mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 07:01:43 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			638 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			638 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <stddef.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdbool.h>
 | |
| 
 | |
| #include <sys/lock.h>
 | |
| 
 | |
| #include "rom/ets_sys.h"
 | |
| #include "rom/rtc.h"
 | |
| #include "soc/rtc.h"
 | |
| #include "soc/dport_reg.h"
 | |
| 
 | |
| #include "esp_err.h"
 | |
| #include "esp_phy_init.h"
 | |
| #include "esp_system.h"
 | |
| #include "esp_log.h"
 | |
| #include "nvs.h"
 | |
| #include "nvs_flash.h"
 | |
| #include "sdkconfig.h"
 | |
| 
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/portmacro.h"
 | |
| #include "phy.h"
 | |
| #include "phy_init_data.h"
 | |
| #include "coexist_internal.h"
 | |
| #include "driver/periph_ctrl.h"
 | |
| #include "esp_wifi_internal.h"
 | |
| 
 | |
| 
 | |
| static const char* TAG = "phy_init";
 | |
| 
 | |
| static _lock_t s_phy_rf_init_lock;
 | |
| 
 | |
| /* Bit mask of modules needing to call phy_rf_init */
 | |
| static uint32_t s_module_phy_rf_init = 0;
 | |
| 
 | |
| /* Whether modern sleep in turned on */
 | |
| static volatile bool s_is_phy_rf_en = false;
 | |
| 
 | |
| /* Bit mask of modules needing to enter modem sleep mode */
 | |
| static uint32_t s_modem_sleep_module_enter = 0;
 | |
| 
 | |
| /* Bit mask of modules which might use RF, system can enter modem
 | |
|  * sleep mode only when all modules registered require to enter
 | |
|  * modem sleep*/
 | |
| static uint32_t s_modem_sleep_module_register = 0;
 | |
| 
 | |
| /* Whether modern sleep is turned on */
 | |
| static volatile bool s_is_modem_sleep_en = false;
 | |
| 
 | |
| static _lock_t s_modem_sleep_lock;
 | |
| 
 | |
| uint32_t IRAM_ATTR phy_enter_critical(void)
 | |
| {
 | |
|     return portENTER_CRITICAL_NESTED();
 | |
| }
 | |
| 
 | |
| void IRAM_ATTR phy_exit_critical(uint32_t level)
 | |
| {
 | |
|     portEXIT_CRITICAL_NESTED(level);
 | |
| }
 | |
| 
 | |
| static inline void phy_update_wifi_mac_time(bool en_clock_stopped)
 | |
| {
 | |
|     static uint32_t s_common_clock_disable_time = 0;
 | |
| 
 | |
|     if (en_clock_stopped) {
 | |
|         s_common_clock_disable_time = esp_timer_get_time();
 | |
|     } else {
 | |
|         if (s_common_clock_disable_time) {
 | |
|             uint64_t now = esp_timer_get_time();
 | |
|             uint32_t diff = now - s_common_clock_disable_time;
 | |
| 
 | |
|             esp_wifi_internal_update_mac_time(diff);
 | |
|             s_common_clock_disable_time = 0;
 | |
|             ESP_LOGD(TAG, "wifi mac time delta: %u", diff);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t esp_phy_rf_init(const esp_phy_init_data_t* init_data, esp_phy_calibration_mode_t mode, 
 | |
|                           esp_phy_calibration_data_t* calibration_data, phy_rf_module_t module)
 | |
| {
 | |
|     /* 3 modules may call phy_init: Wi-Fi, BT, Modem Sleep */
 | |
|     if (module >= PHY_MODULE_COUNT){
 | |
|         ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
 | |
|                  module count(%d)", __func__, module, PHY_MODULE_COUNT);
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     _lock_acquire(&s_phy_rf_init_lock);
 | |
|     uint32_t s_module_phy_rf_init_old = s_module_phy_rf_init;
 | |
|     bool is_wifi_or_bt_enabled = !!(s_module_phy_rf_init_old & (BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE)));
 | |
|     esp_err_t status = ESP_OK;
 | |
|     s_module_phy_rf_init |= BIT(module);
 | |
| 
 | |
|     if ((is_wifi_or_bt_enabled == false) && (module == PHY_MODEM_MODULE)){
 | |
|         status = ESP_FAIL;
 | |
|     }
 | |
|     else if (s_is_phy_rf_en == true) {
 | |
|     }
 | |
|     else {
 | |
|         /* If Wi-Fi, BT all disabled, modem sleep should not take effect;
 | |
|          * If either Wi-Fi or BT is enabled, should allow modem sleep requires 
 | |
|          * to enter sleep;
 | |
|          * If Wi-Fi, BT co-exist, it is disallowed that only one module 
 | |
|          * support modem sleep, E,g. BT support modem sleep but Wi-Fi not
 | |
|          * support modem sleep;
 | |
|          */
 | |
|         if (is_wifi_or_bt_enabled == false){
 | |
|             if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
 | |
|                 s_is_phy_rf_en = true;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             if (module == PHY_MODEM_MODULE){
 | |
|                 s_is_phy_rf_en = true;
 | |
|             }
 | |
|             else if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
 | |
|                 /* New module (BT or Wi-Fi) can init RF according to modem_sleep_exit */
 | |
|             }
 | |
|         }
 | |
|         if (s_is_phy_rf_en == true){
 | |
|             // Update WiFi MAC time before WiFi/BT common clock is enabled
 | |
|             phy_update_wifi_mac_time( false );
 | |
|             // Enable WiFi/BT common peripheral clock
 | |
|             periph_module_enable(PERIPH_WIFI_BT_COMMON_MODULE);
 | |
|             phy_set_wifi_mode_only(0);
 | |
| 
 | |
|             if (ESP_CAL_DATA_CHECK_FAIL == register_chipv7_phy(init_data, calibration_data, mode)) {
 | |
|                 ESP_LOGW(TAG, "saving new calibration data because of checksum failure, mode(%d)", mode);
 | |
| #ifdef CONFIG_ESP32_PHY_CALIBRATION_AND_DATA_STORAGE
 | |
|                 if (mode != PHY_RF_CAL_FULL) {
 | |
|                     esp_phy_store_cal_data_to_nvs(calibration_data);
 | |
|                 }
 | |
| #endif
 | |
|             }
 | |
| 
 | |
| 
 | |
| extern esp_err_t wifi_osi_funcs_register(wifi_osi_funcs_t *osi_funcs);
 | |
|             status = wifi_osi_funcs_register(&g_wifi_osi_funcs);
 | |
|             if(status != ESP_OK) {
 | |
|                 ESP_LOGE(TAG, "failed to register wifi os adapter, ret(%d)", status);
 | |
|                 _lock_release(&s_phy_rf_init_lock);
 | |
|                 return ESP_FAIL;
 | |
|             }
 | |
|             coex_bt_high_prio();
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if CONFIG_SW_COEXIST_ENABLE
 | |
|     if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
 | |
|         uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
 | |
|         if ((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask) { //both wifi & bt enabled
 | |
|             coex_init();
 | |
|             coex_preference_set(CONFIG_SW_COEXIST_PREFERENCE_VALUE);
 | |
|             coex_resume();
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     _lock_release(&s_phy_rf_init_lock);
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| esp_err_t esp_phy_rf_deinit(phy_rf_module_t module)
 | |
| {
 | |
|     /* 3 modules may call phy_init: Wi-Fi, BT, Modem Sleep */
 | |
|     if (module >= PHY_MODULE_COUNT){
 | |
|         ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
 | |
|                  module count(%d)", __func__, module, PHY_MODULE_COUNT);
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     _lock_acquire(&s_phy_rf_init_lock);
 | |
|     uint32_t s_module_phy_rf_init_old = s_module_phy_rf_init;
 | |
|     uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
 | |
|     bool is_wifi_or_bt_enabled = !!(s_module_phy_rf_init_old & phy_bt_wifi_mask);
 | |
|     bool is_both_wifi_bt_enabled = ((s_module_phy_rf_init_old & phy_bt_wifi_mask) == phy_bt_wifi_mask);
 | |
|     s_module_phy_rf_init &= ~BIT(module);
 | |
|     esp_err_t status = ESP_OK;
 | |
| 
 | |
| #if CONFIG_SW_COEXIST_ENABLE
 | |
|     if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
 | |
|         if (is_both_wifi_bt_enabled == true) {
 | |
|             coex_deinit();
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if ((is_wifi_or_bt_enabled == false) && (module == PHY_MODEM_MODULE)){
 | |
|         /* Modem sleep should not take effect in this case */
 | |
|         status = ESP_FAIL;
 | |
|     }
 | |
|     else if (s_is_phy_rf_en == false) {
 | |
|         //do nothing
 | |
|     }
 | |
|     else {
 | |
|         if (is_wifi_or_bt_enabled == false){
 | |
|             if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
 | |
|                 s_is_phy_rf_en = false;
 | |
|                 ESP_LOGE(TAG, "%s, RF should not be in enabled state if both Wi-Fi and BT are disabled", __func__);
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             if (module == PHY_MODEM_MODULE){
 | |
|                 s_is_phy_rf_en = false;
 | |
|             }
 | |
|             else if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
 | |
|                 s_is_phy_rf_en = is_both_wifi_bt_enabled ? true : false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (s_is_phy_rf_en == false) {
 | |
|             // Disable PHY and RF.
 | |
|             phy_close_rf();
 | |
|             // Update WiFi MAC time before disalbe WiFi/BT common peripheral clock
 | |
|             phy_update_wifi_mac_time(true);
 | |
|             // Disable WiFi/BT common peripheral clock. Do not disable clock for hardware RNG
 | |
|             periph_module_disable(PERIPH_WIFI_BT_COMMON_MODULE);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     _lock_release(&s_phy_rf_init_lock);
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| esp_err_t esp_modem_sleep_enter(modem_sleep_module_t module)
 | |
| {
 | |
| #if CONFIG_SW_COEXIST_ENABLE
 | |
|     uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
 | |
| #endif
 | |
| 
 | |
|     if (module >= MODEM_MODULE_COUNT){
 | |
|         ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
 | |
|                  module count(%d)", __func__, module, MODEM_MODULE_COUNT);
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     else if (!(s_modem_sleep_module_register & BIT(module))){
 | |
|         ESP_LOGW(TAG, "%s, module (%d) has not been registered", __func__, module);
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     else {
 | |
|         _lock_acquire(&s_modem_sleep_lock);
 | |
|         s_modem_sleep_module_enter |= BIT(module);
 | |
| #if CONFIG_SW_COEXIST_ENABLE
 | |
|         _lock_acquire(&s_phy_rf_init_lock);
 | |
|         if (((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask)  //both wifi & bt enabled
 | |
|                 && (s_modem_sleep_module_enter & (MODEM_BT_MASK | MODEM_WIFI_MASK)) != 0){
 | |
|             coex_pause();
 | |
|         }
 | |
|         _lock_release(&s_phy_rf_init_lock);
 | |
| #endif
 | |
|         if (!s_is_modem_sleep_en && (s_modem_sleep_module_enter == s_modem_sleep_module_register)){
 | |
|             esp_err_t status = esp_phy_rf_deinit(PHY_MODEM_MODULE);
 | |
|             if (status == ESP_OK){
 | |
|                 s_is_modem_sleep_en = true;
 | |
|             }
 | |
|         }
 | |
|         _lock_release(&s_modem_sleep_lock);
 | |
|         return ESP_OK;
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t esp_modem_sleep_exit(modem_sleep_module_t module)
 | |
| {
 | |
| #if CONFIG_SW_COEXIST_ENABLE
 | |
|     uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
 | |
| #endif
 | |
| 
 | |
|     if (module >= MODEM_MODULE_COUNT){
 | |
|         ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
 | |
|                  module count(%d)", __func__, module, MODEM_MODULE_COUNT);
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     else if (!(s_modem_sleep_module_register & BIT(module))){
 | |
|         ESP_LOGW(TAG, "%s, module (%d) has not been registered", __func__, module);
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     else {
 | |
|         _lock_acquire(&s_modem_sleep_lock);
 | |
|         s_modem_sleep_module_enter &= ~BIT(module);
 | |
|         if (s_is_modem_sleep_en){
 | |
|             esp_err_t status = esp_phy_rf_init(NULL,PHY_RF_CAL_NONE,NULL, PHY_MODEM_MODULE);
 | |
|             if (status == ESP_OK){
 | |
|                 s_is_modem_sleep_en = false;
 | |
|             }
 | |
|         }
 | |
| #if CONFIG_SW_COEXIST_ENABLE
 | |
|         _lock_acquire(&s_phy_rf_init_lock);
 | |
|         if (((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask)  //both wifi & bt enabled
 | |
|                 && (s_modem_sleep_module_enter & (MODEM_BT_MASK | MODEM_WIFI_MASK)) == 0){
 | |
|             coex_resume();
 | |
|         }
 | |
|         _lock_release(&s_phy_rf_init_lock);
 | |
| #endif
 | |
|         _lock_release(&s_modem_sleep_lock);
 | |
|         return ESP_OK;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t esp_modem_sleep_register(modem_sleep_module_t module)
 | |
| {
 | |
|     if (module >= MODEM_MODULE_COUNT){
 | |
|         ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
 | |
|                  module count(%d)", __func__, module, MODEM_MODULE_COUNT);
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     else if (s_modem_sleep_module_register & BIT(module)){
 | |
|         ESP_LOGI(TAG, "%s, multiple registration of module (%d)", __func__, module);
 | |
|         return ESP_OK;
 | |
|     }
 | |
|     else{
 | |
|         _lock_acquire(&s_modem_sleep_lock);
 | |
|         s_modem_sleep_module_register |= BIT(module);
 | |
|         /* The module is set to enter modem sleep by default, otherwise will prevent
 | |
|          * other modules from entering sleep mode if this module never call enter sleep function
 | |
|          * in the future */
 | |
|         s_modem_sleep_module_enter |= BIT(module);
 | |
|         _lock_release(&s_modem_sleep_lock);
 | |
|         return ESP_OK;
 | |
|     }
 | |
| }
 | |
| 
 | |
| esp_err_t esp_modem_sleep_deregister(modem_sleep_module_t module)
 | |
| {
 | |
|     if (module >= MODEM_MODULE_COUNT){
 | |
|         ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
 | |
|                  module count(%d)", __func__, module, MODEM_MODULE_COUNT);
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     else if (!(s_modem_sleep_module_register & BIT(module))){
 | |
|         ESP_LOGI(TAG, "%s, module (%d) has not been registered", __func__, module);
 | |
|         return ESP_OK;
 | |
|     }
 | |
|     else{
 | |
|         _lock_acquire(&s_modem_sleep_lock);
 | |
|         s_modem_sleep_module_enter &= ~BIT(module);
 | |
|         s_modem_sleep_module_register &= ~BIT(module);
 | |
|         if (s_modem_sleep_module_register == 0){
 | |
|             s_modem_sleep_module_enter = 0;
 | |
|             /* Once all module are de-registered and current state
 | |
|              * is modem sleep mode, we need to turn off modem sleep
 | |
|              */
 | |
|             if (s_is_modem_sleep_en == true){
 | |
|                s_is_modem_sleep_en = false;
 | |
|                esp_phy_rf_init(NULL,PHY_RF_CAL_NONE,NULL, PHY_MODEM_MODULE);
 | |
|             }
 | |
|         }
 | |
|         _lock_release(&s_modem_sleep_lock);
 | |
|         return ESP_OK;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // PHY init data handling functions
 | |
| #if CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
 | |
| #include "esp_partition.h"
 | |
| 
 | |
| const esp_phy_init_data_t* esp_phy_get_init_data()
 | |
| {
 | |
|     const esp_partition_t* partition = esp_partition_find_first(
 | |
|             ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_PHY, NULL);
 | |
|     if (partition == NULL) {
 | |
|         ESP_LOGE(TAG, "PHY data partition not found");
 | |
|         return NULL;
 | |
|     }
 | |
|     ESP_LOGD(TAG, "loading PHY init data from partition at offset 0x%x", partition->address);
 | |
|     size_t init_data_store_length = sizeof(phy_init_magic_pre) +
 | |
|             sizeof(esp_phy_init_data_t) + sizeof(phy_init_magic_post);
 | |
|     uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length);
 | |
|     if (init_data_store == NULL) {
 | |
|         ESP_LOGE(TAG, "failed to allocate memory for PHY init data");
 | |
|         return NULL;
 | |
|     }
 | |
|     esp_err_t err = esp_partition_read(partition, 0, init_data_store, init_data_store_length);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "failed to read PHY data partition (0x%x)", err);
 | |
|         return NULL;
 | |
|     }
 | |
|     if (memcmp(init_data_store, PHY_INIT_MAGIC, sizeof(phy_init_magic_pre)) != 0 ||
 | |
|         memcmp(init_data_store + init_data_store_length - sizeof(phy_init_magic_post),
 | |
|                 PHY_INIT_MAGIC, sizeof(phy_init_magic_post)) != 0) {
 | |
|         ESP_LOGE(TAG, "failed to validate PHY data partition");
 | |
|         return NULL;
 | |
|     }
 | |
|     ESP_LOGD(TAG, "PHY data partition validated");
 | |
|     return (const esp_phy_init_data_t*) (init_data_store + sizeof(phy_init_magic_pre));
 | |
| }
 | |
| 
 | |
| void esp_phy_release_init_data(const esp_phy_init_data_t* init_data)
 | |
| {
 | |
|     free((uint8_t*) init_data - sizeof(phy_init_magic_pre));
 | |
| }
 | |
| 
 | |
| #else // CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
 | |
| 
 | |
| // phy_init_data.h will declare static 'phy_init_data' variable initialized with default init data
 | |
| 
 | |
| const esp_phy_init_data_t* esp_phy_get_init_data()
 | |
| {
 | |
|     ESP_LOGD(TAG, "loading PHY init data from application binary");
 | |
|     return &phy_init_data;
 | |
| }
 | |
| 
 | |
| void esp_phy_release_init_data(const esp_phy_init_data_t* init_data)
 | |
| {
 | |
|     // no-op
 | |
| }
 | |
| #endif // CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
 | |
| 
 | |
| 
 | |
| // PHY calibration data handling functions
 | |
| static const char* PHY_NAMESPACE = "phy";
 | |
| static const char* PHY_CAL_VERSION_KEY = "cal_version";
 | |
| static const char* PHY_CAL_MAC_KEY = "cal_mac";
 | |
| static const char* PHY_CAL_DATA_KEY = "cal_data";
 | |
| 
 | |
| static esp_err_t load_cal_data_from_nvs_handle(nvs_handle handle,
 | |
|         esp_phy_calibration_data_t* out_cal_data);
 | |
| 
 | |
| static esp_err_t store_cal_data_to_nvs_handle(nvs_handle handle,
 | |
|         const esp_phy_calibration_data_t* cal_data);
 | |
| 
 | |
| esp_err_t esp_phy_load_cal_data_from_nvs(esp_phy_calibration_data_t* out_cal_data)
 | |
| {
 | |
|     nvs_handle handle;
 | |
|     esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READONLY, &handle);
 | |
|     if (err == ESP_ERR_NVS_NOT_INITIALIZED) {
 | |
|         ESP_LOGE(TAG, "%s: NVS has not been initialized. "
 | |
|                 "Call nvs_flash_init before starting WiFi/BT.", __func__);
 | |
|     } else if (err != ESP_OK) {
 | |
|         ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
|     err = load_cal_data_from_nvs_handle(handle, out_cal_data);
 | |
|     nvs_close(handle);
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| esp_err_t esp_phy_store_cal_data_to_nvs(const esp_phy_calibration_data_t* cal_data)
 | |
| {
 | |
|     nvs_handle handle;
 | |
|     esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READWRITE, &handle);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
|     else {
 | |
|         err = store_cal_data_to_nvs_handle(handle, cal_data);
 | |
|         nvs_close(handle);
 | |
|         return err;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static esp_err_t load_cal_data_from_nvs_handle(nvs_handle handle,
 | |
|         esp_phy_calibration_data_t* out_cal_data)
 | |
| {
 | |
|     esp_err_t err;
 | |
|     uint32_t cal_data_version;
 | |
|     err = nvs_get_u32(handle, PHY_CAL_VERSION_KEY, &cal_data_version);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGD(TAG, "%s: failed to get cal_version (0x%x)", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
|     uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16));
 | |
|     ESP_LOGV(TAG, "phy_get_rf_cal_version: %d\n", cal_format_version);
 | |
|     if (cal_data_version != cal_format_version) {
 | |
|         ESP_LOGD(TAG, "%s: expected calibration data format %d, found %d",
 | |
|                 __func__, cal_format_version, cal_data_version);
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
|     uint8_t cal_data_mac[6];
 | |
|     size_t length = sizeof(cal_data_mac);
 | |
|     err = nvs_get_blob(handle, PHY_CAL_MAC_KEY, cal_data_mac, &length);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGD(TAG, "%s: failed to get cal_mac (0x%x)", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
|     if (length != sizeof(cal_data_mac)) {
 | |
|         ESP_LOGD(TAG, "%s: invalid length of cal_mac (%d)", __func__, length);
 | |
|         return ESP_ERR_INVALID_SIZE;
 | |
|     }
 | |
|     uint8_t sta_mac[6];
 | |
|     esp_efuse_mac_get_default(sta_mac);
 | |
|     if (memcmp(sta_mac, cal_data_mac, sizeof(sta_mac)) != 0) {
 | |
|         ESP_LOGE(TAG, "%s: calibration data MAC check failed: expected " \
 | |
|                 MACSTR ", found " MACSTR,
 | |
|                 __func__, MAC2STR(sta_mac), MAC2STR(cal_data_mac));
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
|     length = sizeof(*out_cal_data);
 | |
|     err = nvs_get_blob(handle, PHY_CAL_DATA_KEY, out_cal_data, &length);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "%s: failed to get cal_data(0x%x)", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
|     if (length != sizeof(*out_cal_data)) {
 | |
|         ESP_LOGD(TAG, "%s: invalid length of cal_data (%d)", __func__, length);
 | |
|         return ESP_ERR_INVALID_SIZE;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t store_cal_data_to_nvs_handle(nvs_handle handle,
 | |
|         const esp_phy_calibration_data_t* cal_data)
 | |
| {
 | |
|     esp_err_t err;
 | |
| 
 | |
|     err = nvs_set_blob(handle, PHY_CAL_DATA_KEY, cal_data, sizeof(*cal_data));
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "%s: store calibration data failed(0x%x)\n", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     uint8_t sta_mac[6];
 | |
|     esp_efuse_mac_get_default(sta_mac);
 | |
|     err = nvs_set_blob(handle, PHY_CAL_MAC_KEY, sta_mac, sizeof(sta_mac));
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "%s: store calibration mac failed(0x%x)\n", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16));
 | |
|     ESP_LOGV(TAG, "phy_get_rf_cal_version: %d\n", cal_format_version);
 | |
|     err = nvs_set_u32(handle, PHY_CAL_VERSION_KEY, cal_format_version);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "%s: store calibration version failed(0x%x)\n", __func__, err);
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     err = nvs_commit(handle);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGE(TAG, "%s: store calibration nvs commit failed(0x%x)\n", __func__, err);
 | |
|     }
 | |
|     
 | |
|     return err;
 | |
| }
 | |
| 
 | |
| #if CONFIG_REDUCE_PHY_TX_POWER
 | |
| static void esp_phy_reduce_tx_power(esp_phy_init_data_t* init_data)
 | |
| {
 | |
|     uint8_t i;
 | |
|                                          
 | |
|     for(i = 0; i < PHY_TX_POWER_NUM; i++) {
 | |
|         // LOWEST_PHY_TX_POWER is the lowest tx power
 | |
|         init_data->params[PHY_TX_POWER_OFFSET+i] = PHY_TX_POWER_LOWEST;   
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void esp_phy_load_cal_and_init(phy_rf_module_t module)
 | |
| {
 | |
|     esp_phy_calibration_data_t* cal_data =
 | |
|             (esp_phy_calibration_data_t*) calloc(sizeof(esp_phy_calibration_data_t), 1);
 | |
|     if (cal_data == NULL) {
 | |
|         ESP_LOGE(TAG, "failed to allocate memory for RF calibration data");
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
| #if CONFIG_REDUCE_PHY_TX_POWER
 | |
|     const esp_phy_init_data_t* phy_init_data = esp_phy_get_init_data();
 | |
|     if (phy_init_data == NULL) {
 | |
|         ESP_LOGE(TAG, "failed to obtain PHY init data");
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     esp_phy_init_data_t* init_data = (esp_phy_init_data_t*) malloc(sizeof(esp_phy_init_data_t));
 | |
|     if (init_data == NULL) {
 | |
|         ESP_LOGE(TAG, "failed to allocate memory for phy init data");
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     memcpy(init_data, phy_init_data, sizeof(esp_phy_init_data_t));
 | |
|     if (esp_reset_reason() == ESP_RST_BROWNOUT) {
 | |
|         esp_phy_reduce_tx_power(init_data);
 | |
|     }
 | |
| #else
 | |
|     const esp_phy_init_data_t* init_data = esp_phy_get_init_data();
 | |
|     if (init_data == NULL) {
 | |
|         ESP_LOGE(TAG, "failed to obtain PHY init data");
 | |
|         abort();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ESP32_PHY_CALIBRATION_AND_DATA_STORAGE
 | |
|     esp_phy_calibration_mode_t calibration_mode = PHY_RF_CAL_PARTIAL;
 | |
|     uint8_t sta_mac[6];
 | |
|     if (rtc_get_reset_reason(0) == DEEPSLEEP_RESET) {
 | |
|         calibration_mode = PHY_RF_CAL_NONE;
 | |
|     }
 | |
|     esp_err_t err = esp_phy_load_cal_data_from_nvs(cal_data);
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_LOGW(TAG, "failed to load RF calibration data (0x%x), falling back to full calibration", err);
 | |
|         calibration_mode = PHY_RF_CAL_FULL;
 | |
|     }
 | |
| 
 | |
|     esp_efuse_mac_get_default(sta_mac);
 | |
|     memcpy(cal_data->mac, sta_mac, 6);
 | |
|     esp_phy_rf_init(init_data, calibration_mode, cal_data, module);
 | |
| 
 | |
|     if (calibration_mode != PHY_RF_CAL_NONE && err != ESP_OK) {
 | |
|         err = esp_phy_store_cal_data_to_nvs(cal_data);
 | |
|     } else {
 | |
|         err = ESP_OK;
 | |
|     }
 | |
| #else
 | |
|     esp_phy_rf_init(init_data, PHY_RF_CAL_FULL, cal_data, module);
 | |
| #endif
 | |
| 
 | |
| #if CONFIG_REDUCE_PHY_TX_POWER
 | |
|     esp_phy_release_init_data(phy_init_data);
 | |
|     free(init_data);
 | |
| #else
 | |
|     esp_phy_release_init_data(init_data);
 | |
| #endif
 | |
| 
 | |
|     free(cal_data); // PHY maintains a copy of calibration data, so we can free this
 | |
| }
 | |
| 
 |