mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 15:11:40 +01:00 
			
		
		
		
	1. update register file about adc; 2. fix adc driver; 3. add UT for adc/dac; See merge request espressif/esp-idf!7776
		
			
				
	
	
		
			530 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			530 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2019 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include <esp_types.h>
 | |
| #include <stdlib.h>
 | |
| #include <ctype.h>
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/xtensa_api.h"
 | |
| #include "freertos/semphr.h"
 | |
| #include "freertos/timers.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_pm.h"
 | |
| #include "soc/rtc.h"
 | |
| #include "rtc_io.h"
 | |
| #include "driver/dac.h"
 | |
| #include "sys/lock.h"
 | |
| #include "driver/gpio.h"
 | |
| #include "driver/adc.h"
 | |
| #include "adc1_private.h"
 | |
| 
 | |
| #include "hal/adc_types.h"
 | |
| #include "hal/adc_hal.h"
 | |
| 
 | |
| #define ADC_CHECK_RET(fun_ret) ({                  \
 | |
|     if (fun_ret != ESP_OK) {                                \
 | |
|         ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__);  \
 | |
|         return ESP_FAIL;                                    \
 | |
|     }                                                       \
 | |
| })
 | |
| 
 | |
| static const char *ADC_TAG = "ADC";
 | |
| 
 | |
| #define ADC_CHECK(a, str, ret_val) ({                                               \
 | |
|     if (!(a)) {                                                                     \
 | |
|         ESP_LOGE(ADC_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str);   \
 | |
|         return (ret_val);                                                           \
 | |
|     }                                                                               \
 | |
| })
 | |
| 
 | |
| #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])
 | |
| 
 | |
| #define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG)
 | |
| 
 | |
| extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
 | |
| #define ADC_ENTER_CRITICAL()  portENTER_CRITICAL(&rtc_spinlock)
 | |
| #define ADC_EXIT_CRITICAL()  portEXIT_CRITICAL(&rtc_spinlock)
 | |
| 
 | |
| /*
 | |
| In ADC2, there're two locks used for different cases:
 | |
| 1. lock shared with app and Wi-Fi:
 | |
|    ESP32:
 | |
|         When Wi-Fi using the ADC2, we assume it will never stop, so app checks the lock and returns immediately if failed.
 | |
|    ESP32S2:
 | |
|         The controller's control over the ADC is determined by the arbiter. There is no need to control by lock.
 | |
| 
 | |
| 2. lock shared between tasks:
 | |
|    when several tasks sharing the ADC2, we want to guarantee
 | |
|    all the requests will be handled.
 | |
|    Since conversions are short (about 31us), app returns the lock very soon,
 | |
|    we use a spinlock to stand there waiting to do conversions one by one.
 | |
| 
 | |
| adc2_spinlock should be acquired first, then adc2_wifi_lock or rtc_spinlock.
 | |
| */
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
| //prevent ADC2 being used by wifi and other tasks at the same time.
 | |
| static _lock_t adc2_wifi_lock;
 | |
| /** For ESP32S2 the ADC2 The right to use ADC2 is controlled by the arbiter, and there is no need to set a lock. */
 | |
| #define ADC2_WIFI_LOCK_ACQUIRE()        _lock_acquire( &adc2_wifi_lock )
 | |
| #define ADC2_WIFI_LOCK_RELEASE()        _lock_release( &adc2_wifi_lock )
 | |
| #define ADC2_WIFI_LOCK_TRY_ACQUIRE()    _lock_try_acquire( &adc2_wifi_lock )
 | |
| #define ADC2_WIFI_LOCK_CHECK()          ((uint32_t *)adc2_wifi_lock != NULL)
 | |
| 
 | |
| #elif defined CONFIG_IDF_TARGET_ESP32S2
 | |
| 
 | |
| #define ADC2_WIFI_LOCK_ACQUIRE()
 | |
| #define ADC2_WIFI_LOCK_RELEASE()
 | |
| #define ADC2_WIFI_LOCK_TRY_ACQUIRE()    (0)     //WIFI controller and rtc controller have independent parameter configuration.
 | |
| #define ADC2_WIFI_LOCK_CHECK()          (true)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| //prevent ADC2 being used by tasks (regardless of WIFI)
 | |
| static portMUX_TYPE adc2_spinlock = portMUX_INITIALIZER_UNLOCKED;
 | |
| #define ADC2_ENTER_CRITICAL()   portENTER_CRITICAL( &adc2_spinlock )
 | |
| #define ADC2_EXIT_CRITICAL()    portEXIT_CRITICAL( &adc2_spinlock )
 | |
| 
 | |
| //prevent ADC1 being used by I2S dma and other tasks at the same time.
 | |
| static _lock_t adc1_dma_lock;
 | |
| #define ADC1_DMA_LOCK_ACQUIRE() _lock_acquire( &adc1_dma_lock )
 | |
| #define ADC1_DMA_LOCK_RELEASE() _lock_release( &adc1_dma_lock )
 | |
| 
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32S2
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
| static esp_pm_lock_handle_t s_adc2_arbiter_lock;
 | |
| #endif  //CONFIG_PM_ENABLE
 | |
| #endif  //CONFIG_IDF_TARGET_ESP32S2
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                     ADC Common
 | |
| ---------------------------------------------------------------*/
 | |
| 
 | |
| void adc_power_always_on(void)
 | |
| {
 | |
|     ADC_ENTER_CRITICAL();
 | |
|     adc_hal_set_power_manage(ADC_POWER_SW_ON);
 | |
|     ADC_EXIT_CRITICAL();
 | |
| }
 | |
| 
 | |
| void adc_power_on(void)
 | |
| {
 | |
|     ADC_ENTER_CRITICAL();
 | |
|     /* The power FSM controlled mode saves more power, while the ADC noise may get increased. */
 | |
| #ifndef CONFIG_ADC_FORCE_XPD_FSM
 | |
|     /* Set the power always on to increase precision. */
 | |
|     adc_hal_set_power_manage(ADC_POWER_SW_ON);
 | |
| #else
 | |
|     /* Use the FSM to turn off the power while not used to save power. */
 | |
|     if (adc_hal_get_power_manage() != ADC_POWER_BY_FSM) {
 | |
|         adc_hal_set_power_manage(ADC_POWER_SW_ON);
 | |
|     }
 | |
| #endif
 | |
|     ADC_EXIT_CRITICAL();
 | |
| }
 | |
| 
 | |
| void adc_power_off(void)
 | |
| {
 | |
|     ADC_ENTER_CRITICAL();
 | |
|     adc_hal_set_power_manage(ADC_POWER_SW_OFF);
 | |
|     ADC_EXIT_CRITICAL();
 | |
| }
 | |
| 
 | |
| esp_err_t adc_set_clk_div(uint8_t clk_div)
 | |
| {
 | |
|     ADC_ENTER_CRITICAL();
 | |
|     adc_hal_digi_set_clk_div(clk_div);
 | |
|     ADC_EXIT_CRITICAL();
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_gpio_init(adc_unit_t adc_unit, adc_channel_t channel)
 | |
| {
 | |
|     gpio_num_t gpio_num = 0;
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
 | |
|         gpio_num = ADC_GET_IO_NUM(ADC_NUM_1, channel);
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
 | |
|         gpio_num = ADC_GET_IO_NUM(ADC_NUM_2, channel);
 | |
|     }
 | |
|     ADC_CHECK_RET(rtc_gpio_init(gpio_num));
 | |
|     ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
 | |
|     ADC_CHECK_RET(gpio_set_pull_mode(gpio_num, GPIO_FLOATING));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en)
 | |
| {
 | |
|     ADC_ENTER_CRITICAL();
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         adc_hal_rtc_output_invert(ADC_NUM_1, inv_en);
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         adc_hal_rtc_output_invert(ADC_NUM_1, inv_en);
 | |
|     }
 | |
|     ADC_EXIT_CRITICAL();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t bits)
 | |
| {
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     ADC_CHECK(bits < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
 | |
| #elif defined CONFIG_IDF_TARGET_ESP32S2
 | |
|     ADC_CHECK(bits == ADC_WIDTH_BIT_13, "WIDTH ERR: ESP32S2 support 13 bit width", ESP_ERR_INVALID_ARG);
 | |
| #endif
 | |
| 
 | |
|     ADC_ENTER_CRITICAL();
 | |
|     if (adc_unit & ADC_UNIT_1) {
 | |
|         adc_hal_rtc_set_output_format(ADC_NUM_1, bits);
 | |
|     }
 | |
|     if (adc_unit & ADC_UNIT_2) {
 | |
|         adc_hal_rtc_set_output_format(ADC_NUM_2, bits);
 | |
|         adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
 | |
|     }
 | |
|     ADC_EXIT_CRITICAL();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Reset RTC controller FSM.
 | |
|  *
 | |
|  * @return
 | |
|  *      - ESP_OK Success
 | |
|  */
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32S2
 | |
| esp_err_t adc_rtc_reset(void)
 | |
| {
 | |
|     ADC_ENTER_CRITICAL();
 | |
|     adc_hal_rtc_reset();
 | |
|     ADC_EXIT_CRITICAL();
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static inline void adc_set_init_code(adc_ll_num_t adc_n, adc_channel_t channel)
 | |
| {
 | |
|     adc_atten_t atten = adc_hal_get_atten(adc_n, channel);
 | |
|     uint32_t cal_val = adc_hal_calibration(adc_n, channel, atten, true, false);
 | |
|     adc_hal_set_calibration_param(adc_n, cal_val);
 | |
|     ESP_LOGD(ADC_TAG, "Set cal adc %d\n", cal_val);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*-------------------------------------------------------------------------------------
 | |
|  *                      ADC1
 | |
|  *------------------------------------------------------------------------------------*/
 | |
| esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num)
 | |
| {
 | |
|     ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
 | |
| 
 | |
|     int io = ADC_GET_IO_NUM(ADC_NUM_1, channel);
 | |
|     if (io < 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     } else {
 | |
|         *gpio_num = (gpio_num_t)io;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
 | |
| {
 | |
|     ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
 | |
|     ADC_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     adc_gpio_init(ADC_UNIT_1, channel);
 | |
|     ADC_ENTER_CRITICAL();
 | |
|     adc_hal_set_atten(ADC_NUM_1, channel, atten);
 | |
|     ADC_EXIT_CRITICAL();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_config_width(adc_bits_width_t width_bit)
 | |
| {
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     ADC_CHECK(width_bit < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
 | |
| #elif defined CONFIG_IDF_TARGET_ESP32S2
 | |
|     ADC_CHECK(width_bit == ADC_WIDTH_BIT_13, "WIDTH ERR: ESP32S2 support 13 bit width", ESP_ERR_INVALID_ARG);
 | |
| #endif
 | |
| 
 | |
|     ADC_ENTER_CRITICAL();
 | |
|     adc_hal_rtc_set_output_format(ADC_NUM_1, width_bit);
 | |
|     adc_hal_rtc_output_invert(ADC_NUM_1, SOC_ADC1_DATA_INVERT_DEFAULT);
 | |
|     adc_hal_set_sar_clk_div(ADC_NUM_1, SOC_ADC_SAR_CLK_DIV_DEFAULT(ADC_NUM_1));
 | |
|     ADC_EXIT_CRITICAL();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_dma_mode_acquire(void)
 | |
| {
 | |
|     /* Use locks to avoid digtal and RTC controller conflicts.
 | |
|        for adc1, block until acquire the lock. */
 | |
|     ADC1_DMA_LOCK_ACQUIRE();
 | |
|     ESP_LOGD( ADC_TAG, "dma mode takes adc1 lock." );
 | |
| 
 | |
|     ADC_ENTER_CRITICAL();
 | |
|     adc_hal_set_power_manage(ADC_POWER_SW_ON);
 | |
|     /* switch SARADC into DIG channel */
 | |
|     adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_DIG);
 | |
|     ADC_EXIT_CRITICAL();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_rtc_mode_acquire(void)
 | |
| {
 | |
|     /* Use locks to avoid digtal and RTC controller conflicts.
 | |
|        for adc1, block until acquire the lock. */
 | |
|     ADC1_DMA_LOCK_ACQUIRE();
 | |
| 
 | |
|     ADC_ENTER_CRITICAL();
 | |
|     /* switch SARADC into RTC channel. */
 | |
|     adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_RTC);
 | |
|     ADC_EXIT_CRITICAL();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc1_lock_release(void)
 | |
| {
 | |
|     ADC_CHECK((uint32_t *)adc1_dma_lock != NULL, "adc1 lock release called before acquire", ESP_ERR_INVALID_STATE );
 | |
|     /* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */
 | |
|     ADC1_DMA_LOCK_RELEASE();
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| int adc1_get_raw(adc1_channel_t channel)
 | |
| {
 | |
|     int adc_value;
 | |
|     ADC_CHANNEL_CHECK(ADC_NUM_1, channel);
 | |
|     adc1_rtc_mode_acquire();
 | |
|     adc_power_on();
 | |
| 
 | |
|     ADC_ENTER_CRITICAL();
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     adc_hal_hall_disable(); //Disable other peripherals.
 | |
|     adc_hal_amp_disable();  //Currently the LNA is not open, close it by default.
 | |
| #endif
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32S2
 | |
|     adc_set_init_code(ADC_NUM_1, channel);             // calibration for adc
 | |
| #endif
 | |
|     adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_RTC);    //Set controller
 | |
|     adc_hal_convert(ADC_NUM_1, channel, &adc_value);   //Start conversion, For ADC1, the data always valid.
 | |
|     ADC_EXIT_CRITICAL();
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32S2
 | |
|     adc_hal_rtc_reset();    //Reset FSM of rtc controller
 | |
| #endif
 | |
| 
 | |
|     adc1_lock_release();
 | |
|     return adc_value;
 | |
| }
 | |
| 
 | |
| int adc1_get_voltage(adc1_channel_t channel)    //Deprecated. Use adc1_get_raw() instead
 | |
| {
 | |
|     return adc1_get_raw(channel);
 | |
| }
 | |
| 
 | |
| void adc1_ulp_enable(void)
 | |
| {
 | |
|     adc_power_on();
 | |
| 
 | |
|     ADC_ENTER_CRITICAL();
 | |
|     adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_ULP);
 | |
|     /* since most users do not need LNA and HALL with uLP, we disable them here
 | |
|        open them in the uLP if needed. */
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     /* disable other peripherals. */
 | |
|     adc_hal_hall_disable();
 | |
|     adc_hal_amp_disable();
 | |
| #endif
 | |
|     ADC_EXIT_CRITICAL();
 | |
| }
 | |
| 
 | |
| /*---------------------------------------------------------------
 | |
|                     ADC2
 | |
| ---------------------------------------------------------------*/
 | |
| esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num)
 | |
| {
 | |
|     ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
 | |
| 
 | |
|     int io = ADC_GET_IO_NUM(ADC_NUM_2, channel);
 | |
|     if (io < 0) {
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     } else {
 | |
|         *gpio_num = (gpio_num_t)io;
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| /** For ESP32S2 the ADC2 The right to use ADC2 is controlled by the arbiter, and there is no need to set a lock.*/
 | |
| esp_err_t adc2_wifi_acquire(void)
 | |
| {
 | |
|     /* Wi-Fi module will use adc2. Use locks to avoid conflicts. */
 | |
|     ADC2_WIFI_LOCK_ACQUIRE();
 | |
|     ESP_LOGD( ADC_TAG, "Wi-Fi takes adc2 lock." );
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc2_wifi_release(void)
 | |
| {
 | |
|     ADC_CHECK(ADC2_WIFI_LOCK_CHECK(), "wifi release called before acquire", ESP_ERR_INVALID_STATE );
 | |
|     ADC2_WIFI_LOCK_RELEASE();
 | |
|     ESP_LOGD( ADC_TAG, "Wi-Fi returns adc2 lock." );
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t adc2_pad_init(adc2_channel_t channel)
 | |
| {
 | |
|     gpio_num_t gpio_num = 0;
 | |
|     ADC_CHECK_RET(adc2_pad_get_io_num(channel, &gpio_num));
 | |
|     ADC_CHECK_RET(rtc_gpio_init(gpio_num));
 | |
|     ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED));
 | |
|     ADC_CHECK_RET(gpio_set_pull_mode(gpio_num, GPIO_FLOATING));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
 | |
| {
 | |
|     ADC_CHANNEL_CHECK(ADC_NUM_2, channel);
 | |
|     ADC_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG);
 | |
| 
 | |
|     adc2_pad_init(channel);
 | |
|     ADC2_ENTER_CRITICAL();
 | |
|     //avoid collision with other tasks
 | |
|     if ( ADC2_WIFI_LOCK_TRY_ACQUIRE() == -1 ) {
 | |
|         //try the lock, return if failed (wifi using).
 | |
|         ADC2_EXIT_CRITICAL();
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
|     adc_hal_set_atten(ADC_NUM_2, channel, atten);
 | |
|     ADC2_WIFI_LOCK_RELEASE();
 | |
|     ADC2_EXIT_CRITICAL();
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static inline void adc2_config_width(adc_bits_width_t width_bit)
 | |
| {
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32S2
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     /* Lock APB clock. */
 | |
|     if (s_adc2_arbiter_lock == NULL) {
 | |
|         esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc2", &s_adc2_arbiter_lock);
 | |
|     }
 | |
| #endif  //CONFIG_PM_ENABLE
 | |
| #endif  //CONFIG_IDF_TARGET_ESP32S2
 | |
|     ADC_ENTER_CRITICAL();
 | |
|     adc_hal_rtc_set_output_format(ADC_NUM_2, width_bit);
 | |
|     adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT);
 | |
|     adc_hal_rtc_output_invert(ADC_NUM_2, SOC_ADC2_DATA_INVERT_DEFAULT);
 | |
|     adc_hal_set_sar_clk_div(ADC_NUM_2, SOC_ADC_SAR_CLK_DIV_DEFAULT(ADC_NUM_2));
 | |
|     ADC_EXIT_CRITICAL();
 | |
| }
 | |
| 
 | |
| static inline void adc2_dac_disable( adc2_channel_t channel)
 | |
| {
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     if ( channel == ADC2_CHANNEL_8 ) { // the same as DAC channel 1
 | |
|         dac_output_disable(DAC_CHANNEL_1);
 | |
|     } else if ( channel == ADC2_CHANNEL_9 ) {
 | |
|         dac_output_disable(DAC_CHANNEL_2);
 | |
|     }
 | |
| #elif defined CONFIG_IDF_TARGET_ESP32S2
 | |
|     if ( channel == ADC2_CHANNEL_6 ) { // the same as DAC channel 1
 | |
|         dac_output_disable(DAC_CHANNEL_1);
 | |
|     } else if ( channel == ADC2_CHANNEL_7 ) {
 | |
|         dac_output_disable(DAC_CHANNEL_2);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @note For ESP32S2:
 | |
|  *       The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode.
 | |
|  *       Or, the RTC controller will fail when get raw data.
 | |
|  *       This issue does not occur on digital controllers (DMA mode), and the hardware guarantees that there will be no errors.
 | |
|  */
 | |
| esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
 | |
| {
 | |
|     int adc_value = 0;
 | |
| 
 | |
|     ADC_CHECK(raw_out != NULL, "ADC out value err", ESP_ERR_INVALID_ARG);
 | |
|     ADC_CHECK(channel < ADC2_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG);
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32
 | |
|     ADC_CHECK(width_bit < ADC_WIDTH_MAX, "WIDTH ERR: ESP32 support 9 ~ 12 bit width", ESP_ERR_INVALID_ARG);
 | |
| #elif defined CONFIG_IDF_TARGET_ESP32S2
 | |
|     ADC_CHECK(width_bit == ADC_WIDTH_BIT_13, "WIDTH ERR: ESP32S2 support 13 bit width", ESP_ERR_INVALID_ARG);
 | |
| #endif
 | |
| 
 | |
|     adc_power_on();         //in critical section with whole rtc module
 | |
| 
 | |
|     ADC2_ENTER_CRITICAL();  //avoid collision with other tasks
 | |
| 
 | |
|     if ( ADC2_WIFI_LOCK_TRY_ACQUIRE() == -1 ) { //try the lock, return if failed (wifi using).
 | |
|         ADC2_EXIT_CRITICAL();
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
| #ifdef CONFIG_ADC_DISABLE_DAC
 | |
|     adc2_dac_disable(channel);      //disable other peripherals
 | |
| #endif
 | |
|     adc2_config_width(width_bit);   // in critical section with whole rtc module. because the PWDET use the same registers, place it here.
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32S2
 | |
|     adc_set_init_code(ADC_NUM_2, channel);  // calibration for adc
 | |
| #endif
 | |
|     adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC);// set controller
 | |
| 
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32S2
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     if (s_adc2_arbiter_lock) {
 | |
|         esp_pm_lock_acquire(s_adc2_arbiter_lock);
 | |
|     }
 | |
| #endif //CONFIG_PM_ENABLE
 | |
| #endif //CONFIG_IDF_TARGET_ESP32
 | |
| 
 | |
|     if (adc_hal_convert(ADC_NUM_2, channel, &adc_value)) {
 | |
|         adc_value = -1;
 | |
|     }
 | |
| 
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32S2
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     /* Release APB clock. */
 | |
|     if (s_adc2_arbiter_lock) {
 | |
|         esp_pm_lock_release(s_adc2_arbiter_lock);
 | |
|     }
 | |
| #endif //CONFIG_PM_ENABLE
 | |
| #endif //CONFIG_IDF_TARGET_ESP32
 | |
| 
 | |
|     ADC2_WIFI_LOCK_RELEASE();
 | |
|     ADC2_EXIT_CRITICAL();
 | |
| 
 | |
| #ifdef CONFIG_IDF_TARGET_ESP32S2
 | |
|     adc_rtc_reset();
 | |
| #endif
 | |
| 
 | |
|     if (adc_value < 0) {
 | |
|         ESP_LOGD( ADC_TAG, "ADC2 ARB: Return data is invalid." );
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     *raw_out = adc_value;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 |