mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-30 22:51:41 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			1082 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1082 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <sys/cdefs.h>
 | |
| #include <sys/param.h>
 | |
| #include "sdkconfig.h"
 | |
| #if CONFIG_RMT_ENABLE_DEBUG_LOG
 | |
| // The local log level must be defined before including esp_log.h
 | |
| // Set the maximum log level for this source file
 | |
| #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
 | |
| #endif
 | |
| #include "esp_log.h"
 | |
| #include "esp_check.h"
 | |
| #include "esp_rom_gpio.h"
 | |
| #include "soc/rmt_periph.h"
 | |
| #include "soc/rtc.h"
 | |
| #include "hal/rmt_ll.h"
 | |
| #include "hal/gpio_hal.h"
 | |
| #include "driver/gpio.h"
 | |
| #include "driver/rmt_tx.h"
 | |
| #include "rmt_private.h"
 | |
| #include "esp_memory_utils.h"
 | |
| 
 | |
| static const char *TAG = "rmt";
 | |
| 
 | |
| struct rmt_sync_manager_t {
 | |
|     rmt_group_t *group;    // which group the synchro belongs to
 | |
|     uint32_t channel_mask; // Mask of channels that are managed
 | |
|     size_t array_size;     // Size of the `tx_channel_array`
 | |
|     rmt_channel_handle_t tx_channel_array[]; // Array of TX channels that are managed
 | |
| };
 | |
| 
 | |
| static esp_err_t rmt_del_tx_channel(rmt_channel_handle_t channel);
 | |
| static esp_err_t rmt_tx_modulate_carrier(rmt_channel_handle_t channel, const rmt_carrier_config_t *config);
 | |
| static esp_err_t rmt_tx_enable(rmt_channel_handle_t channel);
 | |
| static esp_err_t rmt_tx_disable(rmt_channel_handle_t channel);
 | |
| static void rmt_tx_default_isr(void *args);
 | |
| 
 | |
| #if SOC_RMT_SUPPORT_DMA
 | |
| static bool rmt_dma_tx_eof_cb(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
 | |
| 
 | |
| static esp_err_t rmt_tx_init_dma_link(rmt_tx_channel_t *tx_channel, const rmt_tx_channel_config_t *config)
 | |
| {
 | |
|     rmt_symbol_word_t *dma_mem_base = heap_caps_calloc(1, sizeof(rmt_symbol_word_t) * config->mem_block_symbols,
 | |
|                                       RMT_MEM_ALLOC_CAPS | MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
 | |
|     ESP_RETURN_ON_FALSE(dma_mem_base, ESP_ERR_NO_MEM, TAG, "no mem for tx DMA buffer");
 | |
|     tx_channel->base.dma_mem_base = dma_mem_base;
 | |
|     for (int i = 0; i < RMT_DMA_NODES_PING_PONG; i++) {
 | |
|         // each descriptor shares half of the DMA buffer
 | |
|         tx_channel->dma_nodes_nc[i].buffer = dma_mem_base + tx_channel->ping_pong_symbols * i;
 | |
|         tx_channel->dma_nodes_nc[i].dw0.size = tx_channel->ping_pong_symbols * sizeof(rmt_symbol_word_t);
 | |
|         // the ownership will be switched to DMA in `rmt_tx_do_transaction()`
 | |
|         tx_channel->dma_nodes_nc[i].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_CPU;
 | |
|         // each node can generate the DMA eof interrupt, and the driver will do a ping-pong trick in the eof callback
 | |
|         tx_channel->dma_nodes_nc[i].dw0.suc_eof = 1;
 | |
|     }
 | |
| 
 | |
|     gdma_channel_alloc_config_t dma_chan_config = {
 | |
|         .direction = GDMA_CHANNEL_DIRECTION_TX,
 | |
|     };
 | |
| #if SOC_GDMA_TRIG_PERIPH_RMT0_BUS == SOC_GDMA_BUS_AHB
 | |
|     ESP_RETURN_ON_ERROR(gdma_new_ahb_channel(&dma_chan_config, &tx_channel->base.dma_chan), TAG, "allocate TX DMA channel failed");
 | |
| #endif
 | |
|     gdma_tx_event_callbacks_t cbs = {
 | |
|         .on_trans_eof = rmt_dma_tx_eof_cb,
 | |
|     };
 | |
|     gdma_register_tx_event_callbacks(tx_channel->base.dma_chan, &cbs, tx_channel);
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif // SOC_RMT_SUPPORT_DMA
 | |
| 
 | |
| static esp_err_t rmt_tx_register_to_group(rmt_tx_channel_t *tx_channel, const rmt_tx_channel_config_t *config)
 | |
| {
 | |
|     size_t mem_block_num = 0;
 | |
|     // start to search for a free channel
 | |
|     // a channel can take up its neighbour's memory block, so the neighbour channel won't work, we should skip these "invaded" ones
 | |
|     int channel_scan_start = RMT_TX_CHANNEL_OFFSET_IN_GROUP;
 | |
|     int channel_scan_end = RMT_TX_CHANNEL_OFFSET_IN_GROUP + SOC_RMT_TX_CANDIDATES_PER_GROUP;
 | |
|     if (config->flags.with_dma) {
 | |
|         // for DMA mode, the memory block number is always 1; for non-DMA mode, memory block number is configured by user
 | |
|         mem_block_num = 1;
 | |
|         // Only the last channel has the DMA capability
 | |
|         channel_scan_start = RMT_TX_CHANNEL_OFFSET_IN_GROUP + SOC_RMT_TX_CANDIDATES_PER_GROUP - 1;
 | |
|         tx_channel->ping_pong_symbols = config->mem_block_symbols / 2;
 | |
|     } else {
 | |
|         // one channel can occupy multiple memory blocks
 | |
|         mem_block_num = config->mem_block_symbols / SOC_RMT_MEM_WORDS_PER_CHANNEL;
 | |
|         if (mem_block_num * SOC_RMT_MEM_WORDS_PER_CHANNEL < config->mem_block_symbols) {
 | |
|             mem_block_num++;
 | |
|         }
 | |
|         tx_channel->ping_pong_symbols = mem_block_num * SOC_RMT_MEM_WORDS_PER_CHANNEL / 2;
 | |
|     }
 | |
|     tx_channel->base.mem_block_num = mem_block_num;
 | |
| 
 | |
|     // search free channel and then register to the group
 | |
|     // memory blocks used by one channel must be continuous
 | |
|     uint32_t channel_mask = (1 << mem_block_num) - 1;
 | |
|     rmt_group_t *group = NULL;
 | |
|     int channel_id = -1;
 | |
|     for (int i = 0; i < SOC_RMT_GROUPS; i++) {
 | |
|         group = rmt_acquire_group_handle(i);
 | |
|         ESP_RETURN_ON_FALSE(group, ESP_ERR_NO_MEM, TAG, "no mem for group (%d)", i);
 | |
|         portENTER_CRITICAL(&group->spinlock);
 | |
|         for (int j = channel_scan_start; j < channel_scan_end; j++) {
 | |
|             if (!(group->occupy_mask & (channel_mask << j))) {
 | |
|                 group->occupy_mask |= (channel_mask << j);
 | |
|                 // the channel ID should index from 0
 | |
|                 channel_id = j - RMT_TX_CHANNEL_OFFSET_IN_GROUP;
 | |
|                 group->tx_channels[channel_id] = tx_channel;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         portEXIT_CRITICAL(&group->spinlock);
 | |
|         if (channel_id < 0) {
 | |
|             // didn't find a capable channel in the group, don't forget to release the group handle
 | |
|             rmt_release_group_handle(group);
 | |
|         } else {
 | |
|             tx_channel->base.channel_id = channel_id;
 | |
|             tx_channel->base.channel_mask = channel_mask;
 | |
|             tx_channel->base.group = group;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     ESP_RETURN_ON_FALSE(channel_id >= 0, ESP_ERR_NOT_FOUND, TAG, "no free tx channels");
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static void rmt_tx_unregister_from_group(rmt_channel_t *channel, rmt_group_t *group)
 | |
| {
 | |
|     portENTER_CRITICAL(&group->spinlock);
 | |
|     group->tx_channels[channel->channel_id] = NULL;
 | |
|     group->occupy_mask &= ~(channel->channel_mask << (channel->channel_id + RMT_TX_CHANNEL_OFFSET_IN_GROUP));
 | |
|     portEXIT_CRITICAL(&group->spinlock);
 | |
|     // channel has a reference on group, release it now
 | |
|     rmt_release_group_handle(group);
 | |
| }
 | |
| 
 | |
| static esp_err_t rmt_tx_create_trans_queue(rmt_tx_channel_t *tx_channel, const rmt_tx_channel_config_t *config)
 | |
| {
 | |
|     esp_err_t ret;
 | |
| 
 | |
|     tx_channel->queue_size = config->trans_queue_depth;
 | |
|     // Allocate transaction queues. Each queue only holds pointers to the transaction descriptors
 | |
|     for (int i = 0; i < RMT_TX_QUEUE_MAX; i++) {
 | |
|         tx_channel->trans_queues[i] = xQueueCreateWithCaps(config->trans_queue_depth, sizeof(rmt_tx_trans_desc_t *), RMT_MEM_ALLOC_CAPS);
 | |
|         ESP_GOTO_ON_FALSE(tx_channel->trans_queues[i], ESP_ERR_NO_MEM, exit, TAG, "no mem for queues");
 | |
|     }
 | |
| 
 | |
|     // Initialize the ready queue
 | |
|     rmt_tx_trans_desc_t *p_trans_desc = NULL;
 | |
|     for (int i = 0; i < config->trans_queue_depth; i++) {
 | |
|         p_trans_desc = &tx_channel->trans_desc_pool[i];
 | |
|         ESP_GOTO_ON_FALSE(xQueueSend(tx_channel->trans_queues[RMT_TX_QUEUE_READY], &p_trans_desc, 0) == pdTRUE,
 | |
|                           ESP_ERR_INVALID_STATE, exit, TAG, "ready queue full");
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| 
 | |
| exit:
 | |
|     for (int i = 0; i < RMT_TX_QUEUE_MAX; i++) {
 | |
|         if (tx_channel->trans_queues[i]) {
 | |
|             vQueueDeleteWithCaps(tx_channel->trans_queues[i]);
 | |
|             tx_channel->trans_queues[i] = NULL;
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static esp_err_t rmt_tx_destroy(rmt_tx_channel_t *tx_channel)
 | |
| {
 | |
|     if (tx_channel->base.intr) {
 | |
|         ESP_RETURN_ON_ERROR(esp_intr_free(tx_channel->base.intr), TAG, "delete interrupt service failed");
 | |
|     }
 | |
|     if (tx_channel->base.pm_lock) {
 | |
|         ESP_RETURN_ON_ERROR(esp_pm_lock_delete(tx_channel->base.pm_lock), TAG, "delete pm_lock failed");
 | |
|     }
 | |
| #if SOC_RMT_SUPPORT_DMA
 | |
|     if (tx_channel->base.dma_chan) {
 | |
|         ESP_RETURN_ON_ERROR(gdma_del_channel(tx_channel->base.dma_chan), TAG, "delete dma channel failed");
 | |
|     }
 | |
| #endif // SOC_RMT_SUPPORT_DMA
 | |
|     for (int i = 0; i < RMT_TX_QUEUE_MAX; i++) {
 | |
|         if (tx_channel->trans_queues[i]) {
 | |
|             vQueueDeleteWithCaps(tx_channel->trans_queues[i]);
 | |
|         }
 | |
|     }
 | |
|     if (tx_channel->base.dma_mem_base) {
 | |
|         free(tx_channel->base.dma_mem_base);
 | |
|     }
 | |
|     if (tx_channel->base.group) {
 | |
|         // de-register channel from RMT group
 | |
|         rmt_tx_unregister_from_group(&tx_channel->base, tx_channel->base.group);
 | |
|     }
 | |
|     if (tx_channel->dma_nodes) {
 | |
|         free(tx_channel->dma_nodes);
 | |
|     }
 | |
|     free(tx_channel);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rmt_new_tx_channel(const rmt_tx_channel_config_t *config, rmt_channel_handle_t *ret_chan)
 | |
| {
 | |
| #if CONFIG_RMT_ENABLE_DEBUG_LOG
 | |
|     esp_log_level_set(TAG, ESP_LOG_DEBUG);
 | |
| #endif
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     rmt_tx_channel_t *tx_channel = NULL;
 | |
|     // Check if priority is valid
 | |
|     if (config->intr_priority) {
 | |
|         ESP_RETURN_ON_FALSE((config->intr_priority) > 0, ESP_ERR_INVALID_ARG, TAG, "invalid interrupt priority:%d", config->intr_priority);
 | |
|         ESP_RETURN_ON_FALSE(1 << (config->intr_priority) & RMT_ALLOW_INTR_PRIORITY_MASK, ESP_ERR_INVALID_ARG, TAG, "invalid interrupt priority:%d", config->intr_priority);
 | |
|     }
 | |
|     ESP_GOTO_ON_FALSE(config && ret_chan && config->resolution_hz && config->trans_queue_depth, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
|     ESP_GOTO_ON_FALSE(GPIO_IS_VALID_GPIO(config->gpio_num), ESP_ERR_INVALID_ARG, err, TAG, "invalid GPIO number");
 | |
|     ESP_GOTO_ON_FALSE((config->mem_block_symbols & 0x01) == 0 && config->mem_block_symbols >= SOC_RMT_MEM_WORDS_PER_CHANNEL,
 | |
|                       ESP_ERR_INVALID_ARG, err, TAG, "mem_block_symbols must be even and at least %d", SOC_RMT_MEM_WORDS_PER_CHANNEL);
 | |
| 
 | |
| #if SOC_RMT_SUPPORT_DMA
 | |
|     // we only support 2 nodes ping-pong, if the configured memory block size needs more than two DMA descriptors, should treat it as invalid
 | |
|     ESP_GOTO_ON_FALSE(config->mem_block_symbols <= RMT_DMA_DESC_BUF_MAX_SIZE * RMT_DMA_NODES_PING_PONG / sizeof(rmt_symbol_word_t),
 | |
|                       ESP_ERR_INVALID_ARG, err, TAG, "mem_block_symbols can't exceed %d",
 | |
|                       RMT_DMA_DESC_BUF_MAX_SIZE * RMT_DMA_NODES_PING_PONG / sizeof(rmt_symbol_word_t));
 | |
| #else
 | |
|     ESP_GOTO_ON_FALSE(config->flags.with_dma == 0, ESP_ERR_NOT_SUPPORTED, err, TAG, "DMA not supported");
 | |
| #endif
 | |
| 
 | |
|     // malloc channel memory
 | |
|     uint32_t mem_caps = RMT_MEM_ALLOC_CAPS;
 | |
|     tx_channel = heap_caps_calloc(1, sizeof(rmt_tx_channel_t) + sizeof(rmt_tx_trans_desc_t) * config->trans_queue_depth, mem_caps);
 | |
|     ESP_GOTO_ON_FALSE(tx_channel, ESP_ERR_NO_MEM, err, TAG, "no mem for tx channel");
 | |
|     // create DMA descriptors
 | |
|     if (config->flags.with_dma) {
 | |
|         // DMA descriptors must be placed in internal SRAM
 | |
|         mem_caps |= MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA;
 | |
|         tx_channel->dma_nodes = heap_caps_aligned_calloc(RMT_DMA_DESC_ALIGN, RMT_DMA_NODES_PING_PONG, sizeof(rmt_dma_descriptor_t), mem_caps);
 | |
|         ESP_GOTO_ON_FALSE(tx_channel->dma_nodes, ESP_ERR_NO_MEM, err, TAG, "no mem for tx DMA nodes");
 | |
|         // we will use the non-cached address to manipulate the DMA descriptor, for simplicity
 | |
|         tx_channel->dma_nodes_nc = (rmt_dma_descriptor_t *)RMT_GET_NON_CACHE_ADDR(tx_channel->dma_nodes);
 | |
|     }
 | |
|     // create transaction queues
 | |
|     ESP_GOTO_ON_ERROR(rmt_tx_create_trans_queue(tx_channel, config), err, TAG, "install trans queues failed");
 | |
|     // register the channel to group
 | |
|     ESP_GOTO_ON_ERROR(rmt_tx_register_to_group(tx_channel, config), err, TAG, "register channel failed");
 | |
|     rmt_group_t *group = tx_channel->base.group;
 | |
|     rmt_hal_context_t *hal = &group->hal;
 | |
|     int channel_id = tx_channel->base.channel_id;
 | |
|     int group_id = group->group_id;
 | |
| 
 | |
|     // reset channel, make sure the TX engine is not working, and events are cleared
 | |
|     portENTER_CRITICAL(&group->spinlock);
 | |
|     rmt_hal_tx_channel_reset(&group->hal, channel_id);
 | |
|     portEXIT_CRITICAL(&group->spinlock);
 | |
|     // install tx interrupt
 | |
|     // --- install interrupt service
 | |
|     // interrupt is mandatory to run basic RMT transactions, so it's not lazy installed in `rmt_tx_register_event_callbacks()`
 | |
|     // 1-- Set user specified priority to `group->intr_priority`
 | |
|     bool priority_conflict = rmt_set_intr_priority_to_group(group, config->intr_priority);
 | |
|     ESP_GOTO_ON_FALSE(!priority_conflict, ESP_ERR_INVALID_ARG, err, TAG, "intr_priority conflict");
 | |
|     // 2-- Get interrupt allocation flag
 | |
|     int isr_flags = rmt_get_isr_flags(group);
 | |
|     // 3-- Allocate interrupt using isr_flag
 | |
|     ret = esp_intr_alloc_intrstatus(rmt_periph_signals.groups[group_id].irq, isr_flags,
 | |
|                                     (uint32_t) rmt_ll_get_interrupt_status_reg(hal->regs),
 | |
|                                     RMT_LL_EVENT_TX_MASK(channel_id), rmt_tx_default_isr, tx_channel,
 | |
|                                     &tx_channel->base.intr);
 | |
|     ESP_GOTO_ON_ERROR(ret, err, TAG, "install tx interrupt failed");
 | |
|     // install DMA service
 | |
| #if SOC_RMT_SUPPORT_DMA
 | |
|     if (config->flags.with_dma) {
 | |
|         ESP_GOTO_ON_ERROR(rmt_tx_init_dma_link(tx_channel, config), err, TAG, "install tx DMA failed");
 | |
|     }
 | |
| #endif
 | |
|     // select the clock source
 | |
|     ESP_GOTO_ON_ERROR(rmt_select_periph_clock(&tx_channel->base, config->clk_src), err, TAG, "set group clock failed");
 | |
|     // set channel clock resolution
 | |
|     uint32_t real_div = group->resolution_hz / config->resolution_hz;
 | |
|     rmt_ll_tx_set_channel_clock_div(hal->regs, channel_id, real_div);
 | |
|     // resolution lost due to division, calculate the real resolution
 | |
|     tx_channel->base.resolution_hz = group->resolution_hz / real_div;
 | |
|     if (tx_channel->base.resolution_hz != config->resolution_hz) {
 | |
|         ESP_LOGW(TAG, "channel resolution loss, real=%"PRIu32, tx_channel->base.resolution_hz);
 | |
|     }
 | |
| 
 | |
|     rmt_ll_tx_set_mem_blocks(hal->regs, channel_id, tx_channel->base.mem_block_num);
 | |
|     // set limit threshold, after transmit ping_pong_symbols size, an interrupt event would be generated
 | |
|     rmt_ll_tx_set_limit(hal->regs, channel_id, tx_channel->ping_pong_symbols);
 | |
|     // disable carrier modulation by default, can reenable by `rmt_apply_carrier()`
 | |
|     rmt_ll_tx_enable_carrier_modulation(hal->regs, channel_id, false);
 | |
|     // idle level is determined by register value
 | |
|     rmt_ll_tx_fix_idle_level(hal->regs, channel_id, 0, true);
 | |
|     // always enable tx wrap, both DMA mode and ping-pong mode rely this feature
 | |
|     rmt_ll_tx_enable_wrap(hal->regs, channel_id, true);
 | |
| 
 | |
|     // GPIO Matrix/MUX configuration
 | |
|     tx_channel->base.gpio_num = config->gpio_num;
 | |
|     gpio_config_t gpio_conf = {
 | |
|         .intr_type = GPIO_INTR_DISABLE,
 | |
|         // also enable the input path if `io_loop_back` is on, this is useful for bi-directional buses
 | |
|         .mode = (config->flags.io_od_mode ? GPIO_MODE_OUTPUT_OD : GPIO_MODE_OUTPUT) | (config->flags.io_loop_back ? GPIO_MODE_INPUT : 0),
 | |
|         .pull_down_en = false,
 | |
|         .pull_up_en = true,
 | |
|         .pin_bit_mask = 1ULL << config->gpio_num,
 | |
|     };
 | |
|     ESP_GOTO_ON_ERROR(gpio_config(&gpio_conf), err, TAG, "config GPIO failed");
 | |
|     esp_rom_gpio_connect_out_signal(config->gpio_num,
 | |
|                                     rmt_periph_signals.groups[group_id].channels[channel_id + RMT_TX_CHANNEL_OFFSET_IN_GROUP].tx_sig,
 | |
|                                     config->flags.invert_out, false);
 | |
|     gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[config->gpio_num], PIN_FUNC_GPIO);
 | |
| 
 | |
|     tx_channel->base.direction = RMT_CHANNEL_DIRECTION_TX;
 | |
|     tx_channel->base.fsm = RMT_FSM_INIT;
 | |
|     tx_channel->base.hw_mem_base = &RMTMEM.channels[channel_id + RMT_TX_CHANNEL_OFFSET_IN_GROUP].symbols[0];
 | |
|     tx_channel->base.spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED;
 | |
|     // polymorphic methods
 | |
|     tx_channel->base.del = rmt_del_tx_channel;
 | |
|     tx_channel->base.set_carrier_action = rmt_tx_modulate_carrier;
 | |
|     tx_channel->base.enable = rmt_tx_enable;
 | |
|     tx_channel->base.disable = rmt_tx_disable;
 | |
|     // return general channel handle
 | |
|     *ret_chan = &tx_channel->base;
 | |
|     ESP_LOGD(TAG, "new tx channel(%d,%d) at %p, gpio=%d, res=%"PRIu32"Hz, hw_mem_base=%p, dma_mem_base=%p, dma_nodes_nc=%p,ping_pong_size=%zu, queue_depth=%zu",
 | |
|              group_id, channel_id, tx_channel, config->gpio_num, tx_channel->base.resolution_hz,
 | |
|              tx_channel->base.hw_mem_base, tx_channel->base.dma_mem_base, tx_channel->dma_nodes_nc, tx_channel->ping_pong_symbols, tx_channel->queue_size);
 | |
|     return ESP_OK;
 | |
| 
 | |
| err:
 | |
|     if (tx_channel) {
 | |
|         rmt_tx_destroy(tx_channel);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static esp_err_t rmt_del_tx_channel(rmt_channel_handle_t channel)
 | |
| {
 | |
|     rmt_tx_channel_t *tx_chan = __containerof(channel, rmt_tx_channel_t, base);
 | |
|     rmt_group_t *group = channel->group;
 | |
|     int group_id = group->group_id;
 | |
|     int channel_id = channel->channel_id;
 | |
|     ESP_LOGD(TAG, "del tx channel(%d,%d)", group_id, channel_id);
 | |
|     // recycle memory resource
 | |
|     ESP_RETURN_ON_ERROR(rmt_tx_destroy(tx_chan), TAG, "destroy tx channel failed");
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rmt_new_sync_manager(const rmt_sync_manager_config_t *config, rmt_sync_manager_handle_t *ret_synchro)
 | |
| {
 | |
| #if !SOC_RMT_SUPPORT_TX_SYNCHRO
 | |
|     ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "sync manager not supported");
 | |
| #else
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     rmt_sync_manager_t *synchro = NULL;
 | |
|     ESP_GOTO_ON_FALSE(config && ret_synchro && config->tx_channel_array && config->array_size, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument");
 | |
|     synchro = heap_caps_calloc(1, sizeof(rmt_sync_manager_t) + sizeof(rmt_channel_handle_t) * config->array_size, RMT_MEM_ALLOC_CAPS);
 | |
|     ESP_GOTO_ON_FALSE(synchro, ESP_ERR_NO_MEM, err, TAG, "no mem for sync manager");
 | |
|     for (size_t i = 0; i < config->array_size; i++) {
 | |
|         synchro->tx_channel_array[i] = config->tx_channel_array[i];
 | |
|     }
 | |
|     synchro->array_size = config->array_size;
 | |
| 
 | |
|     int group_id = config->tx_channel_array[0]->group->group_id;
 | |
|     // acquire group handle, increase reference count
 | |
|     rmt_group_t *group = rmt_acquire_group_handle(group_id);
 | |
|     // sanity check
 | |
|     assert(group);
 | |
|     synchro->group = group;
 | |
|     // calculate the mask of the channels to be managed
 | |
|     uint32_t channel_mask = 0;
 | |
|     rmt_channel_handle_t channel = NULL;
 | |
|     for (size_t i = 0; i < config->array_size; i++) {
 | |
|         channel = config->tx_channel_array[i];
 | |
|         ESP_GOTO_ON_FALSE(channel->direction == RMT_CHANNEL_DIRECTION_TX, ESP_ERR_INVALID_ARG, err, TAG, "sync manager supports TX channel only");
 | |
|         ESP_GOTO_ON_FALSE(channel->group == group, ESP_ERR_INVALID_ARG, err, TAG, "channels to be managed should locate in the same group");
 | |
|         ESP_GOTO_ON_FALSE(channel->fsm == RMT_FSM_ENABLE, ESP_ERR_INVALID_STATE, err, TAG, "channel should be started before creating sync manager");
 | |
|         channel_mask |= 1 << channel->channel_id;
 | |
|     }
 | |
|     synchro->channel_mask = channel_mask;
 | |
| 
 | |
|     // search and register sync manager to group
 | |
|     bool new_synchro = false;
 | |
|     portENTER_CRITICAL(&group->spinlock);
 | |
|     if (group->sync_manager == NULL) {
 | |
|         group->sync_manager = synchro;
 | |
|         new_synchro = true;
 | |
|     }
 | |
|     portEXIT_CRITICAL(&group->spinlock);
 | |
|     ESP_GOTO_ON_FALSE(new_synchro, ESP_ERR_NOT_FOUND, err, TAG, "no free sync manager in the group");
 | |
| 
 | |
|     // enable sync manager
 | |
|     portENTER_CRITICAL(&group->spinlock);
 | |
|     rmt_ll_tx_enable_sync(group->hal.regs, true);
 | |
|     rmt_ll_tx_sync_group_add_channels(group->hal.regs, channel_mask);
 | |
|     rmt_ll_tx_reset_channels_clock_div(group->hal.regs, channel_mask);
 | |
|     // ensure the reading cursor of each channel is pulled back to the starting line
 | |
|     for (size_t i = 0; i < config->array_size; i++) {
 | |
|         rmt_ll_tx_reset_pointer(group->hal.regs, config->tx_channel_array[i]->channel_id);
 | |
|     }
 | |
|     portEXIT_CRITICAL(&group->spinlock);
 | |
| 
 | |
|     *ret_synchro = synchro;
 | |
|     ESP_LOGD(TAG, "new sync manager at %p, with channel mask:%02"PRIx32, synchro, synchro->channel_mask);
 | |
|     return ESP_OK;
 | |
| 
 | |
| err:
 | |
|     if (synchro) {
 | |
|         if (synchro->group) {
 | |
|             rmt_release_group_handle(synchro->group);
 | |
|         }
 | |
|         free(synchro);
 | |
|     }
 | |
|     return ret;
 | |
| #endif // !SOC_RMT_SUPPORT_TX_SYNCHRO
 | |
| }
 | |
| 
 | |
| esp_err_t rmt_sync_reset(rmt_sync_manager_handle_t synchro)
 | |
| {
 | |
| #if !SOC_RMT_SUPPORT_TX_SYNCHRO
 | |
|     ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "sync manager not supported");
 | |
| #else
 | |
|     ESP_RETURN_ON_FALSE(synchro, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
 | |
|     rmt_group_t *group = synchro->group;
 | |
| 
 | |
|     portENTER_CRITICAL(&group->spinlock);
 | |
|     rmt_ll_tx_reset_channels_clock_div(group->hal.regs, synchro->channel_mask);
 | |
|     for (size_t i = 0; i < synchro->array_size; i++) {
 | |
|         rmt_ll_tx_reset_pointer(group->hal.regs, synchro->tx_channel_array[i]->channel_id);
 | |
|     }
 | |
|     portEXIT_CRITICAL(&group->spinlock);
 | |
| 
 | |
|     return ESP_OK;
 | |
| #endif // !SOC_RMT_SUPPORT_TX_SYNCHRO
 | |
| }
 | |
| 
 | |
| esp_err_t rmt_del_sync_manager(rmt_sync_manager_handle_t synchro)
 | |
| {
 | |
| #if !SOC_RMT_SUPPORT_TX_SYNCHRO
 | |
|     ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "sync manager not supported");
 | |
| #else
 | |
|     ESP_RETURN_ON_FALSE(synchro, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
 | |
|     rmt_group_t *group = synchro->group;
 | |
|     int group_id = group->group_id;
 | |
| 
 | |
|     portENTER_CRITICAL(&group->spinlock);
 | |
|     group->sync_manager = NULL;
 | |
|     // disable sync manager
 | |
|     rmt_ll_tx_enable_sync(group->hal.regs, false);
 | |
|     rmt_ll_tx_sync_group_remove_channels(group->hal.regs, synchro->channel_mask);
 | |
|     portEXIT_CRITICAL(&group->spinlock);
 | |
| 
 | |
|     free(synchro);
 | |
|     ESP_LOGD(TAG, "del sync manager in group(%d)", group_id);
 | |
|     rmt_release_group_handle(group);
 | |
|     return ESP_OK;
 | |
| #endif // !SOC_RMT_SUPPORT_TX_SYNCHRO
 | |
| }
 | |
| 
 | |
| esp_err_t rmt_tx_register_event_callbacks(rmt_channel_handle_t channel, const rmt_tx_event_callbacks_t *cbs, void *user_data)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(channel && cbs, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
 | |
|     ESP_RETURN_ON_FALSE(channel->direction == RMT_CHANNEL_DIRECTION_TX, ESP_ERR_INVALID_ARG, TAG, "invalid channel direction");
 | |
|     rmt_tx_channel_t *tx_chan = __containerof(channel, rmt_tx_channel_t, base);
 | |
| 
 | |
| #if CONFIG_RMT_ISR_IRAM_SAFE
 | |
|     if (cbs->on_trans_done) {
 | |
|         ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_trans_done), ESP_ERR_INVALID_ARG, TAG, "on_trans_done callback not in IRAM");
 | |
|     }
 | |
|     if (user_data) {
 | |
|         ESP_RETURN_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     tx_chan->on_trans_done = cbs->on_trans_done;
 | |
|     tx_chan->user_data = user_data;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rmt_transmit(rmt_channel_handle_t channel, rmt_encoder_t *encoder, const void *payload, size_t payload_bytes, const rmt_transmit_config_t *config)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(channel && encoder && payload && payload_bytes && config, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
 | |
|     ESP_RETURN_ON_FALSE(channel->direction == RMT_CHANNEL_DIRECTION_TX, ESP_ERR_INVALID_ARG, TAG, "invalid channel direction");
 | |
|     ESP_RETURN_ON_FALSE(channel->fsm == RMT_FSM_ENABLE, ESP_ERR_INVALID_STATE, TAG, "channel not in enable state");
 | |
| #if !SOC_RMT_SUPPORT_TX_LOOP_COUNT
 | |
|     ESP_RETURN_ON_FALSE(config->loop_count <= 0, ESP_ERR_NOT_SUPPORTED, TAG, "loop count is not supported");
 | |
| #endif // !SOC_RMT_SUPPORT_TX_LOOP_COUNT
 | |
| #if CONFIG_RMT_ISR_IRAM_SAFE
 | |
|     // payload is retrieved by the encoder, we should make sure it's still accessible even when the cache is disabled
 | |
|     ESP_RETURN_ON_FALSE(esp_ptr_internal(payload), ESP_ERR_INVALID_ARG, TAG, "payload not in internal RAM");
 | |
| #endif
 | |
|     rmt_group_t *group = channel->group;
 | |
|     rmt_hal_context_t *hal = &group->hal;
 | |
|     int channel_id = channel->channel_id;
 | |
|     rmt_tx_channel_t *tx_chan = __containerof(channel, rmt_tx_channel_t, base);
 | |
|     rmt_tx_trans_desc_t *t = NULL;
 | |
|     // acquire one transaction description from ready_queue or done_queue
 | |
|     if (tx_chan->num_trans_inflight < tx_chan->queue_size) {
 | |
|         ESP_RETURN_ON_FALSE(xQueueReceive(tx_chan->trans_queues[RMT_TX_QUEUE_READY], &t, portMAX_DELAY) == pdTRUE,
 | |
|                             ESP_FAIL, TAG, "no transaction in the ready queue");
 | |
|     } else {
 | |
|         ESP_RETURN_ON_FALSE(xQueueReceive(tx_chan->trans_queues[RMT_TX_QUEUE_COMPLETE], &t, portMAX_DELAY) == pdTRUE,
 | |
|                             ESP_FAIL, TAG, "recycle transaction from done queue failed");
 | |
|         tx_chan->num_trans_inflight--;
 | |
|     }
 | |
|     // sanity check
 | |
|     assert(t);
 | |
|     // fill in the transaction descriptor
 | |
|     memset(t, 0, sizeof(rmt_tx_trans_desc_t));
 | |
|     t->encoder = encoder;
 | |
|     t->payload = payload;
 | |
|     t->payload_bytes = payload_bytes;
 | |
|     t->loop_count = config->loop_count;
 | |
|     t->remain_loop_count = t->loop_count;
 | |
|     t->flags.eot_level = config->flags.eot_level;
 | |
| 
 | |
|     // send the transaction descriptor to queue
 | |
|     if (xQueueSend(tx_chan->trans_queues[RMT_TX_QUEUE_PROGRESS], &t, portMAX_DELAY) == pdTRUE) {
 | |
|         tx_chan->num_trans_inflight++;
 | |
|     } else {
 | |
|         // put the trans descriptor back to ready_queue
 | |
|         ESP_RETURN_ON_FALSE(xQueueSend(tx_chan->trans_queues[RMT_TX_QUEUE_READY], &t, 0) == pdTRUE,
 | |
|                             ESP_ERR_INVALID_STATE, TAG, "ready queue full");
 | |
|     }
 | |
| 
 | |
|     // we don't know which "transmission complete" event will be triggered, but must be one of them: trans_done, loop_done
 | |
|     // when we run at here, the interrupt status bit for tx_done or loop_end should already up (ensured by `rmt_tx_enable()`)
 | |
|     // that's why we can go into ISR as soon as we enable the interrupt bit
 | |
|     // in the ISR, we will fetch the transactions from trans_queue and start it
 | |
|     portENTER_CRITICAL(&group->spinlock);
 | |
|     rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_TX_DONE(channel_id) | RMT_LL_EVENT_TX_LOOP_END(channel_id), true);
 | |
|     portEXIT_CRITICAL(&group->spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t rmt_tx_wait_all_done(rmt_channel_handle_t channel, int timeout_ms)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(channel, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
 | |
|     rmt_tx_channel_t *tx_chan = __containerof(channel, rmt_tx_channel_t, base);
 | |
|     TickType_t wait_ticks = timeout_ms < 0 ? portMAX_DELAY : pdMS_TO_TICKS(timeout_ms);
 | |
|     // recycle all transaction that are on the fly
 | |
|     rmt_tx_trans_desc_t *t = NULL;
 | |
|     size_t num_trans_inflight = tx_chan->num_trans_inflight;
 | |
|     for (size_t i = 0; i < num_trans_inflight; i++) {
 | |
|         ESP_RETURN_ON_FALSE(xQueueReceive(tx_chan->trans_queues[RMT_TX_QUEUE_COMPLETE], &t, wait_ticks) == pdTRUE,
 | |
|                             ESP_ERR_TIMEOUT, TAG, "flush timeout");
 | |
|         ESP_RETURN_ON_FALSE(xQueueSend(tx_chan->trans_queues[RMT_TX_QUEUE_READY], &t, 0) == pdTRUE,
 | |
|                             ESP_ERR_INVALID_STATE, TAG, "ready queue full");
 | |
|         tx_chan->num_trans_inflight--;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static void IRAM_ATTR rmt_tx_mark_eof(rmt_tx_channel_t *tx_chan)
 | |
| {
 | |
|     rmt_channel_t *channel = &tx_chan->base;
 | |
|     rmt_group_t *group = channel->group;
 | |
|     int channel_id = channel->channel_id;
 | |
|     rmt_symbol_word_t *mem_to_nc = NULL;
 | |
|     rmt_tx_trans_desc_t *cur_trans = tx_chan->cur_trans;
 | |
|     rmt_dma_descriptor_t *desc_nc = NULL;
 | |
|     if (channel->dma_chan) {
 | |
|         mem_to_nc = (rmt_symbol_word_t *)RMT_GET_NON_CACHE_ADDR(channel->dma_mem_base);
 | |
|     } else {
 | |
|         mem_to_nc = channel->hw_mem_base;
 | |
|     }
 | |
| 
 | |
|     // a RMT word whose duration is zero means a "stop" pattern
 | |
|     mem_to_nc[tx_chan->mem_off++] = (rmt_symbol_word_t) {
 | |
|         .duration0 = 0,
 | |
|         .level0 = cur_trans->flags.eot_level,
 | |
|         .duration1 = 0,
 | |
|         .level1 = cur_trans->flags.eot_level,
 | |
|     };
 | |
| 
 | |
|     size_t off = 0;
 | |
|     if (channel->dma_chan) {
 | |
|         if (tx_chan->mem_off <= tx_chan->ping_pong_symbols) {
 | |
|             desc_nc = &tx_chan->dma_nodes_nc[0];
 | |
|             off = tx_chan->mem_off;
 | |
|         } else {
 | |
|             desc_nc = &tx_chan->dma_nodes_nc[1];
 | |
|             off = tx_chan->mem_off - tx_chan->ping_pong_symbols;
 | |
|         }
 | |
|         desc_nc->dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA;
 | |
|         desc_nc->dw0.length = off * sizeof(rmt_symbol_word_t);
 | |
|         // break down the DMA descriptor link
 | |
|         desc_nc->next = NULL;
 | |
|     } else {
 | |
|         portENTER_CRITICAL_ISR(&group->spinlock);
 | |
|         // This is the end of a sequence of encoding sessions, disable the threshold interrupt as no more data will be put into RMT memory block
 | |
|         rmt_ll_enable_interrupt(group->hal.regs, RMT_LL_EVENT_TX_THRES(channel_id), false);
 | |
|         portEXIT_CRITICAL_ISR(&group->spinlock);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static size_t IRAM_ATTR rmt_encode_check_result(rmt_tx_channel_t *tx_chan, rmt_tx_trans_desc_t *t)
 | |
| {
 | |
|     rmt_encode_state_t encode_state = RMT_ENCODING_RESET;
 | |
|     rmt_encoder_handle_t encoder = t->encoder;
 | |
|     size_t encoded_symbols = encoder->encode(encoder, &tx_chan->base, t->payload, t->payload_bytes, &encode_state);
 | |
| 
 | |
|     if (encode_state & RMT_ENCODING_COMPLETE) {
 | |
|         t->flags.encoding_done = true;
 | |
|         // inserting EOF symbol if there's extra space
 | |
|         if (!(encode_state & RMT_ENCODING_MEM_FULL)) {
 | |
|             rmt_tx_mark_eof(tx_chan);
 | |
|             encoded_symbols += 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // for loop transaction, the memory block should accommodate all encoded RMT symbols
 | |
|     if (t->loop_count != 0) {
 | |
|         if (unlikely(encoded_symbols > tx_chan->base.mem_block_num * SOC_RMT_MEM_WORDS_PER_CHANNEL)) {
 | |
|             ESP_DRAM_LOGE(TAG, "encoding artifacts can't exceed hw memory block for loop transmission");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return encoded_symbols;
 | |
| }
 | |
| 
 | |
| static void IRAM_ATTR rmt_tx_do_transaction(rmt_tx_channel_t *tx_chan, rmt_tx_trans_desc_t *t)
 | |
| {
 | |
|     rmt_channel_t *channel = &tx_chan->base;
 | |
|     rmt_group_t *group = channel->group;
 | |
|     rmt_hal_context_t *hal = &group->hal;
 | |
|     int channel_id = channel->channel_id;
 | |
| 
 | |
| #if SOC_RMT_SUPPORT_DMA
 | |
|     if (channel->dma_chan) {
 | |
|         gdma_reset(channel->dma_chan);
 | |
|         // chain the descriptors into a ring, and will break it in `rmt_encode_eof()`
 | |
|         for (int i = 0; i < RMT_DMA_NODES_PING_PONG; i++) {
 | |
|             tx_chan->dma_nodes_nc[i].next = &tx_chan->dma_nodes[i + 1]; // note, we must use the cache address for the next pointer
 | |
|             tx_chan->dma_nodes_nc[i].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_CPU;
 | |
|         }
 | |
|         tx_chan->dma_nodes_nc[1].next = &tx_chan->dma_nodes[0];
 | |
|     }
 | |
| #endif // SOC_RMT_SUPPORT_DMA
 | |
| 
 | |
|     // set transaction specific parameters
 | |
|     portENTER_CRITICAL_ISR(&channel->spinlock);
 | |
|     rmt_ll_tx_reset_pointer(hal->regs, channel_id); // reset pointer for new transaction
 | |
|     rmt_ll_tx_enable_loop(hal->regs, channel_id, t->loop_count != 0);
 | |
| #if SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP
 | |
|     rmt_ll_tx_enable_loop_autostop(hal->regs, channel_id, true);
 | |
| #endif // SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP
 | |
| #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
 | |
|     rmt_ll_tx_reset_loop_count(hal->regs, channel_id);
 | |
|     rmt_ll_tx_enable_loop_count(hal->regs, channel_id, t->loop_count > 0);
 | |
|     // transfer loops in batches
 | |
|     if (t->remain_loop_count > 0) {
 | |
|         uint32_t this_loop_count = MIN(t->remain_loop_count, RMT_LL_MAX_LOOP_COUNT_PER_BATCH);
 | |
|         rmt_ll_tx_set_loop_count(hal->regs, channel_id, this_loop_count);
 | |
|         t->remain_loop_count -= this_loop_count;
 | |
|     }
 | |
| #endif // SOC_RMT_SUPPORT_TX_LOOP_COUNT
 | |
|     portEXIT_CRITICAL_ISR(&channel->spinlock);
 | |
| 
 | |
|     // enable/disable specific interrupts
 | |
|     portENTER_CRITICAL_ISR(&group->spinlock);
 | |
| #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
 | |
|     rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_TX_LOOP_END(channel_id), t->loop_count > 0);
 | |
| #endif // SOC_RMT_SUPPORT_TX_LOOP_COUNT
 | |
|     // in DMA mode, DMA eof event plays the similar functionality to this threshold interrupt, so only enable it for non-DMA mode
 | |
|     if (!channel->dma_chan) {
 | |
|         // don't enable threshold interrupt with loop mode on
 | |
|         // threshold interrupt will be disabled in `rmt_encode_eof()`
 | |
|         rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_TX_THRES(channel_id), t->loop_count == 0);
 | |
|         // Threshold interrupt will be generated by accident, clear it before starting new transmission
 | |
|         rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_THRES(channel_id));
 | |
|     }
 | |
|     // don't generate trans done event for loop transmission
 | |
|     rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_TX_DONE(channel_id), t->loop_count == 0);
 | |
|     portEXIT_CRITICAL_ISR(&group->spinlock);
 | |
| 
 | |
|     // at the beginning of a new transaction, encoding memory offset should start from zero.
 | |
|     // It will increase in the encode function e.g. `rmt_encode_copy()`
 | |
|     tx_chan->mem_off = 0;
 | |
|     // use the full memory block for the beginning encoding session
 | |
|     tx_chan->mem_end = tx_chan->ping_pong_symbols * 2;
 | |
|     // perform the encoding session, return the number of encoded symbols
 | |
|     t->transmitted_symbol_num = rmt_encode_check_result(tx_chan, t);
 | |
|     // we're going to perform ping-pong operation, so the next encoding end position is the middle
 | |
|     tx_chan->mem_end = tx_chan->ping_pong_symbols;
 | |
| 
 | |
| #if SOC_RMT_SUPPORT_DMA
 | |
|     if (channel->dma_chan) {
 | |
|         gdma_start(channel->dma_chan, (intptr_t)tx_chan->dma_nodes); // note, we must use the cached descriptor address to start the DMA
 | |
|         // delay a while, wait for DMA data going to RMT memory block
 | |
|         esp_rom_delay_us(1);
 | |
|     }
 | |
| #endif
 | |
|     // turn on the TX machine
 | |
|     portENTER_CRITICAL_ISR(&channel->spinlock);
 | |
|     rmt_ll_tx_fix_idle_level(hal->regs, channel_id, t->flags.eot_level, true);
 | |
|     rmt_ll_tx_start(hal->regs, channel_id);
 | |
|     portEXIT_CRITICAL_ISR(&channel->spinlock);
 | |
| }
 | |
| 
 | |
| static esp_err_t rmt_tx_enable(rmt_channel_handle_t channel)
 | |
| {
 | |
|     rmt_tx_channel_t *tx_chan = __containerof(channel, rmt_tx_channel_t, base);
 | |
|     rmt_group_t *group = channel->group;
 | |
|     rmt_hal_context_t *hal = &group->hal;
 | |
|     int channel_id = channel->channel_id;
 | |
|     // acquire power manager lock
 | |
|     if (channel->pm_lock) {
 | |
|         ESP_RETURN_ON_ERROR(esp_pm_lock_acquire(channel->pm_lock), TAG, "acquire pm_lock failed");
 | |
|     }
 | |
| 
 | |
|     portENTER_CRITICAL(&channel->spinlock);
 | |
|     rmt_ll_tx_reset_pointer(hal->regs, channel_id);
 | |
|     rmt_ll_tx_enable_loop(hal->regs, channel_id, false);
 | |
| #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
 | |
|     rmt_ll_tx_reset_loop_count(hal->regs, channel_id);
 | |
|     rmt_ll_tx_enable_loop_count(hal->regs, channel_id, false);
 | |
| #endif // SOC_RMT_SUPPORT_TX_LOOP_COUNT
 | |
|     // trigger a quick trans done event by sending a EOF symbol, no signal should appear on the GPIO
 | |
|     tx_chan->cur_trans = NULL;
 | |
|     channel->hw_mem_base[0].val = 0;
 | |
|     rmt_ll_tx_start(hal->regs, channel_id);
 | |
|     portEXIT_CRITICAL(&channel->spinlock);
 | |
| 
 | |
|     // wait the RMT interrupt line goes active, we won't go into the ISR handler until we enable the `RMT_LL_EVENT_TX_DONE` interrupt
 | |
|     while (!(rmt_ll_tx_get_interrupt_status_raw(hal->regs, channel_id) & RMT_LL_EVENT_TX_DONE(channel_id))) {}
 | |
| #if SOC_RMT_SUPPORT_DMA
 | |
|     if (channel->dma_chan) {
 | |
|         // enable the DMA access mode
 | |
|         portENTER_CRITICAL(&channel->spinlock);
 | |
|         rmt_ll_tx_enable_dma(hal->regs, channel_id, true);
 | |
|         portEXIT_CRITICAL(&channel->spinlock);
 | |
| 
 | |
|         gdma_connect(channel->dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_RMT, 0));
 | |
|     }
 | |
| #endif // SOC_RMT_SUPPORT_DMA
 | |
| 
 | |
|     channel->fsm = RMT_FSM_ENABLE;
 | |
| 
 | |
|     // enable channel interrupt, dispatch transactions in ISR (in case there're transaction descriptors in the queue, then we should start them)
 | |
|     portENTER_CRITICAL(&group->spinlock);
 | |
|     rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_TX_DONE(channel_id), true);
 | |
|     portEXIT_CRITICAL(&group->spinlock);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t rmt_tx_disable(rmt_channel_handle_t channel)
 | |
| {
 | |
|     rmt_tx_channel_t *tx_chan = __containerof(channel, rmt_tx_channel_t, base);
 | |
|     rmt_group_t *group = channel->group;
 | |
|     rmt_hal_context_t *hal = &group->hal;
 | |
|     int channel_id = channel->channel_id;
 | |
| 
 | |
|     portENTER_CRITICAL(&channel->spinlock);
 | |
|     rmt_ll_tx_enable_loop(hal->regs, channel->channel_id, false);
 | |
| #if SOC_RMT_SUPPORT_TX_ASYNC_STOP
 | |
|     rmt_ll_tx_stop(hal->regs, channel->channel_id);
 | |
| #endif
 | |
|     portEXIT_CRITICAL(&channel->spinlock);
 | |
| 
 | |
|     portENTER_CRITICAL(&group->spinlock);
 | |
|     rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_TX_MASK(channel_id), false);
 | |
| #if !SOC_RMT_SUPPORT_TX_ASYNC_STOP
 | |
|     // we do a trick to stop the undergoing transmission
 | |
|     // stop interrupt, insert EOF marker to the RMT memory, polling the trans_done event
 | |
|     channel->hw_mem_base[0].val = 0;
 | |
|     while (!(rmt_ll_tx_get_interrupt_status_raw(hal->regs, channel_id) & RMT_LL_EVENT_TX_DONE(channel_id))) {}
 | |
| #endif
 | |
|     rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_MASK(channel_id));
 | |
|     portEXIT_CRITICAL(&group->spinlock);
 | |
| 
 | |
| #if SOC_RMT_SUPPORT_DMA
 | |
|     if (channel->dma_chan) {
 | |
|         gdma_stop(channel->dma_chan);
 | |
|         gdma_disconnect(channel->dma_chan);
 | |
| 
 | |
|         // disable DMA access mode
 | |
|         portENTER_CRITICAL(&channel->spinlock);
 | |
|         rmt_ll_tx_enable_dma(hal->regs, channel_id, false);
 | |
|         portEXIT_CRITICAL(&channel->spinlock);
 | |
|     }
 | |
| #endif
 | |
|     // recycle the interrupted transaction
 | |
|     if (tx_chan->cur_trans) {
 | |
|         xQueueSend(tx_chan->trans_queues[RMT_TX_QUEUE_COMPLETE], &tx_chan->cur_trans, portMAX_DELAY);
 | |
|         // reset corresponding encoder
 | |
|         rmt_encoder_reset(tx_chan->cur_trans->encoder);
 | |
|     }
 | |
|     tx_chan->cur_trans = NULL;
 | |
| 
 | |
|     // release power manager lock
 | |
|     if (channel->pm_lock) {
 | |
|         ESP_RETURN_ON_ERROR(esp_pm_lock_release(channel->pm_lock), TAG, "release pm_lock failed");
 | |
|     }
 | |
| 
 | |
|     channel->fsm = RMT_FSM_INIT;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t rmt_tx_modulate_carrier(rmt_channel_handle_t channel, const rmt_carrier_config_t *config)
 | |
| {
 | |
|     rmt_group_t *group = channel->group;
 | |
|     rmt_hal_context_t *hal = &group->hal;
 | |
|     int group_id = group->group_id;
 | |
|     int channel_id = channel->channel_id;
 | |
|     uint32_t real_frequency = 0;
 | |
| 
 | |
|     if (config && config->frequency_hz) {
 | |
|         // carrier module works base on group clock
 | |
|         uint32_t total_ticks = group->resolution_hz / config->frequency_hz; // Note this division operation will lose precision
 | |
|         uint32_t high_ticks = total_ticks * config->duty_cycle;
 | |
|         uint32_t low_ticks = total_ticks - high_ticks;
 | |
| 
 | |
|         portENTER_CRITICAL(&channel->spinlock);
 | |
|         rmt_ll_tx_set_carrier_level(hal->regs, channel_id, !config->flags.polarity_active_low);
 | |
|         rmt_ll_tx_set_carrier_high_low_ticks(hal->regs, channel_id, high_ticks, low_ticks);
 | |
| #if SOC_RMT_SUPPORT_TX_CARRIER_DATA_ONLY
 | |
|         rmt_ll_tx_enable_carrier_always_on(hal->regs, channel_id, config->flags.always_on);
 | |
| #endif
 | |
|         portEXIT_CRITICAL(&channel->spinlock);
 | |
|         // save real carrier frequency
 | |
|         real_frequency = group->resolution_hz / total_ticks;
 | |
|     }
 | |
| 
 | |
|     // enable/disable carrier modulation
 | |
|     portENTER_CRITICAL(&channel->spinlock);
 | |
|     rmt_ll_tx_enable_carrier_modulation(hal->regs, channel_id, real_frequency > 0);
 | |
|     portEXIT_CRITICAL(&channel->spinlock);
 | |
| 
 | |
|     if (real_frequency > 0) {
 | |
|         ESP_LOGD(TAG, "enable carrier modulation for channel(%d,%d), freq=%"PRIu32"Hz", group_id, channel_id, real_frequency);
 | |
|     } else {
 | |
|         ESP_LOGD(TAG, "disable carrier modulation for channel(%d,%d)", group_id, channel_id);
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static bool IRAM_ATTR rmt_isr_handle_tx_threshold(rmt_tx_channel_t *tx_chan)
 | |
| {
 | |
|     rmt_channel_t *channel = &tx_chan->base;
 | |
|     rmt_group_t *group = channel->group;
 | |
|     rmt_hal_context_t *hal = &group->hal;
 | |
|     uint32_t channel_id = channel->channel_id;
 | |
| 
 | |
|     // continue pingpong transmission
 | |
|     rmt_tx_trans_desc_t *t = tx_chan->cur_trans;
 | |
|     size_t encoded_symbols = t->transmitted_symbol_num;
 | |
|     // encoding finished, only need to send the EOF symbol
 | |
|     if (t->flags.encoding_done) {
 | |
|         rmt_tx_mark_eof(tx_chan);
 | |
|         encoded_symbols += 1;
 | |
|     } else {
 | |
|         encoded_symbols += rmt_encode_check_result(tx_chan, t);
 | |
|     }
 | |
|     t->transmitted_symbol_num = encoded_symbols;
 | |
|     tx_chan->mem_end = tx_chan->ping_pong_symbols * 3 - tx_chan->mem_end; // mem_end equals to either ping_pong_symbols or ping_pong_symbols*2
 | |
| 
 | |
|     rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_THRES(channel_id));
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static bool IRAM_ATTR rmt_isr_handle_tx_done(rmt_tx_channel_t *tx_chan)
 | |
| {
 | |
|     rmt_channel_t *channel = &tx_chan->base;
 | |
|     rmt_group_t *group = channel->group;
 | |
|     rmt_hal_context_t *hal = &group->hal;
 | |
|     uint32_t channel_id = channel->channel_id;
 | |
|     BaseType_t awoken = pdFALSE;
 | |
|     rmt_tx_trans_desc_t *trans_desc = NULL;
 | |
|     bool need_yield = false;
 | |
| 
 | |
|     portENTER_CRITICAL_ISR(&group->spinlock);
 | |
|     // disable interrupt temporarily, re-enable it when there is transaction unhandled in the queue
 | |
|     rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_TX_DONE(channel_id), false);
 | |
|     portEXIT_CRITICAL_ISR(&group->spinlock);
 | |
| 
 | |
|     trans_desc = tx_chan->cur_trans;
 | |
|     // process finished transaction
 | |
|     if (trans_desc) {
 | |
|         // don't care of the tx done event for any undergoing loop transaction
 | |
|         // mostly it's triggered when a loop transmission is undergoing and user calls `rmt_transmit()` where tx done interrupt is generated by accident
 | |
|         if (trans_desc->loop_count != 0) {
 | |
|             rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_DONE(channel_id));
 | |
|             return need_yield;
 | |
|         }
 | |
|         if (tx_chan->on_trans_done) {
 | |
|             rmt_tx_done_event_data_t edata = {
 | |
|                 .num_symbols = trans_desc->transmitted_symbol_num,
 | |
|             };
 | |
|             if (tx_chan->on_trans_done(channel, &edata, tx_chan->user_data)) {
 | |
|                 need_yield = true;
 | |
|             }
 | |
|         }
 | |
|         // move transaction to done_queue
 | |
|         xQueueSendFromISR(tx_chan->trans_queues[RMT_TX_QUEUE_COMPLETE], &trans_desc, &awoken);
 | |
|         if (awoken == pdTRUE) {
 | |
|             need_yield = true;
 | |
|         }
 | |
|     }
 | |
|     // fetch new transaction description from trans_queue
 | |
|     if (xQueueReceiveFromISR(tx_chan->trans_queues[RMT_TX_QUEUE_PROGRESS], &trans_desc, &awoken) == pdTRUE) {
 | |
|         // sanity check
 | |
|         assert(trans_desc);
 | |
|         // update current transaction
 | |
|         tx_chan->cur_trans = trans_desc;
 | |
| 
 | |
|         portENTER_CRITICAL_ISR(&group->spinlock);
 | |
|         // only clear the trans done status when we're sure there still remains transaction to handle
 | |
|         rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_DONE(channel_id));
 | |
|         // enable interrupt again, because the new transaction can trigger another trans done event
 | |
|         rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_TX_DONE(channel_id), trans_desc->loop_count == 0);
 | |
|         rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_TX_LOOP_END(channel_id), trans_desc->loop_count > 0);
 | |
|         portEXIT_CRITICAL_ISR(&group->spinlock);
 | |
| 
 | |
|         // begin a new transaction
 | |
|         rmt_tx_do_transaction(tx_chan, trans_desc);
 | |
|     } else { // No transactions left in the queue
 | |
|         // don't clear interrupt status, so when next time user push new transaction to the queue and call esp_intr_enable,
 | |
|         // we can go to this ISR handler again
 | |
|         tx_chan->cur_trans = NULL;
 | |
|     }
 | |
|     if (awoken == pdTRUE) {
 | |
|         need_yield = true;
 | |
|     }
 | |
| 
 | |
|     return need_yield;
 | |
| }
 | |
| 
 | |
| #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
 | |
| static bool IRAM_ATTR rmt_isr_handle_tx_loop_end(rmt_tx_channel_t *tx_chan)
 | |
| {
 | |
|     rmt_channel_t *channel = &tx_chan->base;
 | |
|     rmt_group_t *group = channel->group;
 | |
|     rmt_hal_context_t *hal = &group->hal;
 | |
|     uint32_t channel_id = channel->channel_id;
 | |
|     BaseType_t awoken = pdFALSE;
 | |
|     rmt_tx_trans_desc_t *trans_desc = NULL;
 | |
|     bool need_yield = false;
 | |
| 
 | |
|     trans_desc = tx_chan->cur_trans;
 | |
|     if (trans_desc) {
 | |
| #if !SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP
 | |
|         portENTER_CRITICAL_ISR(&channel->spinlock);
 | |
|         // This is a workaround for chips that don't support auto stop
 | |
|         // Although we stop the transaction immediately in ISR handler, it's still possible that some rmt symbols have sneaked out
 | |
|         rmt_ll_tx_stop(hal->regs, channel_id);
 | |
|         portEXIT_CRITICAL_ISR(&channel->spinlock);
 | |
| #endif // SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP
 | |
|         // continue unfinished loop transaction
 | |
|         if (trans_desc->remain_loop_count) {
 | |
|             uint32_t this_loop_count = MIN(trans_desc->remain_loop_count, RMT_LL_MAX_LOOP_COUNT_PER_BATCH);
 | |
|             trans_desc->remain_loop_count -= this_loop_count;
 | |
|             rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_LOOP_END(channel_id));
 | |
|             portENTER_CRITICAL_ISR(&channel->spinlock);
 | |
|             rmt_ll_tx_set_loop_count(hal->regs, channel_id, this_loop_count);
 | |
|             rmt_ll_tx_reset_pointer(hal->regs, channel_id);
 | |
|             // continue the loop transmission, don't need to fill the RMT symbols again, just restart the engine
 | |
|             rmt_ll_tx_start(hal->regs, channel_id);
 | |
|             portEXIT_CRITICAL_ISR(&channel->spinlock);
 | |
|             return need_yield;
 | |
|         } else {
 | |
|             if (tx_chan->on_trans_done) {
 | |
|                 rmt_tx_done_event_data_t edata = {
 | |
|                     .num_symbols = trans_desc->transmitted_symbol_num,
 | |
|                 };
 | |
|                 if (tx_chan->on_trans_done(channel, &edata, tx_chan->user_data)) {
 | |
|                     need_yield = true;
 | |
|                 }
 | |
|             }
 | |
|             // move transaction to done_queue
 | |
|             xQueueSendFromISR(tx_chan->trans_queues[RMT_TX_QUEUE_COMPLETE], &trans_desc, &awoken);
 | |
|             if (awoken == pdTRUE) {
 | |
|                 need_yield = true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     // trans_done and loop_done should be considered as one "transmission complete"
 | |
|     // but sometimes the trans done event might also be triggered together with loop done event, by accident, so clear it first
 | |
|     rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_DONE(channel_id));
 | |
|     portENTER_CRITICAL_ISR(&group->spinlock);
 | |
|     // disable interrupt temporarily, re-enable it when there is transaction unhandled in the queue
 | |
|     rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_TX_LOOP_END(channel_id), false);
 | |
|     portEXIT_CRITICAL_ISR(&group->spinlock);
 | |
| 
 | |
|     // fetch new transaction description from trans_queue
 | |
|     if (xQueueReceiveFromISR(tx_chan->trans_queues[RMT_TX_QUEUE_PROGRESS], &trans_desc, &awoken) == pdTRUE) {
 | |
|         // sanity check
 | |
|         assert(trans_desc);
 | |
|         tx_chan->cur_trans = trans_desc;
 | |
|         // clear the loop end status when we're sure there still remains transaction to handle
 | |
|         rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_LOOP_END(channel_id));
 | |
| 
 | |
|         portENTER_CRITICAL_ISR(&group->spinlock);
 | |
|         // enable interrupt again, because the new transaction can trigger new trans done event
 | |
|         rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_TX_DONE(channel_id), trans_desc->loop_count == 0);
 | |
|         rmt_ll_enable_interrupt(hal->regs, RMT_LL_EVENT_TX_LOOP_END(channel_id), trans_desc->loop_count > 0);
 | |
|         portEXIT_CRITICAL_ISR(&group->spinlock);
 | |
| 
 | |
|         // begin a new transaction
 | |
|         rmt_tx_do_transaction(tx_chan, trans_desc);
 | |
|     } else { // No transactions left in the queue
 | |
|         // don't clear interrupt status, so when next time user push new transaction to the queue and call esp_intr_enable,
 | |
|         // we can go into ISR handler again
 | |
|         tx_chan->cur_trans = NULL;
 | |
|     }
 | |
|     if (awoken == pdTRUE) {
 | |
|         need_yield = true;
 | |
|     }
 | |
|     return need_yield;
 | |
| }
 | |
| #endif // SOC_RMT_SUPPORT_TX_LOOP_COUNT
 | |
| 
 | |
| static void IRAM_ATTR rmt_tx_default_isr(void *args)
 | |
| {
 | |
|     rmt_tx_channel_t *tx_chan = (rmt_tx_channel_t *)args;
 | |
|     rmt_channel_t *channel = &tx_chan->base;
 | |
|     rmt_group_t *group = channel->group;
 | |
|     rmt_hal_context_t *hal = &group->hal;
 | |
|     uint32_t channel_id = channel->channel_id;
 | |
|     bool need_yield = false;
 | |
| 
 | |
|     uint32_t status = rmt_ll_tx_get_interrupt_status(hal->regs, channel_id);
 | |
| 
 | |
|     // Tx threshold interrupt
 | |
|     if (status & RMT_LL_EVENT_TX_THRES(channel_id)) {
 | |
|         if (rmt_isr_handle_tx_threshold(tx_chan)) {
 | |
|             need_yield = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Tx end interrupt
 | |
|     if (status & RMT_LL_EVENT_TX_DONE(channel_id)) {
 | |
|         if (rmt_isr_handle_tx_done(tx_chan)) {
 | |
|             need_yield = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| #if SOC_RMT_SUPPORT_TX_LOOP_COUNT
 | |
|     // Tx loop end interrupt
 | |
|     if (status & RMT_LL_EVENT_TX_LOOP_END(channel_id)) {
 | |
|         if (rmt_isr_handle_tx_loop_end(tx_chan)) {
 | |
|             need_yield = true;
 | |
|         }
 | |
|     }
 | |
| #endif // SOC_RMT_SUPPORT_TX_LOOP_COUNT
 | |
| 
 | |
|     if (need_yield) {
 | |
|         portYIELD_FROM_ISR();
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if SOC_RMT_SUPPORT_DMA
 | |
| static bool IRAM_ATTR rmt_dma_tx_eof_cb(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
 | |
| {
 | |
|     rmt_tx_channel_t *tx_chan = (rmt_tx_channel_t *)user_data;
 | |
|     rmt_dma_descriptor_t *eof_desc_nc = (rmt_dma_descriptor_t *)RMT_GET_NON_CACHE_ADDR(event_data->tx_eof_desc_addr);
 | |
|     rmt_dma_descriptor_t *n = (rmt_dma_descriptor_t *)RMT_GET_NON_CACHE_ADDR(eof_desc_nc->next); // next points to a cache address, needs to convert it to a non-cached one
 | |
|     if (n) {
 | |
|         rmt_dma_descriptor_t *nn = (rmt_dma_descriptor_t *)RMT_GET_NON_CACHE_ADDR(n->next);
 | |
|         // if the DMA descriptor link is still a ring (i.e. hasn't broken down by `rmt_tx_mark_eof()`), then we treat it as a valid ping-pong event
 | |
|         if (nn) {
 | |
|             // continue ping-pong transmission
 | |
|             rmt_tx_trans_desc_t *t = tx_chan->cur_trans;
 | |
|             size_t encoded_symbols = t->transmitted_symbol_num;
 | |
|             if (t->flags.encoding_done) {
 | |
|                 rmt_tx_mark_eof(tx_chan);
 | |
|                 encoded_symbols += 1;
 | |
|             } else {
 | |
|                 encoded_symbols += rmt_encode_check_result(tx_chan, t);
 | |
|             }
 | |
|             t->transmitted_symbol_num = encoded_symbols;
 | |
|             tx_chan->mem_end = tx_chan->ping_pong_symbols * 3 - tx_chan->mem_end; // mem_end equals to either ping_pong_symbols or ping_pong_symbols*2
 | |
|             // tell DMA that we have a new descriptor attached
 | |
|             gdma_append(dma_chan);
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| #endif // SOC_RMT_SUPPORT_DMA
 |