mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-11-04 09:01:40 +01:00 
			
		
		
		
	This commit adds the various ...GetStaticBuffer() functions from upstream FreeRTOS. See https://github.com/FreeRTOS/FreeRTOS-Kernel/pull/641 for more details.
		
			
				
	
	
		
			6540 lines
		
	
	
		
			267 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6540 lines
		
	
	
		
			267 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * SPDX-FileCopyrightText: 2020 Amazon.com, Inc. or its affiliates
 | 
						|
 *
 | 
						|
 * SPDX-License-Identifier: MIT
 | 
						|
 *
 | 
						|
 * SPDX-FileContributor: 2016-2022 Espressif Systems (Shanghai) CO LTD
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * FreeRTOS Kernel V10.4.3
 | 
						|
 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
 | 
						|
 *
 | 
						|
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 | 
						|
 * this software and associated documentation files (the "Software"), to deal in
 | 
						|
 * the Software without restriction, including without limitation the rights to
 | 
						|
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 | 
						|
 * the Software, and to permit persons to whom the Software is furnished to do so,
 | 
						|
 * subject to the following conditions:
 | 
						|
 *
 | 
						|
 * The above copyright notice and this permission notice shall be included in all
 | 
						|
 * copies or substantial portions of the Software.
 | 
						|
 *
 | 
						|
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 | 
						|
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 | 
						|
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 | 
						|
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | 
						|
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | 
						|
 *
 | 
						|
 * https://www.FreeRTOS.org
 | 
						|
 * https://github.com/FreeRTOS
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/* Standard includes. */
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
 | 
						|
 * all the API functions to use the MPU wrappers.  That should only be done when
 | 
						|
 * task.h is included from an application file. */
 | 
						|
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
 | 
						|
 | 
						|
/* FreeRTOS includes. */
 | 
						|
#include "FreeRTOS.h"
 | 
						|
#include "task.h"
 | 
						|
#include "timers.h"
 | 
						|
#include "stack_macros.h"
 | 
						|
 | 
						|
#ifdef ESP_PLATFORM
 | 
						|
    #undef _REENT_INIT_PTR
 | 
						|
    #define _REENT_INIT_PTR    esp_reent_init
 | 
						|
    extern void esp_vApplicationIdleHook( void );
 | 
						|
#endif //ESP_PLATFORM
 | 
						|
 | 
						|
/* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
 | 
						|
 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
 | 
						|
 * for the header files above, but not in this file, in order to generate the
 | 
						|
 * correct privileged Vs unprivileged linkage and placement. */
 | 
						|
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */
 | 
						|
 | 
						|
/* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
 | 
						|
 * functions but without including stdio.h here. */
 | 
						|
#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
 | 
						|
 | 
						|
/* At the bottom of this file are two optional functions that can be used
 | 
						|
 * to generate human readable text from the raw data generated by the
 | 
						|
 * uxTaskGetSystemState() function.  Note the formatting functions are provided
 | 
						|
 * for convenience only, and are NOT considered part of the kernel. */
 | 
						|
    #include <stdio.h>
 | 
						|
#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
 | 
						|
 | 
						|
#if ( configUSE_PREEMPTION == 0 )
 | 
						|
 | 
						|
/* If the cooperative scheduler is being used then a yield should not be
 | 
						|
 * performed just because a higher priority task has been woken. */
 | 
						|
    #define taskYIELD_IF_USING_PREEMPTION()
 | 
						|
#else
 | 
						|
    #define taskYIELD_IF_USING_PREEMPTION()    portYIELD_WITHIN_API()
 | 
						|
#endif
 | 
						|
 | 
						|
/* Values that can be assigned to the ucNotifyState member of the TCB. */
 | 
						|
#define taskNOT_WAITING_NOTIFICATION              ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
 | 
						|
#define taskWAITING_NOTIFICATION                  ( ( uint8_t ) 1 )
 | 
						|
#define taskNOTIFICATION_RECEIVED                 ( ( uint8_t ) 2 )
 | 
						|
 | 
						|
/*
 | 
						|
 * The value used to fill the stack of a task when the task is created.  This
 | 
						|
 * is used purely for checking the high water mark for tasks.
 | 
						|
 */
 | 
						|
#define tskSTACK_FILL_BYTE                        ( 0xa5U )
 | 
						|
 | 
						|
/* Bits used to record how a task's stack and TCB were allocated. */
 | 
						|
#define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB    ( ( uint8_t ) 0 )
 | 
						|
#define tskSTATICALLY_ALLOCATED_STACK_ONLY        ( ( uint8_t ) 1 )
 | 
						|
#define tskSTATICALLY_ALLOCATED_STACK_AND_TCB     ( ( uint8_t ) 2 )
 | 
						|
 | 
						|
/* If any of the following are set then task stacks are filled with a known
 | 
						|
 * value so the high water mark can be determined.  If none of the following are
 | 
						|
 * set then don't fill the stack so there is no unnecessary dependency on memset. */
 | 
						|
#if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
 | 
						|
    #define tskSET_NEW_STACKS_TO_KNOWN_VALUE    1
 | 
						|
#else
 | 
						|
    #define tskSET_NEW_STACKS_TO_KNOWN_VALUE    0
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Macros used by vListTask to indicate which state a task is in.
 | 
						|
 */
 | 
						|
#define tskRUNNING_CHAR      ( 'X' )
 | 
						|
#define tskBLOCKED_CHAR      ( 'B' )
 | 
						|
#define tskREADY_CHAR        ( 'R' )
 | 
						|
#define tskDELETED_CHAR      ( 'D' )
 | 
						|
#define tskSUSPENDED_CHAR    ( 'S' )
 | 
						|
 | 
						|
/*
 | 
						|
 * Some kernel aware debuggers require the data the debugger needs access to to
 | 
						|
 * be global, rather than file scope.
 | 
						|
 */
 | 
						|
#ifdef portREMOVE_STATIC_QUALIFIER
 | 
						|
    #define static
 | 
						|
#endif
 | 
						|
 | 
						|
/* The name allocated to the Idle task.  This can be overridden by defining
 | 
						|
 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
 | 
						|
#ifndef configIDLE_TASK_NAME
 | 
						|
    #define configIDLE_TASK_NAME    "IDLE"
 | 
						|
#endif
 | 
						|
 | 
						|
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
 | 
						|
 | 
						|
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
 | 
						|
 * performed in a generic way that is not optimised to any particular
 | 
						|
 * microcontroller architecture. */
 | 
						|
 | 
						|
/* uxTopReadyPriority holds the priority of the highest priority ready
 | 
						|
 * state task. */
 | 
						|
    #define taskRECORD_READY_PRIORITY( uxPriority ) \
 | 
						|
    {                                               \
 | 
						|
        if( ( uxPriority ) > uxTopReadyPriority )   \
 | 
						|
        {                                           \
 | 
						|
            uxTopReadyPriority = ( uxPriority );    \
 | 
						|
        }                                           \
 | 
						|
    } /* taskRECORD_READY_PRIORITY */
 | 
						|
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
        #define taskSELECT_HIGHEST_PRIORITY_TASK()    taskSelectHighestPriorityTaskSMP()
 | 
						|
    #else /* configNUM_CORES > 1 */
 | 
						|
        #define taskSELECT_HIGHEST_PRIORITY_TASK()                            \
 | 
						|
    {                                                                         \
 | 
						|
        UBaseType_t uxTopPriority = uxTopReadyPriority;                       \
 | 
						|
                                                                              \
 | 
						|
        /* Find the highest priority queue that contains ready tasks. */      \
 | 
						|
        while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \
 | 
						|
        {                                                                     \
 | 
						|
            configASSERT( uxTopPriority );                                    \
 | 
						|
            --uxTopPriority;                                                  \
 | 
						|
        }                                                                     \
 | 
						|
                                                                              \
 | 
						|
        /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
 | 
						|
         * the  same priority get an equal share of the processor time. */                         \
 | 
						|
        listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB[ 0 ], &( pxReadyTasksLists[ uxTopPriority ] ) ); \
 | 
						|
        uxTopReadyPriority = uxTopPriority;                                                        \
 | 
						|
    } /* taskSELECT_HIGHEST_PRIORITY_TASK */
 | 
						|
    #endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
/* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
 | 
						|
 * they are only required when a port optimised method of task selection is
 | 
						|
 * being used. */
 | 
						|
    #define taskRESET_READY_PRIORITY( uxPriority )
 | 
						|
    #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
 | 
						|
 | 
						|
#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
 | 
						|
 | 
						|
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
 | 
						|
 * performed in a way that is tailored to the particular microcontroller
 | 
						|
 * architecture being used. */
 | 
						|
 | 
						|
/* A port optimised version is provided.  Call the port defined macros. */
 | 
						|
    #define taskRECORD_READY_PRIORITY( uxPriority )    portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
 | 
						|
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
    #define taskSELECT_HIGHEST_PRIORITY_TASK()                                                     \
 | 
						|
    {                                                                                              \
 | 
						|
        UBaseType_t uxTopPriority;                                                                 \
 | 
						|
                                                                                                   \
 | 
						|
        /* Find the highest priority list that contains ready tasks. */                            \
 | 
						|
        portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority );                             \
 | 
						|
        configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 );    \
 | 
						|
        listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB[ 0 ], &( pxReadyTasksLists[ uxTopPriority ] ) ); \
 | 
						|
    } /* taskSELECT_HIGHEST_PRIORITY_TASK() */
 | 
						|
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
/* A port optimised version is provided, call it only if the TCB being reset
 | 
						|
 * is being referenced from a ready list.  If it is referenced from a delayed
 | 
						|
 * or suspended list then it won't be in a ready list. */
 | 
						|
    #define taskRESET_READY_PRIORITY( uxPriority )                                                     \
 | 
						|
    {                                                                                                  \
 | 
						|
        if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
 | 
						|
        {                                                                                              \
 | 
						|
            portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) );                        \
 | 
						|
        }                                                                                              \
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
 | 
						|
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
 | 
						|
 * count overflows. */
 | 
						|
#define taskSWITCH_DELAYED_LISTS()                                                \
 | 
						|
    {                                                                             \
 | 
						|
        List_t * pxTemp;                                                          \
 | 
						|
                                                                                  \
 | 
						|
        /* The delayed tasks list should be empty when the lists are switched. */ \
 | 
						|
        configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) );               \
 | 
						|
                                                                                  \
 | 
						|
        pxTemp = pxDelayedTaskList;                                               \
 | 
						|
        pxDelayedTaskList = pxOverflowDelayedTaskList;                            \
 | 
						|
        pxOverflowDelayedTaskList = pxTemp;                                       \
 | 
						|
        xNumOfOverflows++;                                                        \
 | 
						|
        prvResetNextTaskUnblockTime();                                            \
 | 
						|
    }
 | 
						|
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
/*
 | 
						|
 * Place the task represented by pxTCB into the appropriate ready list for
 | 
						|
 * the task.  It is inserted at the end of the list.
 | 
						|
 */
 | 
						|
#define prvAddTaskToReadyList( pxTCB )                                                                 \
 | 
						|
    traceMOVED_TASK_TO_READY_STATE( pxTCB );                                                           \
 | 
						|
    taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority );                                                \
 | 
						|
    vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
 | 
						|
    tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configNUM_CORES > 1 )
 | 
						|
    #define prvCheckForYield( pxTCB, xCurCoreID, xYieldEqualPriority )                                       ( prvCheckForYieldUsingPrioritySMP( ( pxTCB )->uxPriority, ( pxTCB )->xCoreID, xCurCoreID, xYieldEqualPriority ) == pdTRUE )
 | 
						|
    #define prvCheckForYieldUsingPriority( uxTaskPriority, xTaskCoreID, xCurCoreID, xYieldEqualPriority )    ( prvCheckForYieldUsingPrioritySMP( uxTaskPriority, xTaskCoreID, xCurCoreID, xYieldEqualPriority ) == pdTRUE )
 | 
						|
#else
 | 
						|
    #define prvCheckForYield( pxTargetTCB, xCurCoreID, xYieldEqualPriority )                                 ( ( ( pxTargetTCB )->uxPriority + ( ( xYieldEqualPriority == pdTRUE ) ? 1 : 0 ) ) > pxCurrentTCB[ 0 ]->uxPriority )
 | 
						|
    #define prvCheckForYieldUsingPriority( uxTaskPriority, xTaskCoreID, xCurCoreID, xYieldEqualPriority )    ( ( uxTaskPriority + ( ( xYieldEqualPriority == pdTRUE ) ? 1 : 0 ) ) >= pxCurrentTCB[ 0 ]->uxPriority )
 | 
						|
#endif /* configNUM_CORES > 1 */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if a particular task (using its xCoreID) can run on a designated core.
 | 
						|
 * On single core, this macro always evaluates to true.
 | 
						|
 */
 | 
						|
#if ( configNUM_CORES > 1 )
 | 
						|
    #define taskCAN_RUN_ON_CORE( xCore, xCoreID )    ( ( ( ( xCoreID ) == xCore ) || ( ( xCoreID ) == tskNO_AFFINITY ) ) ? pdTRUE : pdFALSE )
 | 
						|
#else
 | 
						|
    #define taskCAN_RUN_ON_CORE( xCore, xCoreID )    ( pdTRUE )
 | 
						|
#endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
/* Check if a task is a currently running task. */
 | 
						|
#if ( configNUM_CORES > 1 )
 | 
						|
    #define taskIS_CURRENTLY_RUNNING( pxTCB )                     ( ( ( pxTCB ) == pxCurrentTCB[ 0 ] ) || ( ( pxTCB ) == pxCurrentTCB[ 1 ] ) )
 | 
						|
    #define taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xCoreID )    ( ( pxTCB ) == pxCurrentTCB[ ( xCoreID ) ] )
 | 
						|
#else
 | 
						|
    #define taskIS_CURRENTLY_RUNNING( pxTCB )                     ( ( pxTCB ) == pxCurrentTCB[ 0 ] )
 | 
						|
    #define taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xCoreID )    taskIS_CURRENTLY_RUNNING( ( pxTCB ) )
 | 
						|
#endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if a task can be scheduled on a core.
 | 
						|
 * On a dual-core system:
 | 
						|
 *      - If a task is pinned, check the scheduler suspension state on the task's pinned core. The task can be scheduled
 | 
						|
 *        if the scheduler is not suspended on the pinned core.
 | 
						|
 *      - If a task is unpinned, check the scheduler suspension state on both cores. The task can be scheduled if the
 | 
						|
 *        scheduler is not suspended on either of the cores.
 | 
						|
 * On a single-core system:
 | 
						|
 *      - Check the scheduler suspension state on core 0. The task can be scheduled if the scheduler is not suspended.
 | 
						|
 */
 | 
						|
#if ( configNUM_CORES > 1 )
 | 
						|
    #define taskCAN_BE_SCHEDULED( pxTCB )                                                                              \
 | 
						|
    ( ( pxTCB->xCoreID != tskNO_AFFINITY ) ) ? ( uxSchedulerSuspended[ pxTCB->xCoreID ] == ( UBaseType_t ) pdFALSE ) : \
 | 
						|
    ( ( uxSchedulerSuspended[ 0 ] == ( UBaseType_t ) pdFALSE ) || ( uxSchedulerSuspended[ 1 ] == ( UBaseType_t ) pdFALSE ) )
 | 
						|
#else
 | 
						|
    #define taskCAN_BE_SCHEDULED( pxTCB )    ( ( uxSchedulerSuspended[ 0 ] == ( UBaseType_t ) pdFALSE ) )
 | 
						|
#endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Several functions take a TaskHandle_t parameter that can optionally be NULL,
 | 
						|
 * where NULL is used to indicate that the handle of the currently executing
 | 
						|
 * task should be used in place of the parameter.  This macro simply checks to
 | 
						|
 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
 | 
						|
 */
 | 
						|
#if configNUM_CORES > 1
 | 
						|
/* In SMP, we need to disable interrupts if getting the current task handle outside a critical section. Calling xTaskGetCurrentTaskHandle() ensures this. */
 | 
						|
    #define prvGetTCBFromHandle( pxHandle )    ( ( ( pxHandle ) == NULL ) ? xTaskGetCurrentTaskHandle() : ( ( TaskHandle_t ) pxHandle ) )
 | 
						|
#else
 | 
						|
    #define prvGetTCBFromHandle( pxHandle )    ( ( ( pxHandle ) == NULL ) ? ( TaskHandle_t ) pxCurrentTCB[ 0 ] : ( ( TaskHandle_t ) pxHandle ) )
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * There are various blocking tasks.c API that call configASSERT() to check if
 | 
						|
 * the API is being called while the scheduler is suspended. However, these
 | 
						|
 * asserts are done outside a critical section or interrupt disabled block.
 | 
						|
 * Directly checking uxSchedulerSuspended[ xPortGetCoreID() ] outside a critical
 | 
						|
 * section can lead to false positives in SMP. Thus for SMP, we call
 | 
						|
 * xTaskGetSchedulerState() instead.
 | 
						|
 *
 | 
						|
 * Take the following example of an unpinned Task A in SMP calling
 | 
						|
 * uxSchedulerSuspended[ xPortGetCoreID() ]:
 | 
						|
 * - Task A calls xPortGetCoreID() which is 0
 | 
						|
 * - Task A gets preempted by Task B, Task A switches to core 1
 | 
						|
 * - Task B on core 0 calls vTaskSuspendAll()
 | 
						|
 * - Task A checks uxSchedulerSuspended[ 0 ] leading to a false positive
 | 
						|
 */
 | 
						|
#if ( configNUM_CORES > 1 )
 | 
						|
    #define taskIS_SCHEDULER_SUSPENDED()    ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED )
 | 
						|
#else
 | 
						|
    #define taskIS_SCHEDULER_SUSPENDED()    ( uxSchedulerSuspended[ 0 ] > 0 )
 | 
						|
#endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
/* The item value of the event list item is normally used to hold the priority
 | 
						|
 * of the task to which it belongs (coded to allow it to be held in reverse
 | 
						|
 * priority order).  However, it is occasionally borrowed for other purposes.  It
 | 
						|
 * is important its value is not updated due to a task priority change while it is
 | 
						|
 * being used for another purpose.  The following bit definition is used to inform
 | 
						|
 * the scheduler that the value should not be changed - in which case it is the
 | 
						|
 * responsibility of whichever module is using the value to ensure it gets set back
 | 
						|
 * to its original value when it is released. */
 | 
						|
#if ( configUSE_16_BIT_TICKS == 1 )
 | 
						|
    #define taskEVENT_LIST_ITEM_VALUE_IN_USE    0x8000U
 | 
						|
#else
 | 
						|
    #define taskEVENT_LIST_ITEM_VALUE_IN_USE    0x80000000UL
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Task control block.  A task control block (TCB) is allocated for each task,
 | 
						|
 * and stores task state information, including a pointer to the task's context
 | 
						|
 * (the task's run time environment, including register values)
 | 
						|
 */
 | 
						|
typedef struct tskTaskControlBlock       /* The old naming convention is used to prevent breaking kernel aware debuggers. */
 | 
						|
{
 | 
						|
    volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack.  THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
 | 
						|
 | 
						|
    #if ( portUSING_MPU_WRAPPERS == 1 )
 | 
						|
        xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer.  THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
 | 
						|
    #endif
 | 
						|
 | 
						|
    ListItem_t xStateListItem;                  /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
 | 
						|
    ListItem_t xEventListItem;                  /*< Used to reference a task from an event list. */
 | 
						|
    UBaseType_t uxPriority;                     /*< The priority of the task.  0 is the lowest priority. */
 | 
						|
    StackType_t * pxStack;                      /*< Points to the start of the stack. */
 | 
						|
    char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created.  Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
 | 
						|
    BaseType_t xCoreID;                         /*< Core this task is pinned to */
 | 
						|
 | 
						|
    #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
 | 
						|
        StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( portCRITICAL_NESTING_IN_TCB == 1 )
 | 
						|
        UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( configUSE_TRACE_FACILITY == 1 )
 | 
						|
        UBaseType_t uxTCBNumber;  /*< Stores a number that increments each time a TCB is created.  It allows debuggers to determine when a task has been deleted and then recreated. */
 | 
						|
        UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( configUSE_MUTEXES == 1 )
 | 
						|
        UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
 | 
						|
        UBaseType_t uxMutexesHeld;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( configUSE_APPLICATION_TASK_TAG == 1 )
 | 
						|
        TaskHookFunction_t pxTaskTag;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
 | 
						|
        void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
 | 
						|
        #if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 )
 | 
						|
            TlsDeleteCallbackFunction_t pvThreadLocalStoragePointersDelCallback[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
 | 
						|
        #endif
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( configGENERATE_RUN_TIME_STATS == 1 )
 | 
						|
        uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( configUSE_NEWLIB_REENTRANT == 1 )
 | 
						|
 | 
						|
        /* Allocate a Newlib reent structure that is specific to this task.
 | 
						|
         * Note Newlib support has been included by popular demand, but is not
 | 
						|
         * used by the FreeRTOS maintainers themselves.  FreeRTOS is not
 | 
						|
         * responsible for resulting newlib operation.  User must be familiar with
 | 
						|
         * newlib and must provide system-wide implementations of the necessary
 | 
						|
         * stubs. Be warned that (at the time of writing) the current newlib design
 | 
						|
         * implements a system-wide malloc() that must be provided with locks.
 | 
						|
         *
 | 
						|
         * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
 | 
						|
         * for additional information. */
 | 
						|
        struct  _reent xNewLib_reent;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( configUSE_TASK_NOTIFICATIONS == 1 )
 | 
						|
        volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
 | 
						|
        volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
 | 
						|
    #endif
 | 
						|
 | 
						|
    /* See the comments in FreeRTOS.h with the definition of
 | 
						|
     * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
 | 
						|
    #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
 | 
						|
        uint8_t ucStaticallyAllocated;                     /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( INCLUDE_xTaskAbortDelay == 1 )
 | 
						|
        uint8_t ucDelayAborted;
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( configUSE_POSIX_ERRNO == 1 )
 | 
						|
        int iTaskErrno;
 | 
						|
    #endif
 | 
						|
} tskTCB;
 | 
						|
 | 
						|
/* The old tskTCB name is maintained above then typedefed to the new TCB_t name
 | 
						|
 * below to enable the use of older kernel aware debuggers. */
 | 
						|
typedef tskTCB TCB_t;
 | 
						|
 | 
						|
/*lint -save -e956 A manual analysis and inspection has been used to determine
 | 
						|
 * which static variables must be declared volatile. */
 | 
						|
PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB[ configNUM_CORES ] = { NULL };
 | 
						|
 | 
						|
/* Lists for ready and blocked tasks. --------------------
 | 
						|
 * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
 | 
						|
 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
 | 
						|
 * the static qualifier. */
 | 
						|
PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
 | 
						|
PRIVILEGED_DATA static List_t xDelayedTaskList1;                         /*< Delayed tasks. */
 | 
						|
PRIVILEGED_DATA static List_t xDelayedTaskList2;                         /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
 | 
						|
PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList;              /*< Points to the delayed task list currently being used. */
 | 
						|
PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList;      /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
 | 
						|
PRIVILEGED_DATA static List_t xPendingReadyList[ configNUM_CORES ];      /*< Tasks that have been readied while the scheduler was suspended.  They will be moved to the ready list when the scheduler is resumed. */
 | 
						|
 | 
						|
/* Spinlock required for SMP critical sections. This lock protects all of the
 | 
						|
 * kernel's data structures such as various tasks lists, flags, and tick counts. */
 | 
						|
PRIVILEGED_DATA static portMUX_TYPE xKernelLock = portMUX_INITIALIZER_UNLOCKED;
 | 
						|
 | 
						|
#if ( INCLUDE_vTaskDelete == 1 )
 | 
						|
 | 
						|
    PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
 | 
						|
    PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if ( INCLUDE_vTaskSuspend == 1 )
 | 
						|
 | 
						|
    PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/* Global POSIX errno. Its value is changed upon context switching to match
 | 
						|
 * the errno of the currently running task. */
 | 
						|
#if ( configUSE_POSIX_ERRNO == 1 )
 | 
						|
    int FreeRTOS_errno = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
/* Other file private variables. --------------------------------*/
 | 
						|
PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
 | 
						|
PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
 | 
						|
PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
 | 
						|
PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
 | 
						|
PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
 | 
						|
PRIVILEGED_DATA static volatile BaseType_t xYieldPending[ configNUM_CORES ] = { pdFALSE };
 | 
						|
PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
 | 
						|
PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
 | 
						|
PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
 | 
						|
PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle[ configNUM_CORES ] = { NULL };   /*< Holds the handle of the idle task.  The idle task is created automatically when the scheduler is started. */
 | 
						|
 | 
						|
/* Context switches are held pending while the scheduler is suspended.  Also,
 | 
						|
 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
 | 
						|
 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
 | 
						|
 * If an interrupt needs to unblock a task while the scheduler is suspended then it
 | 
						|
 * moves the task's event list item into the xPendingReadyList, ready for the
 | 
						|
 * kernel to move the task from the pending ready list into the real ready list
 | 
						|
 * when the scheduler is unsuspended.  The pending ready list itself can only be
 | 
						|
 * accessed from a critical section. */
 | 
						|
PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended[ configNUM_CORES ] = { ( UBaseType_t ) pdFALSE };
 | 
						|
 | 
						|
#if ( configGENERATE_RUN_TIME_STATS == 1 )
 | 
						|
 | 
						|
/* Do not move these variables to function scope as doing so prevents the
 | 
						|
 * code working with debuggers that need to remove the static qualifier. */
 | 
						|
    PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime[ configNUM_CORES ] = { 0U }; /*< Holds the value of a timer/counter the last time a task was switched in. */
 | 
						|
    PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL;                             /*< Holds the total amount of execution time as defined by the run time counter clock. */
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/* per-CPU flags indicating that we are doing context switch, it is used by apptrace and sysview modules */
 | 
						|
/* in order to avoid calls of vPortYield from traceTASK_SWITCHED_IN/OUT when waiting */
 | 
						|
/* for locks to be free or for host to read full trace buffer */
 | 
						|
PRIVILEGED_DATA static volatile BaseType_t xSwitchingContext[ configNUM_CORES ] = { pdFALSE };
 | 
						|
 | 
						|
/*lint -restore */
 | 
						|
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
/* Callback function prototypes. --------------------------*/
 | 
						|
#if ( configCHECK_FOR_STACK_OVERFLOW > 0 )
 | 
						|
 | 
						|
    extern void vApplicationStackOverflowHook( TaskHandle_t xTask,
 | 
						|
                                               char * pcTaskName );
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if ( configUSE_TICK_HOOK > 0 )
 | 
						|
 | 
						|
    extern void vApplicationTickHook( void ); /*lint !e526 Symbol not defined as it is an application callback. */
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
 | 
						|
 | 
						|
    extern void vApplicationGetIdleTaskMemory( StaticTask_t ** ppxIdleTaskTCBBuffer,
 | 
						|
                                               StackType_t ** ppxIdleTaskStackBuffer,
 | 
						|
                                               uint32_t * pulIdleTaskStackSize ); /*lint !e526 Symbol not defined as it is an application callback. */
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/* File private functions. --------------------------------*/
 | 
						|
 | 
						|
/**
 | 
						|
 * Utility task that simply returns pdTRUE if the task referenced by xTask is
 | 
						|
 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
 | 
						|
 * is in any other state.
 | 
						|
 */
 | 
						|
#if ( INCLUDE_vTaskSuspend == 1 )
 | 
						|
 | 
						|
    static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
#endif /* INCLUDE_vTaskSuspend */
 | 
						|
 | 
						|
/*
 | 
						|
 * Utility to ready all the lists used by the scheduler.  This is called
 | 
						|
 * automatically upon the creation of the first task.
 | 
						|
 */
 | 
						|
static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
/*
 | 
						|
 * The idle task, which as all tasks is implemented as a never ending loop.
 | 
						|
 * The idle task is automatically created and added to the ready lists upon
 | 
						|
 * creation of the first user task.
 | 
						|
 *
 | 
						|
 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
 | 
						|
 * language extensions.  The equivalent prototype for this function is:
 | 
						|
 *
 | 
						|
 * void prvIdleTask( void *pvParameters );
 | 
						|
 *
 | 
						|
 */
 | 
						|
static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
/*
 | 
						|
 * Utility to free all memory allocated by the scheduler to hold a TCB,
 | 
						|
 * including the stack pointed to by the TCB.
 | 
						|
 *
 | 
						|
 * This does not free memory allocated by the task itself (i.e. memory
 | 
						|
 * allocated by calls to pvPortMalloc from within the tasks application code).
 | 
						|
 */
 | 
						|
#if ( INCLUDE_vTaskDelete == 1 )
 | 
						|
 | 
						|
    static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/* Function to call the Thread Local Storage Pointer Deletion Callbacks. Will be
 | 
						|
 * called during task deletion before prvDeleteTCB is called.
 | 
						|
 */
 | 
						|
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 )
 | 
						|
    static void prvDeleteTLS( TCB_t * pxTCB );
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Used only by the idle task.  This checks to see if anything has been placed
 | 
						|
 * in the list of tasks waiting to be deleted.  If so the task is cleaned up
 | 
						|
 * and its TCB deleted.
 | 
						|
 */
 | 
						|
static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
/*
 | 
						|
 * The currently executing task is entering the Blocked state.  Add the task to
 | 
						|
 * either the current or the overflow delayed task list.
 | 
						|
 */
 | 
						|
static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
 | 
						|
                                            const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
/*
 | 
						|
 * Fills an TaskStatus_t structure with information on each task that is
 | 
						|
 * referenced from the pxList list (which may be a ready list, a delayed list,
 | 
						|
 * a suspended list, etc.).
 | 
						|
 *
 | 
						|
 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
 | 
						|
 * NORMAL APPLICATION CODE.
 | 
						|
 */
 | 
						|
#if ( configUSE_TRACE_FACILITY == 1 )
 | 
						|
 | 
						|
    static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
 | 
						|
                                                     List_t * pxList,
 | 
						|
                                                     eTaskState eState ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Searches pxList for a task with name pcNameToQuery - returning a handle to
 | 
						|
 * the task if it is found, or NULL if the task is not found.
 | 
						|
 */
 | 
						|
#if ( INCLUDE_xTaskGetHandle == 1 )
 | 
						|
 | 
						|
    static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
 | 
						|
                                                     const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * When a task is created, the stack of the task is filled with a known value.
 | 
						|
 * This function determines the 'high water mark' of the task stack by
 | 
						|
 * determining how much of the stack remains at the original preset value.
 | 
						|
 */
 | 
						|
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
 | 
						|
 | 
						|
    static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the amount of time, in ticks, that will pass before the kernel will
 | 
						|
 * next move a task from the Blocked state to the Running state.
 | 
						|
 *
 | 
						|
 * This conditional compilation should use inequality to 0, not equality to 1.
 | 
						|
 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
 | 
						|
 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
 | 
						|
 * set to a value other than 1.
 | 
						|
 */
 | 
						|
#if ( configUSE_TICKLESS_IDLE != 0 )
 | 
						|
 | 
						|
    static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
 | 
						|
 * will exit the Blocked state.
 | 
						|
 */
 | 
						|
static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper function used to pad task names with spaces when printing out
 | 
						|
 * human readable tables of task information.
 | 
						|
 */
 | 
						|
    static char * prvWriteNameToBuffer( char * pcBuffer,
 | 
						|
                                        const char * pcTaskName ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Called after a Task_t structure has been allocated either statically or
 | 
						|
 * dynamically to fill in the structure's members.
 | 
						|
 */
 | 
						|
static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
 | 
						|
                                  const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
 | 
						|
                                  const uint32_t ulStackDepth,
 | 
						|
                                  void * const pvParameters,
 | 
						|
                                  UBaseType_t uxPriority,
 | 
						|
                                  TaskHandle_t * const pxCreatedTask,
 | 
						|
                                  TCB_t * pxNewTCB,
 | 
						|
                                  const MemoryRegion_t * const xRegions,
 | 
						|
                                  BaseType_t xCoreID ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
/*
 | 
						|
 * Called after a new task has been created and initialised to place the task
 | 
						|
 * under the control of the scheduler.
 | 
						|
 */
 | 
						|
static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
#if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
/*
 | 
						|
 * Check whether a yield (on either core) is required after unblocking (or
 | 
						|
 * changing the priority of) a particular task.
 | 
						|
 *
 | 
						|
 * - This function is the SMP replacement for checking if an unblocked task has
 | 
						|
 *   a higher (or equal) priority than the current task.
 | 
						|
 * - It should be called before calling taskYIELD_IF_USING_PREEMPTION() or
 | 
						|
 *   before setting xYieldRequired
 | 
						|
 * - If it is the other core that requires a yield, this function will
 | 
						|
 *   internally trigger the other core to yield
 | 
						|
 *
 | 
						|
 * Note: In some special instances, a yield is triggered if the unblocked task
 | 
						|
 *       has an equal priority (such as in xTaskResumeAll). Thus the
 | 
						|
 *       xYieldEqualPriority parameter specifies whether to yield if the current
 | 
						|
 *       task has equal priority.
 | 
						|
 *
 | 
						|
 * Scheduling Algorithm:
 | 
						|
 * This function will bias towards yielding the current core.
 | 
						|
 * - If the unblocked task has a higher (or equal) priority than the current
 | 
						|
 *   core, the current core is yielded regardless of the current priority of the
 | 
						|
 *   other core.
 | 
						|
 * - A core (current or other) will only yield if their schedulers are not
 | 
						|
 *   suspended.
 | 
						|
 *
 | 
						|
 * Todo: This can be optimized (IDF-5772)
 | 
						|
 *
 | 
						|
 * Entry:
 | 
						|
 * - This function must be called in a critical section
 | 
						|
 * - A task must just have been unblocked, or its priority raised
 | 
						|
 * Exit:
 | 
						|
 * - Returns pdTRUE if the current core requires yielding
 | 
						|
 * - The other core will be triggered to yield if required
 | 
						|
 */
 | 
						|
    static BaseType_t prvCheckForYieldUsingPrioritySMP( UBaseType_t uxTaskPriority,
 | 
						|
                                                        BaseType_t xTaskCoreID,
 | 
						|
                                                        BaseType_t xCurCoreID,
 | 
						|
                                                        BaseType_t xYieldEqualPriority ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
#endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
/*
 | 
						|
 * freertos_tasks_c_additions_init() should only be called if the user definable
 | 
						|
 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
 | 
						|
 * called by the function.
 | 
						|
 */
 | 
						|
#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
 | 
						|
 | 
						|
    static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
 | 
						|
 | 
						|
    TaskHandle_t xTaskCreateStaticPinnedToCore( TaskFunction_t pxTaskCode,
 | 
						|
                                                const char * const pcName,
 | 
						|
                                                const uint32_t ulStackDepth,
 | 
						|
                                                void * const pvParameters,
 | 
						|
                                                UBaseType_t uxPriority,
 | 
						|
                                                StackType_t * const puxStackBuffer,
 | 
						|
                                                StaticTask_t * const pxTaskBuffer,
 | 
						|
                                                const BaseType_t xCoreID )
 | 
						|
    {
 | 
						|
        TCB_t * pxNewTCB;
 | 
						|
        TaskHandle_t xReturn;
 | 
						|
 | 
						|
        configASSERT( portVALID_STACK_MEM( puxStackBuffer ) );
 | 
						|
        configASSERT( portVALID_TCB_MEM( pxTaskBuffer ) );
 | 
						|
        configASSERT( ( ( xCoreID >= 0 ) && ( xCoreID < configNUM_CORES ) ) || ( xCoreID == tskNO_AFFINITY ) );
 | 
						|
 | 
						|
        #if ( configASSERT_DEFINED == 1 )
 | 
						|
            {
 | 
						|
                /* Sanity check that the size of the structure used to declare a
 | 
						|
                 * variable of type StaticTask_t equals the size of the real task
 | 
						|
                 * structure. */
 | 
						|
                volatile size_t xSize = sizeof( StaticTask_t );
 | 
						|
                configASSERT( xSize == sizeof( TCB_t ) );
 | 
						|
                ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
 | 
						|
            }
 | 
						|
        #endif /* configASSERT_DEFINED */
 | 
						|
 | 
						|
        if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
 | 
						|
        {
 | 
						|
            /* The memory used for the task's TCB and stack are passed into this
 | 
						|
             * function - use them. */
 | 
						|
            pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
 | 
						|
            pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;
 | 
						|
 | 
						|
            #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
 | 
						|
                {
 | 
						|
                    /* Tasks can be created statically or dynamically, so note this
 | 
						|
                     * task was created statically in case the task is later deleted. */
 | 
						|
                    pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
 | 
						|
                }
 | 
						|
            #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
 | 
						|
 | 
						|
            prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL, xCoreID );
 | 
						|
            prvAddNewTaskToReadyList( pxNewTCB );
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            xReturn = NULL;
 | 
						|
        }
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* SUPPORT_STATIC_ALLOCATION */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )
 | 
						|
 | 
						|
    BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
 | 
						|
                                            TaskHandle_t * pxCreatedTask )
 | 
						|
    {
 | 
						|
        TCB_t * pxNewTCB;
 | 
						|
        BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
 | 
						|
 | 
						|
        configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
 | 
						|
        configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );
 | 
						|
 | 
						|
        if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
 | 
						|
        {
 | 
						|
            /* Allocate space for the TCB.  Where the memory comes from depends
 | 
						|
             * on the implementation of the port malloc function and whether or
 | 
						|
             * not static allocation is being used. */
 | 
						|
            pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;
 | 
						|
 | 
						|
            /* Store the stack location in the TCB. */
 | 
						|
            pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
 | 
						|
 | 
						|
            #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
 | 
						|
                {
 | 
						|
                    /* Tasks can be created statically or dynamically, so note this
 | 
						|
                     * task was created statically in case the task is later deleted. */
 | 
						|
                    pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
 | 
						|
                }
 | 
						|
            #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
 | 
						|
 | 
						|
            prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
 | 
						|
                                  pxTaskDefinition->pcName,
 | 
						|
                                  ( uint32_t ) pxTaskDefinition->usStackDepth,
 | 
						|
                                  pxTaskDefinition->pvParameters,
 | 
						|
                                  pxTaskDefinition->uxPriority,
 | 
						|
                                  pxCreatedTask, pxNewTCB,
 | 
						|
                                  pxTaskDefinition->xRegions,
 | 
						|
                                  tskNO_AFFINITY );
 | 
						|
 | 
						|
            prvAddNewTaskToReadyList( pxNewTCB );
 | 
						|
            xReturn = pdPASS;
 | 
						|
        }
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
 | 
						|
 | 
						|
    BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
 | 
						|
                                      TaskHandle_t * pxCreatedTask )
 | 
						|
    {
 | 
						|
        TCB_t * pxNewTCB;
 | 
						|
        BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
 | 
						|
 | 
						|
        configASSERT( pxTaskDefinition->puxStackBuffer );
 | 
						|
 | 
						|
        if( pxTaskDefinition->puxStackBuffer != NULL )
 | 
						|
        {
 | 
						|
            /* Allocate space for the TCB.  Where the memory comes from depends
 | 
						|
             * on the implementation of the port malloc function and whether or
 | 
						|
             * not static allocation is being used. */
 | 
						|
            pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
 | 
						|
 | 
						|
            if( pxNewTCB != NULL )
 | 
						|
            {
 | 
						|
                /* Store the stack location in the TCB. */
 | 
						|
                pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;
 | 
						|
 | 
						|
                #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
 | 
						|
                    {
 | 
						|
                        /* Tasks can be created statically or dynamically, so note
 | 
						|
                         * this task had a statically allocated stack in case it is
 | 
						|
                         * later deleted.  The TCB was allocated dynamically. */
 | 
						|
                        pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
 | 
						|
                    }
 | 
						|
                #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
 | 
						|
 | 
						|
                prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
 | 
						|
                                      pxTaskDefinition->pcName,
 | 
						|
                                      ( uint32_t ) pxTaskDefinition->usStackDepth,
 | 
						|
                                      pxTaskDefinition->pvParameters,
 | 
						|
                                      pxTaskDefinition->uxPriority,
 | 
						|
                                      pxCreatedTask, pxNewTCB,
 | 
						|
                                      pxTaskDefinition->xRegions,
 | 
						|
                                      tskNO_AFFINITY );
 | 
						|
 | 
						|
                prvAddNewTaskToReadyList( pxNewTCB );
 | 
						|
                xReturn = pdPASS;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* portUSING_MPU_WRAPPERS */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
 | 
						|
 | 
						|
    BaseType_t xTaskCreatePinnedToCore( TaskFunction_t pxTaskCode,
 | 
						|
                                        const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
 | 
						|
                                        const configSTACK_DEPTH_TYPE usStackDepth,
 | 
						|
                                        void * const pvParameters,
 | 
						|
                                        UBaseType_t uxPriority,
 | 
						|
                                        TaskHandle_t * const pxCreatedTask,
 | 
						|
                                        const BaseType_t xCoreID )
 | 
						|
    {
 | 
						|
        TCB_t * pxNewTCB;
 | 
						|
        BaseType_t xReturn;
 | 
						|
 | 
						|
        /* If the stack grows down then allocate the stack then the TCB so the stack
 | 
						|
         * does not grow into the TCB.  Likewise if the stack grows up then allocate
 | 
						|
         * the TCB then the stack. */
 | 
						|
        #if ( portSTACK_GROWTH > 0 )
 | 
						|
            {
 | 
						|
                /* Allocate space for the TCB.  Where the memory comes from depends on
 | 
						|
                 * the implementation of the port malloc function and whether or not static
 | 
						|
                 * allocation is being used. */
 | 
						|
                pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
 | 
						|
 | 
						|
                if( pxNewTCB != NULL )
 | 
						|
                {
 | 
						|
                    /* Allocate space for the stack used by the task being created.
 | 
						|
                     * The base of the stack memory stored in the TCB so the task can
 | 
						|
                     * be deleted later if required. */
 | 
						|
                    pxNewTCB->pxStack = ( StackType_t * ) pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
 | 
						|
 | 
						|
                    if( pxNewTCB->pxStack == NULL )
 | 
						|
                    {
 | 
						|
                        /* Could not allocate the stack.  Delete the allocated TCB. */
 | 
						|
                        vPortFree( pxNewTCB );
 | 
						|
                        pxNewTCB = NULL;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        #else /* portSTACK_GROWTH */
 | 
						|
            {
 | 
						|
                StackType_t * pxStack;
 | 
						|
 | 
						|
                /* Allocate space for the stack used by the task being created. */
 | 
						|
                pxStack = pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */
 | 
						|
 | 
						|
                if( pxStack != NULL )
 | 
						|
                {
 | 
						|
                    /* Allocate space for the TCB. */
 | 
						|
                    pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */
 | 
						|
 | 
						|
                    if( pxNewTCB != NULL )
 | 
						|
                    {
 | 
						|
                        /* Store the stack location in the TCB. */
 | 
						|
                        pxNewTCB->pxStack = pxStack;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        /* The stack cannot be used as the TCB was not created.  Free
 | 
						|
                         * it again. */
 | 
						|
                        vPortFree( pxStack );
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    pxNewTCB = NULL;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        #endif /* portSTACK_GROWTH */
 | 
						|
 | 
						|
        if( pxNewTCB != NULL )
 | 
						|
        {
 | 
						|
            #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
 | 
						|
                {
 | 
						|
                    /* Tasks can be created statically or dynamically, so note this
 | 
						|
                     * task was created dynamically in case it is later deleted. */
 | 
						|
                    pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
 | 
						|
                }
 | 
						|
            #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */
 | 
						|
 | 
						|
            prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL, xCoreID );
 | 
						|
            prvAddNewTaskToReadyList( pxNewTCB );
 | 
						|
            xReturn = pdPASS;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
 | 
						|
        }
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
 | 
						|
                                  const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
 | 
						|
                                  const uint32_t ulStackDepth,
 | 
						|
                                  void * const pvParameters,
 | 
						|
                                  UBaseType_t uxPriority,
 | 
						|
                                  TaskHandle_t * const pxCreatedTask,
 | 
						|
                                  TCB_t * pxNewTCB,
 | 
						|
                                  const MemoryRegion_t * const xRegions,
 | 
						|
                                  BaseType_t xCoreID )
 | 
						|
{
 | 
						|
    StackType_t * pxTopOfStack;
 | 
						|
    UBaseType_t x;
 | 
						|
 | 
						|
    #if ( configNUM_CORES == 1 )
 | 
						|
        {
 | 
						|
            xCoreID = 0;
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( portUSING_MPU_WRAPPERS == 1 )
 | 
						|
        /* Should the task be created in privileged mode? */
 | 
						|
        BaseType_t xRunPrivileged;
 | 
						|
 | 
						|
        if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
 | 
						|
        {
 | 
						|
            xRunPrivileged = pdTRUE;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            xRunPrivileged = pdFALSE;
 | 
						|
        }
 | 
						|
        uxPriority &= ~portPRIVILEGE_BIT;
 | 
						|
    #endif /* portUSING_MPU_WRAPPERS == 1 */
 | 
						|
 | 
						|
    /* Avoid dependency on memset() if it is not required. */
 | 
						|
    #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
 | 
						|
        {
 | 
						|
            /* Fill the stack with a known value to assist debugging. */
 | 
						|
            ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
 | 
						|
        }
 | 
						|
    #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */
 | 
						|
 | 
						|
    #if ( configUSE_TRACE_FACILITY == 1 )
 | 
						|
        {
 | 
						|
            /* Zero the uxTaskNumber TCB member to avoid random value from dynamically allocated TCBs */
 | 
						|
            pxNewTCB->uxTaskNumber = 0;
 | 
						|
        }
 | 
						|
    #endif /* ( configUSE_TRACE_FACILITY == 1 ) */
 | 
						|
 | 
						|
    /* Calculate the top of stack address.  This depends on whether the stack
 | 
						|
     * grows from high memory to low (as per the 80x86) or vice versa.
 | 
						|
     * portSTACK_GROWTH is used to make the result positive or negative as required
 | 
						|
     * by the port. */
 | 
						|
    #if ( portSTACK_GROWTH < 0 )
 | 
						|
        {
 | 
						|
            pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
 | 
						|
            pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception.  Avoiding casts between pointers and integers is not practical.  Size differences accounted for using portPOINTER_SIZE_TYPE type.  Checked by assert(). */
 | 
						|
 | 
						|
            /* Check the alignment of the calculated top of stack is correct. */
 | 
						|
            configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
 | 
						|
 | 
						|
            #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
 | 
						|
                {
 | 
						|
                    /* Also record the stack's high address, which may assist
 | 
						|
                     * debugging. */
 | 
						|
                    pxNewTCB->pxEndOfStack = pxTopOfStack;
 | 
						|
                }
 | 
						|
            #endif /* configRECORD_STACK_HIGH_ADDRESS */
 | 
						|
        }
 | 
						|
    #else /* portSTACK_GROWTH */
 | 
						|
        {
 | 
						|
            pxTopOfStack = pxNewTCB->pxStack;
 | 
						|
 | 
						|
            /* Check the alignment of the stack buffer is correct. */
 | 
						|
            configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
 | 
						|
 | 
						|
            /* The other extreme of the stack space is required if stack checking is
 | 
						|
             * performed. */
 | 
						|
            pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
 | 
						|
        }
 | 
						|
    #endif /* portSTACK_GROWTH */
 | 
						|
 | 
						|
    /* Store the task name in the TCB. */
 | 
						|
    if( pcName != NULL )
 | 
						|
    {
 | 
						|
        for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
 | 
						|
        {
 | 
						|
            pxNewTCB->pcTaskName[ x ] = pcName[ x ];
 | 
						|
 | 
						|
            /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
 | 
						|
             * configMAX_TASK_NAME_LEN characters just in case the memory after the
 | 
						|
             * string is not accessible (extremely unlikely). */
 | 
						|
            if( pcName[ x ] == ( char ) 0x00 )
 | 
						|
            {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Ensure the name string is terminated in the case that the string length
 | 
						|
         * was greater or equal to configMAX_TASK_NAME_LEN. */
 | 
						|
        pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        /* The task has not been given a name, so just ensure there is a NULL
 | 
						|
         * terminator when it is read out. */
 | 
						|
        pxNewTCB->pcTaskName[ 0 ] = 0x00;
 | 
						|
    }
 | 
						|
 | 
						|
    /* This is used as an array index so must ensure it's not too large.  First
 | 
						|
     * remove the privilege bit if one is present. */
 | 
						|
    if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
 | 
						|
    {
 | 
						|
        uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        mtCOVERAGE_TEST_MARKER();
 | 
						|
    }
 | 
						|
 | 
						|
    pxNewTCB->uxPriority = uxPriority;
 | 
						|
    pxNewTCB->xCoreID = xCoreID;
 | 
						|
    #if ( configUSE_MUTEXES == 1 )
 | 
						|
        {
 | 
						|
            pxNewTCB->uxBasePriority = uxPriority;
 | 
						|
            pxNewTCB->uxMutexesHeld = 0;
 | 
						|
        }
 | 
						|
    #endif /* configUSE_MUTEXES */
 | 
						|
 | 
						|
    vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
 | 
						|
    vListInitialiseItem( &( pxNewTCB->xEventListItem ) );
 | 
						|
 | 
						|
    /* Set the pxNewTCB as a link back from the ListItem_t.  This is so we can get
 | 
						|
     * back to  the containing TCB from a generic item in a list. */
 | 
						|
    listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );
 | 
						|
 | 
						|
    /* Event lists are always in priority order. */
 | 
						|
    listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
 | 
						|
    listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );
 | 
						|
 | 
						|
    #if ( portCRITICAL_NESTING_IN_TCB == 1 )
 | 
						|
        {
 | 
						|
            pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
 | 
						|
        }
 | 
						|
    #endif /* portCRITICAL_NESTING_IN_TCB */
 | 
						|
 | 
						|
    #if ( configUSE_APPLICATION_TASK_TAG == 1 )
 | 
						|
        {
 | 
						|
            pxNewTCB->pxTaskTag = NULL;
 | 
						|
        }
 | 
						|
    #endif /* configUSE_APPLICATION_TASK_TAG */
 | 
						|
 | 
						|
    #if ( configGENERATE_RUN_TIME_STATS == 1 )
 | 
						|
        {
 | 
						|
            pxNewTCB->ulRunTimeCounter = 0UL;
 | 
						|
        }
 | 
						|
    #endif /* configGENERATE_RUN_TIME_STATS */
 | 
						|
 | 
						|
    #if ( portUSING_MPU_WRAPPERS == 1 )
 | 
						|
        {
 | 
						|
            vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
 | 
						|
        }
 | 
						|
    #else
 | 
						|
        {
 | 
						|
            /* Avoid compiler warning about unreferenced parameter. */
 | 
						|
            ( void ) xRegions;
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
 | 
						|
        {
 | 
						|
            for( x = 0; x < ( UBaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ )
 | 
						|
            {
 | 
						|
                pxNewTCB->pvThreadLocalStoragePointers[ x ] = NULL;
 | 
						|
                #if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 )
 | 
						|
                    pxNewTCB->pvThreadLocalStoragePointersDelCallback[ x ] = NULL;
 | 
						|
                #endif
 | 
						|
            }
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( configUSE_TASK_NOTIFICATIONS == 1 )
 | 
						|
        {
 | 
						|
            memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );
 | 
						|
            memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( configUSE_NEWLIB_REENTRANT == 1 )
 | 
						|
        {
 | 
						|
            /* Initialise this task's Newlib reent structure. */
 | 
						|
            _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( INCLUDE_xTaskAbortDelay == 1 )
 | 
						|
        {
 | 
						|
            pxNewTCB->ucDelayAborted = pdFALSE;
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
 | 
						|
    /* Initialize the TCB stack to look as if the task was already running,
 | 
						|
     * but had been interrupted by the scheduler.  The return address is set
 | 
						|
     * to the start of the task function. Once the stack has been initialised
 | 
						|
     * the top of stack variable is updated. */
 | 
						|
    #if ( portUSING_MPU_WRAPPERS == 1 )
 | 
						|
        {
 | 
						|
            /* If the port has capability to detect stack overflow,
 | 
						|
             * pass the stack end address to the stack initialization
 | 
						|
             * function as well. */
 | 
						|
            #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
 | 
						|
                {
 | 
						|
                    #if ( portSTACK_GROWTH < 0 )
 | 
						|
                        {
 | 
						|
                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
 | 
						|
                        }
 | 
						|
                    #else /* portSTACK_GROWTH */
 | 
						|
                        {
 | 
						|
                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
 | 
						|
                        }
 | 
						|
                    #endif /* portSTACK_GROWTH */
 | 
						|
                }
 | 
						|
            #else /* portHAS_STACK_OVERFLOW_CHECKING */
 | 
						|
                {
 | 
						|
                    pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
 | 
						|
                }
 | 
						|
            #endif /* portHAS_STACK_OVERFLOW_CHECKING */
 | 
						|
        }
 | 
						|
    #else /* portUSING_MPU_WRAPPERS */
 | 
						|
        {
 | 
						|
            /* If the port has capability to detect stack overflow,
 | 
						|
             * pass the stack end address to the stack initialization
 | 
						|
             * function as well. */
 | 
						|
            #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
 | 
						|
                {
 | 
						|
                    #if ( portSTACK_GROWTH < 0 )
 | 
						|
                        {
 | 
						|
                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
 | 
						|
                        }
 | 
						|
                    #else /* portSTACK_GROWTH */
 | 
						|
                        {
 | 
						|
                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
 | 
						|
                        }
 | 
						|
                    #endif /* portSTACK_GROWTH */
 | 
						|
                }
 | 
						|
            #else /* portHAS_STACK_OVERFLOW_CHECKING */
 | 
						|
                {
 | 
						|
                    pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
 | 
						|
                }
 | 
						|
            #endif /* portHAS_STACK_OVERFLOW_CHECKING */
 | 
						|
        }
 | 
						|
    #endif /* portUSING_MPU_WRAPPERS */
 | 
						|
 | 
						|
    if( pxCreatedTask != NULL )
 | 
						|
    {
 | 
						|
        /* Pass the handle out in an anonymous way.  The handle can be used to
 | 
						|
         * change the created task's priority, delete the created task, etc.*/
 | 
						|
        *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        mtCOVERAGE_TEST_MARKER();
 | 
						|
    }
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
 | 
						|
{
 | 
						|
    /* Ensure interrupts don't access the task lists while the lists are being
 | 
						|
     * updated. */
 | 
						|
    taskENTER_CRITICAL( &xKernelLock );
 | 
						|
    {
 | 
						|
        uxCurrentNumberOfTasks++;
 | 
						|
 | 
						|
        if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
 | 
						|
        {
 | 
						|
            /* This is the first task to be created so do the preliminary
 | 
						|
             * initialisation required.  We will not recover if this call
 | 
						|
             * fails, but we will report the failure. */
 | 
						|
            prvInitialiseTaskLists();
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
 | 
						|
        if( ( pxCurrentTCB[ 0 ] == NULL ) && ( taskCAN_RUN_ON_CORE( 0, pxNewTCB->xCoreID ) == pdTRUE ) )
 | 
						|
        {
 | 
						|
            /* On core 0, there are no other tasks, or all the other tasks
 | 
						|
             * are in the suspended state - make this the current task. */
 | 
						|
            pxCurrentTCB[ 0 ] = pxNewTCB;
 | 
						|
        }
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
            else if( ( pxCurrentTCB[ 1 ] == NULL ) && ( taskCAN_RUN_ON_CORE( 1, pxNewTCB->xCoreID ) == pdTRUE ) )
 | 
						|
            {
 | 
						|
                /* On core 1, there are no other tasks, or all the other tasks
 | 
						|
                 * are in the suspended state - make this the current task. */
 | 
						|
                pxCurrentTCB[ 1 ] = pxNewTCB;
 | 
						|
            }
 | 
						|
        #endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
        else
 | 
						|
        {
 | 
						|
            /* If the scheduler is not already running, make this task the
 | 
						|
             * current task if it is the highest priority task to be created
 | 
						|
             * so far. */
 | 
						|
            if( xSchedulerRunning == pdFALSE )
 | 
						|
            {
 | 
						|
                if( ( pxCurrentTCB[ 0 ] != NULL ) &&
 | 
						|
                    ( taskCAN_RUN_ON_CORE( 0, pxNewTCB->xCoreID ) == pdTRUE ) &&
 | 
						|
                    ( pxCurrentTCB[ 0 ]->uxPriority <= pxNewTCB->uxPriority ) )
 | 
						|
                {
 | 
						|
                    pxCurrentTCB[ 0 ] = pxNewTCB;
 | 
						|
                }
 | 
						|
 | 
						|
                #if ( configNUM_CORES > 1 )
 | 
						|
                    else if( ( pxCurrentTCB[ 1 ] != NULL ) &&
 | 
						|
                             ( taskCAN_RUN_ON_CORE( 1, pxNewTCB->xCoreID ) == pdTRUE ) &&
 | 
						|
                             ( pxCurrentTCB[ 1 ]->uxPriority <= pxNewTCB->uxPriority ) )
 | 
						|
                    {
 | 
						|
                        pxCurrentTCB[ 1 ] = pxNewTCB;
 | 
						|
                    }
 | 
						|
                #endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        uxTaskNumber++;
 | 
						|
 | 
						|
        #if ( configUSE_TRACE_FACILITY == 1 )
 | 
						|
            {
 | 
						|
                /* Add a counter into the TCB for tracing only. */
 | 
						|
                pxNewTCB->uxTCBNumber = uxTaskNumber;
 | 
						|
            }
 | 
						|
        #endif /* configUSE_TRACE_FACILITY */
 | 
						|
        traceTASK_CREATE( pxNewTCB );
 | 
						|
 | 
						|
        prvAddTaskToReadyList( pxNewTCB );
 | 
						|
 | 
						|
        portSETUP_TCB( pxNewTCB );
 | 
						|
 | 
						|
        if( xSchedulerRunning != pdFALSE )
 | 
						|
        {
 | 
						|
            /* If the created task is of a higher priority than the current task
 | 
						|
             * then it should run now. */
 | 
						|
            if( prvCheckForYield( pxNewTCB, xPortGetCoreID(), pdTRUE ) )
 | 
						|
            {
 | 
						|
                taskYIELD_IF_USING_PREEMPTION();
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
    static BaseType_t prvCheckForYieldUsingPrioritySMP( UBaseType_t uxTaskPriority,
 | 
						|
                                                        BaseType_t xTaskCoreID,
 | 
						|
                                                        BaseType_t xCurCoreID,
 | 
						|
                                                        BaseType_t xYieldEqualPriority )
 | 
						|
    {
 | 
						|
        if( xYieldEqualPriority == pdTRUE )
 | 
						|
        {
 | 
						|
            /* Increment the task priority to achieve the same affect as if( uxTaskPriority >= pxCurrentTCB->uxPriority ) */
 | 
						|
            uxTaskPriority++;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Indicate whether the current core needs to yield */
 | 
						|
        BaseType_t xYieldRequiredCurrentCore;
 | 
						|
 | 
						|
        /* If the target task can run on the current core, and has a higher priority than the current core, and the core has not suspended scheduling, then yield the current core */
 | 
						|
        if( ( ( xTaskCoreID == xCurCoreID ) || ( xTaskCoreID == tskNO_AFFINITY ) ) &&
 | 
						|
            ( uxTaskPriority > pxCurrentTCB[ xCurCoreID ]->uxPriority ) &&
 | 
						|
            ( uxSchedulerSuspended[ xCurCoreID ] == ( UBaseType_t ) pdFALSE ) )
 | 
						|
        {
 | 
						|
            /* Return true for the caller to yield the current core */
 | 
						|
            xYieldRequiredCurrentCore = pdTRUE;
 | 
						|
        }
 | 
						|
        /* If the target task can run on the other core, and has a higher priority then the other core, and the other core has not suspended scheduling, then yield the other core */
 | 
						|
        else if( ( ( xTaskCoreID == !xCurCoreID ) || ( xTaskCoreID == tskNO_AFFINITY ) ) &&
 | 
						|
                 ( uxTaskPriority > pxCurrentTCB[ !xCurCoreID ]->uxPriority ) &&
 | 
						|
                 ( uxSchedulerSuspended[ !xCurCoreID ] == ( UBaseType_t ) pdFALSE ) )
 | 
						|
        {
 | 
						|
            /* Signal the other core to yield */
 | 
						|
            vPortYieldOtherCore( !xCurCoreID );
 | 
						|
            xYieldRequiredCurrentCore = pdFALSE;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            xYieldRequiredCurrentCore = pdFALSE;
 | 
						|
        }
 | 
						|
 | 
						|
        return xYieldRequiredCurrentCore;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configNUM_CORES > 1 */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_vTaskDelete == 1 )
 | 
						|
 | 
						|
    void vTaskDelete( TaskHandle_t xTaskToDelete )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
        BaseType_t xFreeNow;
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            BaseType_t xCurCoreID;
 | 
						|
            #if ( configNUM_CORES > 1 )
 | 
						|
                xCurCoreID = xPortGetCoreID();
 | 
						|
            #else
 | 
						|
                xCurCoreID = 0;
 | 
						|
                ( void ) xCurCoreID;
 | 
						|
            #endif
 | 
						|
 | 
						|
            /* If null is passed in here then it is the calling task that is
 | 
						|
             * being deleted. */
 | 
						|
            pxTCB = prvGetTCBFromHandle( xTaskToDelete );
 | 
						|
 | 
						|
            /* Remove task from the ready/delayed list. */
 | 
						|
            if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
 | 
						|
            {
 | 
						|
                taskRESET_READY_PRIORITY( pxTCB->uxPriority );
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
 | 
						|
            /* Is the task waiting on an event also? */
 | 
						|
            if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
 | 
						|
            {
 | 
						|
                ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
 | 
						|
            /* Increment the uxTaskNumber also so kernel aware debuggers can
 | 
						|
             * detect that the task lists need re-generating.  This is done before
 | 
						|
             * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
 | 
						|
             * not return. */
 | 
						|
            uxTaskNumber++;
 | 
						|
 | 
						|
            /* We cannot free the task immediately if it is currently running (on either core) */
 | 
						|
            xFreeNow = ( taskIS_CURRENTLY_RUNNING( pxTCB ) ) ? pdFALSE : pdTRUE;
 | 
						|
            if( xFreeNow == pdFALSE )
 | 
						|
            {
 | 
						|
                /* A task is deleting itself.  This cannot complete within the
 | 
						|
                 * task itself, as a context switch to another task is required.
 | 
						|
                 * Place the task in the termination list.  The idle task will
 | 
						|
                 * check the termination list and free up any memory allocated by
 | 
						|
                 * the scheduler for the TCB and stack of the deleted task. */
 | 
						|
                vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );
 | 
						|
 | 
						|
                /* Increment the ucTasksDeleted variable so the idle task knows
 | 
						|
                 * there is a task that has been deleted and that it should therefore
 | 
						|
                 * check the xTasksWaitingTermination list. */
 | 
						|
                ++uxDeletedTasksWaitingCleanUp;
 | 
						|
 | 
						|
                /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
 | 
						|
                 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
 | 
						|
                traceTASK_DELETE( pxTCB );
 | 
						|
 | 
						|
                /* The pre-delete hook is primarily for the Windows simulator,
 | 
						|
                 * in which Windows specific clean up operations are performed,
 | 
						|
                 * after which it is not possible to yield away from this task -
 | 
						|
                 * hence xYieldPending is used to latch that a context switch is
 | 
						|
                 * required. */
 | 
						|
                portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending[ xCurCoreID ] );
 | 
						|
 | 
						|
                #if ( configNUM_CORES > 1 )
 | 
						|
                    if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, !xCurCoreID ) )
 | 
						|
                    {
 | 
						|
                        /* SMP case of deleting a task currently running on a different core. Same issue
 | 
						|
                         * as a task deleting itself, but we need to send a yield to this task now
 | 
						|
                         * before we release xKernelLock.
 | 
						|
                         *
 | 
						|
                         * Specifically there is a case where the other core may already be spinning on
 | 
						|
                         * xKernelLock waiting to go into a blocked state. A check is added in
 | 
						|
                         * prvAddCurrentTaskToDelayedList() to prevent it from removing itself from
 | 
						|
                         * xTasksWaitingTermination list in this case (instead it will immediately
 | 
						|
                         * release xKernelLock again and be yielded before the FreeRTOS function
 | 
						|
                         * returns.) */
 | 
						|
                        vPortYieldOtherCore( !xCurCoreID );
 | 
						|
                    }
 | 
						|
                #endif /* configNUM_CORES > 1 */
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                --uxCurrentNumberOfTasks;
 | 
						|
                traceTASK_DELETE( pxTCB );
 | 
						|
 | 
						|
                /* Reset the next expected unblock time in case it referred to
 | 
						|
                 * the task that has just been deleted. */
 | 
						|
                prvResetNextTaskUnblockTime();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        if( xFreeNow == pdTRUE )
 | 
						|
        {
 | 
						|
            #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 )
 | 
						|
                prvDeleteTLS( pxTCB );
 | 
						|
            #endif
 | 
						|
 | 
						|
            prvDeleteTCB( pxTCB );
 | 
						|
        }
 | 
						|
 | 
						|
        /* Force a reschedule if it is the currently running task that has just
 | 
						|
         * been deleted. */
 | 
						|
        if( xSchedulerRunning != pdFALSE )
 | 
						|
        {
 | 
						|
            taskENTER_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
            if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xPortGetCoreID() ) )
 | 
						|
            {
 | 
						|
                configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] == 0 );
 | 
						|
                portYIELD_WITHIN_API();
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
 | 
						|
            taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_vTaskDelete */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_xTaskDelayUntil == 1 )
 | 
						|
    #ifdef ESP_PLATFORM
 | 
						|
        /* backward binary compatibility - remove later */
 | 
						|
        #undef vTaskDelayUntil
 | 
						|
        void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
 | 
						|
                              const TickType_t xTimeIncrement )
 | 
						|
        {
 | 
						|
            xTaskDelayUntil( pxPreviousWakeTime, xTimeIncrement );
 | 
						|
        }
 | 
						|
    #endif // ESP_PLATFORM
 | 
						|
 | 
						|
    BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
 | 
						|
                                const TickType_t xTimeIncrement )
 | 
						|
    {
 | 
						|
        TickType_t xTimeToWake;
 | 
						|
        BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
 | 
						|
 | 
						|
        configASSERT( pxPreviousWakeTime );
 | 
						|
        configASSERT( ( xTimeIncrement > 0U ) );
 | 
						|
        configASSERT( !taskIS_SCHEDULER_SUSPENDED() );
 | 
						|
 | 
						|
        prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
 | 
						|
        {
 | 
						|
            /* Minor optimisation.  The tick count cannot change in this
 | 
						|
             * block. */
 | 
						|
            const TickType_t xConstTickCount = xTickCount;
 | 
						|
 | 
						|
            /* Generate the tick time at which the task wants to wake. */
 | 
						|
            xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
 | 
						|
 | 
						|
            if( xConstTickCount < *pxPreviousWakeTime )
 | 
						|
            {
 | 
						|
                /* The tick count has overflowed since this function was
 | 
						|
                 * lasted called.  In this case the only time we should ever
 | 
						|
                 * actually delay is if the wake time has also  overflowed,
 | 
						|
                 * and the wake time is greater than the tick time.  When this
 | 
						|
                 * is the case it is as if neither time had overflowed. */
 | 
						|
                if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
 | 
						|
                {
 | 
						|
                    xShouldDelay = pdTRUE;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                /* The tick time has not overflowed.  In this case we will
 | 
						|
                 * delay if either the wake time has overflowed, and/or the
 | 
						|
                 * tick time is less than the wake time. */
 | 
						|
                if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
 | 
						|
                {
 | 
						|
                    xShouldDelay = pdTRUE;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            /* Update the wake time ready for the next call. */
 | 
						|
            *pxPreviousWakeTime = xTimeToWake;
 | 
						|
 | 
						|
            if( xShouldDelay != pdFALSE )
 | 
						|
            {
 | 
						|
                traceTASK_DELAY_UNTIL( xTimeToWake );
 | 
						|
 | 
						|
                /* prvAddCurrentTaskToDelayedList() needs the block time, not
 | 
						|
                 * the time to wake, so subtract the current tick count. */
 | 
						|
                prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        xAlreadyYielded = prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
 | 
						|
 | 
						|
        /* Force a reschedule if xTaskResumeAll has not already done so, we may
 | 
						|
         * have put ourselves to sleep. */
 | 
						|
        if( xAlreadyYielded == pdFALSE )
 | 
						|
        {
 | 
						|
            portYIELD_WITHIN_API();
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
 | 
						|
        return xShouldDelay;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_xTaskDelayUntil */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_vTaskDelay == 1 )
 | 
						|
 | 
						|
    void vTaskDelay( const TickType_t xTicksToDelay )
 | 
						|
    {
 | 
						|
        BaseType_t xAlreadyYielded = pdFALSE;
 | 
						|
 | 
						|
        /* A delay time of zero just forces a reschedule. */
 | 
						|
        if( xTicksToDelay > ( TickType_t ) 0U )
 | 
						|
        {
 | 
						|
            configASSERT( !taskIS_SCHEDULER_SUSPENDED() );
 | 
						|
            prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
 | 
						|
            {
 | 
						|
                traceTASK_DELAY();
 | 
						|
 | 
						|
                /* A task that is removed from the event list while the
 | 
						|
                 * scheduler is suspended will not get placed in the ready
 | 
						|
                 * list or removed from the blocked list until the scheduler
 | 
						|
                 * is resumed.
 | 
						|
                 *
 | 
						|
                 * This task cannot be in an event list as it is the currently
 | 
						|
                 * executing task. */
 | 
						|
                prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
 | 
						|
            }
 | 
						|
            xAlreadyYielded = prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
 | 
						|
        /* Force a reschedule if xTaskResumeAll has not already done so, we may
 | 
						|
         * have put ourselves to sleep. */
 | 
						|
        if( xAlreadyYielded == pdFALSE )
 | 
						|
        {
 | 
						|
            portYIELD_WITHIN_API();
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_vTaskDelay */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )
 | 
						|
 | 
						|
    eTaskState eTaskGetState( TaskHandle_t xTask )
 | 
						|
    {
 | 
						|
        eTaskState eReturn;
 | 
						|
        List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;
 | 
						|
        const TCB_t * const pxTCB = xTask;
 | 
						|
 | 
						|
        configASSERT( pxTCB );
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock ); /*Need critical section incase either core context switches in between */
 | 
						|
 | 
						|
        if( taskIS_CURRENTLY_RUNNING( pxTCB ) )
 | 
						|
        {
 | 
						|
            /* The task calling this function is querying its own state. */
 | 
						|
            eReturn = eRunning;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
 | 
						|
            pxDelayedList = pxDelayedTaskList;
 | 
						|
            pxOverflowedDelayedList = pxOverflowDelayedTaskList;
 | 
						|
 | 
						|
            if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
 | 
						|
            {
 | 
						|
                /* The task being queried is referenced from one of the Blocked
 | 
						|
                 * lists. */
 | 
						|
                eReturn = eBlocked;
 | 
						|
            }
 | 
						|
 | 
						|
            #if ( INCLUDE_vTaskSuspend == 1 )
 | 
						|
                else if( pxStateList == &xSuspendedTaskList )
 | 
						|
                {
 | 
						|
                    /* The task being queried is referenced from the suspended
 | 
						|
                     * list.  Is it genuinely suspended or is it blocked
 | 
						|
                     * indefinitely? */
 | 
						|
                    if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
 | 
						|
                    {
 | 
						|
                        #if ( configUSE_TASK_NOTIFICATIONS == 1 )
 | 
						|
                            {
 | 
						|
                                BaseType_t x;
 | 
						|
 | 
						|
                                /* The task does not appear on the event list item of
 | 
						|
                                 * and of the RTOS objects, but could still be in the
 | 
						|
                                 * blocked state if it is waiting on its notification
 | 
						|
                                 * rather than waiting on an object.  If not, is
 | 
						|
                                 * suspended. */
 | 
						|
                                eReturn = eSuspended;
 | 
						|
 | 
						|
                                for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
 | 
						|
                                {
 | 
						|
                                    if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
 | 
						|
                                    {
 | 
						|
                                        eReturn = eBlocked;
 | 
						|
                                        break;
 | 
						|
                                    }
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
 | 
						|
                            {
 | 
						|
                                eReturn = eSuspended;
 | 
						|
                            }
 | 
						|
                        #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        eReturn = eBlocked;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */
 | 
						|
 | 
						|
            #if ( INCLUDE_vTaskDelete == 1 )
 | 
						|
                else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
 | 
						|
                {
 | 
						|
                    /* The task being queried is referenced from the deleted
 | 
						|
                     * tasks list, or it is not referenced from any lists at
 | 
						|
                     * all. */
 | 
						|
                    eReturn = eDeleted;
 | 
						|
                }
 | 
						|
            #endif
 | 
						|
 | 
						|
            else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
 | 
						|
            {
 | 
						|
                /* If the task is not in any other state, it must be in the
 | 
						|
                 * Ready (including pending ready) state. */
 | 
						|
                eReturn = eReady;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        return eReturn;
 | 
						|
    } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
 | 
						|
 | 
						|
#endif /* INCLUDE_eTaskGetState */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_uxTaskPriorityGet == 1 )
 | 
						|
 | 
						|
    UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
 | 
						|
    {
 | 
						|
        TCB_t const * pxTCB;
 | 
						|
        UBaseType_t uxReturn;
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            /* If null is passed in here then it is the priority of the task
 | 
						|
             * that called uxTaskPriorityGet() that is being queried. */
 | 
						|
            pxTCB = prvGetTCBFromHandle( xTask );
 | 
						|
            uxReturn = pxTCB->uxPriority;
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        return uxReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_uxTaskPriorityGet */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_uxTaskPriorityGet == 1 )
 | 
						|
 | 
						|
    UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
 | 
						|
    {
 | 
						|
        TCB_t const * pxTCB;
 | 
						|
        UBaseType_t uxReturn;
 | 
						|
 | 
						|
        /* RTOS ports that support interrupt nesting have the concept of a
 | 
						|
         * maximum  system call (or maximum API call) interrupt priority.
 | 
						|
         * Interrupts that are  above the maximum system call priority are keep
 | 
						|
         * permanently enabled, even when the RTOS kernel is in a critical section,
 | 
						|
         * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
 | 
						|
         * is defined in FreeRTOSConfig.h then
 | 
						|
         * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
 | 
						|
         * failure if a FreeRTOS API function is called from an interrupt that has
 | 
						|
         * been assigned a priority above the configured maximum system call
 | 
						|
         * priority.  Only FreeRTOS functions that end in FromISR can be called
 | 
						|
         * from interrupts  that have been assigned a priority at or (logically)
 | 
						|
         * below the maximum system call interrupt priority.  FreeRTOS maintains a
 | 
						|
         * separate interrupt safe API to ensure interrupt entry is as fast and as
 | 
						|
         * simple as possible.  More information (albeit Cortex-M specific) is
 | 
						|
         * provided on the following link:
 | 
						|
         * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
 | 
						|
        portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
 | 
						|
 | 
						|
        taskENTER_CRITICAL_ISR( &xKernelLock );
 | 
						|
        {
 | 
						|
            /* If null is passed in here then it is the priority of the calling
 | 
						|
             * task that is being queried. */
 | 
						|
            pxTCB = prvGetTCBFromHandle( xTask );
 | 
						|
            uxReturn = pxTCB->uxPriority;
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL_ISR( &xKernelLock );
 | 
						|
 | 
						|
        return uxReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_uxTaskPriorityGet */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_vTaskPrioritySet == 1 )
 | 
						|
 | 
						|
    void vTaskPrioritySet( TaskHandle_t xTask,
 | 
						|
                           UBaseType_t uxNewPriority )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
        UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
 | 
						|
        BaseType_t xYieldRequired = pdFALSE;
 | 
						|
 | 
						|
        configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );
 | 
						|
 | 
						|
        /* Ensure the new priority is valid. */
 | 
						|
        if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
 | 
						|
        {
 | 
						|
            uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            /* If null is passed in here then it is the priority of the calling
 | 
						|
             * task that is being changed. */
 | 
						|
            pxTCB = prvGetTCBFromHandle( xTask );
 | 
						|
 | 
						|
            traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
 | 
						|
 | 
						|
            #if ( configUSE_MUTEXES == 1 )
 | 
						|
                {
 | 
						|
                    uxCurrentBasePriority = pxTCB->uxBasePriority;
 | 
						|
                }
 | 
						|
            #else
 | 
						|
                {
 | 
						|
                    uxCurrentBasePriority = pxTCB->uxPriority;
 | 
						|
                }
 | 
						|
            #endif
 | 
						|
 | 
						|
            if( uxCurrentBasePriority != uxNewPriority )
 | 
						|
            {
 | 
						|
                /* The priority change may have readied a task of higher
 | 
						|
                 * priority than the calling task. */
 | 
						|
                if( uxNewPriority > uxCurrentBasePriority )
 | 
						|
                {
 | 
						|
                    if( !taskIS_CURRENTLY_RUNNING( pxTCB ) )
 | 
						|
                    {
 | 
						|
                        /* The priority of a task other than the currently
 | 
						|
                         * running task is being raised.  Is the priority being
 | 
						|
                         * raised above that of the running task? */
 | 
						|
                        if( prvCheckForYieldUsingPriority( uxNewPriority, pxTCB->xCoreID, xPortGetCoreID(), pdTRUE ) )
 | 
						|
                        {
 | 
						|
                            xYieldRequired = pdTRUE;
 | 
						|
                        }
 | 
						|
                        else
 | 
						|
                        {
 | 
						|
                            mtCOVERAGE_TEST_MARKER();
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        /* The priority of the running task is being raised,
 | 
						|
                         * but the running task must already be the highest
 | 
						|
                         * priority task able to run so no yield is required. */
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                else if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, 0 ) )
 | 
						|
                {
 | 
						|
                    /* Setting the priority of the running task down means
 | 
						|
                     * there may now be another task of higher priority that
 | 
						|
                     * is ready to execute. */
 | 
						|
                    xYieldRequired = pdTRUE;
 | 
						|
                }
 | 
						|
 | 
						|
                #if ( configNUM_CORES > 1 )
 | 
						|
                    else if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, 1 ) )
 | 
						|
                    {
 | 
						|
                        /* Setting the priority of the running task on the other
 | 
						|
                         * core down means there may now be another task of
 | 
						|
                         * higher priority that is ready to execute. */
 | 
						|
                        vPortYieldOtherCore( 1 );
 | 
						|
                    }
 | 
						|
                #endif /* configNUM_CORES > 1 */
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    /* Setting the priority of any other task down does not
 | 
						|
                     * require a yield as the running task must be above the
 | 
						|
                     * new priority of the task being modified. */
 | 
						|
                }
 | 
						|
 | 
						|
                /* Remember the ready list the task might be referenced from
 | 
						|
                 * before its uxPriority member is changed so the
 | 
						|
                 * taskRESET_READY_PRIORITY() macro can function correctly. */
 | 
						|
                uxPriorityUsedOnEntry = pxTCB->uxPriority;
 | 
						|
 | 
						|
                #if ( configUSE_MUTEXES == 1 )
 | 
						|
                    {
 | 
						|
                        /* Only change the priority being used if the task is not
 | 
						|
                         * currently using an inherited priority. */
 | 
						|
                        if( pxTCB->uxBasePriority == pxTCB->uxPriority )
 | 
						|
                        {
 | 
						|
                            pxTCB->uxPriority = uxNewPriority;
 | 
						|
                        }
 | 
						|
                        else
 | 
						|
                        {
 | 
						|
                            mtCOVERAGE_TEST_MARKER();
 | 
						|
                        }
 | 
						|
 | 
						|
                        /* The base priority gets set whatever. */
 | 
						|
                        pxTCB->uxBasePriority = uxNewPriority;
 | 
						|
                    }
 | 
						|
                #else /* if ( configUSE_MUTEXES == 1 ) */
 | 
						|
                    {
 | 
						|
                        pxTCB->uxPriority = uxNewPriority;
 | 
						|
                    }
 | 
						|
                #endif /* if ( configUSE_MUTEXES == 1 ) */
 | 
						|
 | 
						|
                /* Only reset the event list item value if the value is not
 | 
						|
                 * being used for anything else. */
 | 
						|
                if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
 | 
						|
                {
 | 
						|
                    listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
 | 
						|
                /* If the task is in the blocked or suspended list we need do
 | 
						|
                 * nothing more than change its priority variable. However, if
 | 
						|
                 * the task is in a ready list it needs to be removed and placed
 | 
						|
                 * in the list appropriate to its new priority. */
 | 
						|
                if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
 | 
						|
                {
 | 
						|
                    /* The task is currently in its ready list - remove before
 | 
						|
                     * adding it to its new ready list.  As we are in a critical
 | 
						|
                     * section we can do this even if the scheduler is suspended. */
 | 
						|
                    if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
 | 
						|
                    {
 | 
						|
                        /* It is known that the task is in its ready list so
 | 
						|
                         * there is no need to check again and the port level
 | 
						|
                         * reset macro can be called directly. */
 | 
						|
                        portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
 | 
						|
                    prvAddTaskToReadyList( pxTCB );
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
 | 
						|
                if( xYieldRequired != pdFALSE )
 | 
						|
                {
 | 
						|
                    taskYIELD_IF_USING_PREEMPTION();
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
 | 
						|
                /* Remove compiler warning about unused variables when the port
 | 
						|
                 * optimised task selection is not being used. */
 | 
						|
                ( void ) uxPriorityUsedOnEntry;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_vTaskPrioritySet */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_vTaskSuspend == 1 )
 | 
						|
 | 
						|
    void vTaskSuspend( TaskHandle_t xTaskToSuspend )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            /* If null is passed in here then it is the running task that is
 | 
						|
             * being suspended. */
 | 
						|
            pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
 | 
						|
 | 
						|
            traceTASK_SUSPEND( pxTCB );
 | 
						|
 | 
						|
            /* Remove task from the ready/delayed list and place in the
 | 
						|
             * suspended list. */
 | 
						|
            if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
 | 
						|
            {
 | 
						|
                taskRESET_READY_PRIORITY( pxTCB->uxPriority );
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
 | 
						|
            /* Is the task waiting on an event also? */
 | 
						|
            if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
 | 
						|
            {
 | 
						|
                ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
 | 
						|
            vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );
 | 
						|
 | 
						|
            #if ( configUSE_TASK_NOTIFICATIONS == 1 )
 | 
						|
                {
 | 
						|
                    BaseType_t x;
 | 
						|
 | 
						|
                    for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
 | 
						|
                    {
 | 
						|
                        if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
 | 
						|
                        {
 | 
						|
                            /* The task was blocked to wait for a notification, but is
 | 
						|
                             * now suspended, so no notification was received. */
 | 
						|
                            pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
 | 
						|
 | 
						|
            if( xSchedulerRunning != pdFALSE )
 | 
						|
            {
 | 
						|
                /* Reset the next expected unblock time in case it referred to the
 | 
						|
                 * task that is now in the Suspended state. */
 | 
						|
                prvResetNextTaskUnblockTime();
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
 | 
						|
            if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xPortGetCoreID() ) )
 | 
						|
            {
 | 
						|
                if( xSchedulerRunning != pdFALSE )
 | 
						|
                {
 | 
						|
                    /* The current task has just been suspended. */
 | 
						|
                    configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] == 0 );
 | 
						|
                    portYIELD_WITHIN_API();
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    /* The scheduler is not running, but the task that was pointed
 | 
						|
                     * to by pxCurrentTCB has just been suspended and pxCurrentTCB
 | 
						|
                     * must be adjusted to point to a different task. */
 | 
						|
                    if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
 | 
						|
                    {
 | 
						|
                        /* No other tasks are ready, so set pxCurrentTCB back to
 | 
						|
                         * NULL so when the next task is created pxCurrentTCB will
 | 
						|
                         * be set to point to it no matter what its relative priority
 | 
						|
                         * is. */
 | 
						|
                        pxCurrentTCB[ xPortGetCoreID() ] = NULL;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        vTaskSwitchContext();
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            #if ( configNUM_CORES > 1 )
 | 
						|
                else if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, !xPortGetCoreID() ) )
 | 
						|
                {
 | 
						|
                    /* The other core's current task has just been suspended */
 | 
						|
                    if( xSchedulerRunning != pdFALSE )
 | 
						|
                    {
 | 
						|
                        vPortYieldOtherCore( !xPortGetCoreID() );
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        /* The scheduler is not running, but the task that was pointed
 | 
						|
                         * to by pxCurrentTCB[ otherCore ] has just been suspended.
 | 
						|
                         * We simply set the pxCurrentTCB[ otherCore ] to NULL for now.
 | 
						|
                         * Todo: Update vTaskSwitchContext() to be runnable on
 | 
						|
                         * behalf of the other core. */
 | 
						|
                        pxCurrentTCB[ !xPortGetCoreID() ] = NULL;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            #endif /* configNUM_CORES > 1 */
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_vTaskSuspend */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_vTaskSuspend == 1 )
 | 
						|
 | 
						|
    static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
 | 
						|
    {
 | 
						|
        BaseType_t xReturn = pdFALSE;
 | 
						|
        const TCB_t * const pxTCB = xTask;
 | 
						|
 | 
						|
        /* Accesses xPendingReadyList so must be called from a critical
 | 
						|
         * section. */
 | 
						|
 | 
						|
        /* It does not make sense to check if the calling task is suspended. */
 | 
						|
        configASSERT( xTask );
 | 
						|
 | 
						|
        /* Is the task being resumed actually in the suspended list? */
 | 
						|
        if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
 | 
						|
        {
 | 
						|
            /* Has the task already been resumed from within an ISR? */
 | 
						|
            #if ( configNUM_CORES > 1 )
 | 
						|
                if( ( listIS_CONTAINED_WITHIN( &xPendingReadyList[ 0 ], &( pxTCB->xEventListItem ) ) == pdFALSE ) &&
 | 
						|
                    ( listIS_CONTAINED_WITHIN( &xPendingReadyList[ 1 ], &( pxTCB->xEventListItem ) ) == pdFALSE ) )
 | 
						|
            #else
 | 
						|
                if( listIS_CONTAINED_WITHIN( &xPendingReadyList[ 0 ], &( pxTCB->xEventListItem ) ) == pdFALSE )
 | 
						|
            #endif
 | 
						|
            {
 | 
						|
                /* Is it in the suspended list because it is in the Suspended
 | 
						|
                 * state, or because is is blocked with no timeout? */
 | 
						|
                if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961.  The cast is only redundant when NULL is used. */
 | 
						|
                {
 | 
						|
                    xReturn = pdTRUE;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
 | 
						|
 | 
						|
#endif /* INCLUDE_vTaskSuspend */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_vTaskSuspend == 1 )
 | 
						|
 | 
						|
    void vTaskResume( TaskHandle_t xTaskToResume )
 | 
						|
    {
 | 
						|
        TCB_t * const pxTCB = xTaskToResume;
 | 
						|
 | 
						|
        /* It does not make sense to resume the calling task. */
 | 
						|
        configASSERT( xTaskToResume );
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            /* The parameter cannot be NULL as it is impossible to resume the
 | 
						|
             * currently executing task. */
 | 
						|
            if( !taskIS_CURRENTLY_RUNNING( pxTCB ) && ( pxTCB != NULL ) )
 | 
						|
            {
 | 
						|
                if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
 | 
						|
                {
 | 
						|
                    traceTASK_RESUME( pxTCB );
 | 
						|
 | 
						|
                    /* The ready list can be accessed even if the scheduler is
 | 
						|
                     * suspended because this is inside a critical section. */
 | 
						|
                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
 | 
						|
                    prvAddTaskToReadyList( pxTCB );
 | 
						|
 | 
						|
                    /* A higher priority task may have just been resumed. */
 | 
						|
                    if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdTRUE ) )
 | 
						|
                    {
 | 
						|
                        /* This yield may not cause the task just resumed to run,
 | 
						|
                         * but will leave the lists in the correct state for the
 | 
						|
                         * next yield. */
 | 
						|
                        taskYIELD_IF_USING_PREEMPTION();
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_vTaskSuspend */
 | 
						|
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
 | 
						|
 | 
						|
    BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
 | 
						|
    {
 | 
						|
        BaseType_t xYieldRequired = pdFALSE;
 | 
						|
        TCB_t * const pxTCB = xTaskToResume;
 | 
						|
 | 
						|
        configASSERT( xTaskToResume );
 | 
						|
 | 
						|
        /* RTOS ports that support interrupt nesting have the concept of a
 | 
						|
         * maximum  system call (or maximum API call) interrupt priority.
 | 
						|
         * Interrupts that are  above the maximum system call priority are keep
 | 
						|
         * permanently enabled, even when the RTOS kernel is in a critical section,
 | 
						|
         * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
 | 
						|
         * is defined in FreeRTOSConfig.h then
 | 
						|
         * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
 | 
						|
         * failure if a FreeRTOS API function is called from an interrupt that has
 | 
						|
         * been assigned a priority above the configured maximum system call
 | 
						|
         * priority.  Only FreeRTOS functions that end in FromISR can be called
 | 
						|
         * from interrupts  that have been assigned a priority at or (logically)
 | 
						|
         * below the maximum system call interrupt priority.  FreeRTOS maintains a
 | 
						|
         * separate interrupt safe API to ensure interrupt entry is as fast and as
 | 
						|
         * simple as possible.  More information (albeit Cortex-M specific) is
 | 
						|
         * provided on the following link:
 | 
						|
         * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
 | 
						|
        portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
 | 
						|
 | 
						|
        taskENTER_CRITICAL_ISR( &xKernelLock );
 | 
						|
        {
 | 
						|
            if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
 | 
						|
            {
 | 
						|
                traceTASK_RESUME_FROM_ISR( pxTCB );
 | 
						|
 | 
						|
                /* Check the ready lists can be accessed. */
 | 
						|
                if( taskCAN_BE_SCHEDULED( pxTCB ) )
 | 
						|
                {
 | 
						|
                    /* Ready lists can be accessed so move the task from the
 | 
						|
                     * suspended list to the ready list directly. */
 | 
						|
                    if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdTRUE ) )
 | 
						|
                    {
 | 
						|
                        xYieldRequired = pdTRUE;
 | 
						|
 | 
						|
                        /* Mark that a yield is pending in case the user is not
 | 
						|
                         * using the return value to initiate a context switch
 | 
						|
                         * from the ISR using portYIELD_FROM_ISR. */
 | 
						|
                        xYieldPending[ xPortGetCoreID() ] = pdTRUE;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
 | 
						|
                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
 | 
						|
                    prvAddTaskToReadyList( pxTCB );
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    /* The delayed or ready lists cannot be accessed so the task
 | 
						|
                     * is held in the pending ready list until the scheduler is
 | 
						|
                     * unsuspended. */
 | 
						|
                    vListInsertEnd( &( xPendingReadyList[ xPortGetCoreID() ] ), &( pxTCB->xEventListItem ) );
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL_ISR( &xKernelLock );
 | 
						|
 | 
						|
        return xYieldRequired;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
void vTaskStartScheduler( void )
 | 
						|
{
 | 
						|
    BaseType_t xReturn;
 | 
						|
 | 
						|
    #ifdef ESP_PLATFORM
 | 
						|
        /* Create an IDLE task for each core */
 | 
						|
        for( BaseType_t xCoreID = 0; xCoreID < configNUM_CORES; xCoreID++ )
 | 
						|
    #endif //ESP_PLATFORM
 | 
						|
    /* Add the idle task at the lowest priority. */
 | 
						|
    #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
 | 
						|
        {
 | 
						|
            StaticTask_t * pxIdleTaskTCBBuffer = NULL;
 | 
						|
            StackType_t * pxIdleTaskStackBuffer = NULL;
 | 
						|
            uint32_t ulIdleTaskStackSize;
 | 
						|
 | 
						|
            /* The Idle task is created using user provided RAM - obtain the
 | 
						|
             * address of the RAM then create the idle task. */
 | 
						|
            vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
 | 
						|
            xIdleTaskHandle[ xCoreID ] = xTaskCreateStaticPinnedToCore( prvIdleTask,
 | 
						|
                                                                        configIDLE_TASK_NAME,
 | 
						|
                                                                        ulIdleTaskStackSize,
 | 
						|
                                                                        ( void * ) NULL,   /*lint !e961.  The cast is not redundant for all compilers. */
 | 
						|
                                                                        portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
 | 
						|
                                                                        pxIdleTaskStackBuffer,
 | 
						|
                                                                        pxIdleTaskTCBBuffer,
 | 
						|
                                                                        xCoreID ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
 | 
						|
 | 
						|
            if( xIdleTaskHandle[ xCoreID ] != NULL )
 | 
						|
            {
 | 
						|
                xReturn = pdPASS;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                xReturn = pdFAIL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
 | 
						|
        {
 | 
						|
            /* The Idle task is being created using dynamically allocated RAM. */
 | 
						|
            xReturn = xTaskCreatePinnedToCore( prvIdleTask,
 | 
						|
                                               configIDLE_TASK_NAME,
 | 
						|
                                               configMINIMAL_STACK_SIZE,
 | 
						|
                                               ( void * ) NULL,
 | 
						|
                                               portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
 | 
						|
                                               &xIdleTaskHandle[ xCoreID ],
 | 
						|
                                               xCoreID );         /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
 | 
						|
 | 
						|
            if( xIdleTaskHandle[ xCoreID ] != NULL )
 | 
						|
            {
 | 
						|
                xReturn = pdPASS;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                xReturn = pdFAIL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    #endif /* configSUPPORT_STATIC_ALLOCATION */
 | 
						|
 | 
						|
    #if ( configUSE_TIMERS == 1 )
 | 
						|
        {
 | 
						|
            if( xReturn == pdPASS )
 | 
						|
            {
 | 
						|
                xReturn = xTimerCreateTimerTask();
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
    #endif /* configUSE_TIMERS */
 | 
						|
 | 
						|
    if( xReturn == pdPASS )
 | 
						|
    {
 | 
						|
        /* freertos_tasks_c_additions_init() should only be called if the user
 | 
						|
         * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
 | 
						|
         * the only macro called by the function. */
 | 
						|
        #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
 | 
						|
            {
 | 
						|
                freertos_tasks_c_additions_init();
 | 
						|
            }
 | 
						|
        #endif
 | 
						|
 | 
						|
        /* Interrupts are turned off here, to ensure a tick does not occur
 | 
						|
         * before or during the call to xPortStartScheduler().  The stacks of
 | 
						|
         * the created tasks contain a status word with interrupts switched on
 | 
						|
         * so interrupts will automatically get re-enabled when the first task
 | 
						|
         * starts to run. */
 | 
						|
        portDISABLE_INTERRUPTS();
 | 
						|
 | 
						|
        #if ( configUSE_NEWLIB_REENTRANT == 1 )
 | 
						|
            {
 | 
						|
                /* Switch Newlib's _impure_ptr variable to point to the _reent
 | 
						|
                 * structure specific to the task that will run first.
 | 
						|
                 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
 | 
						|
                 * for additional information. */
 | 
						|
                /* _impure_ptr = &( pxCurrentTCB[xPortGetCoreID()]->xNewLib_reent ); */
 | 
						|
            }
 | 
						|
        #endif /* configUSE_NEWLIB_REENTRANT */
 | 
						|
 | 
						|
        xNextTaskUnblockTime = portMAX_DELAY;
 | 
						|
        xSchedulerRunning = pdTRUE;
 | 
						|
        xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
 | 
						|
 | 
						|
        /* If configGENERATE_RUN_TIME_STATS is defined then the following
 | 
						|
         * macro must be defined to configure the timer/counter used to generate
 | 
						|
         * the run time counter time base.   NOTE:  If configGENERATE_RUN_TIME_STATS
 | 
						|
         * is set to 0 and the following line fails to build then ensure you do not
 | 
						|
         * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
 | 
						|
         * FreeRTOSConfig.h file. */
 | 
						|
        portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
 | 
						|
 | 
						|
        traceTASK_SWITCHED_IN();
 | 
						|
 | 
						|
        /* Setting up the timer tick is hardware specific and thus in the
 | 
						|
         * portable interface. */
 | 
						|
        if( xPortStartScheduler() != pdFALSE )
 | 
						|
        {
 | 
						|
            /* Should not reach here as if the scheduler is running the
 | 
						|
             * function will not return. */
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            /* Should only reach here if a task calls xTaskEndScheduler(). */
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        /* This line will only be reached if the kernel could not be started,
 | 
						|
         * because there was not enough FreeRTOS heap to create the idle task
 | 
						|
         * or the timer task. */
 | 
						|
        configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
 | 
						|
    }
 | 
						|
 | 
						|
    /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
 | 
						|
     * meaning xIdleTaskHandle is not used anywhere else. */
 | 
						|
    ( void ) xIdleTaskHandle[ 0 ];
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
void vTaskEndScheduler( void )
 | 
						|
{
 | 
						|
    /* Stop the scheduler interrupts and call the portable scheduler end
 | 
						|
     * routine so the original ISRs can be restored if necessary.  The port
 | 
						|
     * layer must ensure interrupts enable  bit is left in the correct state. */
 | 
						|
    portDISABLE_INTERRUPTS();
 | 
						|
    xSchedulerRunning = pdFALSE;
 | 
						|
    vPortEndScheduler();
 | 
						|
}
 | 
						|
/*----------------------------------------------------------*/
 | 
						|
 | 
						|
void vTaskSuspendAll( void )
 | 
						|
{
 | 
						|
    /* A critical section is not required as the variable is of type
 | 
						|
     * BaseType_t.  Please read Richard Barry's reply in the following link to a
 | 
						|
     * post in the FreeRTOS support forum before reporting this as a bug! -
 | 
						|
     * https://goo.gl/wu4acr */
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
        /* For SMP, although each core has their own uxSchedulerSuspended, we still
 | 
						|
         * need enter a critical section when accessing. */
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
    #endif
 | 
						|
 | 
						|
    /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
 | 
						|
     * do not otherwise exhibit real time behaviour. */
 | 
						|
    portSOFTWARE_BARRIER();
 | 
						|
 | 
						|
    /* The scheduler is suspended if uxSchedulerSuspended is non-zero.  An increment
 | 
						|
     * is used to allow calls to vTaskSuspendAll() to nest. */
 | 
						|
    ++uxSchedulerSuspended[ xPortGetCoreID() ];
 | 
						|
 | 
						|
    /* Enforces ordering for ports and optimised compilers that may otherwise place
 | 
						|
     * the above increment elsewhere. */
 | 
						|
    portMEMORY_BARRIER();
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
    #endif
 | 
						|
}
 | 
						|
/*----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TICKLESS_IDLE != 0 )
 | 
						|
 | 
						|
    static TickType_t prvGetExpectedIdleTime( void )
 | 
						|
    {
 | 
						|
        TickType_t xReturn;
 | 
						|
        UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;
 | 
						|
 | 
						|
        /* We need a critical section here as we are about to access kernel data structures */
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        /* uxHigherPriorityReadyTasks takes care of the case where
 | 
						|
         * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
 | 
						|
         * task that are in the Ready state, even though the idle task is
 | 
						|
         * running. */
 | 
						|
        #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
 | 
						|
            {
 | 
						|
                if( uxTopReadyPriority > tskIDLE_PRIORITY )
 | 
						|
                {
 | 
						|
                    uxHigherPriorityReadyTasks = pdTRUE;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        #else
 | 
						|
            {
 | 
						|
                const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;
 | 
						|
 | 
						|
                /* When port optimised task selection is used the uxTopReadyPriority
 | 
						|
                 * variable is used as a bit map.  If bits other than the least
 | 
						|
                 * significant bit are set then there are tasks that have a priority
 | 
						|
                 * above the idle priority that are in the Ready state.  This takes
 | 
						|
                 * care of the case where the co-operative scheduler is in use. */
 | 
						|
                if( uxTopReadyPriority > uxLeastSignificantBit )
 | 
						|
                {
 | 
						|
                    uxHigherPriorityReadyTasks = pdTRUE;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */
 | 
						|
 | 
						|
        if( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority > tskIDLE_PRIORITY )
 | 
						|
        {
 | 
						|
            xReturn = 0;
 | 
						|
        }
 | 
						|
        else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > configNUM_CORES )
 | 
						|
        {
 | 
						|
            /* There are other idle priority tasks in the ready state.  If
 | 
						|
             * time slicing is used then the very next tick interrupt must be
 | 
						|
             * processed. */
 | 
						|
            xReturn = 0;
 | 
						|
        }
 | 
						|
        else if( uxHigherPriorityReadyTasks != pdFALSE )
 | 
						|
        {
 | 
						|
            /* There are tasks in the Ready state that have a priority above the
 | 
						|
             * idle priority.  This path can only be reached if
 | 
						|
             * configUSE_PREEMPTION is 0. */
 | 
						|
            xReturn = 0;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            xReturn = xNextTaskUnblockTime - xTickCount;
 | 
						|
        }
 | 
						|
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TICKLESS_IDLE */
 | 
						|
/*----------------------------------------------------------*/
 | 
						|
 | 
						|
BaseType_t xTaskResumeAll( void )
 | 
						|
{
 | 
						|
    TCB_t * pxTCB = NULL;
 | 
						|
    BaseType_t xAlreadyYielded = pdFALSE;
 | 
						|
 | 
						|
    /* If uxSchedulerSuspended is zero then this function does not match a
 | 
						|
     * previous call to vTaskSuspendAll(). */
 | 
						|
    configASSERT( taskIS_SCHEDULER_SUSPENDED() );
 | 
						|
 | 
						|
    /* It is possible that an ISR caused a task to be removed from an event
 | 
						|
     * list while the scheduler was suspended.  If this was the case then the
 | 
						|
     * removed task will have been added to the xPendingReadyList.  Once the
 | 
						|
     * scheduler has been resumed it is safe to move all the pending ready
 | 
						|
     * tasks from this list into their appropriate ready list. */
 | 
						|
    taskENTER_CRITICAL( &xKernelLock );
 | 
						|
    {
 | 
						|
        /* Minor optimization. Core ID can't change while inside a critical section */
 | 
						|
        BaseType_t xCoreID = xPortGetCoreID();
 | 
						|
 | 
						|
        --uxSchedulerSuspended[ xCoreID ];
 | 
						|
 | 
						|
        if( uxSchedulerSuspended[ xCoreID ] == ( UBaseType_t ) pdFALSE )
 | 
						|
        {
 | 
						|
            if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
 | 
						|
            {
 | 
						|
                /* Move any readied tasks from the pending list into the
 | 
						|
                 * appropriate ready list. */
 | 
						|
                while( listLIST_IS_EMPTY( &xPendingReadyList[ xCoreID ] ) == pdFALSE )
 | 
						|
                {
 | 
						|
                    pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList[ xCoreID ] ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
 | 
						|
                    ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
 | 
						|
                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
 | 
						|
                    prvAddTaskToReadyList( pxTCB );
 | 
						|
 | 
						|
                    /* If the moved task has a priority higher than the current
 | 
						|
                     * task then a yield must be performed. */
 | 
						|
                    if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdTRUE ) )
 | 
						|
                    {
 | 
						|
                        xYieldPending[ xCoreID ] = pdTRUE;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                if( pxTCB != NULL )
 | 
						|
                {
 | 
						|
                    /* A task was unblocked while the scheduler was suspended,
 | 
						|
                     * which may have prevented the next unblock time from being
 | 
						|
                     * re-calculated, in which case re-calculate it now.  Mainly
 | 
						|
                     * important for low power tickless implementations, where
 | 
						|
                     * this can prevent an unnecessary exit from low power
 | 
						|
                     * state. */
 | 
						|
                    prvResetNextTaskUnblockTime();
 | 
						|
                }
 | 
						|
 | 
						|
                /* If any ticks occurred while the scheduler was suspended then
 | 
						|
                 * they should be processed now.  This ensures the tick count does
 | 
						|
                 * not  slip, and that any delayed tasks are resumed at the correct
 | 
						|
                 * time. */
 | 
						|
 | 
						|
                /* Core 0 is solely responsible for managing tick count, thus it
 | 
						|
                 * must be the only core to unwind the pended ticks */
 | 
						|
                if( xCoreID == 0 )
 | 
						|
                {
 | 
						|
                    TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */
 | 
						|
 | 
						|
                    if( xPendedCounts > ( TickType_t ) 0U )
 | 
						|
                    {
 | 
						|
                        do
 | 
						|
                        {
 | 
						|
                            if( xTaskIncrementTick() != pdFALSE )
 | 
						|
                            {
 | 
						|
                                xYieldPending[ xCoreID ] = pdTRUE;
 | 
						|
                            }
 | 
						|
                            else
 | 
						|
                            {
 | 
						|
                                mtCOVERAGE_TEST_MARKER();
 | 
						|
                            }
 | 
						|
 | 
						|
                            --xPendedCounts;
 | 
						|
                        } while( xPendedCounts > ( TickType_t ) 0U );
 | 
						|
 | 
						|
                        xPendedTicks = 0;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                if( xYieldPending[ xCoreID ] != pdFALSE )
 | 
						|
                {
 | 
						|
                    #if ( configUSE_PREEMPTION != 0 )
 | 
						|
                        {
 | 
						|
                            xAlreadyYielded = pdTRUE;
 | 
						|
                        }
 | 
						|
                    #endif
 | 
						|
                    taskYIELD_IF_USING_PREEMPTION();
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
    return xAlreadyYielded;
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
TickType_t xTaskGetTickCount( void )
 | 
						|
{
 | 
						|
    TickType_t xTicks;
 | 
						|
 | 
						|
    /* Critical section required if running on a 16 bit processor. */
 | 
						|
    portTICK_TYPE_ENTER_CRITICAL();
 | 
						|
    {
 | 
						|
        xTicks = xTickCount;
 | 
						|
    }
 | 
						|
    portTICK_TYPE_EXIT_CRITICAL();
 | 
						|
 | 
						|
    return xTicks;
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
TickType_t xTaskGetTickCountFromISR( void )
 | 
						|
{
 | 
						|
    TickType_t xReturn;
 | 
						|
 | 
						|
    /* RTOS ports that support interrupt nesting have the concept of a maximum
 | 
						|
     * system call (or maximum API call) interrupt priority.  Interrupts that are
 | 
						|
     * above the maximum system call priority are kept permanently enabled, even
 | 
						|
     * when the RTOS kernel is in a critical section, but cannot make any calls to
 | 
						|
     * FreeRTOS API functions.  If configASSERT() is defined in FreeRTOSConfig.h
 | 
						|
     * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
 | 
						|
     * failure if a FreeRTOS API function is called from an interrupt that has been
 | 
						|
     * assigned a priority above the configured maximum system call priority.
 | 
						|
     * Only FreeRTOS functions that end in FromISR can be called from interrupts
 | 
						|
     * that have been assigned a priority at or (logically) below the maximum
 | 
						|
     * system call  interrupt priority.  FreeRTOS maintains a separate interrupt
 | 
						|
     * safe API to ensure interrupt entry is as fast and as simple as possible.
 | 
						|
     * More information (albeit Cortex-M specific) is provided on the following
 | 
						|
     * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
 | 
						|
    portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
        /* We need a critical section here as we are about to access kernel data structures */
 | 
						|
        taskENTER_CRITICAL_ISR( &xKernelLock );
 | 
						|
    #else
 | 
						|
        UBaseType_t uxSavedInterruptStatus;
 | 
						|
        uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
 | 
						|
    #endif
 | 
						|
    {
 | 
						|
        xReturn = xTickCount;
 | 
						|
    }
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
        taskEXIT_CRITICAL_ISR( &xKernelLock );
 | 
						|
    #else
 | 
						|
        portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
 | 
						|
    #endif
 | 
						|
 | 
						|
    return xReturn;
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
UBaseType_t uxTaskGetNumberOfTasks( void )
 | 
						|
{
 | 
						|
    /* A critical section is not required because the variables are of type
 | 
						|
     * BaseType_t. */
 | 
						|
    return uxCurrentNumberOfTasks;
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
 | 
						|
{
 | 
						|
    TCB_t * pxTCB;
 | 
						|
 | 
						|
    /* If null is passed in here then the name of the calling task is being
 | 
						|
     * queried. */
 | 
						|
    pxTCB = prvGetTCBFromHandle( xTaskToQuery );
 | 
						|
    configASSERT( pxTCB );
 | 
						|
    return &( pxTCB->pcTaskName[ 0 ] );
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_xTaskGetHandle == 1 )
 | 
						|
 | 
						|
    static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
 | 
						|
                                                     const char pcNameToQuery[] )
 | 
						|
    {
 | 
						|
        TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;
 | 
						|
        UBaseType_t x;
 | 
						|
        char cNextChar;
 | 
						|
        BaseType_t xBreakLoop;
 | 
						|
 | 
						|
        /* This function is called with the scheduler suspended. */
 | 
						|
 | 
						|
        if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
 | 
						|
        {
 | 
						|
            listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
 | 
						|
 | 
						|
            do
 | 
						|
            {
 | 
						|
                listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
 | 
						|
 | 
						|
                /* Check each character in the name looking for a match or
 | 
						|
                 * mismatch. */
 | 
						|
                xBreakLoop = pdFALSE;
 | 
						|
 | 
						|
                for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
 | 
						|
                {
 | 
						|
                    cNextChar = pxNextTCB->pcTaskName[ x ];
 | 
						|
 | 
						|
                    if( cNextChar != pcNameToQuery[ x ] )
 | 
						|
                    {
 | 
						|
                        /* Characters didn't match. */
 | 
						|
                        xBreakLoop = pdTRUE;
 | 
						|
                    }
 | 
						|
                    else if( cNextChar == ( char ) 0x00 )
 | 
						|
                    {
 | 
						|
                        /* Both strings terminated, a match must have been
 | 
						|
                         * found. */
 | 
						|
                        pxReturn = pxNextTCB;
 | 
						|
                        xBreakLoop = pdTRUE;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
 | 
						|
                    if( xBreakLoop != pdFALSE )
 | 
						|
                    {
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                if( pxReturn != NULL )
 | 
						|
                {
 | 
						|
                    /* The handle has been found. */
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            } while( pxNextTCB != pxFirstTCB );
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
 | 
						|
        return pxReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_xTaskGetHandle */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_xTaskGetHandle == 1 )
 | 
						|
 | 
						|
    TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
 | 
						|
    {
 | 
						|
        UBaseType_t uxQueue = configMAX_PRIORITIES;
 | 
						|
        TCB_t * pxTCB;
 | 
						|
 | 
						|
        /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
 | 
						|
        configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );
 | 
						|
 | 
						|
        prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
 | 
						|
        {
 | 
						|
            /* Search the ready lists. */
 | 
						|
            do
 | 
						|
            {
 | 
						|
                uxQueue--;
 | 
						|
                pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );
 | 
						|
 | 
						|
                if( pxTCB != NULL )
 | 
						|
                {
 | 
						|
                    /* Found the handle. */
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
 | 
						|
 | 
						|
            /* Search the delayed lists. */
 | 
						|
            if( pxTCB == NULL )
 | 
						|
            {
 | 
						|
                pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
 | 
						|
            }
 | 
						|
 | 
						|
            if( pxTCB == NULL )
 | 
						|
            {
 | 
						|
                pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
 | 
						|
            }
 | 
						|
 | 
						|
            #if ( INCLUDE_vTaskSuspend == 1 )
 | 
						|
                {
 | 
						|
                    if( pxTCB == NULL )
 | 
						|
                    {
 | 
						|
                        /* Search the suspended list. */
 | 
						|
                        pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            #endif
 | 
						|
 | 
						|
            #if ( INCLUDE_vTaskDelete == 1 )
 | 
						|
                {
 | 
						|
                    if( pxTCB == NULL )
 | 
						|
                    {
 | 
						|
                        /* Search the deleted list. */
 | 
						|
                        pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            #endif
 | 
						|
        }
 | 
						|
        ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
 | 
						|
 | 
						|
        return pxTCB;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_xTaskGetHandle */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
 | 
						|
 | 
						|
    BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask,
 | 
						|
                                      StackType_t ** ppuxStackBuffer,
 | 
						|
                                      StaticTask_t ** ppxTaskBuffer )
 | 
						|
    {
 | 
						|
        BaseType_t xReturn;
 | 
						|
        TCB_t * pxTCB;
 | 
						|
 | 
						|
        configASSERT( ppuxStackBuffer != NULL );
 | 
						|
        configASSERT( ppxTaskBuffer != NULL );
 | 
						|
 | 
						|
        pxTCB = prvGetTCBFromHandle( xTask );
 | 
						|
 | 
						|
        #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 )
 | 
						|
        {
 | 
						|
            if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB )
 | 
						|
            {
 | 
						|
                *ppuxStackBuffer = pxTCB->pxStack;
 | 
						|
                *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
 | 
						|
                xReturn = pdTRUE;
 | 
						|
            }
 | 
						|
            else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
 | 
						|
            {
 | 
						|
                *ppuxStackBuffer = pxTCB->pxStack;
 | 
						|
                *ppxTaskBuffer = NULL;
 | 
						|
                xReturn = pdTRUE;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                xReturn = pdFALSE;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        #else /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
 | 
						|
        {
 | 
						|
            *ppuxStackBuffer = pxTCB->pxStack;
 | 
						|
            *ppxTaskBuffer = ( StaticTask_t * ) pxTCB;
 | 
						|
            xReturn = pdTRUE;
 | 
						|
        }
 | 
						|
        #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configSUPPORT_STATIC_ALLOCATION */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TRACE_FACILITY == 1 )
 | 
						|
 | 
						|
    UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
 | 
						|
                                      const UBaseType_t uxArraySize,
 | 
						|
                                      uint32_t * const pulTotalRunTime )
 | 
						|
    {
 | 
						|
        UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
 | 
						|
 | 
						|
        prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
 | 
						|
        {
 | 
						|
            /* Is there a space in the array for each task in the system? */
 | 
						|
            if( uxArraySize >= uxCurrentNumberOfTasks )
 | 
						|
            {
 | 
						|
                /* Fill in an TaskStatus_t structure with information on each
 | 
						|
                 * task in the Ready state. */
 | 
						|
                do
 | 
						|
                {
 | 
						|
                    uxQueue--;
 | 
						|
                    uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
 | 
						|
                } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
 | 
						|
 | 
						|
                /* Fill in an TaskStatus_t structure with information on each
 | 
						|
                 * task in the Blocked state. */
 | 
						|
                uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
 | 
						|
                uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
 | 
						|
 | 
						|
                #if ( INCLUDE_vTaskDelete == 1 )
 | 
						|
                    {
 | 
						|
                        /* Fill in an TaskStatus_t structure with information on
 | 
						|
                         * each task that has been deleted but not yet cleaned up. */
 | 
						|
                        uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
 | 
						|
                    }
 | 
						|
                #endif
 | 
						|
 | 
						|
                #if ( INCLUDE_vTaskSuspend == 1 )
 | 
						|
                    {
 | 
						|
                        /* Fill in an TaskStatus_t structure with information on
 | 
						|
                         * each task in the Suspended state. */
 | 
						|
                        uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
 | 
						|
                    }
 | 
						|
                #endif
 | 
						|
 | 
						|
                #if ( configGENERATE_RUN_TIME_STATS == 1 )
 | 
						|
                    {
 | 
						|
                        if( pulTotalRunTime != NULL )
 | 
						|
                        {
 | 
						|
                            #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
 | 
						|
                                portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
 | 
						|
                            #else
 | 
						|
                                *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
 | 
						|
                            #endif
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
 | 
						|
                    {
 | 
						|
                        if( pulTotalRunTime != NULL )
 | 
						|
                        {
 | 
						|
                            *pulTotalRunTime = 0;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
 | 
						|
 | 
						|
        return uxTask;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TRACE_FACILITY */
 | 
						|
/*----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
 | 
						|
 | 
						|
    TaskHandle_t xTaskGetIdleTaskHandle( void )
 | 
						|
    {
 | 
						|
        /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
 | 
						|
         * started, then xIdleTaskHandle will be NULL. */
 | 
						|
        configASSERT( ( xIdleTaskHandle[ xPortGetCoreID() ] != NULL ) );
 | 
						|
        return xIdleTaskHandle[ xPortGetCoreID() ];
 | 
						|
    }
 | 
						|
 | 
						|
    TaskHandle_t xTaskGetIdleTaskHandleForCPU( UBaseType_t cpuid )
 | 
						|
    {
 | 
						|
        configASSERT( cpuid < configNUM_CORES );
 | 
						|
        configASSERT( ( xIdleTaskHandle[ cpuid ] != NULL ) );
 | 
						|
        return xIdleTaskHandle[ cpuid ];
 | 
						|
    }
 | 
						|
#endif /* INCLUDE_xTaskGetIdleTaskHandle */
 | 
						|
/*----------------------------------------------------------*/
 | 
						|
 | 
						|
/* This conditional compilation should use inequality to 0, not equality to 1.
 | 
						|
 * This is to ensure vTaskStepTick() is available when user defined low power mode
 | 
						|
 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
 | 
						|
 * 1. */
 | 
						|
#if ( configUSE_TICKLESS_IDLE != 0 )
 | 
						|
 | 
						|
    void vTaskStepTick( const TickType_t xTicksToJump )
 | 
						|
    {
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
            /* Although this is called with the scheduler suspended. For SMP, we
 | 
						|
             * still need to take the kernel lock to access xTickCount. */
 | 
						|
            taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        #endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
        /* Correct the tick count value after a period during which the tick
 | 
						|
         * was suppressed.  Note this does *not* call the tick hook function for
 | 
						|
         * each stepped tick. */
 | 
						|
        configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
 | 
						|
        xTickCount += xTicksToJump;
 | 
						|
        traceINCREASE_TICK_COUNT( xTicksToJump );
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
            /* Release the previously taken kernel lock. */
 | 
						|
            taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
        #endif /* configNUM_CORES > 1 */
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TICKLESS_IDLE */
 | 
						|
/*----------------------------------------------------------*/
 | 
						|
 | 
						|
BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
 | 
						|
{
 | 
						|
    BaseType_t xYieldOccurred;
 | 
						|
 | 
						|
    /* Must not be called with the scheduler suspended as the implementation
 | 
						|
     * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
 | 
						|
    configASSERT( !taskIS_SCHEDULER_SUSPENDED() );
 | 
						|
 | 
						|
    /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
 | 
						|
     * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
 | 
						|
    vTaskSuspendAll();
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
        /* Although the scheduler is suspended. For SMP, we still need to take
 | 
						|
         * the kernel lock to access xPendedTicks. */
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
    #endif /* configNUM_CORES > 1 */
 | 
						|
    xPendedTicks += xTicksToCatchUp;
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
        /* Release the previously taken kernel lock. */
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
    #endif /* configNUM_CORES > 1 */
 | 
						|
    xYieldOccurred = xTaskResumeAll();
 | 
						|
 | 
						|
    return xYieldOccurred;
 | 
						|
}
 | 
						|
/*----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_xTaskAbortDelay == 1 )
 | 
						|
 | 
						|
    BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB = xTask;
 | 
						|
        BaseType_t xReturn;
 | 
						|
 | 
						|
        configASSERT( pxTCB );
 | 
						|
 | 
						|
        prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
 | 
						|
        {
 | 
						|
            /* A task can only be prematurely removed from the Blocked state if
 | 
						|
             * it is actually in the Blocked state. */
 | 
						|
            if( eTaskGetState( xTask ) == eBlocked )
 | 
						|
            {
 | 
						|
                xReturn = pdPASS;
 | 
						|
 | 
						|
                /* Remove the reference to the task from the blocked list.  An
 | 
						|
                 * interrupt won't touch the xStateListItem because the
 | 
						|
                 * scheduler is suspended. */
 | 
						|
                ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
 | 
						|
 | 
						|
                /* Is the task waiting on an event also?  If so remove it from
 | 
						|
                 * the event list too.  Interrupts can touch the event list item,
 | 
						|
                 * even though the scheduler is suspended, so a critical section
 | 
						|
                 * is used. */
 | 
						|
                taskENTER_CRITICAL( &xKernelLock );
 | 
						|
                {
 | 
						|
                    if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
 | 
						|
                    {
 | 
						|
                        ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
 | 
						|
 | 
						|
                        /* This lets the task know it was forcibly removed from the
 | 
						|
                         * blocked state so it should not re-evaluate its block time and
 | 
						|
                         * then block again. */
 | 
						|
                        pxTCB->ucDelayAborted = pdTRUE;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
                /* Place the unblocked task into the appropriate ready list. */
 | 
						|
                prvAddTaskToReadyList( pxTCB );
 | 
						|
 | 
						|
                /* A task being unblocked cannot cause an immediate context
 | 
						|
                 * switch if preemption is turned off. */
 | 
						|
                #if ( configUSE_PREEMPTION == 1 )
 | 
						|
                    {
 | 
						|
                        /* Preemption is on, but a context switch should only be
 | 
						|
                         *  performed if the unblocked task has a priority that is
 | 
						|
                         *  equal to or higher than the currently executing task. */
 | 
						|
                        if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdFALSE ) )
 | 
						|
                        {
 | 
						|
                            /* Pend the yield to be performed when the scheduler
 | 
						|
                             * is unsuspended. */
 | 
						|
                            xYieldPending[ xPortGetCoreID() ] = pdTRUE;
 | 
						|
                        }
 | 
						|
                        else
 | 
						|
                        {
 | 
						|
                            mtCOVERAGE_TEST_MARKER();
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                #endif /* configUSE_PREEMPTION */
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                xReturn = pdFAIL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_xTaskAbortDelay */
 | 
						|
/*----------------------------------------------------------*/
 | 
						|
 | 
						|
BaseType_t xTaskIncrementTick( void )
 | 
						|
{
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
        /* Only Core 0 should ever call this function. */
 | 
						|
        configASSERT( xPortGetCoreID() == 0 );
 | 
						|
    #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
    TCB_t * pxTCB;
 | 
						|
    TickType_t xItemValue;
 | 
						|
    BaseType_t xSwitchRequired = pdFALSE;
 | 
						|
 | 
						|
    /* Called by the portable layer each time a tick interrupt occurs.
 | 
						|
     * Increments the tick then checks to see if the new tick value will cause any
 | 
						|
     * tasks to be unblocked. */
 | 
						|
    traceTASK_INCREMENT_TICK( xTickCount );
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
        /* For SMP, we need to take the kernel lock here as we are about to
 | 
						|
         * access kernel data structures (unlike single core which calls this
 | 
						|
         * function with interrupts disabled). */
 | 
						|
        taskENTER_CRITICAL_ISR( &xKernelLock );
 | 
						|
    #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
    if( uxSchedulerSuspended[ 0 ] == ( UBaseType_t ) pdFALSE )
 | 
						|
    {
 | 
						|
        /* Minor optimisation.  The tick count cannot change in this
 | 
						|
         * block. */
 | 
						|
        const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;
 | 
						|
 | 
						|
        /* Increment the RTOS tick, switching the delayed and overflowed
 | 
						|
         * delayed lists if it wraps to 0. */
 | 
						|
        xTickCount = xConstTickCount;
 | 
						|
 | 
						|
        if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
 | 
						|
        {
 | 
						|
            taskSWITCH_DELAYED_LISTS();
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
 | 
						|
        /* See if this tick has made a timeout expire.  Tasks are stored in
 | 
						|
         * the  queue in the order of their wake time - meaning once one task
 | 
						|
         * has been found whose block time has not expired there is no need to
 | 
						|
         * look any further down the list. */
 | 
						|
        if( xConstTickCount >= xNextTaskUnblockTime )
 | 
						|
        {
 | 
						|
            for( ; ; )
 | 
						|
            {
 | 
						|
                if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
 | 
						|
                {
 | 
						|
                    /* The delayed list is empty.  Set xNextTaskUnblockTime
 | 
						|
                     * to the maximum possible value so it is extremely
 | 
						|
                     * unlikely that the
 | 
						|
                     * if( xTickCount >= xNextTaskUnblockTime ) test will pass
 | 
						|
                     * next time through. */
 | 
						|
                    xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    /* The delayed list is not empty, get the value of the
 | 
						|
                     * item at the head of the delayed list.  This is the time
 | 
						|
                     * at which the task at the head of the delayed list must
 | 
						|
                     * be removed from the Blocked state. */
 | 
						|
                    pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
 | 
						|
                    xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );
 | 
						|
 | 
						|
                    if( xConstTickCount < xItemValue )
 | 
						|
                    {
 | 
						|
                        /* It is not time to unblock this item yet, but the
 | 
						|
                         * item value is the time at which the task at the head
 | 
						|
                         * of the blocked list must be removed from the Blocked
 | 
						|
                         * state -  so record the item value in
 | 
						|
                         * xNextTaskUnblockTime. */
 | 
						|
                        xNextTaskUnblockTime = xItemValue;
 | 
						|
                        break; /*lint !e9011 Code structure here is deedmed easier to understand with multiple breaks. */
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
 | 
						|
                    /* It is time to remove the item from the Blocked state. */
 | 
						|
                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
 | 
						|
 | 
						|
                    /* Is the task waiting on an event also?  If so remove
 | 
						|
                     * it from the event list. */
 | 
						|
                    if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
 | 
						|
                    {
 | 
						|
                        ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
 | 
						|
                    /* Place the unblocked task into the appropriate ready
 | 
						|
                     * list. */
 | 
						|
                    prvAddTaskToReadyList( pxTCB );
 | 
						|
 | 
						|
                    /* A task being unblocked cannot cause an immediate
 | 
						|
                     * context switch if preemption is turned off. */
 | 
						|
                    #if ( configUSE_PREEMPTION == 1 )
 | 
						|
                        {
 | 
						|
                            /* Preemption is on, but a context switch should
 | 
						|
                             * only be performed if the unblocked task has a
 | 
						|
                             * priority that is equal to or higher than the
 | 
						|
                             * currently executing task.
 | 
						|
                             *
 | 
						|
                             * For SMP, since this function is only run on core
 | 
						|
                             * 0, only need to switch contexts if the unblocked
 | 
						|
                             * task can run on core 0. */
 | 
						|
                            if( ( taskCAN_RUN_ON_CORE( 0, pxTCB->xCoreID ) == pdTRUE ) && ( pxTCB->uxPriority >= pxCurrentTCB[ 0 ]->uxPriority ) )
 | 
						|
                            {
 | 
						|
                                xSwitchRequired = pdTRUE;
 | 
						|
                            }
 | 
						|
                            else
 | 
						|
                            {
 | 
						|
                                mtCOVERAGE_TEST_MARKER();
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    #endif /* configUSE_PREEMPTION */
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Tasks of equal priority to the currently running task will share
 | 
						|
         * processing time (time slice) if preemption is on, and the application
 | 
						|
         * writer has not explicitly turned time slicing off. */
 | 
						|
        #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
 | 
						|
            {
 | 
						|
                if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB[ 0 ]->uxPriority ] ) ) > ( UBaseType_t ) 1 )
 | 
						|
                {
 | 
						|
                    xSwitchRequired = pdTRUE;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
        #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
 | 
						|
 | 
						|
        #if ( configUSE_TICK_HOOK == 1 )
 | 
						|
            TickType_t xPendedTicksTemp = xPendedTicks; /* Non-volatile copy. */
 | 
						|
        #endif /* configUSE_TICK_HOOK */
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
            /* Release the previously taken kernel lock as we have finished
 | 
						|
             * accessing the kernel data structures. */
 | 
						|
            taskEXIT_CRITICAL_ISR( &xKernelLock );
 | 
						|
        #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
        #if ( configUSE_TICK_HOOK == 1 )
 | 
						|
            {
 | 
						|
                /* Guard against the tick hook being called when the pended tick
 | 
						|
                 * count is being unwound (when the scheduler is being unlocked). */
 | 
						|
                if( xPendedTicksTemp == ( TickType_t ) 0 )
 | 
						|
                {
 | 
						|
                    vApplicationTickHook();
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
        #endif /* configUSE_TICK_HOOK */
 | 
						|
 | 
						|
        #if ( configUSE_PREEMPTION == 1 )
 | 
						|
            {
 | 
						|
                if( xYieldPending[ 0 ] != pdFALSE )
 | 
						|
                {
 | 
						|
                    xSwitchRequired = pdTRUE;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
        #endif /* configUSE_PREEMPTION */
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        ++xPendedTicks;
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
            /* Release the previously taken kernel lock as we have finished
 | 
						|
             * accessing the kernel data structures. */
 | 
						|
            taskEXIT_CRITICAL_ISR( &xKernelLock );
 | 
						|
        #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
        /* The tick hook gets called at regular intervals, even if the
 | 
						|
         * scheduler is locked. */
 | 
						|
        #if ( configUSE_TICK_HOOK == 1 )
 | 
						|
            {
 | 
						|
                vApplicationTickHook();
 | 
						|
            }
 | 
						|
        #endif
 | 
						|
    }
 | 
						|
 | 
						|
    return xSwitchRequired;
 | 
						|
}
 | 
						|
 | 
						|
#if ( configNUM_CORES > 1 )
 | 
						|
    BaseType_t xTaskIncrementTickOtherCores( void )
 | 
						|
    {
 | 
						|
        /* Minor optimization. This function can never switch cores mid
 | 
						|
         * execution */
 | 
						|
        BaseType_t xCoreID = xPortGetCoreID();
 | 
						|
        BaseType_t xSwitchRequired = pdFALSE;
 | 
						|
 | 
						|
        /* This function should never be called by Core 0. */
 | 
						|
        configASSERT( xCoreID != 0 );
 | 
						|
 | 
						|
        /* Called by the portable layer each time a tick interrupt occurs.
 | 
						|
         * Increments the tick then checks to see if the new tick value will cause any
 | 
						|
         * tasks to be unblocked. */
 | 
						|
        traceTASK_INCREMENT_TICK( xTickCount );
 | 
						|
 | 
						|
        if( uxSchedulerSuspended[ xCoreID ] == ( UBaseType_t ) pdFALSE )
 | 
						|
        {
 | 
						|
            /* We need take the kernel lock here as we are about to access
 | 
						|
             * kernel data structures. */
 | 
						|
            taskENTER_CRITICAL_ISR( &xKernelLock );
 | 
						|
 | 
						|
            /* A task being unblocked cannot cause an immediate context switch
 | 
						|
             * if preemption is turned off. */
 | 
						|
            #if ( configUSE_PREEMPTION == 1 )
 | 
						|
                {
 | 
						|
                    /* Check if core 0 calling xTaskIncrementTick() has
 | 
						|
                     * unblocked a task that can be run. */
 | 
						|
                    if( uxTopReadyPriority > pxCurrentTCB[ xCoreID ]->uxPriority )
 | 
						|
                    {
 | 
						|
                        xSwitchRequired = pdTRUE;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            #endif /* if ( configUSE_PREEMPTION == 1 ) */
 | 
						|
 | 
						|
            /* Tasks of equal priority to the currently running task will share
 | 
						|
             * processing time (time slice) if preemption is on, and the application
 | 
						|
             * writer has not explicitly turned time slicing off. */
 | 
						|
            #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
 | 
						|
                {
 | 
						|
                    if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB[ xCoreID ]->uxPriority ] ) ) > ( UBaseType_t ) 1 )
 | 
						|
                    {
 | 
						|
                        xSwitchRequired = pdTRUE;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
 | 
						|
 | 
						|
            /* Release the previously taken kernel lock as we have finished
 | 
						|
             * accessing the kernel data structures. */
 | 
						|
            taskEXIT_CRITICAL_ISR( &xKernelLock );
 | 
						|
 | 
						|
            #if ( configUSE_PREEMPTION == 1 )
 | 
						|
                {
 | 
						|
                    if( xYieldPending[ xCoreID ] != pdFALSE )
 | 
						|
                    {
 | 
						|
                        xSwitchRequired = pdTRUE;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            #endif /* configUSE_PREEMPTION */
 | 
						|
        }
 | 
						|
 | 
						|
        #if ( configUSE_TICK_HOOK == 1 )
 | 
						|
            {
 | 
						|
                vApplicationTickHook();
 | 
						|
            }
 | 
						|
        #endif
 | 
						|
 | 
						|
        return xSwitchRequired;
 | 
						|
    }
 | 
						|
#endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
 | 
						|
 | 
						|
    void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
 | 
						|
                                     TaskHookFunction_t pxHookFunction )
 | 
						|
    {
 | 
						|
        TCB_t * xTCB;
 | 
						|
 | 
						|
        /* If xTask is NULL then it is the task hook of the calling task that is
 | 
						|
         * getting set. */
 | 
						|
        if( xTask == NULL )
 | 
						|
        {
 | 
						|
            xTCB = ( TCB_t * ) pxCurrentTCB[ xPortGetCoreID() ];
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            xTCB = xTask;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Save the hook function in the TCB.  A critical section is required as
 | 
						|
         * the value can be accessed from an interrupt. */
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            xTCB->pxTaskTag = pxHookFunction;
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_APPLICATION_TASK_TAG */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
 | 
						|
 | 
						|
    TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
        TaskHookFunction_t xReturn;
 | 
						|
 | 
						|
        /* If xTask is NULL then set the calling task's hook. */
 | 
						|
        pxTCB = prvGetTCBFromHandle( xTask );
 | 
						|
 | 
						|
        /* Save the hook function in the TCB.  A critical section is required as
 | 
						|
         * the value can be accessed from an interrupt. */
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            xReturn = pxTCB->pxTaskTag;
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_APPLICATION_TASK_TAG */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
 | 
						|
 | 
						|
    TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
        TaskHookFunction_t xReturn;
 | 
						|
        UBaseType_t uxSavedInterruptStatus;
 | 
						|
 | 
						|
        /* If xTask is NULL then set the calling task's hook. */
 | 
						|
        pxTCB = prvGetTCBFromHandle( xTask );
 | 
						|
 | 
						|
        /* Save the hook function in the TCB.  A critical section is required as
 | 
						|
         * the value can be accessed from an interrupt. */
 | 
						|
        prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptStatus );
 | 
						|
        {
 | 
						|
            xReturn = pxTCB->pxTaskTag;
 | 
						|
        }
 | 
						|
        prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptStatus );
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_APPLICATION_TASK_TAG */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
 | 
						|
 | 
						|
    BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
 | 
						|
                                             void * pvParameter )
 | 
						|
    {
 | 
						|
        TCB_t * xTCB;
 | 
						|
        BaseType_t xReturn;
 | 
						|
 | 
						|
        /* If xTask is NULL then we are calling our own task hook. */
 | 
						|
        if( xTask == NULL )
 | 
						|
        {
 | 
						|
            xTCB = xTaskGetCurrentTaskHandle();
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            xTCB = xTask;
 | 
						|
        }
 | 
						|
 | 
						|
        if( xTCB->pxTaskTag != NULL )
 | 
						|
        {
 | 
						|
            xReturn = xTCB->pxTaskTag( pvParameter );
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            xReturn = pdFAIL;
 | 
						|
        }
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_APPLICATION_TASK_TAG */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configNUM_CORES > 1 )
 | 
						|
    static void taskSelectHighestPriorityTaskSMP( void )
 | 
						|
    {
 | 
						|
        /* This function is called from a critical section. So some optimizations are made */
 | 
						|
        BaseType_t uxCurPriority;
 | 
						|
        BaseType_t xTaskScheduled = pdFALSE;
 | 
						|
        BaseType_t xNewTopPrioritySet = pdFALSE;
 | 
						|
        BaseType_t xCoreID = xPortGetCoreID(); /* Optimization: Read once */
 | 
						|
 | 
						|
        /* Search for tasks, starting form the highest ready priority. If nothing is
 | 
						|
         * found, we eventually default to the IDLE tasks at priority 0 */
 | 
						|
 | 
						|
        for( uxCurPriority = uxTopReadyPriority; uxCurPriority >= 0 && xTaskScheduled == pdFALSE; uxCurPriority-- )
 | 
						|
        {
 | 
						|
            /* Check if current priority has one or more ready tasks. Skip if none */
 | 
						|
            if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurPriority ] ) ) )
 | 
						|
            {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Save a copy of highest priority that has a ready state task */
 | 
						|
            if( xNewTopPrioritySet == pdFALSE )
 | 
						|
            {
 | 
						|
                xNewTopPrioritySet = pdTRUE;
 | 
						|
                uxTopReadyPriority = uxCurPriority;
 | 
						|
            }
 | 
						|
 | 
						|
            /* We now search this priority's ready task list for a runnable task.
 | 
						|
             * We always start searching from the head of the list, so we reset
 | 
						|
             * pxIndex to point to the tail so that we start walking the list from
 | 
						|
             * the first item */
 | 
						|
            pxReadyTasksLists[ uxCurPriority ].pxIndex = ( ListItem_t * ) &( pxReadyTasksLists[ uxCurPriority ].xListEnd );
 | 
						|
 | 
						|
            /* Get the first item on the list */
 | 
						|
            TCB_t * pxTCBCur;
 | 
						|
            TCB_t * pxTCBFirst;
 | 
						|
            listGET_OWNER_OF_NEXT_ENTRY( pxTCBCur, &( pxReadyTasksLists[ uxCurPriority ] ) );
 | 
						|
            pxTCBFirst = pxTCBCur;
 | 
						|
 | 
						|
            do
 | 
						|
            {
 | 
						|
                /* Check if the current task is currently being executed. However, if
 | 
						|
                 * it's being executed by the current core, we can still schedule it.
 | 
						|
                 * Todo: Each task can store a xTaskRunState, instead of needing to
 | 
						|
                 *       check each core */
 | 
						|
                UBaseType_t ux;
 | 
						|
 | 
						|
                for( ux = 0; ux < ( UBaseType_t ) configNUM_CORES; ux++ )
 | 
						|
                {
 | 
						|
                    if( ux == xCoreID )
 | 
						|
                    {
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
                    else if( pxCurrentTCB[ ux ] == pxTCBCur )
 | 
						|
                    {
 | 
						|
                        /* Current task is already being executed. Get the next task */
 | 
						|
                        goto get_next_task;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
 | 
						|
                /* Check if the current task has a compatible affinity */
 | 
						|
                if( ( pxTCBCur->xCoreID != xCoreID ) && ( pxTCBCur->xCoreID != tskNO_AFFINITY ) )
 | 
						|
                {
 | 
						|
                    goto get_next_task;
 | 
						|
                }
 | 
						|
 | 
						|
                /* The current task is runnable. Schedule it */
 | 
						|
                pxCurrentTCB[ xCoreID ] = pxTCBCur;
 | 
						|
                xTaskScheduled = pdTRUE;
 | 
						|
 | 
						|
                /* Move the current tasks list item to the back of the list in order
 | 
						|
                 * to implement best effort round robin. To do this, we need to reset
 | 
						|
                 * the pxIndex to point to the tail again. */
 | 
						|
                pxReadyTasksLists[ uxCurPriority ].pxIndex = ( ListItem_t * ) &( pxReadyTasksLists[ uxCurPriority ].xListEnd );
 | 
						|
                uxListRemove( &( pxTCBCur->xStateListItem ) );
 | 
						|
                vListInsertEnd( &( pxReadyTasksLists[ uxCurPriority ] ), &( pxTCBCur->xStateListItem ) );
 | 
						|
                break;
 | 
						|
 | 
						|
get_next_task:
 | 
						|
                /* The current task cannot be scheduled. Get the next task in the list */
 | 
						|
                listGET_OWNER_OF_NEXT_ENTRY( pxTCBCur, &( pxReadyTasksLists[ uxCurPriority ] ) );
 | 
						|
            } while( pxTCBCur != pxTCBFirst ); /* Check to see if we've walked the entire list */
 | 
						|
        }
 | 
						|
 | 
						|
        assert( xTaskScheduled == pdTRUE ); /* At this point, a task MUST have been scheduled */
 | 
						|
    }
 | 
						|
#endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
void vTaskSwitchContext( void )
 | 
						|
{
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
        /* For SMP, we need to take the kernel lock here as we are about to
 | 
						|
         * access kernel data structures (unlike single core which calls this
 | 
						|
         * function with either interrupts disabled or when the scheduler hasn't
 | 
						|
         * started yet). */
 | 
						|
        taskENTER_CRITICAL_ISR( &xKernelLock );
 | 
						|
    #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
    if( uxSchedulerSuspended[ xPortGetCoreID() ] != ( UBaseType_t ) pdFALSE )
 | 
						|
    {
 | 
						|
        /* The scheduler is currently suspended - do not allow a context
 | 
						|
         * switch. */
 | 
						|
        xYieldPending[ xPortGetCoreID() ] = pdTRUE;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        xYieldPending[ xPortGetCoreID() ] = pdFALSE;
 | 
						|
        #ifdef ESP_PLATFORM
 | 
						|
            xSwitchingContext[ xPortGetCoreID() ] = pdTRUE;
 | 
						|
        #endif // ESP_PLATFORM
 | 
						|
        traceTASK_SWITCHED_OUT();
 | 
						|
 | 
						|
        #if ( configGENERATE_RUN_TIME_STATS == 1 )
 | 
						|
            {
 | 
						|
                #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
 | 
						|
                    portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
 | 
						|
                #else
 | 
						|
                    ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
 | 
						|
                #endif
 | 
						|
 | 
						|
                /* Add the amount of time the task has been running to the
 | 
						|
                 * accumulated time so far.  The time the task started running was
 | 
						|
                 * stored in ulTaskSwitchedInTime.  Note that there is no overflow
 | 
						|
                 * protection here so count values are only valid until the timer
 | 
						|
                 * overflows.  The guard against negative values is to protect
 | 
						|
                 * against suspect run time stat counter implementations - which
 | 
						|
                 * are provided by the application, not the kernel. */
 | 
						|
                if( ulTotalRunTime > ulTaskSwitchedInTime[ xPortGetCoreID() ] )
 | 
						|
                {
 | 
						|
                    pxCurrentTCB[ xPortGetCoreID() ]->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime[ xPortGetCoreID() ] );
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
 | 
						|
                ulTaskSwitchedInTime[ xPortGetCoreID() ] = ulTotalRunTime;
 | 
						|
            }
 | 
						|
        #endif /* configGENERATE_RUN_TIME_STATS */
 | 
						|
 | 
						|
        /* Check for stack overflow, if configured. */
 | 
						|
        #ifdef ESP_PLATFORM
 | 
						|
            taskFIRST_CHECK_FOR_STACK_OVERFLOW();
 | 
						|
            taskSECOND_CHECK_FOR_STACK_OVERFLOW();
 | 
						|
        #else
 | 
						|
            taskCHECK_FOR_STACK_OVERFLOW();
 | 
						|
 | 
						|
            /* Before the currently running task is switched out, save its errno. */
 | 
						|
            #if ( configUSE_POSIX_ERRNO == 1 )
 | 
						|
                {
 | 
						|
                    pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
 | 
						|
                }
 | 
						|
            #endif
 | 
						|
        #endif // ESP_PLATFORM
 | 
						|
 | 
						|
        /* Select a new task to run using either the generic C or port
 | 
						|
         * optimised asm code. */
 | 
						|
        taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
 | 
						|
        traceTASK_SWITCHED_IN();
 | 
						|
 | 
						|
        #ifdef ESP_PLATFORM
 | 
						|
            xSwitchingContext[ xPortGetCoreID() ] = pdFALSE;
 | 
						|
            #if CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK
 | 
						|
                vPortSetStackWatchpoint( pxCurrentTCB[ xPortGetCoreID() ]->pxStack );
 | 
						|
            #endif
 | 
						|
        #else
 | 
						|
            /* After the new task is switched in, update the global errno. */
 | 
						|
            #if ( configUSE_POSIX_ERRNO == 1 )
 | 
						|
                {
 | 
						|
                    FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
 | 
						|
                }
 | 
						|
            #endif
 | 
						|
 | 
						|
            #if ( configUSE_NEWLIB_REENTRANT == 1 )
 | 
						|
                {
 | 
						|
                    /* Switch Newlib's _impure_ptr variable to point to the _reent
 | 
						|
                     * structure specific to this task.
 | 
						|
                     * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
 | 
						|
                     * for additional information. */
 | 
						|
                    _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
 | 
						|
                }
 | 
						|
            #endif /* configUSE_NEWLIB_REENTRANT */
 | 
						|
        #endif // ESP_PLATFORM
 | 
						|
    }
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
        /* Release the previously taken kernel lock as we have finished
 | 
						|
         * accessing the kernel data structures. */
 | 
						|
        taskEXIT_CRITICAL_ISR( &xKernelLock );
 | 
						|
    #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
void vTaskPlaceOnEventList( List_t * const pxEventList,
 | 
						|
                            const TickType_t xTicksToWait )
 | 
						|
{
 | 
						|
    configASSERT( pxEventList );
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
        /* In SMP, we need to take the kernel lock as we are about to access the
 | 
						|
         * task lists. */
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
    #endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
    /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
 | 
						|
     * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
 | 
						|
 | 
						|
    /* Place the event list item of the TCB in the appropriate event list.
 | 
						|
     * This is placed in the list in priority order so the highest priority task
 | 
						|
     * is the first to be woken by the event.  The queue that contains the event
 | 
						|
     * list is locked, preventing simultaneous access from interrupts. */
 | 
						|
    vListInsert( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );
 | 
						|
 | 
						|
    prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
        /* Release the previously taken kernel lock. */
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
    #endif /* configNUM_CORES > 1 */
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
 | 
						|
                                     const TickType_t xItemValue,
 | 
						|
                                     const TickType_t xTicksToWait )
 | 
						|
{
 | 
						|
    configASSERT( pxEventList );
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
        /* In SMP, the event groups haven't suspended the scheduler at this
 | 
						|
         * point. We need to take the kernel lock instead as we are about to
 | 
						|
         * access the task lists. */
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
    #else /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
        /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by
 | 
						|
         * the event groups implementation. */
 | 
						|
        configASSERT( uxSchedulerSuspended[ 0 ] != 0 );
 | 
						|
    #endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
    /* Store the item value in the event list item.  It is safe to access the
 | 
						|
     * event list item here as interrupts won't access the event list item of a
 | 
						|
     * task that is not in the Blocked state. */
 | 
						|
    listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
 | 
						|
 | 
						|
    /* Place the event list item of the TCB at the end of the appropriate event
 | 
						|
     * list.  It is safe to access the event list here because it is part of an
 | 
						|
     * event group implementation - and interrupts don't access event groups
 | 
						|
     * directly (instead they access them indirectly by pending function calls to
 | 
						|
     * the task level). */
 | 
						|
    vListInsertEnd( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );
 | 
						|
 | 
						|
    prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
        /* Release the previously taken kernel lock. */
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
    #endif /* configNUM_CORES > 1 */
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TIMERS == 1 )
 | 
						|
 | 
						|
    void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
 | 
						|
                                          TickType_t xTicksToWait,
 | 
						|
                                          const BaseType_t xWaitIndefinitely )
 | 
						|
    {
 | 
						|
        configASSERT( pxEventList );
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
            /* In SMP, we need to take the kernel lock as we are about to access
 | 
						|
             * the task lists. */
 | 
						|
            taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        #endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
        /* This function should not be called by application code hence the
 | 
						|
         * 'Restricted' in its name.  It is not part of the public API.  It is
 | 
						|
         * designed for use by kernel code, and has special calling requirements -
 | 
						|
         * it should be called with the scheduler suspended. */
 | 
						|
 | 
						|
 | 
						|
        /* Place the event list item of the TCB in the appropriate event list.
 | 
						|
         * In this case it is assume that this is the only task that is going to
 | 
						|
         * be waiting on this event list, so the faster vListInsertEnd() function
 | 
						|
         * can be used in place of vListInsert. */
 | 
						|
        vListInsertEnd( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );
 | 
						|
 | 
						|
        /* If the task should block indefinitely then set the block time to a
 | 
						|
         * value that will be recognised as an indefinite delay inside the
 | 
						|
         * prvAddCurrentTaskToDelayedList() function. */
 | 
						|
        if( xWaitIndefinitely != pdFALSE )
 | 
						|
        {
 | 
						|
            xTicksToWait = portMAX_DELAY;
 | 
						|
        }
 | 
						|
 | 
						|
        traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
 | 
						|
        prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
            /* Release the previously taken kernel lock. */
 | 
						|
            taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
        #endif /* configNUM_CORES > 1 */
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TIMERS */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
 | 
						|
{
 | 
						|
    TCB_t * pxUnblockedTCB;
 | 
						|
    BaseType_t xReturn;
 | 
						|
 | 
						|
    /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION.  It can also be
 | 
						|
     * called from a critical section within an ISR. */
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
        /* In SMP, we need to take the kernel lock (even if the caller is
 | 
						|
         * already in a critical section by taking a different lock) as we are
 | 
						|
         * about to access the task lists, which are protected by the kernel
 | 
						|
         * lock. This function can also be called from an ISR context, so we
 | 
						|
         * need to check whether we are in an ISR.*/
 | 
						|
        if( portCHECK_IF_IN_ISR() == pdFALSE )
 | 
						|
        {
 | 
						|
            taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            taskENTER_CRITICAL_ISR( &xKernelLock );
 | 
						|
        }
 | 
						|
    #endif /* configNUM_CORES > 1 */
 | 
						|
    {
 | 
						|
        /* Before taking the kernel lock, another task/ISR could have already
 | 
						|
         * emptied the pxEventList. So we insert a check here to see if
 | 
						|
         * pxEventList is empty before attempting to remove an item from it. */
 | 
						|
        if( listLIST_IS_EMPTY( pxEventList ) == pdFALSE )
 | 
						|
        {
 | 
						|
            BaseType_t xCurCoreID = xPortGetCoreID();
 | 
						|
 | 
						|
            /* The event list is sorted in priority order, so the first in the list can
 | 
						|
             * be removed as it is known to be the highest priority.  Remove the TCB from
 | 
						|
             * the delayed list, and add it to the ready list.
 | 
						|
             *
 | 
						|
             * If an event is for a queue that is locked then this function will never
 | 
						|
             * get called - the lock count on the queue will get modified instead.  This
 | 
						|
             * means exclusive access to the event list is guaranteed here.
 | 
						|
             *
 | 
						|
             * This function assumes that a check has already been made to ensure that
 | 
						|
             * pxEventList is not empty. */
 | 
						|
            pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
 | 
						|
            configASSERT( pxUnblockedTCB );
 | 
						|
            ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );
 | 
						|
 | 
						|
            /* Add the task to the ready list if a core with compatible affinity
 | 
						|
             * has NOT suspended its scheduler. This occurs when:
 | 
						|
             * - The task is pinned, and the pinned core's scheduler is running
 | 
						|
             * - The task is unpinned, and at least one of the core's scheduler is running */
 | 
						|
            if( taskCAN_BE_SCHEDULED( pxUnblockedTCB ) )
 | 
						|
            {
 | 
						|
                ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
 | 
						|
                prvAddTaskToReadyList( pxUnblockedTCB );
 | 
						|
 | 
						|
                #if ( configUSE_TICKLESS_IDLE != 0 )
 | 
						|
                    {
 | 
						|
                        /* If a task is blocked on a kernel object then xNextTaskUnblockTime
 | 
						|
                         * might be set to the blocked task's time out time.  If the task is
 | 
						|
                         * unblocked for a reason other than a timeout xNextTaskUnblockTime is
 | 
						|
                         * normally left unchanged, because it is automatically reset to a new
 | 
						|
                         * value when the tick count equals xNextTaskUnblockTime.  However if
 | 
						|
                         * tickless idling is used it might be more important to enter sleep mode
 | 
						|
                         * at the earliest possible time - so reset xNextTaskUnblockTime here to
 | 
						|
                         * ensure it is updated at the earliest possible time. */
 | 
						|
                        prvResetNextTaskUnblockTime();
 | 
						|
                    }
 | 
						|
                #endif
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                /* We arrive here due to one of the following possibilities:
 | 
						|
                 * - The task is pinned to core X and core X has suspended its scheduler
 | 
						|
                 * - The task is unpinned and both cores have suspend their schedulers
 | 
						|
                 * Therefore, we add the task to one of the pending lists:
 | 
						|
                 * - If the task is pinned to core X, add it to core X's pending list
 | 
						|
                 * - If the task is unpinned, add it to the current core's pending list */
 | 
						|
                BaseType_t xPendingListCore;
 | 
						|
                #if ( configNUM_CORES > 1 )
 | 
						|
                    xPendingListCore = ( ( pxUnblockedTCB->xCoreID == tskNO_AFFINITY ) ? xCurCoreID : pxUnblockedTCB->xCoreID );
 | 
						|
                #else
 | 
						|
                    xPendingListCore = 0;
 | 
						|
                #endif /* configNUM_CORES > 1 */
 | 
						|
                configASSERT( uxSchedulerSuspended[ xPendingListCore ] == pdTRUE );
 | 
						|
 | 
						|
                /* The delayed and ready lists cannot be accessed, so hold this task
 | 
						|
                 * pending until the scheduler is resumed. */
 | 
						|
                vListInsertEnd( &( xPendingReadyList[ xPendingListCore ] ), &( pxUnblockedTCB->xEventListItem ) );
 | 
						|
            }
 | 
						|
 | 
						|
            if( prvCheckForYield( pxUnblockedTCB, xCurCoreID, pdFALSE ) )
 | 
						|
            {
 | 
						|
                /* Return true if the task removed from the event list has a higher
 | 
						|
                 * priority than the calling task.  This allows the calling task to know if
 | 
						|
                 * it should force a context switch now. */
 | 
						|
                xReturn = pdTRUE;
 | 
						|
 | 
						|
                /* Mark that a yield is pending in case the user is not using the
 | 
						|
                 * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
 | 
						|
                xYieldPending[ xCurCoreID ] = pdTRUE;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                xReturn = pdFALSE;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            /* The pxEventList was emptied before we entered the critical section,
 | 
						|
             * Nothing to do except return pdFALSE. */
 | 
						|
            xReturn = pdFALSE;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
        /* Release the previously taken kernel lock. */
 | 
						|
        if( portCHECK_IF_IN_ISR() == pdFALSE )
 | 
						|
        {
 | 
						|
            taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            taskEXIT_CRITICAL_ISR( &xKernelLock );
 | 
						|
        }
 | 
						|
    #endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
    return xReturn;
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configNUM_CORES > 1 )
 | 
						|
    void vTaskTakeKernelLock( void )
 | 
						|
    {
 | 
						|
        /* We call the tasks.c critical section macro to take xKernelLock */
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
    }
 | 
						|
 | 
						|
    void vTaskReleaseKernelLock( void )
 | 
						|
    {
 | 
						|
        /* We call the tasks.c critical section macro to release xKernelLock */
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
    }
 | 
						|
#endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
 | 
						|
                                        const TickType_t xItemValue )
 | 
						|
{
 | 
						|
    TCB_t * pxUnblockedTCB;
 | 
						|
    BaseType_t xCurCoreID = xPortGetCoreID();
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
        /* THIS FUNCTION MUST BE CALLED WITH THE KERNEL LOCK ALREADY TAKEN.
 | 
						|
         * It is used by the event flags implementation, thus those functions
 | 
						|
         * should call vTaskTakeKernelLock() before calling this function. */
 | 
						|
    #else /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
        /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by
 | 
						|
         * the event flags implementation. */
 | 
						|
        configASSERT( uxSchedulerSuspended[ 0 ] != pdFALSE );
 | 
						|
    #endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
    /* Store the new item value in the event list. */
 | 
						|
    listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
 | 
						|
 | 
						|
    /* Remove the event list form the event flag.  Interrupts do not access
 | 
						|
     * event flags. */
 | 
						|
    pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
 | 
						|
    configASSERT( pxUnblockedTCB );
 | 
						|
    ( void ) uxListRemove( pxEventListItem );
 | 
						|
 | 
						|
    #if ( configUSE_TICKLESS_IDLE != 0 )
 | 
						|
        {
 | 
						|
            /* If a task is blocked on a kernel object then xNextTaskUnblockTime
 | 
						|
             * might be set to the blocked task's time out time.  If the task is
 | 
						|
             * unblocked for a reason other than a timeout xNextTaskUnblockTime is
 | 
						|
             * normally left unchanged, because it is automatically reset to a new
 | 
						|
             * value when the tick count equals xNextTaskUnblockTime.  However if
 | 
						|
             * tickless idling is used it might be more important to enter sleep mode
 | 
						|
             * at the earliest possible time - so reset xNextTaskUnblockTime here to
 | 
						|
             * ensure it is updated at the earliest possible time. */
 | 
						|
            prvResetNextTaskUnblockTime();
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
 | 
						|
    /* Remove the task from the delayed list and add it to the ready list.  The
 | 
						|
     * scheduler is suspended so interrupts will not be accessing the ready
 | 
						|
     * lists. */
 | 
						|
    ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
 | 
						|
    prvAddTaskToReadyList( pxUnblockedTCB );
 | 
						|
 | 
						|
    if( prvCheckForYield( pxUnblockedTCB, xCurCoreID, pdFALSE ) )
 | 
						|
    {
 | 
						|
        /* The unblocked task has a priority above that of the calling task, so
 | 
						|
         * a context switch is required.  This function is called with the
 | 
						|
         * scheduler suspended so xYieldPending is set so the context switch
 | 
						|
         * occurs immediately that the scheduler is resumed (unsuspended). */
 | 
						|
        xYieldPending[ xCurCoreID ] = pdTRUE;
 | 
						|
    }
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
 | 
						|
{
 | 
						|
    configASSERT( pxTimeOut );
 | 
						|
    taskENTER_CRITICAL( &xKernelLock );
 | 
						|
    {
 | 
						|
        pxTimeOut->xOverflowCount = xNumOfOverflows;
 | 
						|
        pxTimeOut->xTimeOnEntering = xTickCount;
 | 
						|
    }
 | 
						|
    taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
 | 
						|
{
 | 
						|
    /**
 | 
						|
     * In case of we are building for SMP, we need to protect the following instructions in order to make them
 | 
						|
     * atomic.
 | 
						|
     * Indeed, without this, it would be possible to get preempted by the tick hook right after storing the number
 | 
						|
     * of overflows with `pxTimeOut->xOverflowCount = xNumOfOverflows`. Then, the tick hook increments the timer,
 | 
						|
     * which overflows, and thus resets the xTickCount to 0.
 | 
						|
     * Resuming our task would result in an invalid state of the timer where the number of overflow corresponds
 | 
						|
     * to the previous value and not the current one.
 | 
						|
     *
 | 
						|
     * On a single core configuration, this problem doesn't appear as this function is meant to be called from
 | 
						|
     * a critical section, disabling the (tick) interrupts.
 | 
						|
     */
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
        configASSERT( pxTimeOut );
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
    #endif /* configNUM_CORES > 1 */
 | 
						|
 | 
						|
    /* For internal use only as it does not use a critical section. */
 | 
						|
    pxTimeOut->xOverflowCount = xNumOfOverflows;
 | 
						|
    pxTimeOut->xTimeOnEntering = xTickCount;
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
        /* Release the previously taken kernel lock. */
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
    #endif /* configNUM_CORES > 1 */
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
 | 
						|
                                 TickType_t * const pxTicksToWait )
 | 
						|
{
 | 
						|
    BaseType_t xReturn;
 | 
						|
 | 
						|
    configASSERT( pxTimeOut );
 | 
						|
    configASSERT( pxTicksToWait );
 | 
						|
 | 
						|
    taskENTER_CRITICAL( &xKernelLock );
 | 
						|
    {
 | 
						|
        /* Minor optimisation.  The tick count cannot change in this block. */
 | 
						|
        const TickType_t xConstTickCount = xTickCount;
 | 
						|
        const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;
 | 
						|
 | 
						|
        #if ( INCLUDE_xTaskAbortDelay == 1 )
 | 
						|
            if( pxCurrentTCB[ xPortGetCoreID() ]->ucDelayAborted != ( uint8_t ) pdFALSE )
 | 
						|
            {
 | 
						|
                /* The delay was aborted, which is not the same as a time out,
 | 
						|
                 * but has the same result. */
 | 
						|
                pxCurrentTCB[ xPortGetCoreID() ]->ucDelayAborted = pdFALSE;
 | 
						|
                xReturn = pdTRUE;
 | 
						|
            }
 | 
						|
            else
 | 
						|
        #endif
 | 
						|
 | 
						|
        #if ( INCLUDE_vTaskSuspend == 1 )
 | 
						|
            if( *pxTicksToWait == portMAX_DELAY )
 | 
						|
            {
 | 
						|
                /* If INCLUDE_vTaskSuspend is set to 1 and the block time
 | 
						|
                 * specified is the maximum block time then the task should block
 | 
						|
                 * indefinitely, and therefore never time out. */
 | 
						|
                xReturn = pdFALSE;
 | 
						|
            }
 | 
						|
            else
 | 
						|
        #endif
 | 
						|
 | 
						|
        if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
 | 
						|
        {
 | 
						|
            /* The tick count is greater than the time at which
 | 
						|
             * vTaskSetTimeout() was called, but has also overflowed since
 | 
						|
             * vTaskSetTimeOut() was called.  It must have wrapped all the way
 | 
						|
             * around and gone past again. This passed since vTaskSetTimeout()
 | 
						|
             * was called. */
 | 
						|
            xReturn = pdTRUE;
 | 
						|
            *pxTicksToWait = ( TickType_t ) 0;
 | 
						|
        }
 | 
						|
        else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
 | 
						|
        {
 | 
						|
            /* Not a genuine timeout. Adjust parameters for time remaining. */
 | 
						|
            *pxTicksToWait -= xElapsedTime;
 | 
						|
            vTaskInternalSetTimeOutState( pxTimeOut );
 | 
						|
            xReturn = pdFALSE;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            *pxTicksToWait = ( TickType_t ) 0;
 | 
						|
            xReturn = pdTRUE;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
    return xReturn;
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
void vTaskMissedYield( void )
 | 
						|
{
 | 
						|
    xYieldPending[ xPortGetCoreID() ] = pdTRUE;
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TRACE_FACILITY == 1 )
 | 
						|
 | 
						|
    UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
 | 
						|
    {
 | 
						|
        UBaseType_t uxReturn;
 | 
						|
        TCB_t const * pxTCB;
 | 
						|
 | 
						|
        if( xTask != NULL )
 | 
						|
        {
 | 
						|
            pxTCB = xTask;
 | 
						|
            uxReturn = pxTCB->uxTaskNumber;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            uxReturn = 0U;
 | 
						|
        }
 | 
						|
 | 
						|
        return uxReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TRACE_FACILITY */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TRACE_FACILITY == 1 )
 | 
						|
 | 
						|
    void vTaskSetTaskNumber( TaskHandle_t xTask,
 | 
						|
                             const UBaseType_t uxHandle )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
 | 
						|
        if( xTask != NULL )
 | 
						|
        {
 | 
						|
            pxTCB = xTask;
 | 
						|
            pxTCB->uxTaskNumber = uxHandle;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TRACE_FACILITY */
 | 
						|
 | 
						|
/*
 | 
						|
 * -----------------------------------------------------------
 | 
						|
 * The Idle task.
 | 
						|
 * ----------------------------------------------------------
 | 
						|
 *
 | 
						|
 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
 | 
						|
 * language extensions.  The equivalent prototype for this function is:
 | 
						|
 *
 | 
						|
 * void prvIdleTask( void *pvParameters );
 | 
						|
 *
 | 
						|
 */
 | 
						|
static portTASK_FUNCTION( prvIdleTask, pvParameters )
 | 
						|
{
 | 
						|
    /* Stop warnings. */
 | 
						|
    ( void ) pvParameters;
 | 
						|
 | 
						|
    /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
 | 
						|
     * SCHEDULER IS STARTED. **/
 | 
						|
 | 
						|
    /* In case a task that has a secure context deletes itself, in which case
 | 
						|
     * the idle task is responsible for deleting the task's secure context, if
 | 
						|
     * any. */
 | 
						|
    portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );
 | 
						|
 | 
						|
    for( ; ; )
 | 
						|
    {
 | 
						|
        /* See if any tasks have deleted themselves - if so then the idle task
 | 
						|
         * is responsible for freeing the deleted task's TCB and stack. */
 | 
						|
        prvCheckTasksWaitingTermination();
 | 
						|
 | 
						|
        #if ( configUSE_PREEMPTION == 0 )
 | 
						|
            {
 | 
						|
                /* If we are not using preemption we keep forcing a task switch to
 | 
						|
                 * see if any other task has become available.  If we are using
 | 
						|
                 * preemption we don't need to do this as any task becoming available
 | 
						|
                 * will automatically get the processor anyway. */
 | 
						|
                taskYIELD();
 | 
						|
            }
 | 
						|
        #endif /* configUSE_PREEMPTION */
 | 
						|
 | 
						|
        #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
 | 
						|
            {
 | 
						|
                /* When using preemption tasks of equal priority will be
 | 
						|
                 * timesliced.  If a task that is sharing the idle priority is ready
 | 
						|
                 * to run then the idle task should yield before the end of the
 | 
						|
                 * timeslice.
 | 
						|
                 *
 | 
						|
                 * A critical region is not required here as we are just reading from
 | 
						|
                 * the list, and an occasional incorrect value will not matter.  If
 | 
						|
                 * the ready list at the idle priority contains more than one task
 | 
						|
                 * then a task other than the idle task is ready to execute. */
 | 
						|
                if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
 | 
						|
                {
 | 
						|
                    taskYIELD();
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
        #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
 | 
						|
 | 
						|
        #if ( configUSE_IDLE_HOOK == 1 )
 | 
						|
            {
 | 
						|
                extern void vApplicationIdleHook( void );
 | 
						|
 | 
						|
                /* Call the user defined function from within the idle task.  This
 | 
						|
                 * allows the application designer to add background functionality
 | 
						|
                 * without the overhead of a separate task.
 | 
						|
                 * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
 | 
						|
                 * CALL A FUNCTION THAT MIGHT BLOCK. */
 | 
						|
                vApplicationIdleHook();
 | 
						|
            }
 | 
						|
        #endif /* configUSE_IDLE_HOOK */
 | 
						|
 | 
						|
        #ifdef ESP_PLATFORM
 | 
						|
            /* Call the esp-idf idle hook system */
 | 
						|
            esp_vApplicationIdleHook();
 | 
						|
        #endif // ESP_PLATFORM
 | 
						|
 | 
						|
        /* This conditional compilation should use inequality to 0, not equality
 | 
						|
         * to 1.  This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
 | 
						|
         * user defined low power mode  implementations require
 | 
						|
         * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
 | 
						|
        #if ( configUSE_TICKLESS_IDLE != 0 )
 | 
						|
            {
 | 
						|
                TickType_t xExpectedIdleTime;
 | 
						|
 | 
						|
                /* It is not desirable to suspend then resume the scheduler on
 | 
						|
                 * each iteration of the idle task.  Therefore, a preliminary
 | 
						|
                 * test of the expected idle time is performed without the
 | 
						|
                 * scheduler suspended.  The result here is not necessarily
 | 
						|
                 * valid. */
 | 
						|
                xExpectedIdleTime = prvGetExpectedIdleTime();
 | 
						|
 | 
						|
                if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
 | 
						|
                {
 | 
						|
                    prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
 | 
						|
                    {
 | 
						|
                        /* Now the scheduler is suspended, the expected idle
 | 
						|
                         * time can be sampled again, and this time its value can
 | 
						|
                         * be used. */
 | 
						|
                        configASSERT( xNextTaskUnblockTime >= xTickCount );
 | 
						|
                        xExpectedIdleTime = prvGetExpectedIdleTime();
 | 
						|
 | 
						|
                        /* Define the following macro to set xExpectedIdleTime to 0
 | 
						|
                         * if the application does not want
 | 
						|
                         * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
 | 
						|
                        configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );
 | 
						|
 | 
						|
                        if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
 | 
						|
                        {
 | 
						|
                            traceLOW_POWER_IDLE_BEGIN();
 | 
						|
                            portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
 | 
						|
                            traceLOW_POWER_IDLE_END();
 | 
						|
                        }
 | 
						|
                        else
 | 
						|
                        {
 | 
						|
                            mtCOVERAGE_TEST_MARKER();
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
        #endif /* configUSE_TICKLESS_IDLE */
 | 
						|
    }
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TICKLESS_IDLE != 0 )
 | 
						|
 | 
						|
    eSleepModeStatus eTaskConfirmSleepModeStatus( void )
 | 
						|
    {
 | 
						|
        /* The idle task exists in addition to the application tasks. */
 | 
						|
        const UBaseType_t uxNonApplicationTasks = 1;
 | 
						|
        eSleepModeStatus eReturn = eStandardSleep;
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        if( listCURRENT_LIST_LENGTH( &xPendingReadyList[ xPortGetCoreID() ] ) != 0 )
 | 
						|
        {
 | 
						|
            /* A task was made ready while the scheduler was suspended. */
 | 
						|
            eReturn = eAbortSleep;
 | 
						|
        }
 | 
						|
        else if( xYieldPending[ xPortGetCoreID() ] != pdFALSE )
 | 
						|
        {
 | 
						|
            /* A yield was pended while the scheduler was suspended. */
 | 
						|
            eReturn = eAbortSleep;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            /* If all the tasks are in the suspended list (which might mean they
 | 
						|
             * have an infinite block time rather than actually being suspended)
 | 
						|
             * then it is safe to turn all clocks off and just wait for external
 | 
						|
             * interrupts. */
 | 
						|
            if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
 | 
						|
            {
 | 
						|
                eReturn = eNoTasksWaitingTimeout;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        return eReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TICKLESS_IDLE */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
 | 
						|
 | 
						|
    #if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 )
 | 
						|
 | 
						|
        void vTaskSetThreadLocalStoragePointerAndDelCallback( TaskHandle_t xTaskToSet,
 | 
						|
                                                              BaseType_t xIndex,
 | 
						|
                                                              void * pvValue,
 | 
						|
                                                              TlsDeleteCallbackFunction_t xDelCallback )
 | 
						|
        {
 | 
						|
            TCB_t * pxTCB;
 | 
						|
 | 
						|
            if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
 | 
						|
            {
 | 
						|
                #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
                    /* For SMP, we need to take the kernel lock here as we
 | 
						|
                     * another core could also update this task's TLSP at the
 | 
						|
                     * same time. */
 | 
						|
                    taskENTER_CRITICAL( &xKernelLock );
 | 
						|
                #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
                pxTCB = prvGetTCBFromHandle( xTaskToSet );
 | 
						|
                pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
 | 
						|
                pxTCB->pvThreadLocalStoragePointersDelCallback[ xIndex ] = xDelCallback;
 | 
						|
 | 
						|
                #if ( configNUM_CORES > 1 )
 | 
						|
                    /* Release the previously taken kernel lock. */
 | 
						|
                    taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
                #endif /* configNUM_CORES > 1 */
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
 | 
						|
                                                BaseType_t xIndex,
 | 
						|
                                                void * pvValue )
 | 
						|
        {
 | 
						|
            vTaskSetThreadLocalStoragePointerAndDelCallback( xTaskToSet, xIndex, pvValue, ( TlsDeleteCallbackFunction_t ) NULL );
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
    #else /* if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 ) */
 | 
						|
        void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
 | 
						|
                                                BaseType_t xIndex,
 | 
						|
                                                void * pvValue )
 | 
						|
        {
 | 
						|
            TCB_t * pxTCB;
 | 
						|
 | 
						|
            if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
 | 
						|
            {
 | 
						|
                #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
                    /* For SMP, we need to take the kernel lock here as we
 | 
						|
                     * another core could also update this task's TLSP at the
 | 
						|
                     * same time. */
 | 
						|
                    taskENTER_CRITICAL( &xKernelLock );
 | 
						|
                #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
                pxTCB = prvGetTCBFromHandle( xTaskToSet );
 | 
						|
                configASSERT( pxTCB != NULL );
 | 
						|
                pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
 | 
						|
 | 
						|
                #if ( configNUM_CORES > 1 )
 | 
						|
                    /* Release the previously taken kernel lock. */
 | 
						|
                    taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
                #endif /* configNUM_CORES > 1 */
 | 
						|
            }
 | 
						|
        }
 | 
						|
    #endif /* configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 */
 | 
						|
 | 
						|
#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
 | 
						|
 | 
						|
    void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
 | 
						|
                                               BaseType_t xIndex )
 | 
						|
    {
 | 
						|
        void * pvReturn = NULL;
 | 
						|
        TCB_t * pxTCB;
 | 
						|
 | 
						|
        if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
 | 
						|
        {
 | 
						|
            pxTCB = prvGetTCBFromHandle( xTaskToQuery );
 | 
						|
            pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            pvReturn = NULL;
 | 
						|
        }
 | 
						|
 | 
						|
        return pvReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( portUSING_MPU_WRAPPERS == 1 )
 | 
						|
 | 
						|
    void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
 | 
						|
                                  const MemoryRegion_t * const xRegions )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
 | 
						|
        /* If null is passed in here then we are modifying the MPU settings of
 | 
						|
         * the calling task. */
 | 
						|
        pxTCB = prvGetTCBFromHandle( xTaskToModify );
 | 
						|
 | 
						|
        vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* portUSING_MPU_WRAPPERS */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
static void prvInitialiseTaskLists( void )
 | 
						|
{
 | 
						|
    UBaseType_t uxPriority;
 | 
						|
 | 
						|
    for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
 | 
						|
    {
 | 
						|
        vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
 | 
						|
    }
 | 
						|
 | 
						|
    vListInitialise( &xDelayedTaskList1 );
 | 
						|
    vListInitialise( &xDelayedTaskList2 );
 | 
						|
 | 
						|
    for( BaseType_t x = 0; x < configNUM_CORES; x++ )
 | 
						|
    {
 | 
						|
        vListInitialise( &xPendingReadyList[ x ] );
 | 
						|
    }
 | 
						|
 | 
						|
    #if ( INCLUDE_vTaskDelete == 1 )
 | 
						|
        {
 | 
						|
            vListInitialise( &xTasksWaitingTermination );
 | 
						|
        }
 | 
						|
    #endif /* INCLUDE_vTaskDelete */
 | 
						|
 | 
						|
    #if ( INCLUDE_vTaskSuspend == 1 )
 | 
						|
        {
 | 
						|
            vListInitialise( &xSuspendedTaskList );
 | 
						|
        }
 | 
						|
    #endif /* INCLUDE_vTaskSuspend */
 | 
						|
 | 
						|
    /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
 | 
						|
     * using list2. */
 | 
						|
    pxDelayedTaskList = &xDelayedTaskList1;
 | 
						|
    pxOverflowDelayedTaskList = &xDelayedTaskList2;
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
 | 
						|
static void prvCheckTasksWaitingTermination( void )
 | 
						|
{
 | 
						|
    /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/
 | 
						|
 | 
						|
    #if ( INCLUDE_vTaskDelete == 1 )
 | 
						|
        {
 | 
						|
            TCB_t * pxTCB;
 | 
						|
 | 
						|
            /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
 | 
						|
             * being called too often in the idle task. */
 | 
						|
            while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
 | 
						|
            {
 | 
						|
                #if ( configNUM_CORES > 1 )
 | 
						|
                    pxTCB = NULL;
 | 
						|
                    taskENTER_CRITICAL( &xKernelLock );
 | 
						|
                    {
 | 
						|
                        /* List may have already been cleared by the other core. Check again */
 | 
						|
                        if ( listLIST_IS_EMPTY( &xTasksWaitingTermination ) == pdFALSE )
 | 
						|
                        {
 | 
						|
                            /* We can't delete a task if it is still running on
 | 
						|
                             * the other core. Keep walking the list until we
 | 
						|
                             * find a task we can free, or until we walk the
 | 
						|
                             * entire list. */
 | 
						|
                            ListItem_t *xEntry;
 | 
						|
                            for ( xEntry = listGET_HEAD_ENTRY( &xTasksWaitingTermination ); xEntry != listGET_END_MARKER( &xTasksWaitingTermination ); xEntry = listGET_NEXT( xEntry ) )
 | 
						|
                            {
 | 
						|
                                if ( !taskIS_CURRENTLY_RUNNING( ( ( TCB_t * ) listGET_LIST_ITEM_OWNER( xEntry ) ) ) )
 | 
						|
                                {
 | 
						|
                                    pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( xEntry );
 | 
						|
                                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
 | 
						|
                                    --uxCurrentNumberOfTasks;
 | 
						|
                                    --uxDeletedTasksWaitingCleanUp;
 | 
						|
                                    break;
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
                    if ( pxTCB != NULL )
 | 
						|
                    {
 | 
						|
                        #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 )
 | 
						|
                            prvDeleteTLS( pxTCB );
 | 
						|
                        #endif
 | 
						|
                        prvDeleteTCB( pxTCB );
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        /* No task found to delete, break out of loop */
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                #else
 | 
						|
                    taskENTER_CRITICAL( &xKernelLock );
 | 
						|
                    {
 | 
						|
                        pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
 | 
						|
                        ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
 | 
						|
                        --uxCurrentNumberOfTasks;
 | 
						|
                        --uxDeletedTasksWaitingCleanUp;
 | 
						|
                    }
 | 
						|
                    taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
                    #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 )
 | 
						|
                        prvDeleteTLS( pxTCB );
 | 
						|
                    #endif
 | 
						|
                    prvDeleteTCB( pxTCB );
 | 
						|
                #endif  /* configNUM_CORES > 1 */
 | 
						|
            }
 | 
						|
        }
 | 
						|
    #endif /* INCLUDE_vTaskDelete */
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TRACE_FACILITY == 1 )
 | 
						|
 | 
						|
    void vTaskGetInfo( TaskHandle_t xTask,
 | 
						|
                       TaskStatus_t * pxTaskStatus,
 | 
						|
                       BaseType_t xGetFreeStackSpace,
 | 
						|
                       eTaskState eState )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
 | 
						|
        /* xTask is NULL then get the state of the calling task. */
 | 
						|
        pxTCB = prvGetTCBFromHandle( xTask );
 | 
						|
 | 
						|
        pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
 | 
						|
        pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
 | 
						|
        pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
 | 
						|
        pxTaskStatus->pxStackBase = pxTCB->pxStack;
 | 
						|
        pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;
 | 
						|
        #if ( configTASKLIST_INCLUDE_COREID == 1 )
 | 
						|
            pxTaskStatus->xCoreID = pxTCB->xCoreID;
 | 
						|
        #endif /* configTASKLIST_INCLUDE_COREID */
 | 
						|
 | 
						|
        #if ( configUSE_MUTEXES == 1 )
 | 
						|
            {
 | 
						|
                pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
 | 
						|
            }
 | 
						|
        #else
 | 
						|
            {
 | 
						|
                pxTaskStatus->uxBasePriority = 0;
 | 
						|
            }
 | 
						|
        #endif
 | 
						|
 | 
						|
        #if ( configGENERATE_RUN_TIME_STATS == 1 )
 | 
						|
            {
 | 
						|
                pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
 | 
						|
            }
 | 
						|
        #else
 | 
						|
            {
 | 
						|
                pxTaskStatus->ulRunTimeCounter = 0;
 | 
						|
            }
 | 
						|
        #endif
 | 
						|
 | 
						|
        /* Obtaining the task state is a little fiddly, so is only done if the
 | 
						|
         * value of eState passed into this function is eInvalid - otherwise the
 | 
						|
         * state is just set to whatever is passed in. */
 | 
						|
        if( eState != eInvalid )
 | 
						|
        {
 | 
						|
            if( pxTCB == pxCurrentTCB[ xPortGetCoreID() ] )
 | 
						|
            {
 | 
						|
                pxTaskStatus->eCurrentState = eRunning;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                pxTaskStatus->eCurrentState = eState;
 | 
						|
 | 
						|
                #if ( INCLUDE_vTaskSuspend == 1 )
 | 
						|
                    {
 | 
						|
                        /* If the task is in the suspended list then there is a
 | 
						|
                         *  chance it is actually just blocked indefinitely - so really
 | 
						|
                         *  it should be reported as being in the Blocked state. */
 | 
						|
                        if( eState == eSuspended )
 | 
						|
                        {
 | 
						|
                            prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock );
 | 
						|
                            {
 | 
						|
                                if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
 | 
						|
                                {
 | 
						|
                                    pxTaskStatus->eCurrentState = eBlocked;
 | 
						|
                                }
 | 
						|
                            }
 | 
						|
                            ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock );
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                #endif /* INCLUDE_vTaskSuspend */
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
 | 
						|
        }
 | 
						|
 | 
						|
        /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
 | 
						|
         * parameter is provided to allow it to be skipped. */
 | 
						|
        if( xGetFreeStackSpace != pdFALSE )
 | 
						|
        {
 | 
						|
            #if ( portSTACK_GROWTH > 0 )
 | 
						|
                {
 | 
						|
                    pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
 | 
						|
                }
 | 
						|
            #else
 | 
						|
                {
 | 
						|
                    pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
 | 
						|
                }
 | 
						|
            #endif
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            pxTaskStatus->usStackHighWaterMark = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TRACE_FACILITY */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
BaseType_t xTaskGetAffinity( TaskHandle_t xTask )
 | 
						|
{
 | 
						|
    TCB_t * pxTCB;
 | 
						|
 | 
						|
    pxTCB = prvGetTCBFromHandle( xTask );
 | 
						|
 | 
						|
    return pxTCB->xCoreID;
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TRACE_FACILITY == 1 )
 | 
						|
 | 
						|
    static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
 | 
						|
                                                     List_t * pxList,
 | 
						|
                                                     eTaskState eState )
 | 
						|
    {
 | 
						|
        configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;
 | 
						|
        UBaseType_t uxTask = 0;
 | 
						|
 | 
						|
        if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
 | 
						|
        {
 | 
						|
            listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
 | 
						|
 | 
						|
            /* Populate an TaskStatus_t structure within the
 | 
						|
             * pxTaskStatusArray array for each task that is referenced from
 | 
						|
             * pxList.  See the definition of TaskStatus_t in task.h for the
 | 
						|
             * meaning of each TaskStatus_t structure member. */
 | 
						|
            do
 | 
						|
            {
 | 
						|
                listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
 | 
						|
                vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
 | 
						|
                uxTask++;
 | 
						|
            } while( pxNextTCB != pxFirstTCB );
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
 | 
						|
        return uxTask;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TRACE_FACILITY */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
 | 
						|
 | 
						|
    static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
 | 
						|
    {
 | 
						|
        uint32_t ulCount = 0U;
 | 
						|
 | 
						|
        while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
 | 
						|
        {
 | 
						|
            pucStackByte -= portSTACK_GROWTH;
 | 
						|
            ulCount++;
 | 
						|
        }
 | 
						|
 | 
						|
        ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
 | 
						|
 | 
						|
        return ( configSTACK_DEPTH_TYPE ) ulCount;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )
 | 
						|
 | 
						|
/* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
 | 
						|
 * same except for their return type.  Using configSTACK_DEPTH_TYPE allows the
 | 
						|
 * user to determine the return type.  It gets around the problem of the value
 | 
						|
 * overflowing on 8-bit types without breaking backward compatibility for
 | 
						|
 * applications that expect an 8-bit return type. */
 | 
						|
    configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
        uint8_t * pucEndOfStack;
 | 
						|
        configSTACK_DEPTH_TYPE uxReturn;
 | 
						|
 | 
						|
        /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
 | 
						|
         * the same except for their return type.  Using configSTACK_DEPTH_TYPE
 | 
						|
         * allows the user to determine the return type.  It gets around the
 | 
						|
         * problem of the value overflowing on 8-bit types without breaking
 | 
						|
         * backward compatibility for applications that expect an 8-bit return
 | 
						|
         * type. */
 | 
						|
 | 
						|
        pxTCB = prvGetTCBFromHandle( xTask );
 | 
						|
 | 
						|
        #if portSTACK_GROWTH < 0
 | 
						|
            {
 | 
						|
                pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
 | 
						|
            }
 | 
						|
        #else
 | 
						|
            {
 | 
						|
                pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
 | 
						|
            }
 | 
						|
        #endif
 | 
						|
 | 
						|
        uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );
 | 
						|
 | 
						|
        return uxReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
 | 
						|
 | 
						|
    UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
        uint8_t * pucEndOfStack;
 | 
						|
        UBaseType_t uxReturn;
 | 
						|
 | 
						|
        pxTCB = prvGetTCBFromHandle( xTask );
 | 
						|
 | 
						|
        #if portSTACK_GROWTH < 0
 | 
						|
            {
 | 
						|
                pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
 | 
						|
            }
 | 
						|
        #else
 | 
						|
            {
 | 
						|
                pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
 | 
						|
            }
 | 
						|
        #endif
 | 
						|
 | 
						|
        uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
 | 
						|
 | 
						|
        return uxReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_uxTaskGetStackHighWaterMark */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
#if ( INCLUDE_pxTaskGetStackStart == 1 )
 | 
						|
 | 
						|
    uint8_t * pxTaskGetStackStart( TaskHandle_t xTask )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
        uint8_t * uxReturn;
 | 
						|
 | 
						|
        pxTCB = prvGetTCBFromHandle( xTask );
 | 
						|
        uxReturn = ( uint8_t * ) pxTCB->pxStack;
 | 
						|
 | 
						|
        return uxReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_pxTaskGetStackStart */
 | 
						|
 | 
						|
#if ( INCLUDE_vTaskDelete == 1 )
 | 
						|
 | 
						|
    static void prvDeleteTCB( TCB_t * pxTCB )
 | 
						|
    {
 | 
						|
        /* This call is required specifically for the TriCore port.  It must be
 | 
						|
         * above the vPortFree() calls.  The call is also used by ports/demos that
 | 
						|
         * want to allocate and clean RAM statically. */
 | 
						|
        portCLEAN_UP_TCB( pxTCB );
 | 
						|
 | 
						|
        /* Free up the memory allocated by the scheduler for the task.  It is up
 | 
						|
         * to the task to free any memory allocated at the application level.
 | 
						|
         * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
 | 
						|
         * for additional information. */
 | 
						|
        #if ( configUSE_NEWLIB_REENTRANT == 1 )
 | 
						|
            {
 | 
						|
                _reclaim_reent( &( pxTCB->xNewLib_reent ) );
 | 
						|
            }
 | 
						|
        #endif /* configUSE_NEWLIB_REENTRANT */
 | 
						|
 | 
						|
        #if ( portUSING_MPU_WRAPPERS == 1 )
 | 
						|
            vPortReleaseTaskMPUSettings( &( pxTCB->xMPUSettings ) );
 | 
						|
        #endif
 | 
						|
 | 
						|
        #ifdef portCLEAN_UP_COPROC
 | 
						|
            portCLEAN_UP_COPROC( ( void * ) pxTCB );
 | 
						|
        #endif
 | 
						|
 | 
						|
        #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
 | 
						|
            {
 | 
						|
                /* The task can only have been allocated dynamically - free both
 | 
						|
                 * the stack and TCB. */
 | 
						|
                vPortFree( pxTCB->pxStack );
 | 
						|
                vPortFree( pxTCB );
 | 
						|
            }
 | 
						|
        #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
 | 
						|
            {
 | 
						|
                /* The task could have been allocated statically or dynamically, so
 | 
						|
                 * check what was statically allocated before trying to free the
 | 
						|
                 * memory. */
 | 
						|
                if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
 | 
						|
                {
 | 
						|
                    /* Both the stack and TCB were allocated dynamically, so both
 | 
						|
                     * must be freed. */
 | 
						|
                    vPortFree( pxTCB->pxStack );
 | 
						|
                    vPortFree( pxTCB );
 | 
						|
                }
 | 
						|
                else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
 | 
						|
                {
 | 
						|
                    /* Only the stack was statically allocated, so the TCB is the
 | 
						|
                     * only memory that must be freed. */
 | 
						|
                    vPortFree( pxTCB );
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    /* Neither the stack nor the TCB were allocated dynamically, so
 | 
						|
                     * nothing needs to be freed. */
 | 
						|
                    configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
        #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* INCLUDE_vTaskDelete */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 )
 | 
						|
 | 
						|
    static void prvDeleteTLS( TCB_t * pxTCB )
 | 
						|
    {
 | 
						|
        configASSERT( pxTCB );
 | 
						|
 | 
						|
        for( int x = 0; x < configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ )
 | 
						|
        {
 | 
						|
            if( pxTCB->pvThreadLocalStoragePointersDelCallback[ x ] != NULL )                                       /*If del cb is set */
 | 
						|
            {
 | 
						|
                pxTCB->pvThreadLocalStoragePointersDelCallback[ x ]( x, pxTCB->pvThreadLocalStoragePointers[ x ] ); /*Call del cb */
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 ) */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
 | 
						|
static void prvResetNextTaskUnblockTime( void )
 | 
						|
{
 | 
						|
    TCB_t * pxTCB;
 | 
						|
 | 
						|
    if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
 | 
						|
    {
 | 
						|
        /* The new current delayed list is empty.  Set xNextTaskUnblockTime to
 | 
						|
         * the maximum possible value so it is  extremely unlikely that the
 | 
						|
         * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
 | 
						|
         * there is an item in the delayed list. */
 | 
						|
        xNextTaskUnblockTime = portMAX_DELAY;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        /* The new current delayed list is not empty, get the value of
 | 
						|
         * the item at the head of the delayed list.  This is the time at
 | 
						|
         * which the task at the head of the delayed list should be removed
 | 
						|
         * from the Blocked state. */
 | 
						|
        ( pxTCB ) = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
 | 
						|
        xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xStateListItem ) );
 | 
						|
    }
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) || ( configNUM_CORES > 1 ) )
 | 
						|
 | 
						|
    TaskHandle_t xTaskGetCurrentTaskHandle( void )
 | 
						|
    {
 | 
						|
        TaskHandle_t xReturn;
 | 
						|
        unsigned state;
 | 
						|
 | 
						|
        state = portSET_INTERRUPT_MASK_FROM_ISR();
 | 
						|
        xReturn = pxCurrentTCB[ xPortGetCoreID() ];
 | 
						|
        portCLEAR_INTERRUPT_MASK_FROM_ISR( state );
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
    TaskHandle_t xTaskGetCurrentTaskHandleForCPU( BaseType_t cpuid )
 | 
						|
    {
 | 
						|
        TaskHandle_t xReturn = NULL;
 | 
						|
 | 
						|
        /*Xtensa-specific: the pxCurrentPCB pointer is atomic so we shouldn't need a lock. */
 | 
						|
        if( cpuid < configNUM_CORES )
 | 
						|
        {
 | 
						|
            xReturn = pxCurrentTCB[ cpuid ];
 | 
						|
        }
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
 | 
						|
 | 
						|
    BaseType_t xTaskGetSchedulerState( void )
 | 
						|
    {
 | 
						|
        BaseType_t xReturn;
 | 
						|
        unsigned state;
 | 
						|
 | 
						|
        /* Known issue. This should use critical sections. See IDF-5889 */
 | 
						|
        state = portSET_INTERRUPT_MASK_FROM_ISR();
 | 
						|
 | 
						|
        if( xSchedulerRunning == pdFALSE )
 | 
						|
        {
 | 
						|
            xReturn = taskSCHEDULER_NOT_STARTED;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
 | 
						|
            {
 | 
						|
                xReturn = taskSCHEDULER_RUNNING;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                xReturn = taskSCHEDULER_SUSPENDED;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        portCLEAR_INTERRUPT_MASK_FROM_ISR( state );
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_MUTEXES == 1 )
 | 
						|
 | 
						|
    BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
 | 
						|
    {
 | 
						|
        TCB_t * const pxMutexHolderTCB = pxMutexHolder;
 | 
						|
        BaseType_t xReturn = pdFALSE;
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
            /* For SMP, we need to take the kernel lock here as we are about to
 | 
						|
             * access kernel data structures. */
 | 
						|
            taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
        /* If the mutex was given back by an interrupt while the queue was
 | 
						|
         * locked then the mutex holder might now be NULL.  _RB_ Is this still
 | 
						|
         * needed as interrupts can no longer use mutexes? */
 | 
						|
        if( pxMutexHolder != NULL )
 | 
						|
        {
 | 
						|
            /* If the holder of the mutex has a priority below the priority of
 | 
						|
             * the task attempting to obtain the mutex then it will temporarily
 | 
						|
             * inherit the priority of the task attempting to obtain the mutex. */
 | 
						|
            if( pxMutexHolderTCB->uxPriority < pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
 | 
						|
            {
 | 
						|
                /* Adjust the mutex holder state to account for its new
 | 
						|
                 * priority.  Only reset the event list item value if the value is
 | 
						|
                 * not being used for anything else. */
 | 
						|
                if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
 | 
						|
                {
 | 
						|
                    listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
 | 
						|
                /* If the task being modified is in the ready state it will need
 | 
						|
                 * to be moved into a new list. */
 | 
						|
                if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
 | 
						|
                {
 | 
						|
                    if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
 | 
						|
                    {
 | 
						|
                        /* It is known that the task is in its ready list so
 | 
						|
                         * there is no need to check again and the port level
 | 
						|
                         * reset macro can be called directly. */
 | 
						|
                        portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
 | 
						|
                    /* Inherit the priority before being moved into the new list. */
 | 
						|
                    pxMutexHolderTCB->uxPriority = pxCurrentTCB[ xPortGetCoreID() ]->uxPriority;
 | 
						|
                    prvAddTaskToReadyList( pxMutexHolderTCB );
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    /* Just inherit the priority. */
 | 
						|
                    pxMutexHolderTCB->uxPriority = pxCurrentTCB[ xPortGetCoreID() ]->uxPriority;
 | 
						|
                }
 | 
						|
 | 
						|
                traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB[ xPortGetCoreID() ]->uxPriority );
 | 
						|
 | 
						|
                /* Inheritance occurred. */
 | 
						|
                xReturn = pdTRUE;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
 | 
						|
                {
 | 
						|
                    /* The base priority of the mutex holder is lower than the
 | 
						|
                     * priority of the task attempting to take the mutex, but the
 | 
						|
                     * current priority of the mutex holder is not lower than the
 | 
						|
                     * priority of the task attempting to take the mutex.
 | 
						|
                     * Therefore the mutex holder must have already inherited a
 | 
						|
                     * priority, but inheritance would have occurred if that had
 | 
						|
                     * not been the case. */
 | 
						|
                    xReturn = pdTRUE;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
            /* Release the previously taken kernel lock. */
 | 
						|
            taskEXIT_CRITICAL_ISR( &xKernelLock );
 | 
						|
        #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_MUTEXES */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_MUTEXES == 1 )
 | 
						|
 | 
						|
    BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
 | 
						|
    {
 | 
						|
        TCB_t * const pxTCB = pxMutexHolder;
 | 
						|
        BaseType_t xReturn = pdFALSE;
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
            /* For SMP, we need to take the kernel lock here as we are about to
 | 
						|
             * access kernel data structures. */
 | 
						|
            taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
        if( pxMutexHolder != NULL )
 | 
						|
        {
 | 
						|
            /* A task can only have an inherited priority if it holds the mutex.
 | 
						|
             * If the mutex is held by a task then it cannot be given from an
 | 
						|
             * interrupt, and if a mutex is given by the holding task then it must
 | 
						|
             * be the running state task. */
 | 
						|
            configASSERT( pxTCB == pxCurrentTCB[ xPortGetCoreID() ] );
 | 
						|
            configASSERT( pxTCB->uxMutexesHeld );
 | 
						|
            ( pxTCB->uxMutexesHeld )--;
 | 
						|
 | 
						|
            /* Has the holder of the mutex inherited the priority of another
 | 
						|
             * task? */
 | 
						|
            if( pxTCB->uxPriority != pxTCB->uxBasePriority )
 | 
						|
            {
 | 
						|
                /* Only disinherit if no other mutexes are held. */
 | 
						|
                if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
 | 
						|
                {
 | 
						|
                    /* A task can only have an inherited priority if it holds
 | 
						|
                     * the mutex.  If the mutex is held by a task then it cannot be
 | 
						|
                     * given from an interrupt, and if a mutex is given by the
 | 
						|
                     * holding task then it must be the running state task.  Remove
 | 
						|
                     * the holding task from the ready list. */
 | 
						|
                    if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
 | 
						|
                    {
 | 
						|
                        taskRESET_READY_PRIORITY( pxTCB->uxPriority );
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
 | 
						|
                    /* Disinherit the priority before adding the task into the
 | 
						|
                     * new  ready list. */
 | 
						|
                    traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
 | 
						|
                    pxTCB->uxPriority = pxTCB->uxBasePriority;
 | 
						|
 | 
						|
                    /* Reset the event list item value.  It cannot be in use for
 | 
						|
                     * any other purpose if this task is running, and it must be
 | 
						|
                     * running to give back the mutex. */
 | 
						|
                    listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
 | 
						|
                    prvAddTaskToReadyList( pxTCB );
 | 
						|
 | 
						|
                    /* Return true to indicate that a context switch is required.
 | 
						|
                     * This is only actually required in the corner case whereby
 | 
						|
                     * multiple mutexes were held and the mutexes were given back
 | 
						|
                     * in an order different to that in which they were taken.
 | 
						|
                     * If a context switch did not occur when the first mutex was
 | 
						|
                     * returned, even if a task was waiting on it, then a context
 | 
						|
                     * switch should occur when the last mutex is returned whether
 | 
						|
                     * a task is waiting on it or not. */
 | 
						|
                    xReturn = pdTRUE;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
            /* Release the previously taken kernel lock. */
 | 
						|
            taskEXIT_CRITICAL_ISR( &xKernelLock );
 | 
						|
        #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_MUTEXES */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_MUTEXES == 1 )
 | 
						|
 | 
						|
    void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
 | 
						|
                                              UBaseType_t uxHighestPriorityWaitingTask )
 | 
						|
    {
 | 
						|
        TCB_t * const pxTCB = pxMutexHolder;
 | 
						|
        UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
 | 
						|
        const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
            /* For SMP, we need to take the kernel lock here as we are about to
 | 
						|
             * access kernel data structures. */
 | 
						|
            taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
        if( pxMutexHolder != NULL )
 | 
						|
        {
 | 
						|
            /* If pxMutexHolder is not NULL then the holder must hold at least
 | 
						|
             * one mutex. */
 | 
						|
            configASSERT( pxTCB->uxMutexesHeld );
 | 
						|
 | 
						|
            /* Determine the priority to which the priority of the task that
 | 
						|
             * holds the mutex should be set.  This will be the greater of the
 | 
						|
             * holding task's base priority and the priority of the highest
 | 
						|
             * priority task that is waiting to obtain the mutex. */
 | 
						|
            if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
 | 
						|
            {
 | 
						|
                uxPriorityToUse = uxHighestPriorityWaitingTask;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                uxPriorityToUse = pxTCB->uxBasePriority;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Does the priority need to change? */
 | 
						|
            if( pxTCB->uxPriority != uxPriorityToUse )
 | 
						|
            {
 | 
						|
                /* Only disinherit if no other mutexes are held.  This is a
 | 
						|
                 * simplification in the priority inheritance implementation.  If
 | 
						|
                 * the task that holds the mutex is also holding other mutexes then
 | 
						|
                 * the other mutexes may have caused the priority inheritance. */
 | 
						|
                if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
 | 
						|
                {
 | 
						|
                    /* If a task has timed out because it already holds the
 | 
						|
                     * mutex it was trying to obtain then it cannot of inherited
 | 
						|
                     * its own priority. */
 | 
						|
                    configASSERT( pxTCB != pxCurrentTCB[ xPortGetCoreID() ] );
 | 
						|
 | 
						|
                    /* Disinherit the priority, remembering the previous
 | 
						|
                     * priority to facilitate determining the subject task's
 | 
						|
                     * state. */
 | 
						|
                    traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
 | 
						|
                    uxPriorityUsedOnEntry = pxTCB->uxPriority;
 | 
						|
                    pxTCB->uxPriority = uxPriorityToUse;
 | 
						|
 | 
						|
                    /* Only reset the event list item value if the value is not
 | 
						|
                     * being used for anything else. */
 | 
						|
                    if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
 | 
						|
                    {
 | 
						|
                        listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
 | 
						|
                    /* If the running task is not the task that holds the mutex
 | 
						|
                     * then the task that holds the mutex could be in either the
 | 
						|
                     * Ready, Blocked or Suspended states.  Only remove the task
 | 
						|
                     * from its current state list if it is in the Ready state as
 | 
						|
                     * the task's priority is going to change and there is one
 | 
						|
                     * Ready list per priority. */
 | 
						|
                    if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
 | 
						|
                    {
 | 
						|
                        if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
 | 
						|
                        {
 | 
						|
                            /* It is known that the task is in its ready list so
 | 
						|
                             * there is no need to check again and the port level
 | 
						|
                             * reset macro can be called directly. */
 | 
						|
                            portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
 | 
						|
                        }
 | 
						|
                        else
 | 
						|
                        {
 | 
						|
                            mtCOVERAGE_TEST_MARKER();
 | 
						|
                        }
 | 
						|
 | 
						|
                        prvAddTaskToReadyList( pxTCB );
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
            /* Release the previously taken kernel lock. */
 | 
						|
            taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
        #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_MUTEXES */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
 | 
						|
 | 
						|
    void vTaskEnterCritical( void )
 | 
						|
    {
 | 
						|
        portDISABLE_INTERRUPTS();
 | 
						|
 | 
						|
        if( xSchedulerRunning != pdFALSE )
 | 
						|
        {
 | 
						|
            ( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting )++;
 | 
						|
 | 
						|
            /* This is not the interrupt safe version of the enter critical
 | 
						|
             * function so  assert() if it is being called from an interrupt
 | 
						|
             * context.  Only API functions that end in "FromISR" can be used in an
 | 
						|
             * interrupt.  Only assert if the critical nesting count is 1 to
 | 
						|
             * protect against recursive calls if the assert function also uses a
 | 
						|
             * critical section. */
 | 
						|
            if( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting == 1 )
 | 
						|
            {
 | 
						|
                portASSERT_IF_IN_ISR();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* portCRITICAL_NESTING_IN_TCB */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
 | 
						|
 | 
						|
    void vTaskExitCritical( void )
 | 
						|
    {
 | 
						|
        if( xSchedulerRunning != pdFALSE )
 | 
						|
        {
 | 
						|
            if( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting > 0U )
 | 
						|
            {
 | 
						|
                ( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting )--;
 | 
						|
 | 
						|
                if( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting == 0U )
 | 
						|
                {
 | 
						|
                    portENABLE_INTERRUPTS();
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* portCRITICAL_NESTING_IN_TCB */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )
 | 
						|
 | 
						|
    static char * prvWriteNameToBuffer( char * pcBuffer,
 | 
						|
                                        const char * pcTaskName )
 | 
						|
    {
 | 
						|
        size_t x;
 | 
						|
 | 
						|
        /* Start by copying the entire string. */
 | 
						|
        strcpy( pcBuffer, pcTaskName );
 | 
						|
 | 
						|
        /* Pad the end of the string with spaces to ensure columns line up when
 | 
						|
         * printed out. */
 | 
						|
        for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
 | 
						|
        {
 | 
						|
            pcBuffer[ x ] = ' ';
 | 
						|
        }
 | 
						|
 | 
						|
        /* Terminate. */
 | 
						|
        pcBuffer[ x ] = ( char ) 0x00;
 | 
						|
 | 
						|
        /* Return the new end of string. */
 | 
						|
        return &( pcBuffer[ x ] );
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
 | 
						|
 | 
						|
    void vTaskList( char * pcWriteBuffer )
 | 
						|
    {
 | 
						|
        TaskStatus_t * pxTaskStatusArray;
 | 
						|
        UBaseType_t uxArraySize, x;
 | 
						|
        char cStatus;
 | 
						|
 | 
						|
        /*
 | 
						|
         * PLEASE NOTE:
 | 
						|
         *
 | 
						|
         * This function is provided for convenience only, and is used by many
 | 
						|
         * of the demo applications.  Do not consider it to be part of the
 | 
						|
         * scheduler.
 | 
						|
         *
 | 
						|
         * vTaskList() calls uxTaskGetSystemState(), then formats part of the
 | 
						|
         * uxTaskGetSystemState() output into a human readable table that
 | 
						|
         * displays task names, states and stack usage.
 | 
						|
         *
 | 
						|
         * vTaskList() has a dependency on the sprintf() C library function that
 | 
						|
         * might bloat the code size, use a lot of stack, and provide different
 | 
						|
         * results on different platforms.  An alternative, tiny, third party,
 | 
						|
         * and limited functionality implementation of sprintf() is provided in
 | 
						|
         * many of the FreeRTOS/Demo sub-directories in a file called
 | 
						|
         * printf-stdarg.c (note printf-stdarg.c does not provide a full
 | 
						|
         * snprintf() implementation!).
 | 
						|
         *
 | 
						|
         * It is recommended that production systems call uxTaskGetSystemState()
 | 
						|
         * directly to get access to raw stats data, rather than indirectly
 | 
						|
         * through a call to vTaskList().
 | 
						|
         */
 | 
						|
 | 
						|
 | 
						|
        /* Make sure the write buffer does not contain a string. */
 | 
						|
        *pcWriteBuffer = ( char ) 0x00;
 | 
						|
 | 
						|
        /* Take a snapshot of the number of tasks in case it changes while this
 | 
						|
         * function is executing. */
 | 
						|
        uxArraySize = uxCurrentNumberOfTasks;
 | 
						|
 | 
						|
        /* Allocate an array index for each task.  NOTE!  if
 | 
						|
         * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
 | 
						|
         * equate to NULL. */
 | 
						|
        pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
 | 
						|
 | 
						|
        if( pxTaskStatusArray != NULL )
 | 
						|
        {
 | 
						|
            /* Generate the (binary) data. */
 | 
						|
            uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
 | 
						|
 | 
						|
            /* Create a human readable table from the binary data. */
 | 
						|
            for( x = 0; x < uxArraySize; x++ )
 | 
						|
            {
 | 
						|
                switch( pxTaskStatusArray[ x ].eCurrentState )
 | 
						|
                {
 | 
						|
                    case eRunning:
 | 
						|
                        cStatus = tskRUNNING_CHAR;
 | 
						|
                        break;
 | 
						|
 | 
						|
                    case eReady:
 | 
						|
                        cStatus = tskREADY_CHAR;
 | 
						|
                        break;
 | 
						|
 | 
						|
                    case eBlocked:
 | 
						|
                        cStatus = tskBLOCKED_CHAR;
 | 
						|
                        break;
 | 
						|
 | 
						|
                    case eSuspended:
 | 
						|
                        cStatus = tskSUSPENDED_CHAR;
 | 
						|
                        break;
 | 
						|
 | 
						|
                    case eDeleted:
 | 
						|
                        cStatus = tskDELETED_CHAR;
 | 
						|
                        break;
 | 
						|
 | 
						|
                    case eInvalid: /* Fall through. */
 | 
						|
                    default:       /* Should not get here, but it is included
 | 
						|
                                    * to prevent static checking errors. */
 | 
						|
                        cStatus = ( char ) 0x00;
 | 
						|
                        break;
 | 
						|
                }
 | 
						|
 | 
						|
                /* Write the task name to the string, padding with spaces so it
 | 
						|
                 * can be printed in tabular form more easily. */
 | 
						|
                pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
 | 
						|
 | 
						|
                /* Write the rest of the string. */
 | 
						|
                #if configTASKLIST_INCLUDE_COREID
 | 
						|
                    sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\t%hd\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber, ( int ) pxTaskStatusArray[ x ].xCoreID );
 | 
						|
                #else
 | 
						|
                    sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
 | 
						|
                #endif
 | 
						|
                pcWriteBuffer += strlen( pcWriteBuffer );                                                                                                                                                                                                    /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
 | 
						|
            }
 | 
						|
 | 
						|
            /* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION
 | 
						|
             * is 0 then vPortFree() will be #defined to nothing. */
 | 
						|
            vPortFree( pxTaskStatusArray );
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
 | 
						|
/*----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )
 | 
						|
 | 
						|
    void vTaskGetRunTimeStats( char * pcWriteBuffer )
 | 
						|
    {
 | 
						|
        TaskStatus_t * pxTaskStatusArray;
 | 
						|
        UBaseType_t uxArraySize, x;
 | 
						|
        uint32_t ulTotalTime, ulStatsAsPercentage;
 | 
						|
 | 
						|
        #if ( configUSE_TRACE_FACILITY != 1 )
 | 
						|
            {
 | 
						|
                #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
 | 
						|
            }
 | 
						|
        #endif
 | 
						|
 | 
						|
        /*
 | 
						|
         * PLEASE NOTE:
 | 
						|
         *
 | 
						|
         * This function is provided for convenience only, and is used by many
 | 
						|
         * of the demo applications.  Do not consider it to be part of the
 | 
						|
         * scheduler.
 | 
						|
         *
 | 
						|
         * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
 | 
						|
         * of the uxTaskGetSystemState() output into a human readable table that
 | 
						|
         * displays the amount of time each task has spent in the Running state
 | 
						|
         * in both absolute and percentage terms.
 | 
						|
         *
 | 
						|
         * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
 | 
						|
         * function that might bloat the code size, use a lot of stack, and
 | 
						|
         * provide different results on different platforms.  An alternative,
 | 
						|
         * tiny, third party, and limited functionality implementation of
 | 
						|
         * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
 | 
						|
         * a file called printf-stdarg.c (note printf-stdarg.c does not provide
 | 
						|
         * a full snprintf() implementation!).
 | 
						|
         *
 | 
						|
         * It is recommended that production systems call uxTaskGetSystemState()
 | 
						|
         * directly to get access to raw stats data, rather than indirectly
 | 
						|
         * through a call to vTaskGetRunTimeStats().
 | 
						|
         */
 | 
						|
 | 
						|
        /* Make sure the write buffer does not contain a string. */
 | 
						|
        *pcWriteBuffer = ( char ) 0x00;
 | 
						|
 | 
						|
        /* Take a snapshot of the number of tasks in case it changes while this
 | 
						|
         * function is executing. */
 | 
						|
        uxArraySize = uxCurrentNumberOfTasks;
 | 
						|
 | 
						|
        /* Allocate an array index for each task.  NOTE!  If
 | 
						|
         * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
 | 
						|
         * equate to NULL. */
 | 
						|
        pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */
 | 
						|
 | 
						|
        if( pxTaskStatusArray != NULL )
 | 
						|
        {
 | 
						|
            /* Generate the (binary) data. */
 | 
						|
            uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
 | 
						|
 | 
						|
            /* For percentage calculations. */
 | 
						|
            ulTotalTime /= 100UL;
 | 
						|
 | 
						|
            /* Avoid divide by zero errors. */
 | 
						|
            if( ulTotalTime > 0UL )
 | 
						|
            {
 | 
						|
                /* Create a human readable table from the binary data. */
 | 
						|
                for( x = 0; x < uxArraySize; x++ )
 | 
						|
                {
 | 
						|
                    /* What percentage of the total run time has the task used?
 | 
						|
                     * This will always be rounded down to the nearest integer.
 | 
						|
                     * ulTotalRunTimeDiv100 has already been divided by 100. */
 | 
						|
                    ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
 | 
						|
 | 
						|
                    /* Write the task name to the string, padding with
 | 
						|
                     * spaces so it can be printed in tabular form more
 | 
						|
                     * easily. */
 | 
						|
                    pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );
 | 
						|
 | 
						|
                    if( ulStatsAsPercentage > 0UL )
 | 
						|
                    {
 | 
						|
                        #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
 | 
						|
                            {
 | 
						|
                                sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
 | 
						|
                            }
 | 
						|
                        #else
 | 
						|
                            {
 | 
						|
                                /* sizeof( int ) == sizeof( long ) so a smaller
 | 
						|
                                 * printf() library can be used. */
 | 
						|
                                sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
 | 
						|
                            }
 | 
						|
                        #endif
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        /* If the percentage is zero here then the task has
 | 
						|
                         * consumed less than 1% of the total run time. */
 | 
						|
                        #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
 | 
						|
                            {
 | 
						|
                                sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
 | 
						|
                            }
 | 
						|
                        #else
 | 
						|
                            {
 | 
						|
                                /* sizeof( int ) == sizeof( long ) so a smaller
 | 
						|
                                 * printf() library can be used. */
 | 
						|
                                sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
 | 
						|
                            }
 | 
						|
                        #endif
 | 
						|
                    }
 | 
						|
 | 
						|
                    pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
 | 
						|
            /* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION
 | 
						|
             * is 0 then vPortFree() will be #defined to nothing. */
 | 
						|
            vPortFree( pxTaskStatusArray );
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            mtCOVERAGE_TEST_MARKER();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
TickType_t uxTaskResetEventItemValue( void )
 | 
						|
{
 | 
						|
    TickType_t uxReturn;
 | 
						|
    BaseType_t xCoreID;
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
        /* For SMP, we need to take the kernel lock here to ensure nothing else
 | 
						|
         * modifies the task's event item value simultaneously. */
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
    #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
    xCoreID = xPortGetCoreID();
 | 
						|
 | 
						|
    uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCoreID ]->xEventListItem ) );
 | 
						|
 | 
						|
    /* Reset the event list item to its normal value - so it can be used with
 | 
						|
     * queues and semaphores. */
 | 
						|
    listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCoreID ]->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[ xCoreID ]->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
        /* Release the previously taken kernel lock. */
 | 
						|
        taskEXIT_CRITICAL_ISR( &xKernelLock );
 | 
						|
    #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
    return uxReturn;
 | 
						|
}
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_MUTEXES == 1 )
 | 
						|
 | 
						|
    TaskHandle_t pvTaskIncrementMutexHeldCount( void )
 | 
						|
    {
 | 
						|
        TCB_t * pxCurTCB;
 | 
						|
        BaseType_t xCoreID;
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
            /* For SMP, we need to take the kernel lock here as we are about to
 | 
						|
             * access kernel data structures. */
 | 
						|
            taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
        xCoreID = xPortGetCoreID();
 | 
						|
 | 
						|
        /* If xSemaphoreCreateMutex() is called before any tasks have been created
 | 
						|
         * then pxCurrentTCB will be NULL. */
 | 
						|
        if( pxCurrentTCB[ xCoreID ] != NULL )
 | 
						|
        {
 | 
						|
            ( pxCurrentTCB[ xCoreID ]->uxMutexesHeld )++;
 | 
						|
        }
 | 
						|
 | 
						|
        pxCurTCB = pxCurrentTCB[ xCoreID ];
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
            /* Release the previously taken kernel lock. */
 | 
						|
            taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
        #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
        return pxCurTCB;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_MUTEXES */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
 | 
						|
 | 
						|
    #ifdef ESP_PLATFORM /* IDF-3851 */
 | 
						|
        /* included here for backward binary compatibility */
 | 
						|
        #undef ulTaskNotifyTake
 | 
						|
        uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit,
 | 
						|
                                   TickType_t xTicksToWait )
 | 
						|
        {
 | 
						|
            return ulTaskGenericNotifyTake( tskDEFAULT_INDEX_TO_NOTIFY, xClearCountOnExit, xTicksToWait );
 | 
						|
        }
 | 
						|
    #endif // ESP-PLATFORM
 | 
						|
 | 
						|
    uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
 | 
						|
                                      BaseType_t xClearCountOnExit,
 | 
						|
                                      TickType_t xTicksToWait )
 | 
						|
    {
 | 
						|
        uint32_t ulReturn;
 | 
						|
 | 
						|
        configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            /* Only block if the notification count is not already non-zero. */
 | 
						|
            if( pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] == 0UL )
 | 
						|
            {
 | 
						|
                /* Mark this task as waiting for a notification. */
 | 
						|
                pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
 | 
						|
 | 
						|
                if( xTicksToWait > ( TickType_t ) 0 )
 | 
						|
                {
 | 
						|
                    prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
 | 
						|
                    traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );
 | 
						|
 | 
						|
                    /* All ports are written to allow a yield in a critical
 | 
						|
                     * section (some will yield immediately, others wait until the
 | 
						|
                     * critical section exits) - but it is not something that
 | 
						|
                     * application code should ever do. */
 | 
						|
                    portYIELD_WITHIN_API();
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            traceTASK_NOTIFY_TAKE( uxIndexToWait );
 | 
						|
            ulReturn = pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ];
 | 
						|
 | 
						|
            if( ulReturn != 0UL )
 | 
						|
            {
 | 
						|
                if( xClearCountOnExit != pdFALSE )
 | 
						|
                {
 | 
						|
                    pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] = 0UL;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
 | 
						|
            pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        return ulReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TASK_NOTIFICATIONS */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
 | 
						|
 | 
						|
    #ifdef ESP_PLATFORM /* IDF-3851 */
 | 
						|
        /* included for backward compatibility */
 | 
						|
        #undef xTaskNotifyWait
 | 
						|
        BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry,
 | 
						|
                                    uint32_t ulBitsToClearOnExit,
 | 
						|
                                    uint32_t * pulNotificationValue,
 | 
						|
                                    TickType_t xTicksToWait )
 | 
						|
        {
 | 
						|
            return xTaskGenericNotifyWait( tskDEFAULT_INDEX_TO_NOTIFY, ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait );
 | 
						|
        }
 | 
						|
    #endif // ESP-PLATFORM
 | 
						|
 | 
						|
    BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
 | 
						|
                                       uint32_t ulBitsToClearOnEntry,
 | 
						|
                                       uint32_t ulBitsToClearOnExit,
 | 
						|
                                       uint32_t * pulNotificationValue,
 | 
						|
                                       TickType_t xTicksToWait )
 | 
						|
    {
 | 
						|
        BaseType_t xReturn;
 | 
						|
 | 
						|
        configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            /* Only block if a notification is not already pending. */
 | 
						|
            if( pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
 | 
						|
            {
 | 
						|
                /* Clear bits in the task's notification value as bits may get
 | 
						|
                 * set  by the notifying task or interrupt.  This can be used to
 | 
						|
                 * clear the value to zero. */
 | 
						|
                pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;
 | 
						|
 | 
						|
                /* Mark this task as waiting for a notification. */
 | 
						|
                pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;
 | 
						|
 | 
						|
                if( xTicksToWait > ( TickType_t ) 0 )
 | 
						|
                {
 | 
						|
                    prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
 | 
						|
                    traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );
 | 
						|
 | 
						|
                    /* All ports are written to allow a yield in a critical
 | 
						|
                     * section (some will yield immediately, others wait until the
 | 
						|
                     * critical section exits) - but it is not something that
 | 
						|
                     * application code should ever do. */
 | 
						|
                    portYIELD_WITHIN_API();
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            traceTASK_NOTIFY_WAIT( uxIndexToWait );
 | 
						|
 | 
						|
            if( pulNotificationValue != NULL )
 | 
						|
            {
 | 
						|
                /* Output the current notification value, which may or may not
 | 
						|
                 * have changed. */
 | 
						|
                *pulNotificationValue = pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ];
 | 
						|
            }
 | 
						|
 | 
						|
            /* If ucNotifyValue is set then either the task never entered the
 | 
						|
             * blocked state (because a notification was already pending) or the
 | 
						|
             * task unblocked because of a notification.  Otherwise the task
 | 
						|
             * unblocked because of a timeout. */
 | 
						|
            if( pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
 | 
						|
            {
 | 
						|
                /* A notification was not received. */
 | 
						|
                xReturn = pdFALSE;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                /* A notification was already pending or a notification was
 | 
						|
                 * received while the task was waiting. */
 | 
						|
                pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
 | 
						|
                xReturn = pdTRUE;
 | 
						|
            }
 | 
						|
 | 
						|
            pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TASK_NOTIFICATIONS */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
 | 
						|
 | 
						|
    BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
 | 
						|
                                   UBaseType_t uxIndexToNotify,
 | 
						|
                                   uint32_t ulValue,
 | 
						|
                                   eNotifyAction eAction,
 | 
						|
                                   uint32_t * pulPreviousNotificationValue )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
        BaseType_t xReturn = pdPASS;
 | 
						|
        uint8_t ucOriginalNotifyState;
 | 
						|
 | 
						|
        configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
 | 
						|
        configASSERT( xTaskToNotify );
 | 
						|
        pxTCB = xTaskToNotify;
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            if( pulPreviousNotificationValue != NULL )
 | 
						|
            {
 | 
						|
                *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
 | 
						|
            }
 | 
						|
 | 
						|
            ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
 | 
						|
 | 
						|
            pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
 | 
						|
 | 
						|
            switch( eAction )
 | 
						|
            {
 | 
						|
                case eSetBits:
 | 
						|
                    pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
 | 
						|
                    break;
 | 
						|
 | 
						|
                case eIncrement:
 | 
						|
                    ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
 | 
						|
                    break;
 | 
						|
 | 
						|
                case eSetValueWithOverwrite:
 | 
						|
                    pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
 | 
						|
                    break;
 | 
						|
 | 
						|
                case eSetValueWithoutOverwrite:
 | 
						|
 | 
						|
                    if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
 | 
						|
                    {
 | 
						|
                        pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        /* The value could not be written to the task. */
 | 
						|
                        xReturn = pdFAIL;
 | 
						|
                    }
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                case eNoAction:
 | 
						|
 | 
						|
                    /* The task is being notified without its notify value being
 | 
						|
                     * updated. */
 | 
						|
                    break;
 | 
						|
 | 
						|
                default:
 | 
						|
 | 
						|
                    /* Should not get here if all enums are handled.
 | 
						|
                     * Artificially force an assert by testing a value the
 | 
						|
                     * compiler can't assume is const. */
 | 
						|
                    configASSERT( pxTCB->ulNotifiedValue[ uxIndexToNotify ] == ~0UL );
 | 
						|
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
 | 
						|
            traceTASK_NOTIFY( uxIndexToNotify );
 | 
						|
 | 
						|
            /* If the task is in the blocked state specifically to wait for a
 | 
						|
             * notification then unblock it now. */
 | 
						|
            if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
 | 
						|
            {
 | 
						|
                ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
 | 
						|
                prvAddTaskToReadyList( pxTCB );
 | 
						|
 | 
						|
                /* The task should not have been on an event list. */
 | 
						|
                configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
 | 
						|
 | 
						|
                #if ( configUSE_TICKLESS_IDLE != 0 )
 | 
						|
                    {
 | 
						|
                        /* If a task is blocked waiting for a notification then
 | 
						|
                         * xNextTaskUnblockTime might be set to the blocked task's time
 | 
						|
                         * out time.  If the task is unblocked for a reason other than
 | 
						|
                         * a timeout xNextTaskUnblockTime is normally left unchanged,
 | 
						|
                         * because it will automatically get reset to a new value when
 | 
						|
                         * the tick count equals xNextTaskUnblockTime.  However if
 | 
						|
                         * tickless idling is used it might be more important to enter
 | 
						|
                         * sleep mode at the earliest possible time - so reset
 | 
						|
                         * xNextTaskUnblockTime here to ensure it is updated at the
 | 
						|
                         * earliest possible time. */
 | 
						|
                        prvResetNextTaskUnblockTime();
 | 
						|
                    }
 | 
						|
                #endif
 | 
						|
 | 
						|
                if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdFALSE ) )
 | 
						|
                {
 | 
						|
                    /* The notified task has a priority above the currently
 | 
						|
                     * executing task so a yield is required. */
 | 
						|
                    taskYIELD_IF_USING_PREEMPTION();
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                mtCOVERAGE_TEST_MARKER();
 | 
						|
            }
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TASK_NOTIFICATIONS */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
 | 
						|
 | 
						|
    BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
 | 
						|
                                          UBaseType_t uxIndexToNotify,
 | 
						|
                                          uint32_t ulValue,
 | 
						|
                                          eNotifyAction eAction,
 | 
						|
                                          uint32_t * pulPreviousNotificationValue,
 | 
						|
                                          BaseType_t * pxHigherPriorityTaskWoken )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
        uint8_t ucOriginalNotifyState;
 | 
						|
        BaseType_t xReturn = pdPASS;
 | 
						|
        UBaseType_t uxSavedInterruptStatus;
 | 
						|
 | 
						|
        configASSERT( xTaskToNotify );
 | 
						|
        configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
 | 
						|
 | 
						|
        /* RTOS ports that support interrupt nesting have the concept of a
 | 
						|
         * maximum  system call (or maximum API call) interrupt priority.
 | 
						|
         * Interrupts that are  above the maximum system call priority are keep
 | 
						|
         * permanently enabled, even when the RTOS kernel is in a critical section,
 | 
						|
         * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
 | 
						|
         * is defined in FreeRTOSConfig.h then
 | 
						|
         * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
 | 
						|
         * failure if a FreeRTOS API function is called from an interrupt that has
 | 
						|
         * been assigned a priority above the configured maximum system call
 | 
						|
         * priority.  Only FreeRTOS functions that end in FromISR can be called
 | 
						|
         * from interrupts  that have been assigned a priority at or (logically)
 | 
						|
         * below the maximum system call interrupt priority.  FreeRTOS maintains a
 | 
						|
         * separate interrupt safe API to ensure interrupt entry is as fast and as
 | 
						|
         * simple as possible.  More information (albeit Cortex-M specific) is
 | 
						|
         * provided on the following link:
 | 
						|
         * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
 | 
						|
        portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
 | 
						|
 | 
						|
        pxTCB = xTaskToNotify;
 | 
						|
 | 
						|
        prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptStatus );
 | 
						|
        {
 | 
						|
            if( pulPreviousNotificationValue != NULL )
 | 
						|
            {
 | 
						|
                *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
 | 
						|
            }
 | 
						|
 | 
						|
            ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
 | 
						|
            pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
 | 
						|
 | 
						|
            switch( eAction )
 | 
						|
            {
 | 
						|
                case eSetBits:
 | 
						|
                    pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
 | 
						|
                    break;
 | 
						|
 | 
						|
                case eIncrement:
 | 
						|
                    ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
 | 
						|
                    break;
 | 
						|
 | 
						|
                case eSetValueWithOverwrite:
 | 
						|
                    pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
 | 
						|
                    break;
 | 
						|
 | 
						|
                case eSetValueWithoutOverwrite:
 | 
						|
 | 
						|
                    if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
 | 
						|
                    {
 | 
						|
                        pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        /* The value could not be written to the task. */
 | 
						|
                        xReturn = pdFAIL;
 | 
						|
                    }
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                case eNoAction:
 | 
						|
 | 
						|
                    /* The task is being notified without its notify value being
 | 
						|
                     * updated. */
 | 
						|
                    break;
 | 
						|
 | 
						|
                default:
 | 
						|
 | 
						|
                    /* Should not get here if all enums are handled.
 | 
						|
                     * Artificially force an assert by testing a value the
 | 
						|
                     * compiler can't assume is const. */
 | 
						|
                    configASSERT( pxTCB->ulNotifiedValue[ uxIndexToNotify ] == ~0UL );
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
 | 
						|
            traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );
 | 
						|
 | 
						|
            /* If the task is in the blocked state specifically to wait for a
 | 
						|
             * notification then unblock it now. */
 | 
						|
            if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
 | 
						|
            {
 | 
						|
                /* The task should not have been on an event list. */
 | 
						|
                configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
 | 
						|
 | 
						|
                if( taskCAN_BE_SCHEDULED( pxTCB ) )
 | 
						|
                {
 | 
						|
                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
 | 
						|
                    prvAddTaskToReadyList( pxTCB );
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    /* The delayed and ready lists cannot be accessed, so hold
 | 
						|
                     * this task pending until the scheduler is resumed. */
 | 
						|
                    vListInsertEnd( &( xPendingReadyList[ xPortGetCoreID() ] ), &( pxTCB->xEventListItem ) );
 | 
						|
                }
 | 
						|
 | 
						|
                if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdFALSE ) )
 | 
						|
                {
 | 
						|
                    /* The notified task has a priority above the currently
 | 
						|
                     * executing task so a yield is required. */
 | 
						|
                    if( pxHigherPriorityTaskWoken != NULL )
 | 
						|
                    {
 | 
						|
                        *pxHigherPriorityTaskWoken = pdTRUE;
 | 
						|
                    }
 | 
						|
 | 
						|
                    /* Mark that a yield is pending in case the user is not
 | 
						|
                     * using the "xHigherPriorityTaskWoken" parameter to an ISR
 | 
						|
                     * safe FreeRTOS function. */
 | 
						|
                    xYieldPending[ xPortGetCoreID() ] = pdTRUE;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptStatus );
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TASK_NOTIFICATIONS */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
 | 
						|
 | 
						|
    void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
 | 
						|
                                        UBaseType_t uxIndexToNotify,
 | 
						|
                                        BaseType_t * pxHigherPriorityTaskWoken )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
        uint8_t ucOriginalNotifyState;
 | 
						|
        UBaseType_t uxSavedInterruptStatus;
 | 
						|
 | 
						|
        configASSERT( xTaskToNotify );
 | 
						|
        configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
 | 
						|
 | 
						|
        /* RTOS ports that support interrupt nesting have the concept of a
 | 
						|
         * maximum  system call (or maximum API call) interrupt priority.
 | 
						|
         * Interrupts that are  above the maximum system call priority are keep
 | 
						|
         * permanently enabled, even when the RTOS kernel is in a critical section,
 | 
						|
         * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
 | 
						|
         * is defined in FreeRTOSConfig.h then
 | 
						|
         * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
 | 
						|
         * failure if a FreeRTOS API function is called from an interrupt that has
 | 
						|
         * been assigned a priority above the configured maximum system call
 | 
						|
         * priority.  Only FreeRTOS functions that end in FromISR can be called
 | 
						|
         * from interrupts  that have been assigned a priority at or (logically)
 | 
						|
         * below the maximum system call interrupt priority.  FreeRTOS maintains a
 | 
						|
         * separate interrupt safe API to ensure interrupt entry is as fast and as
 | 
						|
         * simple as possible.  More information (albeit Cortex-M specific) is
 | 
						|
         * provided on the following link:
 | 
						|
         * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
 | 
						|
        portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
 | 
						|
 | 
						|
        pxTCB = xTaskToNotify;
 | 
						|
 | 
						|
        prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptStatus );
 | 
						|
        {
 | 
						|
            ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
 | 
						|
            pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;
 | 
						|
 | 
						|
            /* 'Giving' is equivalent to incrementing a count in a counting
 | 
						|
             * semaphore. */
 | 
						|
            ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
 | 
						|
 | 
						|
            traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );
 | 
						|
 | 
						|
            /* If the task is in the blocked state specifically to wait for a
 | 
						|
             * notification then unblock it now. */
 | 
						|
            if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
 | 
						|
            {
 | 
						|
                /* The task should not have been on an event list. */
 | 
						|
                configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );
 | 
						|
 | 
						|
                if( taskCAN_BE_SCHEDULED( pxTCB ) )
 | 
						|
                {
 | 
						|
                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
 | 
						|
                    prvAddTaskToReadyList( pxTCB );
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    /* The delayed and ready lists cannot be accessed, so hold
 | 
						|
                     * this task pending until the scheduler is resumed. */
 | 
						|
                    vListInsertEnd( &( xPendingReadyList[ xPortGetCoreID() ] ), &( pxTCB->xEventListItem ) );
 | 
						|
                }
 | 
						|
 | 
						|
                if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdFALSE ) )
 | 
						|
                {
 | 
						|
                    /* The notified task has a priority above the currently
 | 
						|
                     * executing task so a yield is required. */
 | 
						|
                    if( pxHigherPriorityTaskWoken != NULL )
 | 
						|
                    {
 | 
						|
                        *pxHigherPriorityTaskWoken = pdTRUE;
 | 
						|
                    }
 | 
						|
 | 
						|
                    /* Mark that a yield is pending in case the user is not
 | 
						|
                     * using the "xHigherPriorityTaskWoken" parameter in an ISR
 | 
						|
                     * safe FreeRTOS function. */
 | 
						|
                    xYieldPending[ xPortGetCoreID() ] = pdTRUE;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptStatus );
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TASK_NOTIFICATIONS */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
 | 
						|
 | 
						|
    BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
 | 
						|
                                             UBaseType_t uxIndexToClear )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
        BaseType_t xReturn;
 | 
						|
 | 
						|
        configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );
 | 
						|
 | 
						|
        /* If null is passed in here then it is the calling task that is having
 | 
						|
         * its notification state cleared. */
 | 
						|
        pxTCB = prvGetTCBFromHandle( xTask );
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
 | 
						|
            {
 | 
						|
                pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
 | 
						|
                xReturn = pdPASS;
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                xReturn = pdFAIL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        return xReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TASK_NOTIFICATIONS */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( configUSE_TASK_NOTIFICATIONS == 1 )
 | 
						|
 | 
						|
    uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
 | 
						|
                                            UBaseType_t uxIndexToClear,
 | 
						|
                                            uint32_t ulBitsToClear )
 | 
						|
    {
 | 
						|
        TCB_t * pxTCB;
 | 
						|
        uint32_t ulReturn;
 | 
						|
 | 
						|
        /* If null is passed in here then it is the calling task that is having
 | 
						|
         * its notification state cleared. */
 | 
						|
        pxTCB = prvGetTCBFromHandle( xTask );
 | 
						|
 | 
						|
        taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        {
 | 
						|
            /* Return the notification as it was before the bits were cleared,
 | 
						|
             * then clear the bit mask. */
 | 
						|
            ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
 | 
						|
            pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
 | 
						|
        }
 | 
						|
        taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
 | 
						|
        return ulReturn;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* configUSE_TASK_NOTIFICATIONS */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )
 | 
						|
 | 
						|
    uint32_t ulTaskGetIdleRunTimeCounter( void )
 | 
						|
    {
 | 
						|
        uint32_t ulRunTimeCounter;
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
 | 
						|
            /* For SMP, we need to take the kernel lock here as we are about to
 | 
						|
             * access kernel data structures. */
 | 
						|
            taskENTER_CRITICAL( &xKernelLock );
 | 
						|
        #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
        ulRunTimeCounter = xIdleTaskHandle[ xPortGetCoreID() ]->ulRunTimeCounter;
 | 
						|
 | 
						|
        #if ( configNUM_CORES > 1 )
 | 
						|
            /* Release the previously taken kernel lock. */
 | 
						|
            taskEXIT_CRITICAL( &xKernelLock );
 | 
						|
        #endif /* ( configNUM_CORES > 1 ) */
 | 
						|
 | 
						|
        return ulRunTimeCounter;
 | 
						|
    }
 | 
						|
 | 
						|
#endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
 | 
						|
/*-----------------------------------------------------------*/
 | 
						|
 | 
						|
static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
 | 
						|
                                            const BaseType_t xCanBlockIndefinitely )
 | 
						|
{
 | 
						|
    TickType_t xTimeToWake;
 | 
						|
    const TickType_t xConstTickCount = xTickCount;
 | 
						|
    BaseType_t xCurCoreID = xPortGetCoreID();
 | 
						|
 | 
						|
    #if ( configNUM_CORES > 1 )
 | 
						|
        if( listIS_CONTAINED_WITHIN( &xTasksWaitingTermination, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) ) == pdTRUE )
 | 
						|
        {
 | 
						|
            /* vTaskDelete() has been called to delete this task. This would have happened from the other core while this task was spinning on xTaskQueueMutex,
 | 
						|
             * so don't move the running task to the delayed list - as soon as this core re-enables interrupts this task will
 | 
						|
             * be suspended permanently. Todo: IDF-5844. */
 | 
						|
            return;
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
 | 
						|
    #if ( INCLUDE_xTaskAbortDelay == 1 )
 | 
						|
        {
 | 
						|
            /* About to enter a delayed list, so ensure the ucDelayAborted flag is
 | 
						|
             * reset to pdFALSE so it can be detected as having been set to pdTRUE
 | 
						|
             * when the task leaves the Blocked state. */
 | 
						|
            pxCurrentTCB[ xCurCoreID ]->ucDelayAborted = pdFALSE;
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
 | 
						|
    /* Remove the task from the ready list before adding it to the blocked list
 | 
						|
     * as the same list item is used for both lists. */
 | 
						|
    if( uxListRemove( &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) ) == ( UBaseType_t ) 0 )
 | 
						|
    {
 | 
						|
        /* The current task must be in a ready list, so there is no need to
 | 
						|
         * check, and the port reset macro can be called directly. */
 | 
						|
        portRESET_READY_PRIORITY( pxCurrentTCB[ xCurCoreID ]->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task.  pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        mtCOVERAGE_TEST_MARKER();
 | 
						|
    }
 | 
						|
 | 
						|
    #if ( INCLUDE_vTaskSuspend == 1 )
 | 
						|
        {
 | 
						|
            if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
 | 
						|
            {
 | 
						|
                /* Add the task to the suspended task list instead of a delayed task
 | 
						|
                 * list to ensure it is not woken by a timing event.  It will block
 | 
						|
                 * indefinitely. */
 | 
						|
                vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) );
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                /* Calculate the time at which the task should be woken if the event
 | 
						|
                 * does not occur.  This may overflow but this doesn't matter, the
 | 
						|
                 * kernel will manage it correctly. */
 | 
						|
                xTimeToWake = xConstTickCount + xTicksToWait;
 | 
						|
 | 
						|
                /* The list item will be inserted in wake time order. */
 | 
						|
                listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ), xTimeToWake );
 | 
						|
 | 
						|
                if( xTimeToWake < xConstTickCount )
 | 
						|
                {
 | 
						|
                    /* Wake time has overflowed.  Place this item in the overflow
 | 
						|
                     * list. */
 | 
						|
                    vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) );
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    /* The wake time has not overflowed, so the current block list
 | 
						|
                     * is used. */
 | 
						|
                    vListInsert( pxDelayedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) );
 | 
						|
 | 
						|
                    /* If the task entering the blocked state was placed at the
 | 
						|
                     * head of the list of blocked tasks then xNextTaskUnblockTime
 | 
						|
                     * needs to be updated too. */
 | 
						|
                    if( xTimeToWake < xNextTaskUnblockTime )
 | 
						|
                    {
 | 
						|
                        xNextTaskUnblockTime = xTimeToWake;
 | 
						|
                    }
 | 
						|
                    else
 | 
						|
                    {
 | 
						|
                        mtCOVERAGE_TEST_MARKER();
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    #else /* INCLUDE_vTaskSuspend */
 | 
						|
        {
 | 
						|
            /* Calculate the time at which the task should be woken if the event
 | 
						|
             * does not occur.  This may overflow but this doesn't matter, the kernel
 | 
						|
             * will manage it correctly. */
 | 
						|
            xTimeToWake = xConstTickCount + xTicksToWait;
 | 
						|
 | 
						|
            /* The list item will be inserted in wake time order. */
 | 
						|
            listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ), xTimeToWake );
 | 
						|
 | 
						|
            if( xTimeToWake < xConstTickCount )
 | 
						|
            {
 | 
						|
                /* Wake time has overflowed.  Place this item in the overflow list. */
 | 
						|
                vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) );
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                /* The wake time has not overflowed, so the current block list is used. */
 | 
						|
                vListInsert( pxDelayedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) );
 | 
						|
 | 
						|
                /* If the task entering the blocked state was placed at the head of the
 | 
						|
                 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
 | 
						|
                 * too. */
 | 
						|
                if( xTimeToWake < xNextTaskUnblockTime )
 | 
						|
                {
 | 
						|
                    xNextTaskUnblockTime = xTimeToWake;
 | 
						|
                }
 | 
						|
                else
 | 
						|
                {
 | 
						|
                    mtCOVERAGE_TEST_MARKER();
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
 | 
						|
            ( void ) xCanBlockIndefinitely;
 | 
						|
        }
 | 
						|
    #endif /* INCLUDE_vTaskSuspend */
 | 
						|
}
 | 
						|
 | 
						|
/* Code below here allows additional code to be inserted into this source file,
 | 
						|
 * especially where access to file scope functions and data is needed (for example
 | 
						|
 * when performing module tests). */
 | 
						|
 | 
						|
#ifdef FREERTOS_MODULE_TEST
 | 
						|
    #include "tasks_test_access_functions.h"
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )
 | 
						|
 | 
						|
    #include "freertos_tasks_c_additions.h"
 | 
						|
 | 
						|
    #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
 | 
						|
        static void freertos_tasks_c_additions_init( void )
 | 
						|
        {
 | 
						|
            FREERTOS_TASKS_C_ADDITIONS_INIT();
 | 
						|
        }
 | 
						|
    #endif
 | 
						|
 | 
						|
#endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
 | 
						|
 | 
						|
/* If timers.c is not referenced anywhere, don't create the timer task to save RAM */
 | 
						|
BaseType_t __attribute__( ( weak ) ) xTimerCreateTimerTask( void )
 | 
						|
{
 | 
						|
    return pdPASS;
 | 
						|
}
 |