mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-11-03 16:41:44 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			410 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			410 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#include <sys/lock.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <sys/reent.h>
 | 
						|
#include "esp_attr.h"
 | 
						|
#include "soc/cpu.h"
 | 
						|
#include "freertos/FreeRTOS.h"
 | 
						|
#include "freertos/semphr.h"
 | 
						|
#include "freertos/task.h"
 | 
						|
#include "freertos/portable.h"
 | 
						|
#include "esp_rom_caps.h"
 | 
						|
 | 
						|
/* Notes on our newlib lock implementation:
 | 
						|
 *
 | 
						|
 * - Use FreeRTOS mutex semaphores as locks.
 | 
						|
 * - lock_t is int, but we store an xSemaphoreHandle there.
 | 
						|
 * - Locks are no-ops until the FreeRTOS scheduler is running.
 | 
						|
 * - Due to this, locks need to be lazily initialised the first time
 | 
						|
 *   they are acquired. Initialisation/deinitialisation of locks is
 | 
						|
 *   protected by lock_init_spinlock.
 | 
						|
 * - Race conditions around lazy initialisation (via lock_acquire) are
 | 
						|
 *   protected against.
 | 
						|
 * - Anyone calling lock_close is reponsible for ensuring noone else
 | 
						|
 *   is holding the lock at this time.
 | 
						|
 * - Race conditions between lock_close & lock_init (for the same lock)
 | 
						|
 *   are the responsibility of the caller.
 | 
						|
 */
 | 
						|
 | 
						|
static portMUX_TYPE lock_init_spinlock = portMUX_INITIALIZER_UNLOCKED;
 | 
						|
 | 
						|
/* Initialize the given lock by allocating a new mutex semaphore
 | 
						|
   as the _lock_t value.
 | 
						|
 | 
						|
   Called by _lock_init*, also called by _lock_acquire* to lazily initialize locks that might have
 | 
						|
   been initialised (to zero only) before the RTOS scheduler started.
 | 
						|
*/
 | 
						|
static void IRAM_ATTR lock_init_generic(_lock_t *lock, uint8_t mutex_type) {
 | 
						|
    portENTER_CRITICAL(&lock_init_spinlock);
 | 
						|
    if (*lock) {
 | 
						|
         /* Lock already initialised (either we didn't check earlier,
 | 
						|
          or it got initialised while we were waiting for the
 | 
						|
          spinlock.) */
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        /* Create a new semaphore
 | 
						|
 | 
						|
           this is a bit of an API violation, as we're calling the
 | 
						|
           private function xQueueCreateMutex(x) directly instead of
 | 
						|
           the xSemaphoreCreateMutex / xSemaphoreCreateRecursiveMutex
 | 
						|
           wrapper functions...
 | 
						|
 | 
						|
           The better alternative would be to pass pointers to one of
 | 
						|
           the two xSemaphoreCreate___Mutex functions, but as FreeRTOS
 | 
						|
           implements these as macros instead of inline functions
 | 
						|
           (*party like it's 1998!*) it's not possible to do this
 | 
						|
           without writing wrappers. Doing it this way seems much less
 | 
						|
           spaghetti-like.
 | 
						|
        */
 | 
						|
        xSemaphoreHandle new_sem = xQueueCreateMutex(mutex_type);
 | 
						|
        if (!new_sem) {
 | 
						|
            abort(); /* No more semaphores available or OOM */
 | 
						|
        }
 | 
						|
        *lock = (_lock_t)new_sem;
 | 
						|
    }
 | 
						|
    portEXIT_CRITICAL(&lock_init_spinlock);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR _lock_init(_lock_t *lock) {
 | 
						|
    *lock = 0; // In case lock's memory is uninitialized
 | 
						|
    lock_init_generic(lock, queueQUEUE_TYPE_MUTEX);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR _lock_init_recursive(_lock_t *lock) {
 | 
						|
    *lock = 0; // In case lock's memory is uninitialized
 | 
						|
    lock_init_generic(lock, queueQUEUE_TYPE_RECURSIVE_MUTEX);
 | 
						|
}
 | 
						|
 | 
						|
/* Free the mutex semaphore pointed to by *lock, and zero it out.
 | 
						|
 | 
						|
   Note that FreeRTOS doesn't account for deleting mutexes while they
 | 
						|
   are held, and neither do we... so take care not to delete newlib
 | 
						|
   locks while they may be held by other tasks!
 | 
						|
 | 
						|
   Also, deleting a lock in this way will cause it to be lazily
 | 
						|
   re-initialised if it is used again. Caller has to avoid doing
 | 
						|
   this!
 | 
						|
*/
 | 
						|
void IRAM_ATTR _lock_close(_lock_t *lock) {
 | 
						|
    portENTER_CRITICAL(&lock_init_spinlock);
 | 
						|
    if (*lock) {
 | 
						|
        xSemaphoreHandle h = (xSemaphoreHandle)(*lock);
 | 
						|
#if (INCLUDE_xSemaphoreGetMutexHolder == 1)
 | 
						|
        configASSERT(xSemaphoreGetMutexHolder(h) == NULL); /* mutex should not be held */
 | 
						|
#endif
 | 
						|
        vSemaphoreDelete(h);
 | 
						|
        *lock = 0;
 | 
						|
    }
 | 
						|
    portEXIT_CRITICAL(&lock_init_spinlock);
 | 
						|
}
 | 
						|
 | 
						|
void _lock_close_recursive(_lock_t *lock) __attribute__((alias("_lock_close")));
 | 
						|
 | 
						|
/* Acquire the mutex semaphore for lock. wait up to delay ticks.
 | 
						|
   mutex_type is queueQUEUE_TYPE_RECURSIVE_MUTEX or queueQUEUE_TYPE_MUTEX
 | 
						|
*/
 | 
						|
static int IRAM_ATTR lock_acquire_generic(_lock_t *lock, uint32_t delay, uint8_t mutex_type) {
 | 
						|
    xSemaphoreHandle h = (xSemaphoreHandle)(*lock);
 | 
						|
    if (!h) {
 | 
						|
        if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
 | 
						|
            return 0; /* locking is a no-op before scheduler is up, so this "succeeds" */
 | 
						|
        }
 | 
						|
        /* lazy initialise lock - might have had a static initializer (that we don't use) */
 | 
						|
        lock_init_generic(lock, mutex_type);
 | 
						|
        h = (xSemaphoreHandle)(*lock);
 | 
						|
        configASSERT(h != NULL);
 | 
						|
    }
 | 
						|
 | 
						|
    if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
 | 
						|
        return 0; /* locking is a no-op before scheduler is up, so this "succeeds" */
 | 
						|
    }
 | 
						|
    BaseType_t success;
 | 
						|
    if (!xPortCanYield()) {
 | 
						|
        /* In ISR Context */
 | 
						|
        if (mutex_type == queueQUEUE_TYPE_RECURSIVE_MUTEX) {
 | 
						|
            abort(); /* recursive mutexes make no sense in ISR context */
 | 
						|
        }
 | 
						|
        BaseType_t higher_task_woken = false;
 | 
						|
        success = xSemaphoreTakeFromISR(h, &higher_task_woken);
 | 
						|
        if (!success && delay > 0) {
 | 
						|
            abort(); /* Tried to block on mutex from ISR, couldn't... rewrite your program to avoid libc interactions in ISRs! */
 | 
						|
        }
 | 
						|
        if (higher_task_woken) {
 | 
						|
            portYIELD_FROM_ISR();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /* In task context */
 | 
						|
        if (mutex_type == queueQUEUE_TYPE_RECURSIVE_MUTEX) {
 | 
						|
            success = xSemaphoreTakeRecursive(h, delay);
 | 
						|
        } else {
 | 
						|
            success = xSemaphoreTake(h, delay);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return (success == pdTRUE) ? 0 : -1;
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR _lock_acquire(_lock_t *lock) {
 | 
						|
    lock_acquire_generic(lock, portMAX_DELAY, queueQUEUE_TYPE_MUTEX);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR _lock_acquire_recursive(_lock_t *lock) {
 | 
						|
    lock_acquire_generic(lock, portMAX_DELAY, queueQUEUE_TYPE_RECURSIVE_MUTEX);
 | 
						|
}
 | 
						|
 | 
						|
int IRAM_ATTR _lock_try_acquire(_lock_t *lock) {
 | 
						|
    return lock_acquire_generic(lock, 0, queueQUEUE_TYPE_MUTEX);
 | 
						|
}
 | 
						|
 | 
						|
int IRAM_ATTR _lock_try_acquire_recursive(_lock_t *lock) {
 | 
						|
    return lock_acquire_generic(lock, 0, queueQUEUE_TYPE_RECURSIVE_MUTEX);
 | 
						|
}
 | 
						|
 | 
						|
/* Release the mutex semaphore for lock.
 | 
						|
   mutex_type is queueQUEUE_TYPE_RECURSIVE_MUTEX or queueQUEUE_TYPE_MUTEX
 | 
						|
*/
 | 
						|
static void IRAM_ATTR lock_release_generic(_lock_t *lock, uint8_t mutex_type) {
 | 
						|
    if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) {
 | 
						|
        return; /* locking is a no-op before scheduler is up */
 | 
						|
    }
 | 
						|
    xSemaphoreHandle h = (xSemaphoreHandle)(*lock);
 | 
						|
    assert(h);
 | 
						|
 | 
						|
    if (!xPortCanYield()) {
 | 
						|
        if (mutex_type == queueQUEUE_TYPE_RECURSIVE_MUTEX) {
 | 
						|
            abort(); /* indicates logic bug, it shouldn't be possible to lock recursively in ISR */
 | 
						|
        }
 | 
						|
        BaseType_t higher_task_woken = false;
 | 
						|
        xSemaphoreGiveFromISR(h, &higher_task_woken);
 | 
						|
        if (higher_task_woken) {
 | 
						|
            portYIELD_FROM_ISR();
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        if (mutex_type == queueQUEUE_TYPE_RECURSIVE_MUTEX) {
 | 
						|
            xSemaphoreGiveRecursive(h);
 | 
						|
        } else {
 | 
						|
            xSemaphoreGive(h);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR _lock_release(_lock_t *lock) {
 | 
						|
    lock_release_generic(lock, queueQUEUE_TYPE_MUTEX);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR _lock_release_recursive(_lock_t *lock) {
 | 
						|
    lock_release_generic(lock, queueQUEUE_TYPE_RECURSIVE_MUTEX);
 | 
						|
}
 | 
						|
 | 
						|
/* To ease the transition to newlib 3.3.0, this part is kept under an ifdef.
 | 
						|
 * After the toolchain with newlib 3.3.0 is released and merged, the ifdefs
 | 
						|
 * can be removed.
 | 
						|
 *
 | 
						|
 * Also the retargetable locking functions still rely on the previous
 | 
						|
 * implementation. Once support for !_RETARGETABLE_LOCKING is removed,
 | 
						|
 * the code can be simplified, removing support for lazy initialization of
 | 
						|
 * locks. At the same time, IDF code which relies on _lock_acquire/_lock_release
 | 
						|
 * will have to be updated to not depend on lazy initialization.
 | 
						|
 *
 | 
						|
 * Explanation of the different lock types:
 | 
						|
 *
 | 
						|
 *  Newlib 2.2.0 and 3.0.0:
 | 
						|
 *    _lock_t is defined as int, stores SemaphoreHandle_t.
 | 
						|
 *
 | 
						|
 *  Newlib 3.3.0:
 | 
						|
 *    struct __lock is (or contains) StaticSemaphore_t
 | 
						|
 *    _LOCK_T is a pointer to struct __lock, equivalent to SemaphoreHandle_t.
 | 
						|
 *    It has the same meaning as _lock_t in the previous implementation.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/* This ensures the platform-specific definition in lock.h is correct.
 | 
						|
 * We use "greater or equal" since the size of StaticSemaphore_t may
 | 
						|
 * vary by 2 words, depending on whether configUSE_TRACE_FACILITY is enabled.
 | 
						|
 */
 | 
						|
_Static_assert(sizeof(struct __lock) >= sizeof(StaticSemaphore_t),
 | 
						|
               "Incorrect size of struct __lock");
 | 
						|
 | 
						|
/* FreeRTOS configuration check */
 | 
						|
_Static_assert(configSUPPORT_STATIC_ALLOCATION,
 | 
						|
               "FreeRTOS should be configured with static allocation support");
 | 
						|
 | 
						|
/* These 2 locks are used instead of 9 distinct newlib static locks,
 | 
						|
 * as most of the locks are required for lesser-used features, so
 | 
						|
 * the chance of performance degradation due to lock contention is low.
 | 
						|
 */
 | 
						|
static StaticSemaphore_t s_common_mutex;
 | 
						|
static StaticSemaphore_t s_common_recursive_mutex;
 | 
						|
 | 
						|
 | 
						|
#if defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S3)
 | 
						|
/* C3 and S3 ROMs are built without Newlib static lock symbols exported, and
 | 
						|
 * with an extra level of _LOCK_T indirection in mind.
 | 
						|
 * The following is a workaround for this:
 | 
						|
 * - on startup, we call esp_rom_newlib_init_common_mutexes to set
 | 
						|
 *   the two mutex pointers to magic values.
 | 
						|
 * - if in __retarget_lock_acquire*, we check if the argument dereferences
 | 
						|
 *   to the magic value. If yes, we lock the correct mutex defined in the app,
 | 
						|
 *   instead.
 | 
						|
 * Casts from &StaticSemaphore_t to _LOCK_T are okay because _LOCK_T
 | 
						|
 * (which is SemaphoreHandle_t) is a pointer to the corresponding
 | 
						|
 * StaticSemaphore_t structure. This is ensured by asserts below.
 | 
						|
 */
 | 
						|
 | 
						|
#define ROM_NEEDS_MUTEX_OVERRIDE
 | 
						|
#endif // defined(CONFIG_IDF_TARGET_ESP32C3) || defined(CONFIG_IDF_TARGET_ESP32S3)
 | 
						|
 | 
						|
#ifdef ROM_NEEDS_MUTEX_OVERRIDE
 | 
						|
#define ROM_MUTEX_MAGIC  0xbb10c433
 | 
						|
/* This is a macro, since we are overwriting the argument  */
 | 
						|
#define MAYBE_OVERRIDE_LOCK(_lock, _lock_to_use_instead) \
 | 
						|
    if (*(int*)_lock == ROM_MUTEX_MAGIC) { \
 | 
						|
        (_lock) = (_LOCK_T) (_lock_to_use_instead); \
 | 
						|
    }
 | 
						|
#else  // ROM_NEEDS_MUTEX_OVERRIDE
 | 
						|
#define MAYBE_OVERRIDE_LOCK(_lock, _lock_to_use_instead)
 | 
						|
#endif // ROM_NEEDS_MUTEX_OVERRIDE
 | 
						|
 | 
						|
 | 
						|
void IRAM_ATTR __retarget_lock_init(_LOCK_T *lock)
 | 
						|
{
 | 
						|
    *lock = NULL;  /* In case lock's memory is uninitialized */
 | 
						|
    lock_init_generic(lock, queueQUEUE_TYPE_MUTEX);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR __retarget_lock_init_recursive(_LOCK_T *lock)
 | 
						|
{
 | 
						|
    *lock = NULL;  /* In case lock's memory is uninitialized */
 | 
						|
    lock_init_generic(lock, queueQUEUE_TYPE_RECURSIVE_MUTEX);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR __retarget_lock_close(_LOCK_T lock)
 | 
						|
{
 | 
						|
    _lock_close(&lock);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR __retarget_lock_close_recursive(_LOCK_T lock)
 | 
						|
{
 | 
						|
    _lock_close_recursive(&lock);
 | 
						|
}
 | 
						|
 | 
						|
/* Separate function, to prevent generating multiple assert strings */
 | 
						|
static void IRAM_ATTR check_lock_nonzero(_LOCK_T lock)
 | 
						|
{
 | 
						|
    assert(lock != NULL && "Uninitialized lock used");
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR __retarget_lock_acquire(_LOCK_T lock)
 | 
						|
{
 | 
						|
    check_lock_nonzero(lock);
 | 
						|
    MAYBE_OVERRIDE_LOCK(lock, &s_common_mutex);
 | 
						|
    _lock_acquire(&lock);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR __retarget_lock_acquire_recursive(_LOCK_T lock)
 | 
						|
{
 | 
						|
    check_lock_nonzero(lock);
 | 
						|
    MAYBE_OVERRIDE_LOCK(lock, &s_common_recursive_mutex);
 | 
						|
    _lock_acquire_recursive(&lock);
 | 
						|
}
 | 
						|
 | 
						|
int IRAM_ATTR __retarget_lock_try_acquire(_LOCK_T lock)
 | 
						|
{
 | 
						|
    check_lock_nonzero(lock);
 | 
						|
    MAYBE_OVERRIDE_LOCK(lock, &s_common_mutex);
 | 
						|
    return _lock_try_acquire(&lock);
 | 
						|
}
 | 
						|
 | 
						|
int IRAM_ATTR __retarget_lock_try_acquire_recursive(_LOCK_T lock)
 | 
						|
{
 | 
						|
    check_lock_nonzero(lock);
 | 
						|
    MAYBE_OVERRIDE_LOCK(lock, &s_common_recursive_mutex);
 | 
						|
    return _lock_try_acquire_recursive(&lock);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR __retarget_lock_release(_LOCK_T lock)
 | 
						|
{
 | 
						|
    check_lock_nonzero(lock);
 | 
						|
    _lock_release(&lock);
 | 
						|
}
 | 
						|
 | 
						|
void IRAM_ATTR __retarget_lock_release_recursive(_LOCK_T lock)
 | 
						|
{
 | 
						|
    check_lock_nonzero(lock);
 | 
						|
    _lock_release_recursive(&lock);
 | 
						|
}
 | 
						|
 | 
						|
/* When _RETARGETABLE_LOCKING is enabled, newlib expects the following locks to be provided: */
 | 
						|
 | 
						|
extern StaticSemaphore_t __attribute__((alias("s_common_recursive_mutex"))) __lock___sinit_recursive_mutex;
 | 
						|
extern StaticSemaphore_t __attribute__((alias("s_common_recursive_mutex"))) __lock___malloc_recursive_mutex;
 | 
						|
extern StaticSemaphore_t __attribute__((alias("s_common_recursive_mutex"))) __lock___env_recursive_mutex;
 | 
						|
extern StaticSemaphore_t __attribute__((alias("s_common_recursive_mutex"))) __lock___sfp_recursive_mutex;
 | 
						|
extern StaticSemaphore_t __attribute__((alias("s_common_recursive_mutex"))) __lock___atexit_recursive_mutex;
 | 
						|
extern StaticSemaphore_t __attribute__((alias("s_common_mutex"))) __lock___at_quick_exit_mutex;
 | 
						|
extern StaticSemaphore_t __attribute__((alias("s_common_mutex"))) __lock___tz_mutex;
 | 
						|
extern StaticSemaphore_t __attribute__((alias("s_common_mutex"))) __lock___dd_hash_mutex;
 | 
						|
extern StaticSemaphore_t __attribute__((alias("s_common_mutex"))) __lock___arc4random_mutex;
 | 
						|
 | 
						|
void esp_newlib_locks_init(void)
 | 
						|
{
 | 
						|
    /* Initialize the two mutexes used for the locks above.
 | 
						|
     * Asserts below check our assumption that SemaphoreHandle_t will always
 | 
						|
     * point to the corresponding StaticSemaphore_t structure.
 | 
						|
     */
 | 
						|
    SemaphoreHandle_t handle;
 | 
						|
    handle = xSemaphoreCreateMutexStatic(&s_common_mutex);
 | 
						|
    assert(handle == (SemaphoreHandle_t) &s_common_mutex);
 | 
						|
    handle = xSemaphoreCreateRecursiveMutexStatic(&s_common_recursive_mutex);
 | 
						|
    assert(handle == (SemaphoreHandle_t) &s_common_recursive_mutex);
 | 
						|
    (void) handle;
 | 
						|
 | 
						|
    /* Chip ROMs are built with older versions of newlib, and rely on different lock variables.
 | 
						|
     * Initialize these locks to the same values.
 | 
						|
     */
 | 
						|
#ifdef CONFIG_IDF_TARGET_ESP32
 | 
						|
    /* Newlib 2.2.0 is used in ROM, the following lock symbols are defined: */
 | 
						|
    extern _lock_t __sfp_lock;
 | 
						|
    __sfp_lock = (_lock_t) &s_common_recursive_mutex;
 | 
						|
    extern _lock_t __sinit_lock;
 | 
						|
    __sinit_lock = (_lock_t) &s_common_recursive_mutex;
 | 
						|
    extern _lock_t __env_lock_object;
 | 
						|
    __env_lock_object = (_lock_t) &s_common_mutex;
 | 
						|
    extern _lock_t __tz_lock_object;
 | 
						|
    __tz_lock_object = (_lock_t) &s_common_recursive_mutex;
 | 
						|
#elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
 | 
						|
    /* Newlib 3.0.0 is used in ROM, the following lock symbols are defined: */
 | 
						|
    extern _lock_t __sinit_recursive_mutex;
 | 
						|
    __sinit_recursive_mutex = (_lock_t) &s_common_recursive_mutex;
 | 
						|
    extern _lock_t __sfp_recursive_mutex;
 | 
						|
    __sfp_recursive_mutex = (_lock_t) &s_common_recursive_mutex;
 | 
						|
#elif defined(CONFIG_IDF_TARGET_ESP32C3)
 | 
						|
    /* Newlib 3.3.0 is used in ROM, built with _RETARGETABLE_LOCKING.
 | 
						|
     * No access to lock variables for the purpose of ECO forward compatibility,
 | 
						|
     * however we have an API to initialize lock variables used in the ROM.
 | 
						|
     */
 | 
						|
    extern void esp_rom_newlib_init_common_mutexes(_LOCK_T, _LOCK_T);
 | 
						|
    /* See notes about ROM_NEEDS_MUTEX_OVERRIDE above */
 | 
						|
    int magic_val = ROM_MUTEX_MAGIC;
 | 
						|
    _LOCK_T magic_mutex = (_LOCK_T) &magic_val;
 | 
						|
    esp_rom_newlib_init_common_mutexes(magic_mutex, magic_mutex);
 | 
						|
#else // other target
 | 
						|
#error Unsupported target
 | 
						|
#endif
 | 
						|
}
 |