mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-28 05:31:44 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			1102 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1102 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  Driver bits for PSRAM chips (at the moment only the ESP-PSRAM32 chip).
 | |
| */
 | |
| 
 | |
| // Copyright 2013-2017 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| 
 | |
| #include "sdkconfig.h"
 | |
| #include "string.h"
 | |
| #include "esp_attr.h"
 | |
| #include "esp_err.h"
 | |
| #include "esp_types.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_efuse.h"
 | |
| #include "spiram_psram.h"
 | |
| #include "esp32/rom/spi_flash.h"
 | |
| #include "esp32/rom/cache.h"
 | |
| #include "esp32/rom/efuse.h"
 | |
| #include "esp_rom_efuse.h"
 | |
| #include "soc/dport_reg.h"
 | |
| #include "soc/efuse_periph.h"
 | |
| #include "soc/soc_caps.h"
 | |
| #include "driver/gpio.h"
 | |
| #include "hal/gpio_hal.h"
 | |
| #include "driver/spi_common_internal.h"
 | |
| #include "driver/periph_ctrl.h"
 | |
| #include "bootloader_common.h"
 | |
| #include "esp_rom_gpio.h"
 | |
| #include "bootloader_flash_config.h"
 | |
| 
 | |
| #if CONFIG_SPIRAM
 | |
| #include "soc/rtc.h"
 | |
| 
 | |
| //Commands for PSRAM chip
 | |
| #define PSRAM_READ                 0x03
 | |
| #define PSRAM_FAST_READ            0x0B
 | |
| #define PSRAM_FAST_READ_DUMMY      0x3
 | |
| #define PSRAM_FAST_READ_QUAD       0xEB
 | |
| #define PSRAM_FAST_READ_QUAD_DUMMY 0x5
 | |
| #define PSRAM_WRITE                0x02
 | |
| #define PSRAM_QUAD_WRITE           0x38
 | |
| #define PSRAM_ENTER_QMODE          0x35
 | |
| #define PSRAM_EXIT_QMODE           0xF5
 | |
| #define PSRAM_RESET_EN             0x66
 | |
| #define PSRAM_RESET                0x99
 | |
| #define PSRAM_SET_BURST_LEN        0xC0
 | |
| #define PSRAM_DEVICE_ID            0x9F
 | |
| 
 | |
| typedef enum {
 | |
|     PSRAM_CLK_MODE_NORM = 0,    /*!< Normal SPI mode */
 | |
|     PSRAM_CLK_MODE_DCLK = 1,    /*!< Two extra clock cycles after CS is set high level */
 | |
| } psram_clk_mode_t;
 | |
| 
 | |
| #define PSRAM_ID_KGD_M          0xff
 | |
| #define PSRAM_ID_KGD_S             8
 | |
| #define PSRAM_ID_KGD            0x5d
 | |
| #define PSRAM_ID_EID_M          0xff
 | |
| #define PSRAM_ID_EID_S            16
 | |
| 
 | |
| // Use the [7:5](bit7~bit5) of EID to distinguish the psram size:
 | |
| //
 | |
| //   BIT7  |  BIT6  |  BIT5  |  SIZE(MBIT)
 | |
| //   -------------------------------------
 | |
| //    0    |   0    |   0    |     16
 | |
| //    0    |   0    |   1    |     32
 | |
| //    0    |   1    |   0    |     64
 | |
| #define PSRAM_EID_SIZE_M         0x07
 | |
| #define PSRAM_EID_SIZE_S            5
 | |
| 
 | |
| typedef enum {
 | |
|     PSRAM_EID_SIZE_16MBITS = 0,
 | |
|     PSRAM_EID_SIZE_32MBITS = 1,
 | |
|     PSRAM_EID_SIZE_64MBITS = 2,
 | |
| } psram_eid_size_t;
 | |
| 
 | |
| #define PSRAM_KGD(id)         (((id) >> PSRAM_ID_KGD_S) & PSRAM_ID_KGD_M)
 | |
| #define PSRAM_EID(id)         (((id) >> PSRAM_ID_EID_S) & PSRAM_ID_EID_M)
 | |
| #define PSRAM_SIZE_ID(id)     ((PSRAM_EID(id) >> PSRAM_EID_SIZE_S) & PSRAM_EID_SIZE_M)
 | |
| #define PSRAM_IS_VALID(id)    (PSRAM_KGD(id) == PSRAM_ID_KGD)
 | |
| 
 | |
| // For the old version 32Mbit psram, using the spicial driver */
 | |
| #define PSRAM_IS_32MBIT_VER0(id)  (PSRAM_EID(id) == 0x20)
 | |
| #define PSRAM_IS_64MBIT_TRIAL(id) (PSRAM_EID(id) == 0x26)
 | |
| 
 | |
| // IO-pins for PSRAM.
 | |
| // WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines
 | |
| // hardcode the flash pins as well, making this code incompatible with either a setup
 | |
| // that has the flash on non-standard pins or ESP32s with built-in flash.
 | |
| #define PSRAM_SPIQ_SD0_IO          7
 | |
| #define PSRAM_SPID_SD1_IO          8
 | |
| #define PSRAM_SPIWP_SD3_IO         10
 | |
| #define PSRAM_SPIHD_SD2_IO         9
 | |
| 
 | |
| #define FLASH_HSPI_CLK_IO          14
 | |
| #define FLASH_HSPI_CS_IO           15
 | |
| #define PSRAM_HSPI_SPIQ_SD0_IO     12
 | |
| #define PSRAM_HSPI_SPID_SD1_IO     13
 | |
| #define PSRAM_HSPI_SPIWP_SD3_IO    2
 | |
| #define PSRAM_HSPI_SPIHD_SD2_IO    4
 | |
| 
 | |
| // PSRAM clock and cs IO should be configured based on hardware design.
 | |
| // For ESP32-WROVER or ESP32-WROVER-B module, the clock IO is IO17, the cs IO is IO16,
 | |
| // they are the default value for these two configs.
 | |
| #define D0WD_PSRAM_CLK_IO          CONFIG_D0WD_PSRAM_CLK_IO  // Default value is 17
 | |
| #define D0WD_PSRAM_CS_IO           CONFIG_D0WD_PSRAM_CS_IO   // Default value is 16
 | |
| 
 | |
| #define D2WD_PSRAM_CLK_IO          CONFIG_D2WD_PSRAM_CLK_IO  // Default value is 9
 | |
| #define D2WD_PSRAM_CS_IO           CONFIG_D2WD_PSRAM_CS_IO   // Default value is 10
 | |
| 
 | |
| // There is no reason to change the pin of an embedded psram.
 | |
| // So define the number of pin directly, instead of configurable.
 | |
| #define D0WDR2_V3_PSRAM_CLK_IO    6
 | |
| #define D0WDR2_V3_PSRAM_CS_IO     16
 | |
| 
 | |
| // For ESP32-PICO chip, the psram share clock with flash. The flash clock pin is fixed, which is IO6.
 | |
| #define PICO_PSRAM_CLK_IO          6
 | |
| #define PICO_PSRAM_CS_IO           CONFIG_PICO_PSRAM_CS_IO   // Default value is 10
 | |
| 
 | |
| #define PICO_V3_02_PSRAM_CLK_IO    10
 | |
| #define PICO_V3_02_PSRAM_CS_IO     9
 | |
| 
 | |
| typedef struct {
 | |
|     uint8_t flash_clk_io;
 | |
|     uint8_t flash_cs_io;
 | |
|     uint8_t psram_clk_io;
 | |
|     uint8_t psram_cs_io;
 | |
|     uint8_t psram_spiq_sd0_io;
 | |
|     uint8_t psram_spid_sd1_io;
 | |
|     uint8_t psram_spiwp_sd3_io;
 | |
|     uint8_t psram_spihd_sd2_io;
 | |
| } psram_io_t;
 | |
| 
 | |
| #define PSRAM_INTERNAL_IO_28       28
 | |
| #define PSRAM_INTERNAL_IO_29       29
 | |
| #define PSRAM_IO_MATRIX_DUMMY_40M  ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_40M
 | |
| #define PSRAM_IO_MATRIX_DUMMY_80M  ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_80M
 | |
| 
 | |
| #define _SPI_CACHE_PORT             0
 | |
| #define _SPI_FLASH_PORT             1
 | |
| #define _SPI_80M_CLK_DIV            1
 | |
| #define _SPI_40M_CLK_DIV            2
 | |
| 
 | |
| //For 4MB PSRAM, we need one more SPI host, select which one to use by kconfig
 | |
| #ifdef CONFIG_SPIRAM_OCCUPY_HSPI_HOST
 | |
| #define PSRAM_SPI_MODULE    PERIPH_HSPI_MODULE
 | |
| #define PSRAM_SPI_HOST      HSPI_HOST
 | |
| #define PSRAM_CLK_SIGNAL    HSPICLK_OUT_IDX
 | |
| #define PSRAM_SPI_NUM       PSRAM_SPI_2
 | |
| #define PSRAM_SPICLKEN      DPORT_SPI2_CLK_EN
 | |
| #elif defined CONFIG_SPIRAM_OCCUPY_VSPI_HOST
 | |
| #define PSRAM_SPI_MODULE    PERIPH_VSPI_MODULE
 | |
| #define PSRAM_SPI_HOST      VSPI_HOST
 | |
| #define PSRAM_CLK_SIGNAL    VSPICLK_OUT_IDX
 | |
| #define PSRAM_SPI_NUM       PSRAM_SPI_3
 | |
| #define PSRAM_SPICLKEN      DPORT_SPI3_CLK_EN
 | |
| #else   //set to SPI avoid HSPI and VSPI being used
 | |
| #define PSRAM_SPI_MODULE    PERIPH_SPI_MODULE
 | |
| #define PSRAM_SPI_HOST      SPI_HOST
 | |
| #define PSRAM_CLK_SIGNAL    SPICLK_OUT_IDX
 | |
| #define PSRAM_SPI_NUM       PSRAM_SPI_1
 | |
| #define PSRAM_SPICLKEN      DPORT_SPI01_CLK_EN
 | |
| #endif
 | |
| 
 | |
| static const char* TAG = "psram";
 | |
| typedef enum {
 | |
|     PSRAM_SPI_1  = 0x1,
 | |
|     PSRAM_SPI_2,
 | |
|     PSRAM_SPI_3,
 | |
|     PSRAM_SPI_MAX ,
 | |
| } psram_spi_num_t;
 | |
| 
 | |
| static psram_cache_mode_t s_psram_mode = PSRAM_CACHE_MAX;
 | |
| static psram_clk_mode_t s_clk_mode = PSRAM_CLK_MODE_DCLK;
 | |
| static uint64_t s_psram_id = 0;
 | |
| static bool s_2t_mode_enabled = false;
 | |
| 
 | |
| /* dummy_len_plus values defined in ROM for SPI flash configuration */
 | |
| extern uint8_t g_rom_spiflash_dummy_len_plus[];
 | |
| static int extra_dummy = 0;
 | |
| typedef enum {
 | |
|     PSRAM_CMD_QPI,
 | |
|     PSRAM_CMD_SPI,
 | |
| } psram_cmd_mode_t;
 | |
| 
 | |
| typedef struct {
 | |
|     uint16_t cmd;                /*!< Command value */
 | |
|     uint16_t cmdBitLen;          /*!< Command byte length*/
 | |
|     uint32_t *addr;              /*!< Point to address value*/
 | |
|     uint16_t addrBitLen;         /*!< Address byte length*/
 | |
|     uint32_t *txData;            /*!< Point to send data buffer*/
 | |
|     uint16_t txDataBitLen;       /*!< Send data byte length.*/
 | |
|     uint32_t *rxData;            /*!< Point to recevie data buffer*/
 | |
|     uint16_t rxDataBitLen;       /*!< Recevie Data byte length.*/
 | |
|     uint32_t dummyBitLen;
 | |
| } psram_cmd_t;
 | |
| 
 | |
| static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode);
 | |
| 
 | |
| static uint8_t s_psram_cs_io = (uint8_t)-1;
 | |
| 
 | |
| uint8_t psram_get_cs_io(void)
 | |
| {
 | |
|     return s_psram_cs_io;
 | |
| }
 | |
| 
 | |
| static void psram_clear_spi_fifo(psram_spi_num_t spi_num)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         WRITE_PERI_REG(SPI_W0_REG(spi_num)+i*4, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //set basic SPI write mode
 | |
| static void psram_set_basic_write_mode(psram_spi_num_t spi_num)
 | |
| {
 | |
|     CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
 | |
|     CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
 | |
|     CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
 | |
|     CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
 | |
| }
 | |
| //set QPI write mode
 | |
| static void psram_set_qio_write_mode(psram_spi_num_t spi_num)
 | |
| {
 | |
|     SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
 | |
|     CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
 | |
|     CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
 | |
|     CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
 | |
| }
 | |
| //set QPI read mode
 | |
| static void psram_set_qio_read_mode(psram_spi_num_t spi_num)
 | |
| {
 | |
|     SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
 | |
|     CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
 | |
|     CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
 | |
|     CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
 | |
| }
 | |
| //set SPI read mode
 | |
| static void psram_set_basic_read_mode(psram_spi_num_t spi_num)
 | |
| {
 | |
|     CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
 | |
|     CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
 | |
|     CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
 | |
|     CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
 | |
| }
 | |
| 
 | |
| 
 | |
| //start sending cmd/addr and optionally, receiving data
 | |
| static void IRAM_ATTR psram_cmd_recv_start(psram_spi_num_t spi_num, uint32_t* pRxData, uint16_t rxByteLen,
 | |
|         psram_cmd_mode_t cmd_mode)
 | |
| {
 | |
|     //get cs1
 | |
|     CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
 | |
|     SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
 | |
| 
 | |
|     uint32_t mode_backup = (READ_PERI_REG(SPI_USER_REG(spi_num)) >> SPI_FWRITE_DUAL_S) & 0xf;
 | |
|     uint32_t rd_mode_backup = READ_PERI_REG(SPI_CTRL_REG(spi_num)) & (SPI_FREAD_DIO_M | SPI_FREAD_DUAL_M | SPI_FREAD_QUAD_M | SPI_FREAD_QIO_M);
 | |
|     if (cmd_mode == PSRAM_CMD_SPI) {
 | |
|         psram_set_basic_write_mode(spi_num);
 | |
|         psram_set_basic_read_mode(spi_num);
 | |
|     } else if (cmd_mode == PSRAM_CMD_QPI) {
 | |
|         psram_set_qio_write_mode(spi_num);
 | |
|         psram_set_qio_read_mode(spi_num);
 | |
|     }
 | |
| 
 | |
|     //Wait for SPI0 to idle
 | |
|     while ( READ_PERI_REG(SPI_EXT2_REG(0)) != 0);
 | |
|     DPORT_SET_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
 | |
| 
 | |
|     // Start send data
 | |
|     SET_PERI_REG_MASK(SPI_CMD_REG(spi_num), SPI_USR);
 | |
|     while ((READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR));
 | |
|     DPORT_CLEAR_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
 | |
| 
 | |
|     //recover spi mode
 | |
|     SET_PERI_REG_BITS(SPI_USER_REG(spi_num), (pRxData?SPI_FWRITE_DUAL_M:0xf), mode_backup, SPI_FWRITE_DUAL_S);
 | |
|     CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), (SPI_FREAD_DIO_M|SPI_FREAD_DUAL_M|SPI_FREAD_QUAD_M|SPI_FREAD_QIO_M));
 | |
|     SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), rd_mode_backup);
 | |
| 
 | |
|     //return cs to cs0
 | |
|     SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
 | |
|     CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
 | |
| 
 | |
|     if (pRxData) {
 | |
|         int idx = 0;
 | |
|         // Read data out
 | |
|         do {
 | |
|             *pRxData++ = READ_PERI_REG(SPI_W0_REG(spi_num) + (idx << 2));
 | |
|         } while (++idx < ((rxByteLen / 4) + ((rxByteLen % 4) ? 1 : 0)));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t backup_usr[3];
 | |
| static uint32_t backup_usr1[3];
 | |
| static uint32_t backup_usr2[3];
 | |
| 
 | |
| //setup spi command/addr/data/dummy in user mode
 | |
| static int psram_cmd_config(psram_spi_num_t spi_num, psram_cmd_t* pInData)
 | |
| {
 | |
|     while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
 | |
|     backup_usr[spi_num]=READ_PERI_REG(SPI_USER_REG(spi_num));
 | |
|     backup_usr1[spi_num]=READ_PERI_REG(SPI_USER1_REG(spi_num));
 | |
|     backup_usr2[spi_num]=READ_PERI_REG(SPI_USER2_REG(spi_num));
 | |
|     // Set command by user.
 | |
|     if (pInData->cmdBitLen != 0) {
 | |
|         // Max command length 16 bits.
 | |
|         SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, pInData->cmdBitLen - 1,
 | |
|                 SPI_USR_COMMAND_BITLEN_S);
 | |
|         // Enable command
 | |
|         SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
 | |
|         // Load command,bit15-0 is cmd value.
 | |
|         SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_VALUE, pInData->cmd, SPI_USR_COMMAND_VALUE_S);
 | |
|     } else {
 | |
|         CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
 | |
|         SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, 0, SPI_USR_COMMAND_BITLEN_S);
 | |
|     }
 | |
|     // Set Address by user.
 | |
|     if (pInData->addrBitLen != 0) {
 | |
|         SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, (pInData->addrBitLen - 1), SPI_USR_ADDR_BITLEN_S);
 | |
|         // Enable address
 | |
|         SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
 | |
|         // Set address
 | |
|         WRITE_PERI_REG(SPI_ADDR_REG(spi_num), *pInData->addr);
 | |
|     } else {
 | |
|         CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
 | |
|         SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, 0, SPI_USR_ADDR_BITLEN_S);
 | |
|     }
 | |
|     // Set data by user.
 | |
|     uint32_t* p_tx_val = pInData->txData;
 | |
|     if (pInData->txDataBitLen != 0) {
 | |
|         // Enable MOSI
 | |
|         SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
 | |
|         // Load send buffer
 | |
|         int len = (pInData->txDataBitLen + 31) / 32;
 | |
|         if (p_tx_val != NULL) {
 | |
|             memcpy((void*)SPI_W0_REG(spi_num), p_tx_val, len * 4);
 | |
|         }
 | |
|         // Set data send buffer length.Max data length 64 bytes.
 | |
|         SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, (pInData->txDataBitLen - 1),
 | |
|                 SPI_USR_MOSI_DBITLEN_S);
 | |
|     } else {
 | |
|         CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
 | |
|         SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, 0, SPI_USR_MOSI_DBITLEN_S);
 | |
|     }
 | |
|     // Set rx data by user.
 | |
|     if (pInData->rxDataBitLen != 0) {
 | |
|         // Enable MOSI
 | |
|         SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
 | |
|         // Set data send buffer length.Max data length 64 bytes.
 | |
|         SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, (pInData->rxDataBitLen - 1),
 | |
|                 SPI_USR_MISO_DBITLEN_S);
 | |
|     } else {
 | |
|         CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
 | |
|         SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, 0, SPI_USR_MISO_DBITLEN_S);
 | |
|     }
 | |
|     if (pInData->dummyBitLen != 0) {
 | |
|         SET_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
 | |
|         SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, pInData->dummyBitLen - 1,
 | |
|                 SPI_USR_DUMMY_CYCLELEN_S);  //DUMMY
 | |
|     } else {
 | |
|         CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
 | |
|         SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, 0, SPI_USR_DUMMY_CYCLELEN_S);  //DUMMY
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void psram_cmd_end(int spi_num) {
 | |
|     while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
 | |
|     WRITE_PERI_REG(SPI_USER_REG(spi_num), backup_usr[spi_num]);
 | |
|     WRITE_PERI_REG(SPI_USER1_REG(spi_num), backup_usr1[spi_num]);
 | |
|     WRITE_PERI_REG(SPI_USER2_REG(spi_num), backup_usr2[spi_num]);
 | |
| }
 | |
| 
 | |
| //exit QPI mode(set back to SPI mode)
 | |
| static void psram_disable_qio_mode(psram_spi_num_t spi_num)
 | |
| {
 | |
|     psram_cmd_t ps_cmd;
 | |
|     uint32_t cmd_exit_qpi;
 | |
|     cmd_exit_qpi = PSRAM_EXIT_QMODE;
 | |
|     ps_cmd.txDataBitLen = 8;
 | |
|     if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
 | |
|         switch (s_psram_mode) {
 | |
|             case PSRAM_CACHE_F80M_S80M:
 | |
|                 break;
 | |
|             case PSRAM_CACHE_F80M_S40M:
 | |
|             case PSRAM_CACHE_F40M_S40M:
 | |
|             default:
 | |
|                 cmd_exit_qpi = PSRAM_EXIT_QMODE << 8;
 | |
|                 ps_cmd.txDataBitLen = 16;
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
|     ps_cmd.txData = &cmd_exit_qpi;
 | |
|     ps_cmd.cmd = 0;
 | |
|     ps_cmd.cmdBitLen = 0;
 | |
|     ps_cmd.addr = 0;
 | |
|     ps_cmd.addrBitLen = 0;
 | |
|     ps_cmd.rxData = NULL;
 | |
|     ps_cmd.rxDataBitLen = 0;
 | |
|     ps_cmd.dummyBitLen = 0;
 | |
|     psram_cmd_config(spi_num, &ps_cmd);
 | |
|     psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_QPI);
 | |
|     psram_cmd_end(spi_num);
 | |
| }
 | |
| 
 | |
| //read psram id, should issue `psram_disable_qio_mode` before calling this
 | |
| static void psram_read_id(psram_spi_num_t spi_num, uint64_t* dev_id)
 | |
| {
 | |
|     uint32_t dummy_bits = 0 + extra_dummy;
 | |
|     uint32_t psram_id[2] = {0};
 | |
|     psram_cmd_t ps_cmd;
 | |
| 
 | |
|     uint32_t addr = 0;
 | |
|     ps_cmd.addrBitLen = 3 * 8;
 | |
|     ps_cmd.cmd = PSRAM_DEVICE_ID;
 | |
|     ps_cmd.cmdBitLen = 8;
 | |
|     if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
 | |
|         switch (s_psram_mode) {
 | |
|             case PSRAM_CACHE_F80M_S80M:
 | |
|                 break;
 | |
|             case PSRAM_CACHE_F80M_S40M:
 | |
|             case PSRAM_CACHE_F40M_S40M:
 | |
|             default:
 | |
|                 ps_cmd.cmdBitLen = 2;   //this two bits is used to delay 2 clock cycle
 | |
|                 ps_cmd.cmd = 0;
 | |
|                 addr = (PSRAM_DEVICE_ID << 24) | 0;
 | |
|                 ps_cmd.addrBitLen = 4 * 8;
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
|     ps_cmd.addr = &addr;
 | |
|     ps_cmd.txDataBitLen = 0;
 | |
|     ps_cmd.txData = NULL;
 | |
|     ps_cmd.rxDataBitLen = 8 * 8;
 | |
|     ps_cmd.rxData = psram_id;
 | |
|     ps_cmd.dummyBitLen = dummy_bits;
 | |
| 
 | |
|     psram_cmd_config(spi_num, &ps_cmd);
 | |
|     psram_clear_spi_fifo(spi_num);
 | |
|     psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_SPI);
 | |
|     psram_cmd_end(spi_num);
 | |
|     *dev_id = (uint64_t)(((uint64_t)psram_id[1] << 32) | psram_id[0]);
 | |
| }
 | |
| 
 | |
| //enter QPI mode
 | |
| static esp_err_t IRAM_ATTR psram_enable_qio_mode(psram_spi_num_t spi_num)
 | |
| {
 | |
|     psram_cmd_t ps_cmd;
 | |
|     uint32_t addr = (PSRAM_ENTER_QMODE << 24) | 0;
 | |
| 
 | |
|     ps_cmd.cmdBitLen = 0;
 | |
|     if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
 | |
|         switch (s_psram_mode) {
 | |
|             case PSRAM_CACHE_F80M_S80M:
 | |
|                 break;
 | |
|             case PSRAM_CACHE_F80M_S40M:
 | |
|             case PSRAM_CACHE_F40M_S40M:
 | |
|             default:
 | |
|                 ps_cmd.cmdBitLen = 2;
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
|     ps_cmd.cmd = 0;
 | |
|     ps_cmd.addr = &addr;
 | |
|     ps_cmd.addrBitLen = 8;
 | |
|     ps_cmd.txData = NULL;
 | |
|     ps_cmd.txDataBitLen = 0;
 | |
|     ps_cmd.rxData = NULL;
 | |
|     ps_cmd.rxDataBitLen = 0;
 | |
|     ps_cmd.dummyBitLen = 0;
 | |
|     psram_cmd_config(spi_num, &ps_cmd);
 | |
|     psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
 | |
|     psram_cmd_end(spi_num);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| #if CONFIG_SPIRAM_2T_MODE
 | |
| // use SPI user mode to write psram
 | |
| static void spi_user_psram_write(psram_spi_num_t spi_num, uint32_t address, uint32_t *data_buffer, uint32_t data_len)
 | |
| {
 | |
|     uint32_t addr = (PSRAM_QUAD_WRITE << 24) | (address & 0x7fffff);
 | |
|     psram_cmd_t ps_cmd;
 | |
|     ps_cmd.cmdBitLen = 0;
 | |
|     ps_cmd.cmd = 0;
 | |
|     ps_cmd.addr = &addr;
 | |
|     ps_cmd.addrBitLen = 4 * 8;
 | |
|     ps_cmd.txDataBitLen = 32 * 8;
 | |
|     ps_cmd.txData = NULL;
 | |
|     ps_cmd.rxDataBitLen = 0;
 | |
|     ps_cmd.rxData = NULL;
 | |
|     ps_cmd.dummyBitLen = 0;
 | |
| 
 | |
|     for(uint32_t i=0; i<data_len; i+=32) {
 | |
|         psram_clear_spi_fifo(spi_num);
 | |
|         addr = (PSRAM_QUAD_WRITE << 24) | ((address & 0x7fffff) + i);
 | |
|         ps_cmd.txData = data_buffer + (i / 4);
 | |
|         psram_cmd_config(spi_num, &ps_cmd);
 | |
|         psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_QPI);
 | |
|     }
 | |
|     psram_cmd_end(spi_num);
 | |
| }
 | |
| 
 | |
| // use SPI user mode to read psram
 | |
| static void spi_user_psram_read(psram_spi_num_t spi_num, uint32_t address, uint32_t *data_buffer, uint32_t data_len)
 | |
| {
 | |
|     uint32_t addr = (PSRAM_FAST_READ_QUAD << 24) | (address & 0x7fffff);
 | |
|     uint32_t dummy_bits = PSRAM_FAST_READ_QUAD_DUMMY + 1;
 | |
|     psram_cmd_t ps_cmd;
 | |
|     ps_cmd.cmdBitLen = 0;
 | |
|     ps_cmd.cmd = 0;
 | |
|     ps_cmd.addr = &addr;
 | |
|     ps_cmd.addrBitLen = 4 * 8;
 | |
|     ps_cmd.txDataBitLen = 0;
 | |
|     ps_cmd.txData = NULL;
 | |
|     ps_cmd.rxDataBitLen = 32 * 8;
 | |
|     ps_cmd.dummyBitLen = dummy_bits + extra_dummy;
 | |
| 
 | |
|     for(uint32_t i=0; i<data_len; i+=32) {
 | |
|         psram_clear_spi_fifo(spi_num);
 | |
|         addr = (PSRAM_FAST_READ_QUAD << 24) | ((address & 0x7fffff) + i);
 | |
|         ps_cmd.rxData = data_buffer + (i / 4);
 | |
|         psram_cmd_config(spi_num, &ps_cmd);
 | |
|         psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_QPI);
 | |
|     }
 | |
|     psram_cmd_end(spi_num);
 | |
| }
 | |
| 
 | |
| //enable psram 2T mode
 | |
| static esp_err_t IRAM_ATTR psram_2t_mode_enable(psram_spi_num_t spi_num)
 | |
| {
 | |
|     psram_disable_qio_mode(spi_num);
 | |
|     // configure psram clock as 5 MHz
 | |
|     uint32_t div = rtc_clk_apb_freq_get() / 5000000;
 | |
|     esp_rom_spiflash_config_clk(div, spi_num);
 | |
| 
 | |
|     psram_cmd_t ps_cmd;
 | |
| 
 | |
|     // setp1: send cmd 0x5e
 | |
|     //        send one more bit clock after send cmd
 | |
|     ps_cmd.cmd = 0x5e;
 | |
|     ps_cmd.cmdBitLen = 8;
 | |
|     ps_cmd.addrBitLen = 0;
 | |
|     ps_cmd.addr = 0;
 | |
|     ps_cmd.txDataBitLen = 0;
 | |
|     ps_cmd.txData = NULL;
 | |
|     ps_cmd.rxDataBitLen =0;
 | |
|     ps_cmd.rxData = NULL;
 | |
|     ps_cmd.dummyBitLen = 1;
 | |
|     psram_cmd_config(spi_num, &ps_cmd);
 | |
|     psram_clear_spi_fifo(spi_num);
 | |
|     psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
 | |
|     psram_cmd_end(spi_num);
 | |
| 
 | |
|     // setp2: send cmd 0x5f
 | |
|     //        send one more bit clock after send cmd
 | |
|     ps_cmd.cmd = 0x5f;
 | |
|     psram_cmd_config(spi_num, &ps_cmd);
 | |
|     psram_clear_spi_fifo(spi_num);
 | |
|     psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
 | |
|     psram_cmd_end(spi_num);
 | |
| 
 | |
|     // setp3: keep cs as high level
 | |
|     //        send 128 cycles clock
 | |
|     //        send 1 bit high levle in ninth clock from the back to PSRAM SIO1
 | |
|     GPIO_OUTPUT_SET(D0WD_PSRAM_CS_IO, 1);
 | |
|     esp_rom_gpio_connect_out_signal(D0WD_PSRAM_CS_IO, SIG_GPIO_OUT_IDX, 0, 0);
 | |
| 
 | |
|     esp_rom_gpio_connect_out_signal(PSRAM_SPID_SD1_IO, SPIQ_OUT_IDX, 0, 0);
 | |
|     esp_rom_gpio_connect_in_signal(PSRAM_SPID_SD1_IO, SPIQ_IN_IDX, 0);
 | |
|     esp_rom_gpio_connect_out_signal(PSRAM_SPIQ_SD0_IO, SPID_OUT_IDX, 0, 0);
 | |
|     esp_rom_gpio_connect_in_signal(PSRAM_SPIQ_SD0_IO, SPID_IN_IDX, 0);
 | |
| 
 | |
|     uint32_t w_data_2t[4] = {0x0, 0x0, 0x0, 0x00010000};
 | |
| 
 | |
|     ps_cmd.cmd = 0;
 | |
|     ps_cmd.cmdBitLen = 0;
 | |
|     ps_cmd.txDataBitLen = 128;
 | |
|     ps_cmd.txData = w_data_2t;
 | |
|     ps_cmd.dummyBitLen = 0;
 | |
|     psram_clear_spi_fifo(spi_num);
 | |
|     psram_cmd_config(spi_num, &ps_cmd);
 | |
|     psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
 | |
|     psram_cmd_end(spi_num);
 | |
| 
 | |
|     esp_rom_gpio_connect_out_signal(PSRAM_SPIQ_SD0_IO, SPIQ_OUT_IDX, 0, 0);
 | |
|     esp_rom_gpio_connect_in_signal(PSRAM_SPIQ_SD0_IO, SPIQ_IN_IDX, 0);
 | |
|     esp_rom_gpio_connect_out_signal(PSRAM_SPID_SD1_IO, SPID_OUT_IDX, 0, 0);
 | |
|     esp_rom_gpio_connect_in_signal(PSRAM_SPID_SD1_IO, SPID_IN_IDX, 0);
 | |
| 
 | |
|     esp_rom_gpio_connect_out_signal(D0WD_PSRAM_CS_IO, SPICS1_OUT_IDX, 0, 0);
 | |
| 
 | |
|     // setp4: send cmd 0x5f
 | |
|     //        send one more bit clock after send cmd
 | |
|     ps_cmd.cmd = 0x5f;
 | |
|     ps_cmd.cmdBitLen = 8;
 | |
|     ps_cmd.txDataBitLen = 0;
 | |
|     ps_cmd.txData = NULL;
 | |
|     ps_cmd.dummyBitLen = 1;
 | |
|     psram_cmd_config(spi_num, &ps_cmd);
 | |
|     psram_clear_spi_fifo(spi_num);
 | |
|     psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
 | |
|     psram_cmd_end(spi_num);
 | |
| 
 | |
|     // configure psram clock back to the default value
 | |
|     switch (s_psram_mode) {
 | |
|         case PSRAM_CACHE_F80M_S40M:
 | |
|         case PSRAM_CACHE_F40M_S40M:
 | |
|             esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, spi_num);
 | |
|             break;
 | |
|         case PSRAM_CACHE_F80M_S80M:
 | |
|             esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, spi_num);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|     }
 | |
|     psram_enable_qio_mode(spi_num);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| #define CHECK_DATA_LEN   (1024)
 | |
| #define CHECK_ADDR_STEP  (0x100000)
 | |
| #define SIZE_32MBIT      (0x400000)
 | |
| #define SIZE_64MBIT      (0x800000)
 | |
| 
 | |
| static esp_err_t psram_2t_mode_check(psram_spi_num_t spi_num)
 | |
| {
 | |
|     uint8_t w_check_data[CHECK_DATA_LEN] = {0};
 | |
|     uint8_t r_check_data[CHECK_DATA_LEN] = {0};
 | |
| 
 | |
|     for (uint32_t addr=0; addr<SIZE_32MBIT; addr+=CHECK_ADDR_STEP) {
 | |
|         spi_user_psram_write(spi_num, addr, (uint32_t *)w_check_data, CHECK_DATA_LEN);
 | |
|     }
 | |
| 
 | |
|     memset(w_check_data, 0xff, sizeof(w_check_data));
 | |
| 
 | |
|     for (uint32_t addr=SIZE_32MBIT; addr<SIZE_64MBIT; addr+=CHECK_ADDR_STEP) {
 | |
|         spi_user_psram_write(spi_num, addr, (uint32_t *)w_check_data, CHECK_DATA_LEN);
 | |
|     }
 | |
| 
 | |
|     for (uint32_t addr=0; addr<SIZE_32MBIT; addr+=CHECK_ADDR_STEP) {
 | |
|         spi_user_psram_read(spi_num, addr, (uint32_t *)r_check_data, CHECK_DATA_LEN);
 | |
|         for (uint32_t j=0; j<CHECK_DATA_LEN; j++) {
 | |
|             if (r_check_data[j] != 0xff) {
 | |
|                 return ESP_FAIL;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void psram_set_cs_timing(psram_spi_num_t spi_num, psram_clk_mode_t clk_mode)
 | |
| {
 | |
|     if (clk_mode == PSRAM_CLK_MODE_NORM) {
 | |
|         SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
 | |
|         // Set cs time.
 | |
|         SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_HOLD_TIME_V, 1, SPI_HOLD_TIME_S);
 | |
|         SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_SETUP_TIME_V, 0, SPI_SETUP_TIME_S);
 | |
|     } else {
 | |
|         CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //spi param init for psram
 | |
| void IRAM_ATTR psram_spi_init(psram_spi_num_t spi_num, psram_cache_mode_t mode)
 | |
| {
 | |
|     CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_TRANS_DONE << 5);
 | |
|     // SPI_CPOL & SPI_CPHA
 | |
|     CLEAR_PERI_REG_MASK(SPI_PIN_REG(spi_num), SPI_CK_IDLE_EDGE);
 | |
|     CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CK_OUT_EDGE);
 | |
|     // SPI bit order
 | |
|     CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_WR_BIT_ORDER);
 | |
|     CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_RD_BIT_ORDER);
 | |
|     // SPI bit order
 | |
|     CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_DOUTDIN);
 | |
|     // May be not must to do.
 | |
|     WRITE_PERI_REG(SPI_USER1_REG(spi_num), 0);
 | |
|     // SPI mode type
 | |
|     CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_SLAVE_MODE);
 | |
|     memset((void*)SPI_W0_REG(spi_num), 0, 16 * 4);
 | |
|     psram_set_cs_timing(spi_num, s_clk_mode);
 | |
| }
 | |
| 
 | |
| //psram gpio init , different working frequency we have different solutions
 | |
| static void IRAM_ATTR psram_gpio_config(psram_io_t *psram_io, psram_cache_mode_t mode)
 | |
| {
 | |
|     int spi_cache_dummy = 0;
 | |
|     uint32_t rd_mode_reg = READ_PERI_REG(SPI_CTRL_REG(0));
 | |
|     if (rd_mode_reg & SPI_FREAD_QIO_M) {
 | |
|         spi_cache_dummy = SPI0_R_QIO_DUMMY_CYCLELEN;
 | |
|     } else if (rd_mode_reg & SPI_FREAD_DIO_M) {
 | |
|         spi_cache_dummy = SPI0_R_DIO_DUMMY_CYCLELEN;
 | |
|         SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_ADDR_BITLEN_V, SPI0_R_DIO_ADDR_BITSLEN, SPI_USR_ADDR_BITLEN_S);
 | |
|     }  else if (rd_mode_reg & (SPI_FREAD_QUAD_M | SPI_FREAD_DUAL_M)) {
 | |
|         spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
 | |
|     } else {
 | |
|         spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
 | |
|     }
 | |
| 
 | |
|     switch (mode) {
 | |
|         case PSRAM_CACHE_F80M_S40M:
 | |
|             extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
 | |
|             g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
 | |
|             g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
 | |
|             SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S);  //DUMMY
 | |
|             esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
 | |
|             esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
 | |
|             //set drive ability for clock
 | |
|             SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
 | |
|             SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
 | |
|             break;
 | |
|         case PSRAM_CACHE_F80M_S80M:
 | |
|             extra_dummy = PSRAM_IO_MATRIX_DUMMY_80M;
 | |
|             g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
 | |
|             g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
 | |
|             SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S);  //DUMMY
 | |
|             esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
 | |
|             esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_FLASH_PORT);
 | |
|             //set drive ability for clock
 | |
|             SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
 | |
|             SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 3, FUN_DRV_S);
 | |
|             break;
 | |
|         case PSRAM_CACHE_F40M_S40M:
 | |
|             extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
 | |
|             g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
 | |
|             g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
 | |
|             SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_40M, SPI_USR_DUMMY_CYCLELEN_S);  //DUMMY
 | |
|             esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_CACHE_PORT);
 | |
|             esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
 | |
|             //set drive ability for clock
 | |
|             SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 2, FUN_DRV_S);
 | |
|             SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|     }
 | |
|     SET_PERI_REG_MASK(SPI_USER_REG(0), SPI_USR_DUMMY); // dummy enable
 | |
| 
 | |
|     // In bootloader, all the signals are already configured,
 | |
|     // We keep the following code in case the bootloader is some older version.
 | |
|     esp_rom_gpio_connect_out_signal(psram_io->flash_cs_io, SPICS0_OUT_IDX, 0, 0);
 | |
|     esp_rom_gpio_connect_out_signal(psram_io->psram_cs_io, SPICS1_OUT_IDX, 0, 0);
 | |
|     esp_rom_gpio_connect_out_signal(psram_io->psram_spiq_sd0_io, SPIQ_OUT_IDX, 0, 0);
 | |
|     esp_rom_gpio_connect_in_signal(psram_io->psram_spiq_sd0_io, SPIQ_IN_IDX, 0);
 | |
|     esp_rom_gpio_connect_out_signal(psram_io->psram_spid_sd1_io, SPID_OUT_IDX, 0, 0);
 | |
|     esp_rom_gpio_connect_in_signal(psram_io->psram_spid_sd1_io, SPID_IN_IDX, 0);
 | |
|     esp_rom_gpio_connect_out_signal(psram_io->psram_spiwp_sd3_io, SPIWP_OUT_IDX, 0, 0);
 | |
|     esp_rom_gpio_connect_in_signal(psram_io->psram_spiwp_sd3_io, SPIWP_IN_IDX, 0);
 | |
|     esp_rom_gpio_connect_out_signal(psram_io->psram_spihd_sd2_io, SPIHD_OUT_IDX, 0, 0);
 | |
|     esp_rom_gpio_connect_in_signal(psram_io->psram_spihd_sd2_io, SPIHD_IN_IDX, 0);
 | |
| 
 | |
|     //select pin function gpio
 | |
|     if ((psram_io->flash_clk_io == SPI_IOMUX_PIN_NUM_CLK) && (psram_io->flash_clk_io != psram_io->psram_clk_io)) {
 | |
|         //flash clock signal should come from IO MUX.
 | |
|         gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUNC_SD_CLK_SPICLK);
 | |
|     } else {
 | |
|         //flash clock signal should come from GPIO matrix.
 | |
|         gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], PIN_FUNC_GPIO);
 | |
|     }
 | |
|     gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[psram_io->flash_cs_io],  PIN_FUNC_GPIO);
 | |
|     gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[psram_io->psram_cs_io],  PIN_FUNC_GPIO);
 | |
|     gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], PIN_FUNC_GPIO);
 | |
|     gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io],  PIN_FUNC_GPIO);
 | |
|     gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io],  PIN_FUNC_GPIO);
 | |
|     gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], PIN_FUNC_GPIO);
 | |
|     gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], PIN_FUNC_GPIO);
 | |
| 
 | |
|     uint32_t flash_id = g_rom_flashchip.device_id;
 | |
|     if (flash_id == FLASH_ID_GD25LQ32C) {
 | |
|         // Set drive ability for 1.8v flash in 80Mhz.
 | |
|         SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_cs_io],  FUN_DRV_V, 3, FUN_DRV_S);
 | |
|         SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
 | |
|         SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_cs_io],  FUN_DRV_V, 3, FUN_DRV_S);
 | |
|         SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
 | |
|         SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io],  FUN_DRV_V, 3, FUN_DRV_S);
 | |
|         SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io],  FUN_DRV_V, 3, FUN_DRV_S);
 | |
|         SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], FUN_DRV_V, 3, FUN_DRV_S);
 | |
|         SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], FUN_DRV_V, 3, FUN_DRV_S);
 | |
|     }
 | |
| }
 | |
| 
 | |
| psram_size_t psram_get_size(void)
 | |
| {
 | |
|     if ((PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_64MBITS) || PSRAM_IS_64MBIT_TRIAL(s_psram_id)) {
 | |
|         return s_2t_mode_enabled ? PSRAM_SIZE_32MBITS : PSRAM_SIZE_64MBITS;
 | |
|     } else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_32MBITS) {
 | |
|         return PSRAM_SIZE_32MBITS;
 | |
|     } else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_16MBITS) {
 | |
|         return PSRAM_SIZE_16MBITS;
 | |
|     } else {
 | |
|         return PSRAM_SIZE_MAX;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //used in UT only
 | |
| bool psram_is_32mbit_ver0(void)
 | |
| {
 | |
|     return PSRAM_IS_32MBIT_VER0(s_psram_id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Psram mode init will overwrite original flash speed mode, so that it is possible to change psram and flash speed after OTA.
 | |
|  * Flash read mode(QIO/QOUT/DIO/DOUT) will not be changed in app bin. It is decided by bootloader, OTA can not change this mode.
 | |
|  */
 | |
| esp_err_t IRAM_ATTR psram_enable(psram_cache_mode_t mode, psram_vaddr_mode_t vaddrmode)   //psram init
 | |
| {
 | |
|     psram_io_t psram_io={0};
 | |
|     uint32_t pkg_ver = esp_efuse_get_pkg_ver();
 | |
|     if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
 | |
|         ESP_EARLY_LOGI(TAG, "This chip is ESP32-D2WD");
 | |
|         rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
 | |
|         if (cfg.tieh != RTC_VDDSDIO_TIEH_1_8V) {
 | |
|             ESP_EARLY_LOGE(TAG, "VDDSDIO is not 1.8V");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
|         psram_io.psram_clk_io = D2WD_PSRAM_CLK_IO;
 | |
|         psram_io.psram_cs_io  = D2WD_PSRAM_CS_IO;
 | |
|     } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4)) {
 | |
|         ESP_EARLY_LOGI(TAG, "This chip is ESP32-PICO");
 | |
|         rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
 | |
|         if (cfg.tieh != RTC_VDDSDIO_TIEH_3_3V) {
 | |
|             ESP_EARLY_LOGE(TAG, "VDDSDIO is not 3.3V");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
|         s_clk_mode = PSRAM_CLK_MODE_NORM;
 | |
|         psram_io.psram_clk_io = PICO_PSRAM_CLK_IO;
 | |
|         psram_io.psram_cs_io  = PICO_PSRAM_CS_IO;
 | |
|     } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOV302) {
 | |
|         ESP_EARLY_LOGI(TAG, "This chip is ESP32-PICO-V3-02");
 | |
|         rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
 | |
|         if (cfg.tieh != RTC_VDDSDIO_TIEH_3_3V) {
 | |
|             ESP_EARLY_LOGE(TAG, "VDDSDIO is not 3.3V");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
|         s_clk_mode = PSRAM_CLK_MODE_NORM;
 | |
|         psram_io.psram_clk_io = PICO_V3_02_PSRAM_CLK_IO;
 | |
|         psram_io.psram_cs_io  = PICO_V3_02_PSRAM_CS_IO;
 | |
|     } else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5)){
 | |
|         ESP_EARLY_LOGI(TAG, "This chip is ESP32-D0WD");
 | |
|         psram_io.psram_clk_io = D0WD_PSRAM_CLK_IO;
 | |
|         psram_io.psram_cs_io  = D0WD_PSRAM_CS_IO;
 | |
|     } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDR2V3) {
 | |
|         ESP_EARLY_LOGI(TAG, "This chip is ESP32-D0WDR2-V3");
 | |
|         rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
 | |
|         if (cfg.tieh != RTC_VDDSDIO_TIEH_3_3V) {
 | |
|             ESP_EARLY_LOGE(TAG, "VDDSDIO is not 3.3V");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
|         s_clk_mode = PSRAM_CLK_MODE_NORM;
 | |
|         psram_io.psram_clk_io = D0WDR2_V3_PSRAM_CLK_IO;
 | |
|         psram_io.psram_cs_io  = D0WDR2_V3_PSRAM_CS_IO;
 | |
|     } else {
 | |
|         ESP_EARLY_LOGE(TAG, "Not a valid or known package id: %d", pkg_ver);
 | |
|         abort();
 | |
|     }
 | |
|     s_psram_cs_io = psram_io.psram_cs_io;
 | |
| 
 | |
|     const uint32_t spiconfig = esp_rom_efuse_get_flash_gpio_info();
 | |
|     if (spiconfig == ESP_ROM_EFUSE_FLASH_DEFAULT_SPI) {
 | |
|         psram_io.flash_clk_io       = SPI_IOMUX_PIN_NUM_CLK;
 | |
|         psram_io.flash_cs_io        = SPI_IOMUX_PIN_NUM_CS;
 | |
|         psram_io.psram_spiq_sd0_io  = PSRAM_SPIQ_SD0_IO;
 | |
|         psram_io.psram_spid_sd1_io  = PSRAM_SPID_SD1_IO;
 | |
|         psram_io.psram_spiwp_sd3_io = PSRAM_SPIWP_SD3_IO;
 | |
|         psram_io.psram_spihd_sd2_io = PSRAM_SPIHD_SD2_IO;
 | |
|     } else if (spiconfig == ESP_ROM_EFUSE_FLASH_DEFAULT_HSPI) {
 | |
|         psram_io.flash_clk_io       = FLASH_HSPI_CLK_IO;
 | |
|         psram_io.flash_cs_io        = FLASH_HSPI_CS_IO;
 | |
|         psram_io.psram_spiq_sd0_io  = PSRAM_HSPI_SPIQ_SD0_IO;
 | |
|         psram_io.psram_spid_sd1_io  = PSRAM_HSPI_SPID_SD1_IO;
 | |
|         psram_io.psram_spiwp_sd3_io = PSRAM_HSPI_SPIWP_SD3_IO;
 | |
|         psram_io.psram_spihd_sd2_io = PSRAM_HSPI_SPIHD_SD2_IO;
 | |
|     } else {
 | |
|         psram_io.flash_clk_io       = EFUSE_SPICONFIG_RET_SPICLK(spiconfig);
 | |
|         psram_io.flash_cs_io        = EFUSE_SPICONFIG_RET_SPICS0(spiconfig);
 | |
|         psram_io.psram_spiq_sd0_io  = EFUSE_SPICONFIG_RET_SPIQ(spiconfig);
 | |
|         psram_io.psram_spid_sd1_io  = EFUSE_SPICONFIG_RET_SPID(spiconfig);
 | |
|         psram_io.psram_spihd_sd2_io = EFUSE_SPICONFIG_RET_SPIHD(spiconfig);
 | |
|         psram_io.psram_spiwp_sd3_io = bootloader_flash_get_wp_pin();
 | |
|     }
 | |
| 
 | |
|     assert(mode < PSRAM_CACHE_MAX && "we don't support any other mode for now.");
 | |
|     s_psram_mode = mode;
 | |
| 
 | |
|     WRITE_PERI_REG(SPI_EXT3_REG(0), 0x1);
 | |
|     CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_PREP_HOLD_M);
 | |
| 
 | |
|     psram_spi_init(PSRAM_SPI_1, mode);
 | |
| 
 | |
|     switch (mode) {
 | |
|         case PSRAM_CACHE_F80M_S80M:
 | |
|             esp_rom_gpio_connect_out_signal(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
 | |
|             break;
 | |
|         case PSRAM_CACHE_F80M_S40M:
 | |
|         case PSRAM_CACHE_F40M_S40M:
 | |
|         default:
 | |
|             if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
 | |
|                 /* We need to delay CLK to the PSRAM with respect to the clock signal as output by the SPI peripheral.
 | |
|                 We do this by routing it signal to signal 224/225, which are used as a loopback; the extra run through
 | |
|                 the GPIO matrix causes the delay. We use GPIO20 (which is not in any package but has pad logic in
 | |
|                 silicon) as a temporary pad for this. So the signal path is:
 | |
|                 SPI CLK --> GPIO28 --> signal224(in then out) --> internal GPIO29 --> signal225(in then out) --> GPIO17(PSRAM CLK)
 | |
|                 */
 | |
|                 esp_rom_gpio_connect_out_signal(PSRAM_INTERNAL_IO_28,  SPICLK_OUT_IDX, 0, 0);
 | |
|                 esp_rom_gpio_connect_in_signal(PSRAM_INTERNAL_IO_28,   SIG_IN_FUNC224_IDX, 0);
 | |
|                 esp_rom_gpio_connect_out_signal(PSRAM_INTERNAL_IO_29,  SIG_IN_FUNC224_IDX, 0, 0);
 | |
|                 esp_rom_gpio_connect_in_signal(PSRAM_INTERNAL_IO_29,   SIG_IN_FUNC225_IDX, 0);
 | |
|                 esp_rom_gpio_connect_out_signal(psram_io.psram_clk_io, SIG_IN_FUNC225_IDX, 0, 0);
 | |
|             } else {
 | |
|                 esp_rom_gpio_connect_out_signal(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
 | |
|             }
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     // Rise VDDSIO for 1.8V psram.
 | |
|     bootloader_common_vddsdio_configure();
 | |
|     // GPIO related settings
 | |
|     psram_gpio_config(&psram_io, mode);
 | |
| 
 | |
|     psram_spi_num_t spi_num = PSRAM_SPI_1;
 | |
|     psram_disable_qio_mode(spi_num);
 | |
|     psram_read_id(spi_num, &s_psram_id);
 | |
|     if (!PSRAM_IS_VALID(s_psram_id)) {
 | |
|         /* 16Mbit psram ID read error workaround:
 | |
|          * treat the first read id as a dummy one as the pre-condition,
 | |
|          * Send Read ID command again
 | |
|          */
 | |
|         psram_read_id(spi_num, &s_psram_id);
 | |
|         if (!PSRAM_IS_VALID(s_psram_id)) {
 | |
|             ESP_EARLY_LOGE(TAG, "PSRAM ID read error: 0x%08x", (uint32_t)s_psram_id);
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (psram_is_32mbit_ver0()) {
 | |
|         s_clk_mode = PSRAM_CLK_MODE_DCLK;
 | |
|         if (mode == PSRAM_CACHE_F80M_S80M) {
 | |
| #ifdef CONFIG_SPIRAM_OCCUPY_NO_HOST
 | |
|             ESP_EARLY_LOGE(TAG, "This version of PSRAM needs to claim an extra SPI peripheral at 80MHz. Please either: choose lower frequency by SPIRAM_SPEED_, or select one SPI peripheral it by SPIRAM_OCCUPY_*SPI_HOST in the menuconfig.");
 | |
|             abort();
 | |
| #else
 | |
|             /*   note: If the third mode(80Mhz+80Mhz) is enabled for 32MBit 1V8 psram, one of HSPI/VSPI port will be
 | |
|                  occupied by the system (according to kconfig).
 | |
|                  Application code should never touch HSPI/VSPI hardware in this case.  We try to stop applications
 | |
|                  from doing this using the drivers by claiming the port for ourselves */
 | |
|             periph_module_enable(PSRAM_SPI_MODULE);
 | |
|             bool r=spicommon_periph_claim(PSRAM_SPI_HOST, "psram");
 | |
|             if (!r) {
 | |
|                 return ESP_ERR_INVALID_STATE;
 | |
|             }
 | |
|             esp_rom_gpio_connect_out_signal(psram_io.psram_clk_io, PSRAM_CLK_SIGNAL, 0, 0);
 | |
|             //use spi3 clock,but use spi1 data/cs wires
 | |
|             //We get a solid 80MHz clock from SPI3 by setting it up, starting a transaction, waiting until it
 | |
|             //is in progress, then cutting the clock (but not the reset!) to that peripheral.
 | |
|             WRITE_PERI_REG(SPI_ADDR_REG(PSRAM_SPI_NUM), 32 << 24);
 | |
|             SET_PERI_REG_MASK(SPI_CMD_REG(PSRAM_SPI_NUM), SPI_FLASH_READ_M);
 | |
|             uint32_t spi_status;
 | |
|             while (1) {
 | |
|                 spi_status = READ_PERI_REG(SPI_EXT2_REG(PSRAM_SPI_NUM));
 | |
|                 if (spi_status != 0 && spi_status != 1) {
 | |
|                     DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, PSRAM_SPICLKEN);
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| #endif
 | |
|         }
 | |
|     } else {
 | |
|         // For other psram, we don't need any extra clock cycles after cs get back to high level
 | |
|         s_clk_mode = PSRAM_CLK_MODE_NORM;
 | |
|         esp_rom_gpio_connect_out_signal(PSRAM_INTERNAL_IO_28, SIG_GPIO_OUT_IDX, 0, 0);
 | |
|         esp_rom_gpio_connect_out_signal(PSRAM_INTERNAL_IO_29, SIG_GPIO_OUT_IDX, 0, 0);
 | |
|         esp_rom_gpio_connect_out_signal(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
 | |
|     }
 | |
| 
 | |
|     // Update cs timing according to psram driving method.
 | |
|     psram_set_cs_timing(PSRAM_SPI_1, s_clk_mode);
 | |
|     psram_set_cs_timing(_SPI_CACHE_PORT, s_clk_mode);
 | |
|     psram_enable_qio_mode(PSRAM_SPI_1);
 | |
| 
 | |
|     if(((PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_64MBITS) || PSRAM_IS_64MBIT_TRIAL(s_psram_id))) {
 | |
| #if CONFIG_SPIRAM_2T_MODE
 | |
| #if CONFIG_SPIRAM_BANKSWITCH_ENABLE
 | |
|         ESP_EARLY_LOGE(TAG, "PSRAM 2T mode and SPIRAM bank switching can not enabled meanwhile. Please read the help text for SPIRAM_2T_MODE in the project configuration menu.");
 | |
|         abort();
 | |
| #endif
 | |
|         /* Note: 2T mode command should not be sent twice,
 | |
|            otherwise psram would get back to normal mode. */
 | |
|         if (psram_2t_mode_check(PSRAM_SPI_1) != ESP_OK) {
 | |
|             psram_2t_mode_enable(PSRAM_SPI_1);
 | |
|             if (psram_2t_mode_check(PSRAM_SPI_1) != ESP_OK) {
 | |
|                 ESP_EARLY_LOGE(TAG, "PSRAM 2T mode enable fail!");
 | |
|                 return ESP_FAIL;
 | |
|             }
 | |
|         }
 | |
|         s_2t_mode_enabled = true;
 | |
|         ESP_EARLY_LOGI(TAG, "PSRAM is in 2T mode");
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     psram_cache_init(mode, vaddrmode);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| //register initialization for sram cache params and r/w commands
 | |
| static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode)
 | |
| {
 | |
|     switch (psram_cache_mode) {
 | |
|         case PSRAM_CACHE_F80M_S80M:
 | |
|             CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31));   //flash 1 div clk,80+40;
 | |
|             CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0. FLASH DIV 2+SRAM DIV4
 | |
|             break;
 | |
|         case PSRAM_CACHE_F80M_S40M:
 | |
|             CLEAR_PERI_REG_MASK(SPI_CLOCK_REG(0), SPI_CLK_EQU_SYSCLK_M);
 | |
|             SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKDIV_PRE_V, 0, SPI_CLKDIV_PRE_S);
 | |
|             SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_N, 1, SPI_CLKCNT_N_S);
 | |
|             SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_H, 0, SPI_CLKCNT_H_S);
 | |
|             SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_L, 1, SPI_CLKCNT_L_S);
 | |
|             SET_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
 | |
|             CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0.
 | |
|             break;
 | |
|         case PSRAM_CACHE_F40M_S40M:
 | |
|         default:
 | |
|             CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
 | |
|             CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     CLEAR_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_DIO_M);       //disable dio mode for cache command
 | |
|     SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_QIO_M);         //enable qio mode for cache command
 | |
|     SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_RCMD_M);  //enable cache read command
 | |
|     SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_WCMD_M);  //enable cache write command
 | |
|     SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_ADDR_BITLEN_V, 23, SPI_SRAM_ADDR_BITLEN_S); //write address for cache command.
 | |
|     SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_RD_SRAM_DUMMY_M);    //enable cache read dummy
 | |
| 
 | |
|     //config sram cache r/w command
 | |
|     SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 7,
 | |
|             SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S);
 | |
|     SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, PSRAM_FAST_READ_QUAD,
 | |
|             SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB
 | |
|     SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 7,
 | |
|             SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S);
 | |
|     SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, PSRAM_QUAD_WRITE,
 | |
|             SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38
 | |
|     SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
 | |
|             SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
 | |
| 
 | |
|     switch (psram_cache_mode) {
 | |
|         case PSRAM_CACHE_F80M_S80M: //in this mode , no delay is needed
 | |
|             break;
 | |
|         case PSRAM_CACHE_F80M_S40M: //if sram is @40M, need 2 cycles of delay
 | |
|         case PSRAM_CACHE_F40M_S40M:
 | |
|         default:
 | |
|             if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
 | |
|                 SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 15,
 | |
|                         SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S); //read command length, 2 bytes(1byte for delay),sending in qio mode in cache
 | |
|                 SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, ((PSRAM_FAST_READ_QUAD) << 8),
 | |
|                         SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB, read command value,(0x00 for delay,0xeb for cmd)
 | |
|                 SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 15,
 | |
|                         SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S); //write command length,2 bytes(1byte for delay,send in qio mode in cache)
 | |
|                 SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, ((PSRAM_QUAD_WRITE) << 8),
 | |
|                         SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38, write command value,(0x00 for delay)
 | |
|                 SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
 | |
|                         SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
 | |
|             }
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL|DPORT_PRO_DRAM_SPLIT);
 | |
|     DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL|DPORT_APP_DRAM_SPLIT);
 | |
|     if (vaddrmode == PSRAM_VADDR_MODE_LOWHIGH) {
 | |
|         DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL);
 | |
|         DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL);
 | |
|     } else if (vaddrmode == PSRAM_VADDR_MODE_EVENODD) {
 | |
|         DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_SPLIT);
 | |
|         DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_SPLIT);
 | |
|     }
 | |
| 
 | |
|     DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DRAM1|DPORT_PRO_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
 | |
|     //cache page mode : 1 -->16k  4 -->2k  0-->32k,(accord with the settings in cache_sram_mmu_set)
 | |
|     DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CMMU_SRAM_PAGE_MODE, 0, DPORT_PRO_CMMU_SRAM_PAGE_MODE_S);
 | |
|     DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DRAM1|DPORT_APP_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
 | |
|     //cache page mode : 1 -->16k  4 -->2k  0-->32k,(accord with the settings in cache_sram_mmu_set)
 | |
|     DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CMMU_SRAM_PAGE_MODE, 0, DPORT_APP_CMMU_SRAM_PAGE_MODE_S);
 | |
| 
 | |
|     CLEAR_PERI_REG_MASK(SPI_PIN_REG(0), SPI_CS1_DIS_M); //ENABLE SPI0 CS1 TO PSRAM(CS0--FLASH; CS1--SRAM)
 | |
| }
 | |
| 
 | |
| #endif // CONFIG_SPIRAM
 |