_recv_eof = cbs->on_recv_eof;
 | |
|     rx_chan->user_data = user_data;
 | |
| 
 | |
|     ESP_GOTO_ON_ERROR(esp_intr_enable(dma_chan->intr), err, TAG, "enable interrupt failed");
 | |
| 
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t gdma_start(gdma_channel_handle_t dma_chan, intptr_t desc_base_addr)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_pair_t *pair = NULL;
 | |
|     gdma_group_t *group = NULL;
 | |
|     ESP_GOTO_ON_FALSE_ISR(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
|     pair = dma_chan->pair;
 | |
|     group = pair->group;
 | |
| 
 | |
|     portENTER_CRITICAL_SAFE(&dma_chan->spinlock);
 | |
|     if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX) {
 | |
|         gdma_ll_rx_set_desc_addr(group->hal.dev, pair->pair_id, desc_base_addr);
 | |
|         gdma_ll_rx_start(group->hal.dev, pair->pair_id);
 | |
|     } else {
 | |
|         gdma_ll_tx_set_desc_addr(group->hal.dev, pair->pair_id, desc_base_addr);
 | |
|         gdma_ll_tx_start(group->hal.dev, pair->pair_id);
 | |
|     }
 | |
|     portEXIT_CRITICAL_SAFE(&dma_chan->spinlock);
 | |
| 
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t gdma_stop(gdma_channel_handle_t dma_chan)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_pair_t *pair = NULL;
 | |
|     gdma_group_t *group = NULL;
 | |
|     ESP_GOTO_ON_FALSE_ISR(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
|     pair = dma_chan->pair;
 | |
|     group = pair->group;
 | |
| 
 | |
|     portENTER_CRITICAL_SAFE(&dma_chan->spinlock);
 | |
|     if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX) {
 | |
|         gdma_ll_rx_stop(group->hal.dev, pair->pair_id);
 | |
|     } else {
 | |
|         gdma_ll_tx_stop(group->hal.dev, pair->pair_id);
 | |
|     }
 | |
|     portEXIT_CRITICAL_SAFE(&dma_chan->spinlock);
 | |
| 
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t gdma_append(gdma_channel_handle_t dma_chan)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_pair_t *pair = NULL;
 | |
|     gdma_group_t *group = NULL;
 | |
|     ESP_GOTO_ON_FALSE_ISR(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
|     pair = dma_chan->pair;
 | |
|     group = pair->group;
 | |
| 
 | |
|     portENTER_CRITICAL_SAFE(&dma_chan->spinlock);
 | |
|     if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX) {
 | |
|         gdma_ll_rx_restart(group->hal.dev, pair->pair_id);
 | |
|     } else {
 | |
|         gdma_ll_tx_restart(group->hal.dev, pair->pair_id);
 | |
|     }
 | |
|     portEXIT_CRITICAL_SAFE(&dma_chan->spinlock);
 | |
| 
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t gdma_reset(gdma_channel_handle_t dma_chan)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_pair_t *pair = NULL;
 | |
|     gdma_group_t *group = NULL;
 | |
|     ESP_GOTO_ON_FALSE_ISR(dma_chan, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
|     pair = dma_chan->pair;
 | |
|     group = pair->group;
 | |
| 
 | |
|     portENTER_CRITICAL_SAFE(&dma_chan->spinlock);
 | |
|     if (dma_chan->direction == GDMA_CHANNEL_DIRECTION_RX) {
 | |
|         gdma_ll_rx_reset_channel(group->hal.dev, pair->pair_id);
 | |
|     } else {
 | |
|         gdma_ll_tx_reset_channel(group->hal.dev, pair->pair_id);
 | |
|     }
 | |
|     portEXIT_CRITICAL_SAFE(&dma_chan->spinlock);
 | |
| 
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void gdma_release_group_handle(gdma_group_t *group)
 | |
| {
 | |
|     int group_id = group->group_id;
 | |
|     bool do_deinitialize = false;
 | |
| 
 | |
|     portENTER_CRITICAL(&s_platform.spinlock);
 | |
|     s_platform.group_ref_counts[group_id]--;
 | |
|     if (s_platform.group_ref_counts[group_id] == 0) {
 | |
|         assert(s_platform.groups[group_id]);
 | |
|         do_deinitialize = true;
 | |
|         s_platform.groups[group_id] = NULL; // deregister from platfrom
 | |
|         gdma_ll_enable_clock(group->hal.dev, false);
 | |
|         periph_module_disable(gdma_periph_signals.groups[group_id].module);
 | |
|     }
 | |
|     portEXIT_CRITICAL(&s_platform.spinlock);
 | |
| 
 | |
|     if (do_deinitialize) {
 | |
|         free(group);
 | |
|         ESP_LOGD(TAG, "del group %d", group_id);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static gdma_group_t *gdma_acquire_group_handle(int group_id)
 | |
| {
 | |
|     bool new_group = false;
 | |
|     gdma_group_t *group = NULL;
 | |
|     gdma_group_t *pre_alloc_group = heap_caps_calloc(1, sizeof(gdma_group_t), GDMA_MEM_ALLOC_CAPS);
 | |
|     if (!pre_alloc_group) {
 | |
|         goto out;
 | |
|     }
 | |
|     portENTER_CRITICAL(&s_platform.spinlock);
 | |
|     if (!s_platform.groups[group_id]) {
 | |
|         new_group = true;
 | |
|         group = pre_alloc_group;
 | |
|         s_platform.groups[group_id] = group; // register to platform
 | |
|         group->group_id = group_id;
 | |
|         group->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
 | |
|         periph_module_enable(gdma_periph_signals.groups[group_id].module); // enable APB to access GDMA registers
 | |
|         gdma_hal_init(&group->hal, group_id);       // initialize HAL context
 | |
|         gdma_ll_enable_clock(group->hal.dev, true); // enable gdma clock
 | |
|     } else {
 | |
|         group = s_platform.groups[group_id];
 | |
|     }
 | |
|     // someone acquired the group handle means we have a new object that refer to this group
 | |
|     s_platform.group_ref_counts[group_id]++;
 | |
|     portEXIT_CRITICAL(&s_platform.spinlock);
 | |
| 
 | |
|     if (new_group) {
 | |
|         ESP_LOGD(TAG, "new group (%d) at %p", group->group_id, group);
 | |
|     } else {
 | |
|         free(pre_alloc_group);
 | |
|     }
 | |
| out:
 | |
|     return group;
 | |
| }
 | |
| 
 | |
| static void gdma_release_pair_handle(gdma_pair_t *pair)
 | |
| {
 | |
|     gdma_group_t *group = pair->group;
 | |
|     int pair_id = pair->pair_id;
 | |
|     bool do_deinitialize = false;
 | |
| 
 | |
|     portENTER_CRITICAL(&group->spinlock);
 | |
|     group->pair_ref_counts[pair_id]--;
 | |
|     if (group->pair_ref_counts[pair_id] == 0) {
 | |
|         assert(group->pairs[pair_id]);
 | |
|         do_deinitialize = true;
 | |
|         group->pairs[pair_id] = NULL; // deregister from pair
 | |
|     }
 | |
|     portEXIT_CRITICAL(&group->spinlock);
 | |
| 
 | |
|     if (do_deinitialize) {
 | |
|         free(pair);
 | |
|         ESP_LOGD(TAG, "del pair (%d,%d)", group->group_id, pair_id);
 | |
|         gdma_release_group_handle(group);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static gdma_pair_t *gdma_acquire_pair_handle(gdma_group_t *group, int pair_id)
 | |
| {
 | |
|     bool new_pair = false;
 | |
|     gdma_pair_t *pair = NULL;
 | |
|     gdma_pair_t *pre_alloc_pair = heap_caps_calloc(1, sizeof(gdma_pair_t), GDMA_MEM_ALLOC_CAPS);
 | |
|     if (!pre_alloc_pair) {
 | |
|         goto out;
 | |
|     }
 | |
|     portENTER_CRITICAL(&group->spinlock);
 | |
|     if (!group->pairs[pair_id]) {
 | |
|         new_pair = true;
 | |
|         pair = pre_alloc_pair;
 | |
|         group->pairs[pair_id] = pair; // register to group
 | |
|         pair->group = group;
 | |
|         pair->pair_id = pair_id;
 | |
|         pair->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
 | |
|     } else {
 | |
|         pair = group->pairs[pair_id];
 | |
|     }
 | |
|     // someone acquired the pair handle means we have a new object that refer to this pair
 | |
|     group->pair_ref_counts[pair_id]++;
 | |
|     portEXIT_CRITICAL(&group->spinlock);
 | |
| 
 | |
|     if (new_pair) {
 | |
|         portENTER_CRITICAL(&s_platform.spinlock);
 | |
|         s_platform.group_ref_counts[group->group_id]++; // pair obtains a reference to group
 | |
|         portEXIT_CRITICAL(&s_platform.spinlock);
 | |
|         ESP_LOGD(TAG, "new pair (%d,%d) at %p", group->group_id, pair->pair_id, pair);
 | |
|     } else {
 | |
|         free(pre_alloc_pair);
 | |
|     }
 | |
| out:
 | |
|     return pair;
 | |
| }
 | |
| 
 | |
| static esp_err_t gdma_del_tx_channel(gdma_channel_t *dma_channel)
 | |
| {
 | |
|     gdma_pair_t *pair = dma_channel->pair;
 | |
|     gdma_group_t *group = pair->group;
 | |
|     int pair_id = pair->pair_id;
 | |
|     int group_id = group->group_id;
 | |
|     gdma_tx_channel_t *tx_chan = __containerof(dma_channel, gdma_tx_channel_t, base);
 | |
|     portENTER_CRITICAL(&pair->spinlock);
 | |
|     pair->tx_chan = NULL;
 | |
|     pair->occupy_code &= ~SEARCH_REQUEST_TX_CHANNEL;
 | |
|     portEXIT_CRITICAL(&pair->spinlock);
 | |
| 
 | |
|     if (dma_channel->intr) {
 | |
|         esp_intr_free(dma_channel->intr);
 | |
|         portENTER_CRITICAL(&pair->spinlock);
 | |
|         gdma_ll_tx_enable_interrupt(group->hal.dev, pair_id, UINT32_MAX, false); // disable all interupt events
 | |
|         gdma_ll_tx_clear_interrupt_status(group->hal.dev, pair_id, UINT32_MAX);  // clear all pending events
 | |
|         portEXIT_CRITICAL(&pair->spinlock);
 | |
|         ESP_LOGD(TAG, "uninstall interrupt service for tx channel (%d,%d)", group_id, pair_id);
 | |
|     }
 | |
| 
 | |
|     free(tx_chan);
 | |
|     ESP_LOGD(TAG, "del tx channel (%d,%d)", group_id, pair_id);
 | |
|     // channel has a reference on pair, release it now
 | |
|     gdma_release_pair_handle(pair);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t gdma_del_rx_channel(gdma_channel_t *dma_channel)
 | |
| {
 | |
|     gdma_pair_t *pair = dma_channel->pair;
 | |
|     gdma_group_t *group = pair->group;
 | |
|     int pair_id = pair->pair_id;
 | |
|     int group_id = group->group_id;
 | |
|     gdma_rx_channel_t *rx_chan = __containerof(dma_channel, gdma_rx_channel_t, base);
 | |
|     portENTER_CRITICAL(&pair->spinlock);
 | |
|     pair->rx_chan = NULL;
 | |
|     pair->occupy_code &= ~SEARCH_REQUEST_RX_CHANNEL;
 | |
|     portEXIT_CRITICAL(&pair->spinlock);
 | |
| 
 | |
|     if (dma_channel->intr) {
 | |
|         esp_intr_free(dma_channel->intr);
 | |
|         portENTER_CRITICAL(&pair->spinlock);
 | |
|         gdma_ll_rx_enable_interrupt(group->hal.dev, pair_id, UINT32_MAX, false); // disable all interupt events
 | |
|         gdma_ll_rx_clear_interrupt_status(group->hal.dev, pair_id, UINT32_MAX);  // clear all pending events
 | |
|         portEXIT_CRITICAL(&pair->spinlock);
 | |
|         ESP_LOGD(TAG, "uninstall interrupt service for rx channel (%d,%d)", group_id, pair_id);
 | |
|     }
 | |
| 
 | |
|     free(rx_chan);
 | |
|     ESP_LOGD(TAG, "del rx channel (%d,%d)", group_id, pair_id);
 | |
|     gdma_release_pair_handle(pair);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static void IRAM_ATTR gdma_default_rx_isr(void *args)
 | |
| {
 | |
|     gdma_rx_channel_t *rx_chan = (gdma_rx_channel_t *)args;
 | |
|     gdma_pair_t *pair = rx_chan->base.pair;
 | |
|     gdma_group_t *group = pair->group;
 | |
|     bool need_yield = false;
 | |
|     // clear pending interrupt event
 | |
|     uint32_t intr_status = gdma_ll_rx_get_interrupt_status(group->hal.dev, pair->pair_id);
 | |
|     gdma_ll_rx_clear_interrupt_status(group->hal.dev, pair->pair_id, intr_status);
 | |
| 
 | |
|     if (intr_status & GDMA_LL_EVENT_RX_SUC_EOF) {
 | |
|         if (rx_chan && rx_chan->on_recv_eof) {
 | |
|             uint32_t eof_addr = gdma_ll_rx_get_success_eof_desc_addr(group->hal.dev, pair->pair_id);
 | |
|             gdma_event_data_t edata = {
 | |
|                 .rx_eof_desc_addr = eof_addr
 | |
|             };
 | |
|             if (rx_chan->on_recv_eof(&rx_chan->base, &edata, rx_chan->user_data)) {
 | |
|                 need_yield = true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (need_yield) {
 | |
|         portYIELD_FROM_ISR();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void IRAM_ATTR gdma_default_tx_isr(void *args)
 | |
| {
 | |
|     gdma_tx_channel_t *tx_chan = (gdma_tx_channel_t *)args;
 | |
|     gdma_pair_t *pair = tx_chan->base.pair;
 | |
|     gdma_group_t *group = pair->group;
 | |
|     bool need_yield = false;
 | |
|     // clear pending interrupt event
 | |
|     uint32_t intr_status = gdma_ll_tx_get_interrupt_status(group->hal.dev, pair->pair_id);
 | |
|     gdma_ll_tx_clear_interrupt_status(group->hal.dev, pair->pair_id, intr_status);
 | |
| 
 | |
|     if (intr_status & GDMA_LL_EVENT_TX_EOF) {
 | |
|         if (tx_chan && tx_chan->on_trans_eof) {
 | |
|             uint32_t eof_addr = gdma_ll_tx_get_eof_desc_addr(group->hal.dev, pair->pair_id);
 | |
|             gdma_event_data_t edata = {
 | |
|                 .tx_eof_desc_addr = eof_addr
 | |
|             };
 | |
|             if (tx_chan->on_trans_eof(&tx_chan->base, &edata, tx_chan->user_data)) {
 | |
|                 need_yield = true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (need_yield) {
 | |
|         portYIELD_FROM_ISR();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static esp_err_t gdma_install_rx_interrupt(gdma_rx_channel_t *rx_chan)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_pair_t *pair = rx_chan->base.pair;
 | |
|     gdma_group_t *group = pair->group;
 | |
|     // pre-alloc a interrupt handle, with handler disabled
 | |
|     int isr_flags = GDMA_INTR_ALLOC_FLAGS;
 | |
| #if SOC_GDMA_TX_RX_SHARE_INTERRUPT
 | |
|     isr_flags |= ESP_INTR_FLAG_SHARED;
 | |
| #endif
 | |
|     intr_handle_t intr = NULL;
 | |
|     ret = esp_intr_alloc_intrstatus(gdma_periph_signals.groups[group->group_id].pairs[pair->pair_id].rx_irq_id, isr_flags,
 | |
|                                     (uint32_t)gdma_ll_rx_get_interrupt_status_reg(group->hal.dev, pair->pair_id), GDMA_LL_RX_EVENT_MASK,
 | |
|                                     gdma_default_rx_isr, rx_chan, &intr);
 | |
|     ESP_GOTO_ON_ERROR(ret, err, TAG, "alloc interrupt failed");
 | |
|     rx_chan->base.intr = intr;
 | |
| 
 | |
|     portENTER_CRITICAL(&pair->spinlock);
 | |
|     gdma_ll_rx_enable_interrupt(group->hal.dev, pair->pair_id, UINT32_MAX, false); // disable all interupt events
 | |
|     gdma_ll_rx_clear_interrupt_status(group->hal.dev, pair->pair_id, UINT32_MAX);  // clear all pending events
 | |
|     portEXIT_CRITICAL(&pair->spinlock);
 | |
|     ESP_LOGD(TAG, "install interrupt service for rx channel (%d,%d)", group->group_id, pair->pair_id);
 | |
| 
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static esp_err_t gdma_install_tx_interrupt(gdma_tx_channel_t *tx_chan)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     gdma_pair_t *pair = tx_chan->base.pair;
 | |
|     gdma_group_t *group = pair->group;
 | |
|     // pre-alloc a interrupt handle, with handler disabled
 | |
|     int isr_flags = GDMA_INTR_ALLOC_FLAGS;
 | |
| #if SOC_GDMA_TX_RX_SHARE_INTERRUPT
 | |
|     isr_flags |= ESP_INTR_FLAG_SHARED;
 | |
| #endif
 | |
|     intr_handle_t intr = NULL;
 | |
|     ret = esp_intr_alloc_intrstatus(gdma_periph_signals.groups[group->group_id].pairs[pair->pair_id].tx_irq_id, isr_flags,
 | |
|                                     (uint32_t)gdma_ll_tx_get_interrupt_status_reg(group->hal.dev, pair->pair_id), GDMA_LL_TX_EVENT_MASK,
 | |
|                                     gdma_default_tx_isr, tx_chan, &intr);
 | |
|     ESP_GOTO_ON_ERROR(ret, err, TAG, "alloc interrupt failed");
 | |
|     tx_chan->base.intr = intr;
 | |
| 
 | |
|     portENTER_CRITICAL(&pair->spinlock);
 | |
|     gdma_ll_tx_enable_interrupt(group->hal.dev, pair->pair_id, UINT32_MAX, false); // disable all interupt events
 | |
|     gdma_ll_tx_clear_interrupt_status(group->hal.dev, pair->pair_id, UINT32_MAX);  // clear all pending events
 | |
|     portEXIT_CRITICAL(&pair->spinlock);
 | |
|     ESP_LOGD(TAG, "install interrupt service for tx channel (%d,%d)", group->group_id, pair->pair_id);
 | |
| 
 | |
| err:
 | |
|     return ret;
 | |
| }
 |