mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-11-04 00:51:42 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			173 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			173 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// Copyright 2010-2016 Espressif Systems (Shanghai) PTE LTD
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
#ifndef BOOTLOADER_BUILD
 | 
						|
 | 
						|
#include <stdlib.h>
 | 
						|
#include <stdint.h>
 | 
						|
 | 
						|
#include "soc/soc.h"
 | 
						|
#include "soc/soc_memory_layout.h"
 | 
						|
#include "esp_heap_caps.h"
 | 
						|
#include "sdkconfig.h"
 | 
						|
 | 
						|
/* Memory layout for ESP32 SoC */
 | 
						|
 | 
						|
/*
 | 
						|
Memory type descriptors. These describe the capabilities of a type of memory in the SoC. Each type of memory
 | 
						|
map consist of one or more regions in the address space.
 | 
						|
 | 
						|
Each type contains an array of prioritised capabilities; types with later entries are only taken if earlier
 | 
						|
ones can't fulfill the memory request.
 | 
						|
 | 
						|
The prioritised capabilities work roughly like this:
 | 
						|
- For a normal malloc (MALLOC_CAP_DEFAULT), give away the DRAM-only memory first, then pass off any dual-use IRAM regions,
 | 
						|
  finally eat into the application memory.
 | 
						|
- For a malloc where 32-bit-aligned-only access is okay, first allocate IRAM, then DRAM, finally application IRAM.
 | 
						|
- Application mallocs (PIDx) will allocate IRAM first, if possible, then DRAM.
 | 
						|
- Most other malloc caps only fit in one region anyway.
 | 
						|
 | 
						|
*/
 | 
						|
const soc_memory_type_desc_t soc_memory_types[] = {
 | 
						|
    //Type 0: Plain ole D-port RAM
 | 
						|
    { "DRAM", { MALLOC_CAP_8BIT|MALLOC_CAP_DEFAULT, MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA|MALLOC_CAP_32BIT, 0 }, false, false},
 | 
						|
    //Type 1: Plain ole D-port RAM which has an alias on the I-port
 | 
						|
    //(This DRAM is also the region used by ROM during startup)
 | 
						|
    { "D/IRAM", { 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL|MALLOC_CAP_DEFAULT, MALLOC_CAP_32BIT|MALLOC_CAP_EXEC }, true, true},
 | 
						|
    //Type 2: IRAM
 | 
						|
    { "IRAM", { MALLOC_CAP_EXEC|MALLOC_CAP_32BIT|MALLOC_CAP_INTERNAL, 0, 0 }, false, false},
 | 
						|
    //Type 3-8: PID 2-7 IRAM
 | 
						|
    { "PID2IRAM", { MALLOC_CAP_PID2|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false, false},
 | 
						|
    { "PID3IRAM", { MALLOC_CAP_PID3|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false, false},
 | 
						|
    { "PID4IRAM", { MALLOC_CAP_PID4|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false, false},
 | 
						|
    { "PID5IRAM", { MALLOC_CAP_PID5|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false, false},
 | 
						|
    { "PID6IRAM", { MALLOC_CAP_PID6|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false, false},
 | 
						|
    { "PID7IRAM", { MALLOC_CAP_PID7|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false, false},
 | 
						|
    //Type 9-14: PID 2-7 DRAM
 | 
						|
    { "PID2DRAM", { MALLOC_CAP_PID2|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
 | 
						|
    { "PID3DRAM", { MALLOC_CAP_PID3|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
 | 
						|
    { "PID4DRAM", { MALLOC_CAP_PID4|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
 | 
						|
    { "PID5DRAM", { MALLOC_CAP_PID5|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
 | 
						|
    { "PID6DRAM", { MALLOC_CAP_PID6|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
 | 
						|
    { "PID7DRAM", { MALLOC_CAP_PID7|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
 | 
						|
    //Type 15: SPI SRAM data
 | 
						|
    { "SPIRAM", { MALLOC_CAP_SPIRAM|MALLOC_CAP_DEFAULT, 0, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}, false, false},
 | 
						|
};
 | 
						|
 | 
						|
const size_t soc_memory_type_count = sizeof(soc_memory_types)/sizeof(soc_memory_type_desc_t);
 | 
						|
 | 
						|
/*
 | 
						|
Region descriptors. These describe all regions of memory available, and map them to a type in the above type.
 | 
						|
 | 
						|
Because of requirements in the coalescing code which merges adjacent regions, this list should always be sorted
 | 
						|
from low to high start address.
 | 
						|
*/
 | 
						|
const soc_memory_region_t soc_memory_regions[] = {
 | 
						|
    { 0x3F800000, 0x400000, 15, 0}, //SPI SRAM, if available
 | 
						|
    { 0x3FFAE000, 0x2000, 0, 0}, //pool 16 <- used for rom code
 | 
						|
    { 0x3FFB0000, 0x8000, 0, 0}, //pool 15 <- if BT is enabled, used as BT HW shared memory
 | 
						|
    { 0x3FFB8000, 0x8000, 0, 0}, //pool 14 <- if BT is enabled, used data memory for BT ROM functions.
 | 
						|
    { 0x3FFC0000, 0x2000, 0, 0}, //pool 10-13, mmu page 0
 | 
						|
    { 0x3FFC2000, 0x2000, 0, 0}, //pool 10-13, mmu page 1
 | 
						|
    { 0x3FFC4000, 0x2000, 0, 0}, //pool 10-13, mmu page 2
 | 
						|
    { 0x3FFC6000, 0x2000, 0, 0}, //pool 10-13, mmu page 3
 | 
						|
    { 0x3FFC8000, 0x2000, 0, 0}, //pool 10-13, mmu page 4
 | 
						|
    { 0x3FFCA000, 0x2000, 0, 0}, //pool 10-13, mmu page 5
 | 
						|
    { 0x3FFCC000, 0x2000, 0, 0}, //pool 10-13, mmu page 6
 | 
						|
    { 0x3FFCE000, 0x2000, 0, 0}, //pool 10-13, mmu page 7
 | 
						|
    { 0x3FFD0000, 0x2000, 0, 0}, //pool 10-13, mmu page 8
 | 
						|
    { 0x3FFD2000, 0x2000, 0, 0}, //pool 10-13, mmu page 9
 | 
						|
    { 0x3FFD4000, 0x2000, 0, 0}, //pool 10-13, mmu page 10
 | 
						|
    { 0x3FFD6000, 0x2000, 0, 0}, //pool 10-13, mmu page 11
 | 
						|
    { 0x3FFD8000, 0x2000, 0, 0}, //pool 10-13, mmu page 12
 | 
						|
    { 0x3FFDA000, 0x2000, 0, 0}, //pool 10-13, mmu page 13
 | 
						|
    { 0x3FFDC000, 0x2000, 0, 0}, //pool 10-13, mmu page 14
 | 
						|
    { 0x3FFDE000, 0x2000, 0, 0}, //pool 10-13, mmu page 15
 | 
						|
    { 0x3FFE0000, 0x4000, 1, 0x400BC000}, //pool 9 blk 1
 | 
						|
    { 0x3FFE4000, 0x4000, 1, 0x400B8000}, //pool 9 blk 0
 | 
						|
    { 0x3FFE8000, 0x8000, 1, 0x400B0000}, //pool 8 <- can be remapped to ROM, used for MAC dump
 | 
						|
    { 0x3FFF0000, 0x8000, 1, 0x400A8000}, //pool 7 <- can be used for MAC dump
 | 
						|
    { 0x3FFF8000, 0x4000, 1, 0x400A4000}, //pool 6 blk 1 <- can be used as trace memory
 | 
						|
    { 0x3FFFC000, 0x4000, 1, 0x400A0000}, //pool 6 blk 0 <- can be used as trace memory
 | 
						|
    { 0x40070000, 0x8000, 2, 0}, //pool 0
 | 
						|
    { 0x40078000, 0x8000, 2, 0}, //pool 1
 | 
						|
    { 0x40080000, 0x2000, 2, 0}, //pool 2-5, mmu page 0
 | 
						|
    { 0x40082000, 0x2000, 2, 0}, //pool 2-5, mmu page 1
 | 
						|
    { 0x40084000, 0x2000, 2, 0}, //pool 2-5, mmu page 2
 | 
						|
    { 0x40086000, 0x2000, 2, 0}, //pool 2-5, mmu page 3
 | 
						|
    { 0x40088000, 0x2000, 2, 0}, //pool 2-5, mmu page 4
 | 
						|
    { 0x4008A000, 0x2000, 2, 0}, //pool 2-5, mmu page 5
 | 
						|
    { 0x4008C000, 0x2000, 2, 0}, //pool 2-5, mmu page 6
 | 
						|
    { 0x4008E000, 0x2000, 2, 0}, //pool 2-5, mmu page 7
 | 
						|
    { 0x40090000, 0x2000, 2, 0}, //pool 2-5, mmu page 8
 | 
						|
    { 0x40092000, 0x2000, 2, 0}, //pool 2-5, mmu page 9
 | 
						|
    { 0x40094000, 0x2000, 2, 0}, //pool 2-5, mmu page 10
 | 
						|
    { 0x40096000, 0x2000, 2, 0}, //pool 2-5, mmu page 11
 | 
						|
    { 0x40098000, 0x2000, 2, 0}, //pool 2-5, mmu page 12
 | 
						|
    { 0x4009A000, 0x2000, 2, 0}, //pool 2-5, mmu page 13
 | 
						|
    { 0x4009C000, 0x2000, 2, 0}, //pool 2-5, mmu page 14
 | 
						|
    { 0x4009E000, 0x2000, 2, 0}, //pool 2-5, mmu page 15
 | 
						|
};
 | 
						|
 | 
						|
const size_t soc_memory_region_count = sizeof(soc_memory_regions)/sizeof(soc_memory_region_t);
 | 
						|
 | 
						|
 | 
						|
/* Reserved memory regions
 | 
						|
 | 
						|
   These are removed from the soc_memory_regions array when heaps are created.
 | 
						|
 */
 | 
						|
const soc_reserved_region_t soc_reserved_regions[] = {
 | 
						|
    { 0x40070000, 0x40078000 }, //CPU0 cache region
 | 
						|
    { 0x40078000, 0x40080000 }, //CPU1 cache region
 | 
						|
 | 
						|
    /* Warning: The ROM stack is located in the 0x3ffe0000 area. We do not specifically disable that area here because
 | 
						|
       after the scheduler has started, the ROM stack is not used anymore by anything. We handle it instead by not allowing
 | 
						|
       any mallocs memory regions with the startup_stack flag set (these are the IRAM/DRAM region) until the
 | 
						|
       scheduler has started.
 | 
						|
 | 
						|
       The 0x3ffe0000 region also contains static RAM for various ROM functions. The following lines
 | 
						|
       reserve the regions for UART and ETSC, so these functions are usable. Libraries like xtos, which are
 | 
						|
       not usable in FreeRTOS anyway, are commented out in the linker script so they cannot be used; we
 | 
						|
       do not disable their memory regions here and they will be used as general purpose heap memory.
 | 
						|
 | 
						|
       Enabling the heap allocator for this region but disabling allocation here until FreeRTOS is started up
 | 
						|
       is a somewhat risky action in theory, because on initializing the allocator, the multi_heap implementation
 | 
						|
       will go and write metadata at the start and end of all regions. For the ESP32, these linked
 | 
						|
       list entries happen to end up in a region that is not touched by the stack; they can be placed safely there.
 | 
						|
    */
 | 
						|
 | 
						|
    { 0x3ffe0000, 0x3ffe0440 }, //Reserve ROM PRO data region
 | 
						|
    { 0x3ffe4000, 0x3ffe4350 }, //Reserve ROM APP data region
 | 
						|
 | 
						|
#if CONFIG_BT_ENABLED
 | 
						|
    { 0x3ffb0000, 0x3ffc0000 }, //Reserve BT hardware shared memory & BT data region
 | 
						|
    { 0x3ffae000, 0x3ffaff10 }, //Reserve ROM data region, inc region needed for BT ROM routines
 | 
						|
#else
 | 
						|
    { 0x3ffae000, 0x3ffae6e0 }, //Reserve ROM data region
 | 
						|
#endif
 | 
						|
 | 
						|
#if CONFIG_MEMMAP_TRACEMEM
 | 
						|
#if CONFIG_MEMMAP_TRACEMEM_TWOBANKS
 | 
						|
    { 0x3fff8000, 0x40000000 }, //Reserve trace mem region
 | 
						|
#else
 | 
						|
    { 0x3fff8000, 0x3fffc000 }, //Reserve trace mem region
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
    { 0x3f800000, 0x3fC00000 }, //SPI RAM gets added later if needed, in spiram.c; reserve it for now
 | 
						|
};
 | 
						|
 | 
						|
const size_t soc_reserved_region_count = sizeof(soc_reserved_regions)/sizeof(soc_reserved_region_t);
 | 
						|
 | 
						|
#endif
 |