mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-11-04 00:51:42 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			175 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			175 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
#include <stdint.h>
 | 
						|
#include "esp32s2beta/rom/ets_sys.h"
 | 
						|
#include "soc/rtc.h"
 | 
						|
#include "soc/rtc_cntl_reg.h"
 | 
						|
#include "soc/timer_group_reg.h"
 | 
						|
 | 
						|
#define MHZ (1000000)
 | 
						|
 | 
						|
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
 | 
						|
 * This feature counts the number of XTAL clock cycles within a given number of
 | 
						|
 * RTC_SLOW_CLK cycles.
 | 
						|
 *
 | 
						|
 * Slow clock calibration feature has two modes of operation: one-off and cycling.
 | 
						|
 * In cycling mode (which is enabled by default on SoC reset), counting of XTAL
 | 
						|
 * cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
 | 
						|
 * using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
 | 
						|
 * once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
 | 
						|
 * enabled using TIMG_RTC_CALI_START bit.
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio
 | 
						|
 * @param cal_clk which clock to calibrate
 | 
						|
 * @param slowclk_cycles number of slow clock cycles to count
 | 
						|
 * @return number of XTAL clock cycles within the given number of slow clock cycles
 | 
						|
 */
 | 
						|
uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
 | 
						|
{
 | 
						|
    /* Enable requested clock (150k clock is always on) */
 | 
						|
    int dig_32k_xtal_state = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
 | 
						|
    if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_state) {
 | 
						|
        REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, 1);
 | 
						|
    }
 | 
						|
 | 
						|
    if (cal_clk == RTC_CAL_8MD256) {
 | 
						|
        SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
 | 
						|
    }
 | 
						|
    /* Prepare calibration */
 | 
						|
    REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk);
 | 
						|
    /* There may be another calibration process already running during we call this function,
 | 
						|
     * so we should wait the last process is done.
 | 
						|
     */
 | 
						|
    if (!GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
 | 
						|
        if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING)) {
 | 
						|
            while(!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING);
 | 
						|
    REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles);
 | 
						|
    /* Figure out how long to wait for calibration to finish */
 | 
						|
 | 
						|
    /* Set timeout reg and expect time delay*/
 | 
						|
    uint32_t expected_freq;
 | 
						|
    if (cal_clk == RTC_CAL_32K_XTAL) {
 | 
						|
        REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, (slowclk_cycles << 13));
 | 
						|
        expected_freq = 32768;
 | 
						|
    } else if (cal_clk == RTC_CAL_8MD256) {
 | 
						|
        REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, (slowclk_cycles << 13));
 | 
						|
        expected_freq = RTC_FAST_CLK_FREQ_APPROX / 256;
 | 
						|
    } else {
 | 
						|
        REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, (slowclk_cycles << 11));
 | 
						|
        expected_freq = 90000;
 | 
						|
    }
 | 
						|
    uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq);
 | 
						|
    /* Start calibration */
 | 
						|
    CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
 | 
						|
    SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
 | 
						|
 | 
						|
    /* Wait for calibration to finish up to another us_time_estimate */
 | 
						|
    ets_delay_us(us_time_estimate);
 | 
						|
    uint32_t cal_val;
 | 
						|
    while (true) {
 | 
						|
        if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)) {
 | 
						|
            cal_val = REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        if (GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
 | 
						|
            cal_val = 0;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
 | 
						|
 | 
						|
    REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, dig_32k_xtal_state);
 | 
						|
 | 
						|
    if (cal_clk == RTC_CAL_8MD256) {
 | 
						|
        CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
 | 
						|
    }
 | 
						|
 | 
						|
    return cal_val;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
 | 
						|
{
 | 
						|
    uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
 | 
						|
    uint64_t ratio_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT)) / slowclk_cycles;
 | 
						|
    uint32_t ratio = (uint32_t)(ratio_64 & UINT32_MAX);
 | 
						|
    return ratio;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
 | 
						|
{
 | 
						|
    rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
 | 
						|
    uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
 | 
						|
    uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
 | 
						|
    uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider;
 | 
						|
    uint32_t period = (uint32_t)(period_64 & UINT32_MAX);
 | 
						|
    return period;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
 | 
						|
{
 | 
						|
    /* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days.
 | 
						|
     * TODO: fix overflow.
 | 
						|
     */
 | 
						|
    return (time_in_us << RTC_CLK_CAL_FRACT) / period;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
 | 
						|
{
 | 
						|
    return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t rtc_time_get(void)
 | 
						|
{
 | 
						|
    SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE);
 | 
						|
    while (GET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_VALID) == 0) {
 | 
						|
        ets_delay_us(1); // might take 1 RTC slowclk period, don't flood RTC bus
 | 
						|
    }
 | 
						|
    SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_TIME_VALID_INT_CLR);
 | 
						|
    uint64_t t = READ_PERI_REG(RTC_CNTL_TIME0_REG);
 | 
						|
    t |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME1_REG)) << 32;
 | 
						|
    return t;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t rtc_light_slp_time_get(void)
 | 
						|
{
 | 
						|
    uint64_t t_wake = READ_PERI_REG(RTC_CNTL_TIME_LOW0_REG);
 | 
						|
    t_wake |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH0_REG)) << 32;
 | 
						|
    uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
 | 
						|
    t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
 | 
						|
    return (t_wake - t_slp);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t rtc_deep_slp_time_get(void)
 | 
						|
{
 | 
						|
    uint64_t t_slp = READ_PERI_REG(RTC_CNTL_TIME_LOW1_REG);
 | 
						|
    t_slp |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME_HIGH1_REG)) << 32;
 | 
						|
    uint64_t t_wake = rtc_time_get();
 | 
						|
    return (t_wake - t_slp);
 | 
						|
}
 | 
						|
 | 
						|
void rtc_clk_wait_for_slow_cycle(void) //This function may not by useful any more
 | 
						|
{
 | 
						|
    SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE);
 | 
						|
    while (GET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_SLOW_CLK_NEXT_EDGE)) {
 | 
						|
        ets_delay_us(1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 |