mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 15:11:40 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			613 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			613 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2016-2022 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| #include <esp_types.h>
 | |
| #include <stdlib.h>
 | |
| #include <ctype.h>
 | |
| #include <string.h>
 | |
| #include "sdkconfig.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_pm.h"
 | |
| #include "esp_check.h"
 | |
| #include "sys/lock.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/semphr.h"
 | |
| #include "freertos/timers.h"
 | |
| #include "freertos/ringbuf.h"
 | |
| #include "esp_private/periph_ctrl.h"
 | |
| #include "esp_private/adc_share_hw_ctrl.h"
 | |
| #include "esp_private/sar_periph_ctrl.h"
 | |
| #include "hal/adc_types.h"
 | |
| #include "hal/adc_hal.h"
 | |
| #include "hal/dma_types.h"
 | |
| #include "hal/adc_hal_common.h"
 | |
| 
 | |
| #include "driver/gpio.h"
 | |
| #include "driver/adc_types_legacy.h"
 | |
| 
 | |
| //For calibration
 | |
| #if CONFIG_IDF_TARGET_ESP32S2
 | |
| #include "esp_efuse_rtc_table.h"
 | |
| #elif SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
| #include "esp_efuse_rtc_calib.h"
 | |
| #endif
 | |
| //For DMA
 | |
| #if SOC_GDMA_SUPPORTED
 | |
| #include "esp_private/gdma.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
| #include "hal/spi_types.h"
 | |
| #include "esp_private/spi_common_internal.h"
 | |
| #elif CONFIG_IDF_TARGET_ESP32
 | |
| #include "driver/i2s_types.h"
 | |
| #include "soc/i2s_periph.h"
 | |
| #include "esp_private/i2s_platform.h"
 | |
| #endif
 | |
| 
 | |
| static const char *ADC_TAG = "ADC";
 | |
| 
 | |
| #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
 | |
| 
 | |
| extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
 | |
| #define ADC_ENTER_CRITICAL()  portENTER_CRITICAL(&rtc_spinlock)
 | |
| #define ADC_EXIT_CRITICAL()  portEXIT_CRITICAL(&rtc_spinlock)
 | |
| 
 | |
| #define INTERNAL_BUF_NUM 5
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                     Digital Controller Context
 | |
| ---------------------------------------------------------------*/
 | |
| typedef struct adc_digi_context_t {
 | |
|     uint8_t                         *rx_dma_buf;                //dma buffer
 | |
|     adc_hal_dma_ctx_t               hal;                        //hal context
 | |
| #if SOC_GDMA_SUPPORTED
 | |
|     gdma_channel_handle_t           rx_dma_channel;             //dma rx channel handle
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
|     spi_host_device_t               spi_host;                   //ADC uses this SPI DMA
 | |
|     intr_handle_t                   intr_hdl;                   //Interrupt handler
 | |
| #elif CONFIG_IDF_TARGET_ESP32
 | |
|     i2s_port_t                      i2s_host;                   //ADC uses this I2S DMA
 | |
|     intr_handle_t                   intr_hdl;                   //Interrupt handler
 | |
| #endif
 | |
|     RingbufHandle_t                 ringbuf_hdl;                //RX ringbuffer handler
 | |
|     intptr_t                        rx_eof_desc_addr;           //eof descriptor address of RX channel
 | |
|     bool                            ringbuf_overflow_flag;      //1: ringbuffer overflow
 | |
|     bool                            driver_start_flag;          //1: driver is started; 0: driver is stoped
 | |
|     bool                            use_adc1;                   //1: ADC unit1 will be used; 0: ADC unit1 won't be used.
 | |
|     bool                            use_adc2;                   //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not.
 | |
|     adc_atten_t                     adc1_atten;                 //Attenuation for ADC1. On this chip each ADC can only support one attenuation.
 | |
|     adc_atten_t                     adc2_atten;                 //Attenuation for ADC2. On this chip each ADC can only support one attenuation.
 | |
|     adc_hal_digi_ctrlr_cfg_t             hal_digi_ctrlr_cfg;         //Hal digital controller configuration
 | |
|     esp_pm_lock_handle_t            pm_lock;                    //For power management
 | |
| } adc_digi_context_t;
 | |
| 
 | |
| static adc_digi_context_t *s_adc_digi_ctx = NULL;
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
| //Only for deprecated API
 | |
| extern esp_pm_lock_handle_t adc_digi_arbiter_lock;
 | |
| #endif  //CONFIG_PM_ENABLE
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                    ADC Continuous Read Mode (via DMA)
 | |
| ---------------------------------------------------------------*/
 | |
| //Function to address transaction
 | |
| static bool s_adc_dma_intr(adc_digi_context_t *adc_digi_ctx);
 | |
| 
 | |
| #if SOC_GDMA_SUPPORTED
 | |
| static bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
 | |
| #else
 | |
| static void adc_dma_intr_handler(void *arg);
 | |
| #endif
 | |
| 
 | |
| static int8_t adc_digi_get_io_num(adc_unit_t adc_unit, uint8_t adc_channel)
 | |
| {
 | |
|     assert(adc_unit < SOC_ADC_PERIPH_NUM);
 | |
|     uint8_t adc_n = (adc_unit == ADC_UNIT_1) ? 0 : 1;
 | |
|     return adc_channel_io_map[adc_n][adc_channel];
 | |
| }
 | |
| 
 | |
| static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     uint64_t gpio_mask = 0;
 | |
|     uint32_t n = 0;
 | |
|     int8_t io = 0;
 | |
| 
 | |
|     while (channel_mask) {
 | |
|         if (channel_mask & 0x1) {
 | |
|             io = adc_digi_get_io_num(adc_unit, n);
 | |
|             if (io < 0) {
 | |
|                 return ESP_ERR_INVALID_ARG;
 | |
|             }
 | |
|             gpio_mask |= BIT64(io);
 | |
|         }
 | |
|         channel_mask = channel_mask >> 1;
 | |
|         n++;
 | |
|     }
 | |
| 
 | |
|     gpio_config_t cfg = {
 | |
|         .pin_bit_mask = gpio_mask,
 | |
|         .mode = GPIO_MODE_DISABLE,
 | |
|     };
 | |
|     ret = gpio_config(&cfg);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_digi_deinitialize(void)
 | |
| {
 | |
|     if (!s_adc_digi_ctx) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
| 
 | |
|     if (s_adc_digi_ctx->driver_start_flag != 0) {
 | |
|         ESP_LOGE(ADC_TAG, "The driver is not stopped");
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
| 
 | |
|     if (s_adc_digi_ctx->ringbuf_hdl) {
 | |
|         vRingbufferDelete(s_adc_digi_ctx->ringbuf_hdl);
 | |
|         s_adc_digi_ctx->ringbuf_hdl = NULL;
 | |
|     }
 | |
| 
 | |
| #if CONFIG_PM_ENABLE
 | |
|     if (s_adc_digi_ctx->pm_lock) {
 | |
|         esp_pm_lock_delete(s_adc_digi_ctx->pm_lock);
 | |
|     }
 | |
| #endif  //CONFIG_PM_ENABLE
 | |
| 
 | |
|     free(s_adc_digi_ctx->rx_dma_buf);
 | |
|     free(s_adc_digi_ctx->hal.rx_desc);
 | |
|     free(s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern);
 | |
| #if SOC_GDMA_SUPPORTED
 | |
|     gdma_disconnect(s_adc_digi_ctx->rx_dma_channel);
 | |
|     gdma_del_channel(s_adc_digi_ctx->rx_dma_channel);
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
|     esp_intr_free(s_adc_digi_ctx->intr_hdl);
 | |
|     spicommon_dma_chan_free(s_adc_digi_ctx->spi_host);
 | |
|     spicommon_periph_free(s_adc_digi_ctx->spi_host);
 | |
| #elif CONFIG_IDF_TARGET_ESP32
 | |
|     esp_intr_free(s_adc_digi_ctx->intr_hdl);
 | |
|     i2s_platform_release_occupation(s_adc_digi_ctx->i2s_host);
 | |
| #endif
 | |
|     free(s_adc_digi_ctx);
 | |
|     s_adc_digi_ctx = NULL;
 | |
| 
 | |
|     periph_module_disable(PERIPH_SARADC_MODULE);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     ESP_RETURN_ON_FALSE((init_config->conv_num_each_intr % SOC_ADC_DIGI_DATA_BYTES_PER_CONV == 0), ESP_ERR_INVALID_ARG, ADC_TAG, "conv_frame_size should be in multiples of `SOC_ADC_DIGI_DATA_BYTES_PER_CONV`");
 | |
| 
 | |
|     s_adc_digi_ctx = calloc(1, sizeof(adc_digi_context_t));
 | |
|     if (s_adc_digi_ctx == NULL) {
 | |
|         ret = ESP_ERR_NO_MEM;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     //ringbuffer
 | |
|     s_adc_digi_ctx->ringbuf_hdl = xRingbufferCreate(init_config->max_store_buf_size, RINGBUF_TYPE_BYTEBUF);
 | |
|     if (!s_adc_digi_ctx->ringbuf_hdl) {
 | |
|         ret = ESP_ERR_NO_MEM;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     //malloc internal buffer used by DMA
 | |
|     s_adc_digi_ctx->rx_dma_buf = heap_caps_calloc(1, init_config->conv_num_each_intr * INTERNAL_BUF_NUM, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
 | |
|     if (!s_adc_digi_ctx->rx_dma_buf) {
 | |
|         ret = ESP_ERR_NO_MEM;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     //malloc dma descriptor
 | |
|     uint32_t dma_desc_num_per_frame = (init_config->conv_num_each_intr + DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED - 1) / DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED;
 | |
|     uint32_t dma_desc_max_num = dma_desc_num_per_frame * INTERNAL_BUF_NUM;
 | |
|     s_adc_digi_ctx->hal.rx_desc = heap_caps_calloc(1, (sizeof(dma_descriptor_t)) * dma_desc_max_num, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
 | |
|     if (!s_adc_digi_ctx->hal.rx_desc) {
 | |
|         ret = ESP_ERR_NO_MEM;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     //malloc pattern table
 | |
|     s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern = calloc(1, SOC_ADC_PATT_LEN_MAX * sizeof(adc_digi_pattern_config_t));
 | |
|     if (!s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern) {
 | |
|         ret = ESP_ERR_NO_MEM;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
| #if CONFIG_PM_ENABLE
 | |
|     ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc_dma", &s_adc_digi_ctx->pm_lock);
 | |
|     if (ret != ESP_OK) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| #endif //CONFIG_PM_ENABLE
 | |
| 
 | |
|     //init gpio pins
 | |
|     if (init_config->adc1_chan_mask) {
 | |
|         ret = adc_digi_gpio_init(ADC_UNIT_1, init_config->adc1_chan_mask);
 | |
|         if (ret != ESP_OK) {
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
|     if (init_config->adc2_chan_mask) {
 | |
|         ret = adc_digi_gpio_init(ADC_UNIT_2, init_config->adc2_chan_mask);
 | |
|         if (ret != ESP_OK) {
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if SOC_GDMA_SUPPORTED
 | |
|     //alloc rx gdma channel
 | |
|     gdma_channel_alloc_config_t rx_alloc_config = {
 | |
|         .direction = GDMA_CHANNEL_DIRECTION_RX,
 | |
|     };
 | |
|     ret = gdma_new_channel(&rx_alloc_config, &s_adc_digi_ctx->rx_dma_channel);
 | |
|     if (ret != ESP_OK) {
 | |
|         goto cleanup;
 | |
|     }
 | |
|     gdma_connect(s_adc_digi_ctx->rx_dma_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_ADC, 0));
 | |
| 
 | |
|     gdma_strategy_config_t strategy_config = {
 | |
|         .auto_update_desc = true,
 | |
|         .owner_check = true
 | |
|     };
 | |
|     gdma_apply_strategy(s_adc_digi_ctx->rx_dma_channel, &strategy_config);
 | |
| 
 | |
|     gdma_rx_event_callbacks_t cbs = {
 | |
|         .on_recv_eof = adc_dma_in_suc_eof_callback
 | |
|     };
 | |
|     gdma_register_rx_event_callbacks(s_adc_digi_ctx->rx_dma_channel, &cbs, s_adc_digi_ctx);
 | |
| 
 | |
|     int dma_chan;
 | |
|     gdma_get_channel_id(s_adc_digi_ctx->rx_dma_channel, &dma_chan);
 | |
| 
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
|     //ADC utilises SPI3 DMA on ESP32S2
 | |
|     bool spi_success = false;
 | |
|     uint32_t dma_chan = 0;
 | |
| 
 | |
|     spi_success = spicommon_periph_claim(SPI3_HOST, "adc");
 | |
|     ret = spicommon_dma_chan_alloc(SPI3_HOST, SPI_DMA_CH_AUTO, &dma_chan, &dma_chan);
 | |
|     if (ret == ESP_OK) {
 | |
|         s_adc_digi_ctx->spi_host = SPI3_HOST;
 | |
|     }
 | |
|     if (!spi_success || (s_adc_digi_ctx->spi_host != SPI3_HOST)) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     ret = esp_intr_alloc(spicommon_irqdma_source_for_host(s_adc_digi_ctx->spi_host), 0, adc_dma_intr_handler,
 | |
|                         (void *)s_adc_digi_ctx, &s_adc_digi_ctx->intr_hdl);
 | |
|     if (ret != ESP_OK) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
| #elif CONFIG_IDF_TARGET_ESP32
 | |
|     //ADC utilises I2S0 DMA on ESP32
 | |
|     uint32_t dma_chan = 0;
 | |
|     ret = i2s_platform_acquire_occupation(I2S_NUM_0, "adc");
 | |
|     if (ret != ESP_OK) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     s_adc_digi_ctx->i2s_host = I2S_NUM_0;
 | |
|     ret = esp_intr_alloc(i2s_periph_signal[s_adc_digi_ctx->i2s_host].irq, 0, adc_dma_intr_handler,
 | |
|                         (void *)s_adc_digi_ctx, &s_adc_digi_ctx->intr_hdl);
 | |
|     if (ret != ESP_OK) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     adc_hal_dma_config_t config = {
 | |
| #if SOC_GDMA_SUPPORTED
 | |
|         .dev = (void *)GDMA_LL_GET_HW(0),
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
|         .dev = (void *)SPI_LL_GET_HW(s_adc_digi_ctx->spi_host),
 | |
| #elif CONFIG_IDF_TARGET_ESP32
 | |
|         .dev = (void *)I2S_LL_GET_HW(s_adc_digi_ctx->i2s_host),
 | |
| #endif
 | |
|         .eof_desc_num = INTERNAL_BUF_NUM,
 | |
|         .eof_step = dma_desc_num_per_frame,
 | |
|         .dma_chan = dma_chan,
 | |
|         .eof_num = init_config->conv_num_each_intr / SOC_ADC_DIGI_DATA_BYTES_PER_CONV
 | |
|     };
 | |
|     adc_hal_dma_ctx_config(&s_adc_digi_ctx->hal, &config);
 | |
| 
 | |
|     //enable ADC digital part
 | |
|     periph_module_enable(PERIPH_SARADC_MODULE);
 | |
|     //reset ADC digital part
 | |
|     periph_module_reset(PERIPH_SARADC_MODULE);
 | |
| 
 | |
| #if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
|     adc_hal_calibration_init(ADC_UNIT_1);
 | |
|     adc_hal_calibration_init(ADC_UNIT_2);
 | |
| #endif  //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
| 
 | |
|     return ret;
 | |
| 
 | |
| cleanup:
 | |
|     adc_digi_deinitialize();
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #if SOC_GDMA_SUPPORTED
 | |
| static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
 | |
| {
 | |
|     assert(event_data);
 | |
|     s_adc_digi_ctx->rx_eof_desc_addr = event_data->rx_eof_desc_addr;
 | |
|     return s_adc_dma_intr(user_data);
 | |
| }
 | |
| #else
 | |
| static IRAM_ATTR void adc_dma_intr_handler(void *arg)
 | |
| {
 | |
|     adc_digi_context_t *ctx = (adc_digi_context_t *)arg;
 | |
|     bool need_yield = false;
 | |
| 
 | |
|     bool conversion_finish = adc_hal_check_event(&ctx->hal, ADC_HAL_DMA_INTR_MASK);
 | |
|     if (conversion_finish) {
 | |
|         adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
 | |
| 
 | |
|         intptr_t desc_addr = adc_hal_get_desc_addr(&ctx->hal);
 | |
| 
 | |
|         ctx->rx_eof_desc_addr = desc_addr;
 | |
|         need_yield = s_adc_dma_intr(ctx);
 | |
|     }
 | |
| 
 | |
|     if (need_yield) {
 | |
|         portYIELD_FROM_ISR();
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static IRAM_ATTR bool s_adc_dma_intr(adc_digi_context_t *adc_digi_ctx)
 | |
| {
 | |
|     portBASE_TYPE taskAwoken = 0;
 | |
|     BaseType_t ret;
 | |
|     adc_hal_dma_desc_status_t status = false;
 | |
|     uint8_t *finished_buffer = NULL;
 | |
|     uint32_t finished_size = 0;
 | |
| 
 | |
|     while (1) {
 | |
|         status = adc_hal_get_reading_result(&adc_digi_ctx->hal, adc_digi_ctx->rx_eof_desc_addr, &finished_buffer, &finished_size);
 | |
|         if (status != ADC_HAL_DMA_DESC_VALID) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         ret = xRingbufferSendFromISR(adc_digi_ctx->ringbuf_hdl, finished_buffer, finished_size, &taskAwoken);
 | |
|         if (ret == pdFALSE) {
 | |
|             //ringbuffer overflow
 | |
|             adc_digi_ctx->ringbuf_overflow_flag = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (taskAwoken == pdTRUE);
 | |
| }
 | |
| 
 | |
| esp_err_t adc_digi_start(void)
 | |
| {
 | |
| 
 | |
|     if (s_adc_digi_ctx->driver_start_flag != 0) {
 | |
|         ESP_LOGE(ADC_TAG, "The driver is already started");
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     //reset ADC digital part to reset ADC sampling EOF counter
 | |
|     periph_module_reset(PERIPH_SARADC_MODULE);
 | |
|     sar_periph_ctrl_adc_continuous_power_acquire();
 | |
|     //reset flags
 | |
|     s_adc_digi_ctx->ringbuf_overflow_flag = 0;
 | |
|     s_adc_digi_ctx->driver_start_flag = 1;
 | |
|     if (s_adc_digi_ctx->use_adc1) {
 | |
|         adc_lock_acquire(ADC_UNIT_1);
 | |
|     }
 | |
|     if (s_adc_digi_ctx->use_adc2) {
 | |
|         adc_lock_acquire(ADC_UNIT_2);
 | |
|     }
 | |
| 
 | |
| #if CONFIG_PM_ENABLE
 | |
|     // Lock APB frequency while ADC driver is in use
 | |
|     esp_pm_lock_acquire(s_adc_digi_ctx->pm_lock);
 | |
| #endif
 | |
| 
 | |
| #if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
|     if (s_adc_digi_ctx->use_adc1) {
 | |
|         adc_set_hw_calibration_code(ADC_UNIT_1, s_adc_digi_ctx->adc1_atten);
 | |
|     }
 | |
|     if (s_adc_digi_ctx->use_adc2) {
 | |
|         adc_set_hw_calibration_code(ADC_UNIT_2, s_adc_digi_ctx->adc2_atten);
 | |
|     }
 | |
| #endif  //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
| 
 | |
| #if SOC_ADC_ARBITER_SUPPORTED
 | |
|     adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
 | |
|     adc_hal_arbiter_config(&config);
 | |
| #endif  //#if SOC_ADC_ARBITER_SUPPORTED
 | |
| 
 | |
|     adc_hal_set_controller(ADC_UNIT_1, ADC_HAL_CONTINUOUS_READ_MODE);
 | |
|     adc_hal_set_controller(ADC_UNIT_2, ADC_HAL_CONTINUOUS_READ_MODE);
 | |
| 
 | |
|     adc_hal_digi_init(&s_adc_digi_ctx->hal);
 | |
|     adc_hal_digi_controller_config(&s_adc_digi_ctx->hal, &s_adc_digi_ctx->hal_digi_ctrlr_cfg);
 | |
| 
 | |
|     //start conversion
 | |
|     adc_hal_digi_start(&s_adc_digi_ctx->hal, s_adc_digi_ctx->rx_dma_buf);
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_digi_stop(void)
 | |
| {
 | |
|     if (s_adc_digi_ctx->driver_start_flag != 1) {
 | |
|         ESP_LOGE(ADC_TAG, "The driver is already stopped");
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     s_adc_digi_ctx->driver_start_flag = 0;
 | |
| 
 | |
|     //disable the in suc eof intrrupt
 | |
|     adc_hal_digi_dis_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
 | |
|     //clear the in suc eof interrupt
 | |
|     adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
 | |
|     //stop ADC
 | |
|     adc_hal_digi_stop(&s_adc_digi_ctx->hal);
 | |
| 
 | |
|     adc_hal_digi_deinit(&s_adc_digi_ctx->hal);
 | |
| #if CONFIG_PM_ENABLE
 | |
|     if (s_adc_digi_ctx->pm_lock) {
 | |
|         esp_pm_lock_release(s_adc_digi_ctx->pm_lock);
 | |
|     }
 | |
| #endif  //CONFIG_PM_ENABLE
 | |
| 
 | |
|     if (s_adc_digi_ctx->use_adc2) {
 | |
|         adc_lock_release(ADC_UNIT_2);
 | |
|     }
 | |
|     if (s_adc_digi_ctx->use_adc1) {
 | |
|         adc_lock_release(ADC_UNIT_1);
 | |
|     }
 | |
|     sar_periph_ctrl_adc_continuous_power_release();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_length, uint32_t timeout_ms)
 | |
| {
 | |
|     TickType_t ticks_to_wait;
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     uint8_t *data = NULL;
 | |
|     size_t size = 0;
 | |
| 
 | |
|     ticks_to_wait = timeout_ms / portTICK_PERIOD_MS;
 | |
|     if (timeout_ms == ADC_MAX_DELAY) {
 | |
|         ticks_to_wait = portMAX_DELAY;
 | |
|     }
 | |
| 
 | |
|     data = xRingbufferReceiveUpTo(s_adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max);
 | |
|     if (!data) {
 | |
|         ESP_LOGV(ADC_TAG, "No data, increase timeout or reduce conv_num_each_intr");
 | |
|         ret = ESP_ERR_TIMEOUT;
 | |
|         *out_length = 0;
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     memcpy(buf, data, size);
 | |
|     vRingbufferReturnItem(s_adc_digi_ctx->ringbuf_hdl, data);
 | |
|     assert((size % 4) == 0);
 | |
|     *out_length = size;
 | |
| 
 | |
|     if (s_adc_digi_ctx->ringbuf_overflow_flag) {
 | |
|         ret = ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                     Digital controller setting
 | |
| ---------------------------------------------------------------*/
 | |
| esp_err_t adc_digi_controller_configure(const adc_digi_configuration_t *config)
 | |
| {
 | |
|     if (!s_adc_digi_ctx) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
| 
 | |
|     //Pattern related check
 | |
|     ESP_RETURN_ON_FALSE(config->pattern_num <= SOC_ADC_PATT_LEN_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "Max pattern num is %d", SOC_ADC_PATT_LEN_MAX);
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     for (int i = 0; i < config->pattern_num; i++) {
 | |
|         ESP_RETURN_ON_FALSE((config->adc_pattern[i].bit_width >= SOC_ADC_DIGI_MIN_BITWIDTH && config->adc_pattern->bit_width <= SOC_ADC_DIGI_MAX_BITWIDTH), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC bitwidth not supported");
 | |
|         ESP_RETURN_ON_FALSE(config->adc_pattern[i].unit == 0, ESP_ERR_INVALID_ARG, ADC_TAG, "Only support using ADC1 DMA mode");
 | |
|     }
 | |
| #else
 | |
|     for (int i = 0; i < config->pattern_num; i++) {
 | |
|         ESP_RETURN_ON_FALSE((config->adc_pattern[i].bit_width == SOC_ADC_DIGI_MAX_BITWIDTH), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC bitwidth not supported");
 | |
|     }
 | |
| #endif
 | |
|     ESP_RETURN_ON_FALSE(config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC sampling frequency out of range");
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1");
 | |
| #elif CONFIG_IDF_TARGET_ESP32S2
 | |
|     if (config->conv_mode == ADC_CONV_BOTH_UNIT || config->conv_mode == ADC_CONV_ALTER_UNIT) {
 | |
|         ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2");
 | |
|     } else if (config->conv_mode == ADC_CONV_SINGLE_UNIT_1 || config->conv_mode == ADC_CONV_SINGLE_UNIT_2) {
 | |
|         ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1");
 | |
|     }
 | |
| #else
 | |
|     ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2");
 | |
| #endif
 | |
| 
 | |
|     s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern_len = config->pattern_num;
 | |
|     s_adc_digi_ctx->hal_digi_ctrlr_cfg.sample_freq_hz = config->sample_freq_hz;
 | |
|     s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_mode = config->conv_mode;
 | |
|     memcpy(s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern, config->adc_pattern, config->pattern_num * sizeof(adc_digi_pattern_config_t));
 | |
| 
 | |
|     const int atten_uninitialized = 999;
 | |
|     s_adc_digi_ctx->adc1_atten = atten_uninitialized;
 | |
|     s_adc_digi_ctx->adc2_atten = atten_uninitialized;
 | |
|     s_adc_digi_ctx->use_adc1 = 0;
 | |
|     s_adc_digi_ctx->use_adc2 = 0;
 | |
|     for (int i = 0; i < config->pattern_num; i++) {
 | |
|         const adc_digi_pattern_config_t *pat = &config->adc_pattern[i];
 | |
|         if (pat->unit == ADC_UNIT_1) {
 | |
|             s_adc_digi_ctx->use_adc1 = 1;
 | |
| 
 | |
|             if (s_adc_digi_ctx->adc1_atten == atten_uninitialized) {
 | |
|                 s_adc_digi_ctx->adc1_atten = pat->atten;
 | |
|             } else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
 | |
|                 return ESP_ERR_INVALID_ARG;
 | |
|             }
 | |
|         } else if (pat->unit == ADC_UNIT_2) {
 | |
|             //See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
 | |
|             s_adc_digi_ctx->use_adc2 = 1;
 | |
| 
 | |
|             if (s_adc_digi_ctx->adc2_atten == atten_uninitialized) {
 | |
|                 s_adc_digi_ctx->adc2_atten = pat->atten;
 | |
|             } else if (s_adc_digi_ctx->adc2_atten != pat->atten) {
 | |
|                 return ESP_ERR_INVALID_ARG;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief This function will be called during start up, to check that adc_continuous driver is not running along with the legacy adc_continuous driver
 | |
|  */
 | |
| __attribute__((constructor))
 | |
| static void check_adc_continuous_driver_conflict(void)
 | |
| {
 | |
|     // This function was declared as weak here. adc_continuous driver has one implementation.
 | |
|     // So if adc_continuous driver is not linked in, then `adc_continuous_new_handle` should be NULL at runtime.
 | |
|     extern __attribute__((weak)) esp_err_t adc_continuous_new_handle(const void *init_config, void **ret_handle);
 | |
|     if ((void *)adc_continuous_new_handle != NULL) {
 | |
|         ESP_EARLY_LOGE(ADC_TAG, "CONFLICT! driver_ng is not allowed to be used with the legacy driver");
 | |
|         abort();
 | |
|     }
 | |
|     ESP_EARLY_LOGW(ADC_TAG, "legacy driver is deprecated, please migrate to `esp_adc/adc_continuous.h`");
 | |
| }
 | |
| 
 | |
| #if SOC_ADC_CALIBRATION_V1_SUPPORTED
 | |
| /*---------------------------------------------------------------
 | |
|             ADC Hardware Calibration
 | |
| ---------------------------------------------------------------*/
 | |
| static __attribute__((constructor)) void adc_hw_calibration(void)
 | |
| {
 | |
|     //Calculate all ICode
 | |
|     for (int i = 0; i < SOC_ADC_PERIPH_NUM; i++) {
 | |
|         adc_hal_calibration_init(i);
 | |
|         for (int j = 0; j < SOC_ADC_ATTEN_NUM; j++) {
 | |
|             /**
 | |
|              * This may get wrong when attenuations are NOT consecutive on some chips,
 | |
|              * update this when bringing up the calibration on that chip
 | |
|              */
 | |
|             adc_calc_hw_calibration_code(i, j);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif  //#if SOC_ADC_CALIBRATION_V1_SUPPORTED
 |