mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 15:11:40 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			407 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			407 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2017 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "esp_err.h"
 | |
| #include "esp_timer.h"
 | |
| #include "esp_system.h"
 | |
| #include "esp_task.h"
 | |
| #include "esp_attr.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_clk.h"
 | |
| #include "esp_timer_impl.h"
 | |
| #include "soc/frc_timer_reg.h"
 | |
| #include "soc/rtc.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/task.h"
 | |
| #include "freertos/semphr.h"
 | |
| 
 | |
| /**
 | |
|  * @file esp_timer_esp32.c
 | |
|  * @brief Implementation of chip-specific part of esp_timer
 | |
|  *
 | |
|  * This implementation uses FRC2 (legacy) timer of the ESP32. This timer is
 | |
|  * a 32-bit up-counting timer, with a programmable compare value (called 'alarm'
 | |
|  * hereafter). When the timer reaches compare value, interrupt is raised.
 | |
|  * The timer can be configured to produce an edge or a level interrupt.
 | |
|  *
 | |
|  * In this implementation the timer is used for two purposes:
 | |
|  * 1. To generate interrupts at certain moments — the upper layer of esp_timer
 | |
|  *    uses this to trigger callbacks of esp_timer objects.
 | |
|  *
 | |
|  * 2. To keep track of time relative to application start. This facility is
 | |
|  *    used both by the upper layer of esp_timer and by time functions, such as
 | |
|  *    gettimeofday.
 | |
|  *
 | |
|  * Whenever an esp_timer timer is armed (configured to fire once or
 | |
|  * periodically), timer_insert function of the upper layer calls
 | |
|  * esp_timer_impl_set_alarm to enable the interrupt at the required moment.
 | |
|  * This implementation sets up the timer interrupt to fire at the earliest of
 | |
|  * two moments:
 | |
|  * a) the time requested by upper layer
 | |
|  * b) the time when the timer count reaches 0xffffffff (i.e. is about to overflow)
 | |
|  *
 | |
|  * Whenever the interrupt fires and timer overflow is detected, interrupt hander
 | |
|  * increments s_time_base_us variable, which is used for timekeeping.
 | |
|  *
 | |
|  * When the interrupt fires, the upper layer is notified, and it dispatches
 | |
|  * the callbacks (if any timers have expired) and sets new alarm value (if any
 | |
|  * timers are still active).
 | |
|  *
 | |
|  * At any point in time, esp_timer_impl_get_time will return the current timer
 | |
|  * value (expressed in microseconds) plus s_time_base_us. To account for the
 | |
|  * case when the timer counter has overflown, but the interrupt has not fired
 | |
|  * yet (for example, because interupts are temporarily disabled),
 | |
|  * esp_timer_impl_get_time will also check timer overflow flag, and will add
 | |
|  * s_timer_us_per_overflow to the returned value.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* Timer is clocked from APB. To allow for integer scaling factor between ticks
 | |
|  * and microseconds, divider 1 is used. 16 or 256 would not work for APB
 | |
|  * frequencies such as 40 or 26 or 2 MHz.
 | |
|  */
 | |
| #define TIMER_DIV           1
 | |
| #define TIMER_DIV_CFG       FRC_TIMER_PRESCALER_1
 | |
| 
 | |
| /* ALARM_OVERFLOW_VAL is used as timer alarm value when there are not timers
 | |
|  * enabled which need to fire within the next timer overflow period. This alarm
 | |
|  * is used to perform timekeeping (i.e. to track timer overflows).
 | |
|  * Due to the 0xffffffff cannot recognize the real overflow or the scenario that 
 | |
|  * ISR happens follow set_alarm, so change the ALARM_OVERFLOW_VAL to resolve this problem.
 | |
|  * Set it to 0xefffffffUL. The remain 0x10000000UL(about 3 second) is enough to handle ISR.
 | |
|  */
 | |
| #define DEFAULT_ALARM_OVERFLOW_VAL 0xefffffffUL
 | |
| 
 | |
| /* Provision to set lower overflow value for unit testing. Lowering the
 | |
|  * overflow value helps check for race conditions which occur near overflow
 | |
|  * moment.
 | |
|  */
 | |
| #ifndef ESP_TIMER_DYNAMIC_OVERFLOW_VAL
 | |
| #define ALARM_OVERFLOW_VAL  DEFAULT_ALARM_OVERFLOW_VAL
 | |
| #else
 | |
| static uint32_t s_alarm_overflow_val = DEFAULT_ALARM_OVERFLOW_VAL;
 | |
| #define ALARM_OVERFLOW_VAL (s_alarm_overflow_val)
 | |
| #endif
 | |
| 
 | |
| static const char* TAG = "esp_timer_impl";
 | |
| 
 | |
| // Interrupt handle retuned by the interrupt allocator
 | |
| static intr_handle_t s_timer_interrupt_handle;
 | |
| 
 | |
| // Function from the upper layer to be called when the interrupt happens.
 | |
| // Registered in esp_timer_impl_init.
 | |
| static intr_handler_t s_alarm_handler;
 | |
| 
 | |
| // Time in microseconds from startup to the moment
 | |
| // when timer counter was last equal to 0. This variable is updated each time
 | |
| // when timer overflows, and when APB frequency switch is performed.
 | |
| static uint64_t s_time_base_us;
 | |
| 
 | |
| // Number of timer ticks per microsecond. Calculated from APB frequency.
 | |
| static uint32_t s_timer_ticks_per_us;
 | |
| 
 | |
| // Period between timer overflows, in microseconds.
 | |
| // Equal to 2^32 / s_timer_ticks_per_us.
 | |
| static uint32_t s_timer_us_per_overflow;
 | |
| 
 | |
| // When frequency switch happens, timer counter is reset to 0, s_time_base_us
 | |
| // is updated, and alarm value is re-calculated based on the new APB frequency.
 | |
| // However because the frequency switch can happen before the final
 | |
| // interrupt handler is invoked, interrupt handler may see a different alarm
 | |
| // value than the one which caused an interrupt. This can cause interrupt handler
 | |
| // to consider that the interrupt has happened due to timer overflow, incrementing
 | |
| // s_time_base_us. To avoid this, frequency switch hook sets this flag if
 | |
| // it needs to set timer alarm value to ALARM_OVERFLOW_VAL. Interrupt hanler
 | |
| // will not increment s_time_base_us if this flag is set.
 | |
| static bool s_mask_overflow;
 | |
| 
 | |
| //The timer_overflow_happened read alarm register to tell if overflow happened.
 | |
| //However, there is a monent that overflow happens, and before ISR function called
 | |
| //alarm register is set to another value, then you call timer_overflow_happened, 
 | |
| //it will return false.
 | |
| //So we store the overflow value when new alarm is to be set. 
 | |
| static bool s_overflow_happened;
 | |
| 
 | |
| #ifdef CONFIG_PM_DFS_USE_RTC_TIMER_REF
 | |
| // If DFS is enabled, upon the first frequency change this value is set to the
 | |
| // difference between esp_timer value and RTC timer value. On every subsequent
 | |
| // frequency change, s_time_base_us is adjusted to maintain the same difference
 | |
| // between esp_timer and RTC timer. (All mentioned values are in microseconds.)
 | |
| static uint64_t s_rtc_time_diff = 0;
 | |
| #endif
 | |
| 
 | |
| // Spinlock used to protect access to static variables above and to the hardware
 | |
| // registers.
 | |
| portMUX_TYPE s_time_update_lock = portMUX_INITIALIZER_UNLOCKED;
 | |
| 
 | |
| //Use FRC_TIMER_LOAD_VALUE(1) instead of UINT32_MAX, convenience to change FRC TIMER for future
 | |
| #define TIMER_IS_AFTER_OVERFLOW(a) (ALARM_OVERFLOW_VAL < (a) && (a) <= FRC_TIMER_LOAD_VALUE(1))
 | |
| 
 | |
| // Check if timer overflow has happened (but was not handled by ISR yet)
 | |
| static inline bool IRAM_ATTR timer_overflow_happened()
 | |
| {
 | |
|     if (s_overflow_happened) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return ((REG_READ(FRC_TIMER_CTRL_REG(1)) & FRC_TIMER_INT_STATUS) != 0 &&
 | |
|               ((REG_READ(FRC_TIMER_ALARM_REG(1)) == ALARM_OVERFLOW_VAL && TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_COUNT_REG(1))) && !s_mask_overflow) || 
 | |
|                (!TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_ALARM_REG(1))) && TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_COUNT_REG(1))))));
 | |
| }
 | |
| 
 | |
| static inline void IRAM_ATTR timer_count_reload(void)
 | |
| {
 | |
|     //this function should be only called the real overflow happened. And the count cannot be very approach to 0xffffffff.
 | |
|     assert(TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_COUNT_REG(1))));
 | |
| 
 | |
|     /* Restart the timer count by current time count minus ALARM_OVERFLOW_VAL(0xefffffff), it may cause error, if current tick is near boundary.
 | |
|      * But even if the error happen 100% per overflow(the distance of each real overflow is about 50 second),
 | |
|      * the error is 0.0125us*N per 50s(the FRC time clock is 80MHz), the N is the ticks run by the line following,
 | |
|      * Normally, N is less than 10, assume N is 10, so the error accumulation is only 6.48ms per month.
 | |
|      * In fact, if the CPU frequency is large than 80MHz. The error accumulation will be more less than 6.48ms per month.
 | |
|      * so It can be adopted.
 | |
|      */
 | |
|     REG_WRITE(FRC_TIMER_LOAD_REG(1), REG_READ(FRC_TIMER_COUNT_REG(1)) - ALARM_OVERFLOW_VAL);
 | |
| }
 | |
| 
 | |
| void esp_timer_impl_lock()
 | |
| {
 | |
|     portENTER_CRITICAL(&s_time_update_lock);
 | |
| }
 | |
| 
 | |
| void esp_timer_impl_unlock()
 | |
| {
 | |
|     portEXIT_CRITICAL(&s_time_update_lock);
 | |
| }
 | |
| 
 | |
| uint64_t IRAM_ATTR esp_timer_impl_get_time()
 | |
| {
 | |
|     uint32_t timer_val;
 | |
|     uint64_t time_base;
 | |
|     uint32_t ticks_per_us;
 | |
|     bool overflow;
 | |
| 
 | |
|     do {
 | |
|         /* Read all values needed to calculate current time */
 | |
|         timer_val = REG_READ(FRC_TIMER_COUNT_REG(1));
 | |
|         time_base = s_time_base_us;
 | |
|         overflow = timer_overflow_happened();
 | |
|         ticks_per_us = s_timer_ticks_per_us;
 | |
| 
 | |
|         /* Read them again and compare */
 | |
|         /* In this function, do not call timer_count_reload() when overflow is true.
 | |
|          * Because there's remain count enough to allow FRC_TIMER_COUNT_REG grow
 | |
|          */
 | |
|         if (REG_READ(FRC_TIMER_COUNT_REG(1)) > timer_val &&
 | |
|                 time_base == *((volatile uint64_t*) &s_time_base_us) &&
 | |
|                 ticks_per_us == *((volatile uint32_t*) &s_timer_ticks_per_us) &&
 | |
|                 overflow == timer_overflow_happened()) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* If any value has changed (other than the counter increasing), read again */
 | |
|     } while(true);
 | |
| 
 | |
|     uint64_t result = time_base
 | |
|                         + timer_val / ticks_per_us;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void IRAM_ATTR esp_timer_impl_set_alarm(uint64_t timestamp)
 | |
| {
 | |
|     portENTER_CRITICAL(&s_time_update_lock);
 | |
|     // Alarm time relative to the moment when counter was 0
 | |
|     uint64_t time_after_timebase_us = timestamp - s_time_base_us;
 | |
|     // Adjust current time if overflow has happened
 | |
|     bool overflow = timer_overflow_happened();
 | |
|     uint64_t cur_count = REG_READ(FRC_TIMER_COUNT_REG(1));
 | |
| 
 | |
|     if (overflow) {
 | |
|         assert(time_after_timebase_us > s_timer_us_per_overflow);
 | |
|         time_after_timebase_us -= s_timer_us_per_overflow;
 | |
|         s_overflow_happened = true;
 | |
|     }
 | |
|     // Calculate desired timer compare value (may exceed 2^32-1)
 | |
|     uint64_t compare_val = time_after_timebase_us * s_timer_ticks_per_us;
 | |
|     uint32_t alarm_reg_val = ALARM_OVERFLOW_VAL;
 | |
|     // Use calculated alarm value if it is less than ALARM_OVERFLOW_VAL.
 | |
|     // Note that if by the time we update ALARM_REG, COUNT_REG value is higher,
 | |
|     // interrupt will not happen for another ALARM_OVERFLOW_VAL timer ticks,
 | |
|     // so need to check if alarm value is too close in the future (e.g. <2 us away).
 | |
|     const uint32_t offset = s_timer_ticks_per_us * 2;
 | |
|     if (compare_val < ALARM_OVERFLOW_VAL) {
 | |
|         if (compare_val < cur_count + offset) {
 | |
|             compare_val = cur_count + offset;
 | |
|             if (compare_val > ALARM_OVERFLOW_VAL) {
 | |
|                 compare_val = ALARM_OVERFLOW_VAL;
 | |
|             }
 | |
|         }
 | |
|         alarm_reg_val = (uint32_t) compare_val;
 | |
|     }
 | |
|     REG_WRITE(FRC_TIMER_ALARM_REG(1), alarm_reg_val);
 | |
|     portEXIT_CRITICAL(&s_time_update_lock);
 | |
| }
 | |
| 
 | |
| static void IRAM_ATTR timer_alarm_isr(void *arg)
 | |
| {
 | |
|     portENTER_CRITICAL_ISR(&s_time_update_lock);
 | |
|     // Timekeeping: adjust s_time_base_us if counter has passed ALARM_OVERFLOW_VAL
 | |
|     if (timer_overflow_happened()) {
 | |
|         timer_count_reload();
 | |
|         s_time_base_us += s_timer_us_per_overflow;
 | |
|         s_overflow_happened = false;
 | |
|     }
 | |
|     s_mask_overflow = false;
 | |
|     // Clear interrupt status
 | |
|     REG_WRITE(FRC_TIMER_INT_REG(1), FRC_TIMER_INT_CLR);
 | |
|     // Set alarm to the next overflow moment. Later, upper layer function may
 | |
|     // call esp_timer_impl_set_alarm to change this to an earlier value.
 | |
|     REG_WRITE(FRC_TIMER_ALARM_REG(1), ALARM_OVERFLOW_VAL);
 | |
|     portEXIT_CRITICAL_ISR(&s_time_update_lock);
 | |
|     // Call the upper layer handler
 | |
|     (*s_alarm_handler)(arg);
 | |
| }
 | |
| 
 | |
| void IRAM_ATTR esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us)
 | |
| {
 | |
|     portENTER_CRITICAL_ISR(&s_time_update_lock);
 | |
|     /* Bail out if the timer is not initialized yet */
 | |
|     if (s_timer_interrupt_handle == NULL) {
 | |
|         portEXIT_CRITICAL_ISR(&s_time_update_lock);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     uint32_t new_ticks_per_us = apb_ticks_per_us / TIMER_DIV;
 | |
|     uint32_t alarm = REG_READ(FRC_TIMER_ALARM_REG(1));
 | |
|     uint32_t count = REG_READ(FRC_TIMER_COUNT_REG(1));
 | |
|     uint64_t ticks_to_alarm = alarm - count;
 | |
|     uint64_t new_ticks = (ticks_to_alarm * new_ticks_per_us) / s_timer_ticks_per_us;
 | |
|     uint32_t new_alarm_val;
 | |
|     if (alarm > count && new_ticks <= ALARM_OVERFLOW_VAL) {
 | |
|         new_alarm_val = new_ticks;
 | |
|     } else {
 | |
|         new_alarm_val = ALARM_OVERFLOW_VAL;
 | |
|         if (alarm != ALARM_OVERFLOW_VAL) {
 | |
|             s_mask_overflow = true;
 | |
|         }
 | |
|     }
 | |
|     REG_WRITE(FRC_TIMER_ALARM_REG(1), new_alarm_val);
 | |
|     REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
 | |
| 
 | |
|     s_time_base_us += count / s_timer_ticks_per_us;
 | |
| 
 | |
| #ifdef CONFIG_PM_DFS_USE_RTC_TIMER_REF
 | |
|     // Due to the extra time required to read RTC time, don't attempt this
 | |
|     // adjustment when switching to a higher frequency (which usually
 | |
|     // happens in an interrupt).
 | |
|     if (new_ticks_per_us < s_timer_ticks_per_us) {
 | |
|         uint64_t rtc_time = esp_clk_rtc_time();
 | |
|         uint64_t new_rtc_time_diff = s_time_base_us - rtc_time;
 | |
|         if (s_rtc_time_diff != 0) {
 | |
|             uint64_t correction = new_rtc_time_diff - s_rtc_time_diff;
 | |
|             s_time_base_us -= correction;
 | |
|         } else {
 | |
|             s_rtc_time_diff = new_rtc_time_diff;
 | |
|         }
 | |
|     }
 | |
| #endif // CONFIG_PM_DFS_USE_RTC_TIMER_REF
 | |
| 
 | |
|     s_timer_ticks_per_us = new_ticks_per_us;
 | |
|     s_timer_us_per_overflow = ALARM_OVERFLOW_VAL / new_ticks_per_us;
 | |
| 
 | |
|     portEXIT_CRITICAL_ISR(&s_time_update_lock);
 | |
| }
 | |
| 
 | |
| void esp_timer_impl_advance(int64_t time_us)
 | |
| {
 | |
|     assert(time_us > 0 && "negative adjustments not supported yet");
 | |
| 
 | |
|     portENTER_CRITICAL(&s_time_update_lock);
 | |
|     uint64_t count = REG_READ(FRC_TIMER_COUNT_REG(1));
 | |
|     /* Trigger an ISR to handle past alarms and set new one.
 | |
|      * ISR handler will run once we exit the critical section.
 | |
|      */
 | |
|     REG_WRITE(FRC_TIMER_ALARM_REG(1), 0);
 | |
|     REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
 | |
|     s_time_base_us += count / s_timer_ticks_per_us + time_us;
 | |
|     s_overflow_happened = false;
 | |
|     portEXIT_CRITICAL(&s_time_update_lock);
 | |
| }
 | |
| 
 | |
| esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler)
 | |
| {
 | |
|     s_alarm_handler = alarm_handler;
 | |
| 
 | |
|     esp_err_t err = esp_intr_alloc(ETS_TIMER2_INTR_SOURCE,
 | |
|             ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_IRAM,
 | |
|             &timer_alarm_isr, NULL, &s_timer_interrupt_handle);
 | |
| 
 | |
|     if (err != ESP_OK) {
 | |
|         ESP_EARLY_LOGE(TAG, "esp_intr_alloc failed (0x%0x)", err);
 | |
|         return err;
 | |
|     }
 | |
| 
 | |
|     uint32_t apb_freq = rtc_clk_apb_freq_get();
 | |
|     s_timer_ticks_per_us = apb_freq / 1000000 / TIMER_DIV;
 | |
|     assert(s_timer_ticks_per_us > 0
 | |
|             && apb_freq % TIMER_DIV == 0
 | |
|             && "APB frequency does not result in a valid ticks_per_us value");
 | |
|     s_timer_us_per_overflow = ALARM_OVERFLOW_VAL / s_timer_ticks_per_us;
 | |
|     s_time_base_us = 0;
 | |
| 
 | |
|     REG_WRITE(FRC_TIMER_ALARM_REG(1), ALARM_OVERFLOW_VAL);
 | |
|     REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
 | |
|     REG_WRITE(FRC_TIMER_CTRL_REG(1),
 | |
|             TIMER_DIV_CFG | FRC_TIMER_ENABLE | FRC_TIMER_LEVEL_INT);
 | |
|     REG_WRITE(FRC_TIMER_INT_REG(1), FRC_TIMER_INT_CLR);
 | |
|     ESP_ERROR_CHECK( esp_intr_enable(s_timer_interrupt_handle) );
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| void esp_timer_impl_deinit()
 | |
| {
 | |
|     esp_intr_disable(s_timer_interrupt_handle);
 | |
| 
 | |
|     REG_WRITE(FRC_TIMER_CTRL_REG(1), 0);
 | |
|     REG_WRITE(FRC_TIMER_ALARM_REG(1), 0);
 | |
|     REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
 | |
| 
 | |
|     esp_intr_free(s_timer_interrupt_handle);
 | |
|     s_timer_interrupt_handle = NULL;
 | |
| }
 | |
| 
 | |
| // FIXME: This value is safe for 80MHz APB frequency.
 | |
| // Should be modified to depend on clock frequency.
 | |
| 
 | |
| uint64_t IRAM_ATTR esp_timer_impl_get_min_period_us()
 | |
| {
 | |
|     return 50;
 | |
| }
 | |
| 
 | |
| #ifdef ESP_TIMER_DYNAMIC_OVERFLOW_VAL
 | |
| uint32_t esp_timer_impl_get_overflow_val()
 | |
| {
 | |
|     return s_alarm_overflow_val;
 | |
| }
 | |
| 
 | |
| void esp_timer_impl_set_overflow_val(uint32_t overflow_val)
 | |
| {
 | |
|     s_alarm_overflow_val = overflow_val;
 | |
|     /* update alarm value */
 | |
|     esp_timer_impl_update_apb_freq(esp_clk_apb_freq() / 1000000);
 | |
| }
 | |
| #endif // ESP_TIMER_DYNAMIC_OVERFLOW_VAL
 |