mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 15:11:40 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			813 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			813 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| 
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| /*
 | |
| Architecture:
 | |
| 
 | |
| We can initialize a SPI driver, but we don't talk to the SPI driver itself, we address a device. A device essentially
 | |
| is a combination of SPI port and CS pin, plus some information about the specifics of communication to the device
 | |
| (timing, command/address length etc)
 | |
| 
 | |
| The essence of the interface to a device is a set of queues; one per device. The idea is that to send something to a SPI
 | |
| device, you allocate a transaction descriptor. It contains some information about the transfer like the lenghth, address,
 | |
| command etc, plus pointers to transmit and receive buffer. The address of this block gets pushed into the transmit queue. 
 | |
| The SPI driver does its magic, and sends and retrieves the data eventually. The data gets written to the receive buffers, 
 | |
| if needed the transaction descriptor is modified to indicate returned parameters and the entire thing goes into the return
 | |
| queue, where whatever software initiated the transaction can retrieve it.
 | |
| 
 | |
| The entire thing is run from the SPI interrupt handler. If SPI is done transmitting/receiving but nothing is in the queue, 
 | |
| it will not clear the SPI interrupt but just disable it. This way, when a new thing is sent, pushing the packet into the send 
 | |
| queue and re-enabling the interrupt will trigger the interrupt again, which can then take care of the sending.
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| #include <string.h>
 | |
| #include "driver/spi_common.h"
 | |
| #include "driver/spi_master.h"
 | |
| #include "soc/gpio_sig_map.h"
 | |
| #include "soc/spi_reg.h"
 | |
| #include "soc/dport_reg.h"
 | |
| #include "soc/spi_struct.h"
 | |
| #include "rom/ets_sys.h"
 | |
| #include "esp_types.h"
 | |
| #include "esp_attr.h"
 | |
| #include "esp_intr.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_err.h"
 | |
| #include "esp_pm.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/semphr.h"
 | |
| #include "freertos/xtensa_api.h"
 | |
| #include "freertos/task.h"
 | |
| #include "freertos/ringbuf.h"
 | |
| #include "soc/soc.h"
 | |
| #include "soc/soc_memory_layout.h"
 | |
| #include "soc/dport_reg.h"
 | |
| #include "rom/lldesc.h"
 | |
| #include "driver/gpio.h"
 | |
| #include "driver/periph_ctrl.h"
 | |
| #include "esp_heap_caps.h"
 | |
| 
 | |
| typedef struct spi_device_t spi_device_t;
 | |
| typedef typeof(SPI1.clock) spi_clock_reg_t;
 | |
| 
 | |
| #define NO_CS 3     //Number of CS pins per SPI host
 | |
| 
 | |
| 
 | |
| /// struct to hold private transaction data (like tx and rx buffer for DMA).
 | |
| typedef struct {        
 | |
|     spi_transaction_t   *trans; 
 | |
|     uint32_t *buffer_to_send;   //equals to tx_data, if SPI_TRANS_USE_RXDATA is applied; otherwise if original buffer wasn't in DMA-capable memory, this gets the address of a temporary buffer that is;
 | |
|                                 //otherwise sets to the original buffer or NULL if no buffer is assigned.
 | |
|     uint32_t *buffer_to_rcv;    // similar to buffer_to_send
 | |
| } spi_trans_priv;
 | |
| 
 | |
| typedef struct {
 | |
|     spi_device_t *device[NO_CS];
 | |
|     intr_handle_t intr;
 | |
|     spi_dev_t *hw;
 | |
|     spi_trans_priv cur_trans_buf;
 | |
|     int cur_cs;
 | |
|     int prev_cs;
 | |
|     lldesc_t *dmadesc_tx;
 | |
|     lldesc_t *dmadesc_rx;
 | |
|     bool no_gpio_matrix;
 | |
|     int dma_chan;
 | |
|     int max_transfer_sz;
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     esp_pm_lock_handle_t pm_lock;
 | |
| #endif
 | |
| } spi_host_t;
 | |
| 
 | |
| typedef struct {
 | |
|     spi_clock_reg_t reg;
 | |
|     int eff_clk;
 | |
|     int dummy_num;
 | |
| } clock_config_t;
 | |
| 
 | |
| struct spi_device_t {
 | |
|     QueueHandle_t trans_queue;
 | |
|     QueueHandle_t ret_queue;
 | |
|     spi_device_interface_config_t cfg;
 | |
|     clock_config_t clk_cfg;
 | |
|     spi_host_t *host;
 | |
| };
 | |
| 
 | |
| static spi_host_t *spihost[3];
 | |
| 
 | |
| 
 | |
| static const char *SPI_TAG = "spi_master";
 | |
| #define SPI_CHECK(a, str, ret_val) \
 | |
|     if (!(a)) { \
 | |
|         ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
 | |
|         return (ret_val); \
 | |
|     }
 | |
| 
 | |
| 
 | |
| static void spi_intr(void *arg);
 | |
| 
 | |
| esp_err_t spi_bus_initialize(spi_host_device_t host, const spi_bus_config_t *bus_config, int dma_chan)
 | |
| {
 | |
|     bool native, spi_chan_claimed, dma_chan_claimed;
 | |
|     /* ToDo: remove this when we have flash operations cooperating with this */
 | |
|     SPI_CHECK(host!=SPI_HOST, "SPI1 is not supported", ESP_ERR_NOT_SUPPORTED);
 | |
| 
 | |
|     SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
 | |
|     SPI_CHECK( dma_chan >= 0 && dma_chan <= 2, "invalid dma channel", ESP_ERR_INVALID_ARG );
 | |
| 
 | |
|     spi_chan_claimed=spicommon_periph_claim(host);
 | |
|     SPI_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE);
 | |
| 
 | |
|     if ( dma_chan != 0 ) {
 | |
|         dma_chan_claimed=spicommon_dma_chan_claim(dma_chan);
 | |
|         if ( !dma_chan_claimed ) {
 | |
|             spicommon_periph_free( host );
 | |
|             SPI_CHECK(dma_chan_claimed, "dma channel already in use", ESP_ERR_INVALID_STATE);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     spihost[host]=malloc(sizeof(spi_host_t));
 | |
|     if (spihost[host]==NULL) goto nomem;
 | |
|     memset(spihost[host], 0, sizeof(spi_host_t));
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     esp_err_t err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_master",
 | |
|             &spihost[host]->pm_lock);
 | |
|     if (err != ESP_OK) {
 | |
|         goto nomem;
 | |
|     }
 | |
| #endif //CONFIG_PM_ENABLE
 | |
|     
 | |
|     spicommon_bus_initialize_io(host, bus_config, dma_chan, SPICOMMON_BUSFLAG_MASTER|SPICOMMON_BUSFLAG_QUAD, &native);
 | |
|     spihost[host]->no_gpio_matrix=native;
 | |
|     
 | |
|     spihost[host]->dma_chan=dma_chan;
 | |
|     if (dma_chan == 0) {
 | |
|         spihost[host]->max_transfer_sz = 32;
 | |
|     } else {
 | |
|         //See how many dma descriptors we need and allocate them
 | |
|         int dma_desc_ct=(bus_config->max_transfer_sz+SPI_MAX_DMA_LEN-1)/SPI_MAX_DMA_LEN;
 | |
|         if (dma_desc_ct==0) dma_desc_ct=1; //default to 4k when max is not given
 | |
|         spihost[host]->max_transfer_sz = dma_desc_ct*SPI_MAX_DMA_LEN;
 | |
|         spihost[host]->dmadesc_tx=heap_caps_malloc(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA);
 | |
|         spihost[host]->dmadesc_rx=heap_caps_malloc(sizeof(lldesc_t)*dma_desc_ct, MALLOC_CAP_DMA);
 | |
|         if (!spihost[host]->dmadesc_tx || !spihost[host]->dmadesc_rx) goto nomem;
 | |
|     }
 | |
|     esp_intr_alloc(spicommon_irqsource_for_host(host), ESP_INTR_FLAG_INTRDISABLED, spi_intr, (void*)spihost[host], &spihost[host]->intr);
 | |
|     spihost[host]->hw=spicommon_hw_for_host(host);
 | |
| 
 | |
|     spihost[host]->cur_cs = NO_CS;
 | |
|     spihost[host]->prev_cs = NO_CS;
 | |
| 
 | |
|     //Reset DMA
 | |
|     spihost[host]->hw->dma_conf.val|=SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST;
 | |
|     spihost[host]->hw->dma_out_link.start=0;
 | |
|     spihost[host]->hw->dma_in_link.start=0;
 | |
|     spihost[host]->hw->dma_conf.val&=~(SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST);
 | |
|     //Reset timing
 | |
|     spihost[host]->hw->ctrl2.val=0;
 | |
| 
 | |
|     //Disable unneeded ints
 | |
|     spihost[host]->hw->slave.rd_buf_done=0;
 | |
|     spihost[host]->hw->slave.wr_buf_done=0;
 | |
|     spihost[host]->hw->slave.rd_sta_done=0;
 | |
|     spihost[host]->hw->slave.wr_sta_done=0;
 | |
|     spihost[host]->hw->slave.rd_buf_inten=0;
 | |
|     spihost[host]->hw->slave.wr_buf_inten=0;
 | |
|     spihost[host]->hw->slave.rd_sta_inten=0;
 | |
|     spihost[host]->hw->slave.wr_sta_inten=0;
 | |
| 
 | |
|     //Force a transaction done interrupt. This interrupt won't fire yet because we initialized the SPI interrupt as
 | |
|     //disabled.  This way, we can just enable the SPI interrupt and the interrupt handler will kick in, handling 
 | |
|     //any transactions that are queued.
 | |
|     spihost[host]->hw->slave.trans_inten=1;
 | |
|     spihost[host]->hw->slave.trans_done=1;
 | |
| 
 | |
|     return ESP_OK;
 | |
| 
 | |
| nomem:
 | |
|     if (spihost[host]) {
 | |
|         free(spihost[host]->dmadesc_tx);
 | |
|         free(spihost[host]->dmadesc_rx);
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|         if (spihost[host]->pm_lock) {
 | |
|             esp_pm_lock_delete(spihost[host]->pm_lock);
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
|     free(spihost[host]);
 | |
|     spicommon_periph_free(host);
 | |
|     spicommon_dma_chan_free(dma_chan);
 | |
|     return ESP_ERR_NO_MEM;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_bus_free(spi_host_device_t host)
 | |
| {
 | |
|     int x;
 | |
|     SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
 | |
|     SPI_CHECK(spihost[host]!=NULL, "host not in use", ESP_ERR_INVALID_STATE);
 | |
|     for (x=0; x<NO_CS; x++) {
 | |
|         SPI_CHECK(spihost[host]->device[x]==NULL, "not all CSses freed", ESP_ERR_INVALID_STATE);
 | |
|     }
 | |
| 
 | |
|     if ( spihost[host]->dma_chan > 0 ) {
 | |
|         spicommon_dma_chan_free ( spihost[host]->dma_chan );
 | |
|     }
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     esp_pm_lock_delete(spihost[host]->pm_lock);
 | |
| #endif
 | |
|     spihost[host]->hw->slave.trans_inten=0;
 | |
|     spihost[host]->hw->slave.trans_done=0;
 | |
|     esp_intr_free(spihost[host]->intr);
 | |
|     spicommon_periph_free(host);
 | |
|     free(spihost[host]->dmadesc_tx);
 | |
|     free(spihost[host]->dmadesc_rx);
 | |
|     free(spihost[host]);
 | |
|     spihost[host]=NULL;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static inline uint32_t spi_dummy_limit(bool gpio_is_used)
 | |
| {
 | |
|     const int apbclk=APB_CLK_FREQ;
 | |
|     if (!gpio_is_used) {
 | |
|         return apbclk;  //dummy bit workaround is not used when native pins are used
 | |
|     } else {
 | |
|         return apbclk/2;  //the dummy bit workaround is used when freq is 40MHz and GPIO matrix is used.
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  Add a device. This allocates a CS line for the device, allocates memory for the device structure and hooks
 | |
|  up the CS pin to whatever is specified.
 | |
| */
 | |
| esp_err_t spi_bus_add_device(spi_host_device_t host, const spi_device_interface_config_t *dev_config, spi_device_handle_t *handle)
 | |
| {
 | |
|     int freecs;
 | |
|     int apbclk=APB_CLK_FREQ;
 | |
|     int eff_clk;
 | |
|     int duty_cycle;
 | |
|     spi_clock_reg_t clk_reg;
 | |
|     SPI_CHECK(host>=SPI_HOST && host<=VSPI_HOST, "invalid host", ESP_ERR_INVALID_ARG);
 | |
|     SPI_CHECK(spihost[host]!=NULL, "host not initialized", ESP_ERR_INVALID_STATE);
 | |
|     SPI_CHECK(dev_config->spics_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(dev_config->spics_io_num), "spics pin invalid", ESP_ERR_INVALID_ARG);
 | |
|     SPI_CHECK(dev_config->clock_speed_hz > 0, "invalid sclk speed", ESP_ERR_INVALID_ARG);
 | |
|     for (freecs=0; freecs<NO_CS; freecs++) {
 | |
|         //See if this slot is free; reserve if it is by putting a dummy pointer in the slot. We use an atomic compare&swap to make this thread-safe.
 | |
|         if (__sync_bool_compare_and_swap(&spihost[host]->device[freecs], NULL, (spi_device_t *)1)) break;
 | |
|     }
 | |
|     SPI_CHECK(freecs!=NO_CS, "no free cs pins for host", ESP_ERR_NOT_FOUND);
 | |
|     //The hardware looks like it would support this, but actually setting cs_ena_pretrans when transferring in full
 | |
|     //duplex mode does absolutely nothing on the ESP32.
 | |
|     SPI_CHECK(dev_config->cs_ena_pretrans==0 || (dev_config->flags & SPI_DEVICE_HALFDUPLEX), "cs pretrans delay incompatible with full-duplex", ESP_ERR_INVALID_ARG);
 | |
|     
 | |
|     //Speeds >=40MHz over GPIO matrix needs a dummy cycle, but these don't work for full-duplex connections.
 | |
|     duty_cycle = (dev_config->duty_cycle_pos==0? 128: dev_config->duty_cycle_pos);
 | |
|     eff_clk = spi_cal_clock(apbclk, dev_config->clock_speed_hz, duty_cycle, (uint32_t*)&clk_reg);    
 | |
|     uint32_t dummy_limit = spi_dummy_limit(!spihost[host]->no_gpio_matrix);
 | |
|     SPI_CHECK( dev_config->flags & SPI_DEVICE_HALFDUPLEX || (eff_clk/1000/1000) < (dummy_limit/1000/1000) ||
 | |
|             dev_config->flags & SPI_DEVICE_NO_DUMMY,
 | |
| "When GPIO matrix is used in full-duplex mode at frequency > 26MHz, device cannot read correct data.\n\
 | |
| Please note the SPI can only work at divisors of 80MHz, and the driver always tries to find the closest frequency to your configuration.\n\
 | |
| Specify ``SPI_DEVICE_NO_DUMMY`` to ignore this checking. Then you can output data at higher speed, or read data at your own risk.", 
 | |
|             ESP_ERR_INVALID_ARG );
 | |
| 
 | |
|     //Allocate memory for device
 | |
|     spi_device_t *dev=malloc(sizeof(spi_device_t));
 | |
|     if (dev==NULL) goto nomem;
 | |
|     memset(dev, 0, sizeof(spi_device_t));
 | |
|     spihost[host]->device[freecs]=dev;
 | |
| 
 | |
|     //Allocate queues, set defaults
 | |
|     dev->trans_queue=xQueueCreate(dev_config->queue_size, sizeof(spi_trans_priv));
 | |
|     dev->ret_queue=xQueueCreate(dev_config->queue_size, sizeof(spi_trans_priv));
 | |
|     if (!dev->trans_queue || !dev->ret_queue) goto nomem;    
 | |
|     dev->host=spihost[host];
 | |
| 
 | |
|     //We want to save a copy of the dev config in the dev struct.
 | |
|     memcpy(&dev->cfg, dev_config, sizeof(spi_device_interface_config_t));
 | |
|     dev->cfg.duty_cycle_pos = duty_cycle;
 | |
|     // TODO: if we have to change the apb clock among transactions, re-calculate this each time the apb clock lock is acquired.    
 | |
|     dev->clk_cfg= (clock_config_t) {
 | |
|         .eff_clk = eff_clk,
 | |
|         .dummy_num = (dev->clk_cfg.eff_clk >= dummy_limit? 1: 0),
 | |
|         .reg = clk_reg,
 | |
|     };
 | |
| 
 | |
|     //Set CS pin, CS options
 | |
|     if (dev_config->spics_io_num >= 0) {
 | |
|         gpio_set_direction(dev_config->spics_io_num, GPIO_MODE_OUTPUT);
 | |
|         spicommon_cs_initialize(host, dev_config->spics_io_num, freecs, spihost[host]->no_gpio_matrix == false);
 | |
|     }
 | |
|     if (dev_config->flags&SPI_DEVICE_CLK_AS_CS) {
 | |
|         spihost[host]->hw->pin.master_ck_sel |= (1<<freecs);
 | |
|     } else {
 | |
|         spihost[host]->hw->pin.master_ck_sel &= (1<<freecs);
 | |
|     }
 | |
|     if (dev_config->flags&SPI_DEVICE_POSITIVE_CS) {
 | |
|         spihost[host]->hw->pin.master_cs_pol |= (1<<freecs);
 | |
|     } else {
 | |
|         spihost[host]->hw->pin.master_cs_pol &= (1<<freecs);
 | |
|     }
 | |
|     *handle=dev;
 | |
|     ESP_LOGD(SPI_TAG, "SPI%d: New device added to CS%d, effective clock: %dkHz", host, freecs, dev->clk_cfg.eff_clk/1000);
 | |
|     return ESP_OK;
 | |
| 
 | |
| nomem:
 | |
|     if (dev) {
 | |
|         if (dev->trans_queue) vQueueDelete(dev->trans_queue);
 | |
|         if (dev->ret_queue) vQueueDelete(dev->ret_queue);
 | |
|     }
 | |
|     free(dev);
 | |
|     return ESP_ERR_NO_MEM;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_bus_remove_device(spi_device_handle_t handle)
 | |
| {
 | |
|     int x;
 | |
|     SPI_CHECK(handle!=NULL, "invalid handle", ESP_ERR_INVALID_ARG);
 | |
|     //These checks aren't exhaustive; another thread could sneak in a transaction inbetween. These are only here to
 | |
|     //catch design errors and aren't meant to be triggered during normal operation.
 | |
|     SPI_CHECK(uxQueueMessagesWaiting(handle->trans_queue)==0, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
 | |
|     SPI_CHECK(handle->host->cur_cs == NO_CS || handle->host->device[handle->host->cur_cs]!=handle, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
 | |
|     SPI_CHECK(uxQueueMessagesWaiting(handle->ret_queue)==0, "Have unfinished transactions", ESP_ERR_INVALID_STATE);
 | |
| 
 | |
|     //Kill queues
 | |
|     vQueueDelete(handle->trans_queue);
 | |
|     vQueueDelete(handle->ret_queue);
 | |
|     //Remove device from list of csses and free memory
 | |
|     for (x=0; x<NO_CS; x++) {
 | |
|         if (handle->host->device[x] == handle){
 | |
|             handle->host->device[x]=NULL;
 | |
|             if ( x == handle->host->prev_cs ) handle->host->prev_cs = NO_CS;
 | |
|         }
 | |
|     }
 | |
|     free(handle);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static int spi_freq_for_pre_n(int fapb, int pre, int n) {
 | |
|     return (fapb / (pre * n));
 | |
| }
 | |
| 
 | |
| int spi_cal_clock(int fapb, int hz, int duty_cycle, uint32_t *reg_o)
 | |
| {
 | |
|     spi_clock_reg_t reg;
 | |
|     int eff_clk;
 | |
| 
 | |
|     //In hw, n, h and l are 1-64, pre is 1-8K. Value written to register is one lower than used value.
 | |
|     if (hz>((fapb/4)*3)) {
 | |
|         //Using Fapb directly will give us the best result here.
 | |
|         reg.clkcnt_l=0;
 | |
|         reg.clkcnt_h=0;
 | |
|         reg.clkcnt_n=0;
 | |
|         reg.clkdiv_pre=0;
 | |
|         reg.clk_equ_sysclk=1;
 | |
|         eff_clk=fapb;
 | |
|     } else {
 | |
|         //For best duty cycle resolution, we want n to be as close to 32 as possible, but
 | |
|         //we also need a pre/n combo that gets us as close as possible to the intended freq.
 | |
|         //To do this, we bruteforce n and calculate the best pre to go along with that.
 | |
|         //If there's a choice between pre/n combos that give the same result, use the one
 | |
|         //with the higher n.
 | |
|         int pre, n, h, l;
 | |
|         int bestn=-1;
 | |
|         int bestpre=-1;
 | |
|         int besterr=0;
 | |
|         int errval;
 | |
|         for (n=2; n<=64; n++) { //Start at 2: we need to be able to set h/l so we have at least one high and one low pulse.
 | |
|             //Effectively, this does pre=round((fapb/n)/hz).
 | |
|             pre=((fapb/n)+(hz/2))/hz;
 | |
|             if (pre<=0) pre=1;
 | |
|             if (pre>8192) pre=8192;
 | |
|             errval=abs(spi_freq_for_pre_n(fapb, pre, n)-hz);
 | |
|             if (bestn==-1 || errval<=besterr) {
 | |
|                 besterr=errval;
 | |
|                 bestn=n;
 | |
|                 bestpre=pre;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         n=bestn;
 | |
|         pre=bestpre;
 | |
|         l=n;
 | |
|         //This effectively does round((duty_cycle*n)/256)
 | |
|         h=(duty_cycle*n+127)/256;
 | |
|         if (h<=0) h=1;
 | |
| 
 | |
|         reg.clk_equ_sysclk=0;
 | |
|         reg.clkcnt_n=n-1;
 | |
|         reg.clkdiv_pre=pre-1;
 | |
|         reg.clkcnt_h=h-1;
 | |
|         reg.clkcnt_l=l-1;
 | |
|         eff_clk=spi_freq_for_pre_n(fapb, pre, n);
 | |
|     }
 | |
|     if ( reg_o != NULL ) *reg_o = reg.val;
 | |
|     return eff_clk;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the spi clock according to pre-calculated register value.
 | |
|  */
 | |
| static inline void spi_set_clock(spi_dev_t *hw, spi_clock_reg_t reg) {
 | |
|     hw->clock.val = reg.val;
 | |
| }
 | |
| 
 | |
| //This is run in interrupt context and apart from initialization and destruction, this is the only code
 | |
| //touching the host (=spihost[x]) variable. The rest of the data arrives in queues. That is why there are
 | |
| //no muxes in this code.
 | |
| static void IRAM_ATTR spi_intr(void *arg)
 | |
| {
 | |
|     int i;
 | |
|     BaseType_t r;
 | |
|     BaseType_t do_yield=pdFALSE;
 | |
|     spi_trans_priv *trans_buf=NULL;
 | |
|     spi_transaction_t *trans=NULL;
 | |
|     spi_host_t *host=(spi_host_t*)arg;
 | |
| 
 | |
|     //Ignore all but the trans_done int.
 | |
|     if (!host->hw->slave.trans_done) return;
 | |
| 
 | |
|     /*------------ deal with the in-flight transaction -----------------*/
 | |
|     if (host->cur_cs != NO_CS) {
 | |
|         spi_transaction_t *cur_trans = host->cur_trans_buf.trans;
 | |
|         //Okay, transaction is done. 
 | |
|         if (host->cur_trans_buf.buffer_to_rcv && host->dma_chan == 0 ) {
 | |
|             //Need to copy from SPI regs to result buffer.
 | |
|             for (int x=0; x < cur_trans->rxlength; x+=32) {
 | |
|                 //Do a memcpy to get around possible alignment issues in rx_buffer
 | |
|                 uint32_t word=host->hw->data_buf[x/32];
 | |
|                 int len=cur_trans->rxlength-x;
 | |
|                 if (len>32) len=32;
 | |
|                 memcpy(&host->cur_trans_buf.buffer_to_rcv[x/32], &word, (len+7)/8);
 | |
|             }
 | |
|         }
 | |
|         //Call post-transaction callback, if any
 | |
|         if (host->device[host->cur_cs]->cfg.post_cb) host->device[host->cur_cs]->cfg.post_cb(cur_trans);
 | |
|         //Return transaction descriptor.
 | |
|         xQueueSendFromISR(host->device[host->cur_cs]->ret_queue, &host->cur_trans_buf, &do_yield); 
 | |
|         host->cur_cs = NO_CS;
 | |
|     }
 | |
|     //Tell common code DMA workaround that our DMA channel is idle. If needed, the code will do a DMA reset.
 | |
|     if (host->dma_chan) spicommon_dmaworkaround_idle(host->dma_chan);
 | |
| 
 | |
|     /*------------ new transaction starts here ------------------*/
 | |
|     //ToDo: This is a stupidly simple low-cs-first priority scheme. Make this configurable somehow. - JD
 | |
|     for (i=0; i<NO_CS; i++) {
 | |
|         if (host->device[i]) {
 | |
|             r=xQueueReceiveFromISR(host->device[i]->trans_queue, &host->cur_trans_buf, &do_yield);
 | |
|             trans_buf = &host->cur_trans_buf;
 | |
|             //Stop looking if we have a transaction to send.
 | |
|             if (r) break;
 | |
|         }
 | |
|     }
 | |
|     if (i==NO_CS) {
 | |
|         //No packet waiting. Disable interrupt.
 | |
|         esp_intr_disable(host->intr);
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|         //Release APB frequency lock
 | |
|         esp_pm_lock_release(host->pm_lock);
 | |
| #endif
 | |
|     } else {
 | |
|         host->hw->slave.trans_done=0; //clear int bit
 | |
|         //We have a transaction. Send it.
 | |
|         spi_device_t *dev=host->device[i];
 | |
|         trans = trans_buf->trans;
 | |
|         host->cur_cs=i;
 | |
|         //We should be done with the transmission.
 | |
|         assert(host->hw->cmd.usr == 0);
 | |
|         
 | |
|         //Reconfigure according to device settings, but only if we change CSses.
 | |
|         if (i!=host->prev_cs) {
 | |
|             const int apbclk=APB_CLK_FREQ;
 | |
|             int effclk=dev->clk_cfg.eff_clk;
 | |
|             spi_set_clock(host->hw, dev->clk_cfg.reg);
 | |
|             //Configure bit order
 | |
|             host->hw->ctrl.rd_bit_order=(dev->cfg.flags & SPI_DEVICE_RXBIT_LSBFIRST)?1:0;
 | |
|             host->hw->ctrl.wr_bit_order=(dev->cfg.flags & SPI_DEVICE_TXBIT_LSBFIRST)?1:0;
 | |
|             
 | |
|             //Configure polarity
 | |
|             //SPI iface needs to be configured for a delay in some cases.
 | |
|             int nodelay=0;
 | |
|             if (host->no_gpio_matrix) {
 | |
|                 if (effclk >= apbclk/2) {
 | |
|                     nodelay=1;
 | |
|                 }
 | |
|             } else {
 | |
|                 uint32_t delay_limit = apbclk/4;
 | |
|                 if (effclk >= delay_limit) {
 | |
|                     nodelay=1;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (dev->cfg.mode==0) {
 | |
|                 host->hw->pin.ck_idle_edge=0;
 | |
|                 host->hw->user.ck_out_edge=0;
 | |
|                 host->hw->ctrl2.miso_delay_mode=nodelay?0:2;
 | |
|             } else if (dev->cfg.mode==1) {
 | |
|                 host->hw->pin.ck_idle_edge=0;
 | |
|                 host->hw->user.ck_out_edge=1;
 | |
|                 host->hw->ctrl2.miso_delay_mode=nodelay?0:1;
 | |
|             } else if (dev->cfg.mode==2) {
 | |
|                 host->hw->pin.ck_idle_edge=1;
 | |
|                 host->hw->user.ck_out_edge=1;
 | |
|                 host->hw->ctrl2.miso_delay_mode=nodelay?0:1;
 | |
|             } else if (dev->cfg.mode==3) {
 | |
|                 host->hw->pin.ck_idle_edge=1;
 | |
|                 host->hw->user.ck_out_edge=0;
 | |
|                 host->hw->ctrl2.miso_delay_mode=nodelay?0:2;
 | |
|             }
 | |
|             //Configure misc stuff
 | |
|             host->hw->user.doutdin=(dev->cfg.flags & SPI_DEVICE_HALFDUPLEX)?0:1;
 | |
|             host->hw->user.sio=(dev->cfg.flags & SPI_DEVICE_3WIRE)?1:0;
 | |
| 
 | |
|             host->hw->ctrl2.setup_time=dev->cfg.cs_ena_pretrans-1;
 | |
|             host->hw->user.cs_setup=dev->cfg.cs_ena_pretrans?1:0;
 | |
|             host->hw->ctrl2.hold_time=dev->cfg.cs_ena_posttrans-1;
 | |
|             host->hw->user.cs_hold=(dev->cfg.cs_ena_posttrans)?1:0;
 | |
| 
 | |
|             //Configure CS pin
 | |
|             host->hw->pin.cs0_dis=(i==0)?0:1;
 | |
|             host->hw->pin.cs1_dis=(i==1)?0:1;
 | |
|             host->hw->pin.cs2_dis=(i==2)?0:1;
 | |
|         }
 | |
|         host->prev_cs = i;
 | |
|         //Reset SPI peripheral
 | |
|         host->hw->dma_conf.val |= SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST;
 | |
|         host->hw->dma_out_link.start=0;
 | |
|         host->hw->dma_in_link.start=0;
 | |
|         host->hw->dma_conf.val &= ~(SPI_OUT_RST|SPI_IN_RST|SPI_AHBM_RST|SPI_AHBM_FIFO_RST);
 | |
|         host->hw->dma_conf.out_data_burst_en=1;
 | |
|         //Set up QIO/DIO if needed
 | |
|         host->hw->ctrl.val &= ~(SPI_FREAD_DUAL|SPI_FREAD_QUAD|SPI_FREAD_DIO|SPI_FREAD_QIO);
 | |
|         host->hw->user.val &= ~(SPI_FWRITE_DUAL|SPI_FWRITE_QUAD|SPI_FWRITE_DIO|SPI_FWRITE_QIO);
 | |
|         if (trans->flags & SPI_TRANS_MODE_DIO) {
 | |
|             if (trans->flags & SPI_TRANS_MODE_DIOQIO_ADDR) {
 | |
|                 host->hw->ctrl.fread_dio=1;
 | |
|                 host->hw->user.fwrite_dio=1;
 | |
|             } else {
 | |
|                 host->hw->ctrl.fread_dual=1;
 | |
|                 host->hw->user.fwrite_dual=1;
 | |
|             }
 | |
|             host->hw->ctrl.fastrd_mode=1;
 | |
|         } else if (trans->flags & SPI_TRANS_MODE_QIO) {
 | |
|             if (trans->flags & SPI_TRANS_MODE_DIOQIO_ADDR) {
 | |
|                 host->hw->ctrl.fread_qio=1;
 | |
|                 host->hw->user.fwrite_qio=1;
 | |
|             } else {
 | |
|                 host->hw->ctrl.fread_quad=1;
 | |
|                 host->hw->user.fwrite_quad=1;
 | |
|             }
 | |
|             host->hw->ctrl.fastrd_mode=1;
 | |
|         }
 | |
| 
 | |
|         //Fill DMA descriptors
 | |
|         int extra_dummy=0;
 | |
|         if (trans_buf->buffer_to_rcv) {
 | |
|             host->hw->user.usr_miso_highpart=0;
 | |
|             if (host->dma_chan == 0) {
 | |
|                 //No need to setup anything; we'll copy the result out of the work registers directly later.
 | |
|             } else {
 | |
|                 spicommon_dmaworkaround_transfer_active(host->dma_chan); //mark channel as active
 | |
|                 spicommon_setup_dma_desc_links(host->dmadesc_rx, ((trans->rxlength+7)/8), (uint8_t*)trans_buf->buffer_to_rcv, true);
 | |
|                 host->hw->dma_in_link.addr=(int)(&host->dmadesc_rx[0]) & 0xFFFFF;
 | |
|                 host->hw->dma_in_link.start=1;
 | |
|             }
 | |
|             //when no_dummy is not set and in half-duplex mode, sets the dummy bit if RX phase exist
 | |
|             if (((dev->cfg.flags&SPI_DEVICE_NO_DUMMY)==0) && (dev->cfg.flags&SPI_DEVICE_HALFDUPLEX)) {
 | |
|                 extra_dummy=dev->clk_cfg.dummy_num;
 | |
|             }
 | |
|         } else {
 | |
|             //DMA temporary workaround: let RX DMA work somehow to avoid the issue in ESP32 v0/v1 silicon 
 | |
|             if (host->dma_chan != 0 ) {
 | |
|                 host->hw->dma_in_link.addr=0;
 | |
|                 host->hw->dma_in_link.start=1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (trans_buf->buffer_to_send) {
 | |
|             if (host->dma_chan == 0) {
 | |
|                 //Need to copy data to registers manually
 | |
|                 for (int x=0; x < trans->length; x+=32) {
 | |
|                     //Use memcpy to get around alignment issues for txdata
 | |
|                     uint32_t word;
 | |
|                     memcpy(&word, &trans_buf->buffer_to_send[x/32], 4);
 | |
|                     host->hw->data_buf[(x/32)+8]=word;
 | |
|                 }
 | |
|                 host->hw->user.usr_mosi_highpart=1;
 | |
|             } else {
 | |
|                 spicommon_dmaworkaround_transfer_active(host->dma_chan); //mark channel as active
 | |
|                 spicommon_setup_dma_desc_links(host->dmadesc_tx, (trans->length+7)/8, (uint8_t*)trans_buf->buffer_to_send, false);
 | |
|                 host->hw->user.usr_mosi_highpart=0;
 | |
|                 host->hw->dma_out_link.addr=(int)(&host->dmadesc_tx[0]) & 0xFFFFF;
 | |
|                 host->hw->dma_out_link.start=1;
 | |
|                 host->hw->user.usr_mosi_highpart=0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         //configure dummy bits
 | |
|         host->hw->user.usr_dummy=(dev->cfg.dummy_bits+extra_dummy)?1:0;
 | |
|         host->hw->user1.usr_dummy_cyclelen=dev->cfg.dummy_bits+extra_dummy-1;
 | |
| 
 | |
|         host->hw->mosi_dlen.usr_mosi_dbitlen=trans->length-1;
 | |
|         if ( dev->cfg.flags & SPI_DEVICE_HALFDUPLEX ) {
 | |
|             host->hw->miso_dlen.usr_miso_dbitlen=trans->rxlength-1;
 | |
|         } else {
 | |
|             //rxlength is not used in full-duplex mode
 | |
|             host->hw->miso_dlen.usr_miso_dbitlen=trans->length-1;
 | |
|         }
 | |
| 
 | |
|         //Configure bit sizes, load addr and command
 | |
|         int cmdlen;
 | |
|         if ( trans->flags & SPI_TRANS_VARIABLE_CMD ) {
 | |
|             cmdlen = ((spi_transaction_ext_t*)trans)->command_bits;
 | |
|         } else {
 | |
|             cmdlen = dev->cfg.command_bits;
 | |
|         }
 | |
|         int addrlen;
 | |
|         if ( trans->flags & SPI_TRANS_VARIABLE_ADDR ) {
 | |
|             addrlen = ((spi_transaction_ext_t*)trans)->address_bits;
 | |
|         } else {
 | |
|             addrlen = dev->cfg.address_bits;
 | |
|         }
 | |
|         host->hw->user1.usr_addr_bitlen=addrlen-1;
 | |
|         host->hw->user2.usr_command_bitlen=cmdlen-1;
 | |
|         host->hw->user.usr_addr=addrlen?1:0;
 | |
|         host->hw->user.usr_command=cmdlen?1:0;
 | |
| 
 | |
|         // output command will be sent from bit 7 to 0 of command_value, and then bit 15 to 8 of the same register field.
 | |
|         uint16_t command = trans->cmd << (16-cmdlen);    //shift to MSB
 | |
|         host->hw->user2.usr_command_value = (command>>8)|(command<<8);  //swap the first and second byte
 | |
|         // shift the address to MSB of addr (and maybe slv_wr_status) register. 
 | |
|         // output address will be sent from MSB to LSB of addr register, then comes the MSB to LSB of slv_wr_status register. 
 | |
|         if (addrlen>32) {
 | |
|             host->hw->addr = trans->addr >> (addrlen- 32);
 | |
|             host->hw->slv_wr_status = trans->addr << (64 - addrlen);
 | |
|         } else {
 | |
|             host->hw->addr = trans->addr << (32 - addrlen);
 | |
|         }
 | |
| 
 | |
|         host->hw->user.usr_mosi=( (!(dev->cfg.flags & SPI_DEVICE_HALFDUPLEX) && trans_buf->buffer_to_rcv) || trans_buf->buffer_to_send)?1:0;
 | |
|         host->hw->user.usr_miso=(trans_buf->buffer_to_rcv)?1:0;
 | |
| 
 | |
|         //Call pre-transmission callback, if any
 | |
|         if (dev->cfg.pre_cb) dev->cfg.pre_cb(trans);
 | |
|         //Kick off transfer
 | |
|         host->hw->cmd.usr=1;
 | |
|     }
 | |
|     if (do_yield) portYIELD_FROM_ISR();
 | |
| }
 | |
| 
 | |
| 
 | |
| esp_err_t spi_device_queue_trans(spi_device_handle_t handle, spi_transaction_t *trans_desc,  TickType_t ticks_to_wait)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     BaseType_t r;
 | |
|     SPI_CHECK(handle!=NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
 | |
|     //check transmission length 
 | |
|     SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_RXDATA)==0 ||trans_desc->rxlength <= 32, "rxdata transfer > 32 bits without configured DMA", ESP_ERR_INVALID_ARG);
 | |
|     SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_TXDATA)==0 ||trans_desc->length <= 32, "txdata transfer > 32 bits without configured DMA", ESP_ERR_INVALID_ARG);
 | |
|     SPI_CHECK(trans_desc->length <= handle->host->max_transfer_sz*8, "txdata transfer > host maximum", ESP_ERR_INVALID_ARG);
 | |
|     SPI_CHECK(trans_desc->rxlength <= handle->host->max_transfer_sz*8, "rxdata transfer > host maximum", ESP_ERR_INVALID_ARG);
 | |
|     SPI_CHECK((handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || trans_desc->rxlength <= trans_desc->length, "rx length > tx length in full duplex mode", ESP_ERR_INVALID_ARG);
 | |
|     //check working mode    
 | |
|     SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && (handle->cfg.flags & SPI_DEVICE_3WIRE)), "incompatible iface params", ESP_ERR_INVALID_ARG);
 | |
|     SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && (!(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX))), "incompatible iface params", ESP_ERR_INVALID_ARG);
 | |
|     SPI_CHECK( !(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || handle->host->dma_chan == 0 || !(trans_desc->flags & SPI_TRANS_USE_RXDATA || trans_desc->rx_buffer != NULL)
 | |
|         || !(trans_desc->flags & SPI_TRANS_USE_TXDATA || trans_desc->tx_buffer!=NULL), "SPI half duplex mode does not support using DMA with both MOSI and MISO phases.", ESP_ERR_INVALID_ARG );
 | |
|     //In Full duplex mode, default rxlength to be the same as length, if not filled in.
 | |
|     // set rxlength to length is ok, even when rx buffer=NULL
 | |
|     if (trans_desc->rxlength==0 && !(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX)) {
 | |
|         trans_desc->rxlength=trans_desc->length;
 | |
|     }
 | |
| 
 | |
|     spi_trans_priv trans_buf;
 | |
|     memset( &trans_buf, 0, sizeof(spi_trans_priv) );
 | |
|     trans_buf.trans = trans_desc;
 | |
| 
 | |
|     // rx memory assign
 | |
|     if ( trans_desc->flags & SPI_TRANS_USE_RXDATA ) {
 | |
|         trans_buf.buffer_to_rcv = (uint32_t*)&trans_desc->rx_data[0];
 | |
|     } else { 
 | |
|         //if not use RXDATA neither rx_buffer, buffer_to_rcv assigned to NULL
 | |
|         trans_buf.buffer_to_rcv = trans_desc->rx_buffer;
 | |
|     }
 | |
|     if ( trans_buf.buffer_to_rcv && handle->host->dma_chan && (!esp_ptr_dma_capable( trans_buf.buffer_to_rcv ) || ((int)trans_buf.buffer_to_rcv%4!=0)) ) {
 | |
|         //if rxbuf in the desc not DMA-capable, malloc a new one. The rx buffer need to be length of multiples of 32 bits to avoid heap corruption.
 | |
|         ESP_LOGV( SPI_TAG, "Allocate RX buffer for DMA" );
 | |
|         trans_buf.buffer_to_rcv = heap_caps_malloc((trans_desc->rxlength+31)/8, MALLOC_CAP_DMA);
 | |
|         if ( trans_buf.buffer_to_rcv==NULL ) {
 | |
|             ret = ESP_ERR_NO_MEM;
 | |
|             goto clean_up;
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     const uint32_t *txdata;
 | |
|     // tx memory assign
 | |
|     if ( trans_desc->flags & SPI_TRANS_USE_TXDATA ) {
 | |
|         txdata = (uint32_t*)&trans_desc->tx_data[0];
 | |
|     } else { 
 | |
|         //if not use TXDATA neither tx_buffer, tx data assigned to NULL
 | |
|         txdata = trans_desc->tx_buffer ;
 | |
|     }
 | |
|     if ( txdata && handle->host->dma_chan && !esp_ptr_dma_capable( txdata )) {
 | |
|         //if txbuf in the desc not DMA-capable, malloc a new one
 | |
|         ESP_LOGV( SPI_TAG, "Allocate TX buffer for DMA" );
 | |
|         trans_buf.buffer_to_send = heap_caps_malloc((trans_desc->length+7)/8, MALLOC_CAP_DMA);
 | |
|         if ( trans_buf.buffer_to_send==NULL ) {
 | |
|             ret = ESP_ERR_NO_MEM;
 | |
|             goto clean_up;
 | |
|         }
 | |
|         memcpy( trans_buf.buffer_to_send, txdata, (trans_desc->length+7)/8 );
 | |
|     } else { 
 | |
|         // else use the original buffer (forced-conversion) or assign to NULL
 | |
|         trans_buf.buffer_to_send = (uint32_t*)txdata;
 | |
|     }
 | |
|     
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|     esp_pm_lock_acquire(handle->host->pm_lock);
 | |
| #endif
 | |
|     r=xQueueSend(handle->trans_queue, (void*)&trans_buf, ticks_to_wait);
 | |
|     if (!r) {
 | |
|         ret = ESP_ERR_TIMEOUT;
 | |
| #ifdef CONFIG_PM_ENABLE
 | |
|         //Release APB frequency lock
 | |
|         esp_pm_lock_release(handle->host->pm_lock);
 | |
| #endif
 | |
|         goto clean_up;
 | |
|     }
 | |
|     esp_intr_enable(handle->host->intr);
 | |
|     return ESP_OK;
 | |
| 
 | |
| clean_up:
 | |
|     // free malloc-ed buffer (if needed) before return.
 | |
|     if ( (void*)trans_buf.buffer_to_rcv != trans_desc->rx_buffer && (void*)trans_buf.buffer_to_rcv != &trans_desc->rx_data[0] ) {
 | |
|         free( trans_buf.buffer_to_rcv );
 | |
|     }   
 | |
|     if ( (void*)trans_buf.buffer_to_send!= trans_desc->tx_buffer && (void*)trans_buf.buffer_to_send != &trans_desc->tx_data[0] ) {
 | |
|         free( trans_buf.buffer_to_send );
 | |
|     }   
 | |
|     assert( ret != ESP_OK );
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t spi_device_get_trans_result(spi_device_handle_t handle, spi_transaction_t **trans_desc, TickType_t ticks_to_wait)
 | |
| {
 | |
|     BaseType_t r;
 | |
|     spi_trans_priv trans_buf;
 | |
|     
 | |
|     SPI_CHECK(handle!=NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
 | |
|     r=xQueueReceive(handle->ret_queue, (void*)&trans_buf, ticks_to_wait);
 | |
|     if (!r) {
 | |
|         // The memory occupied by rx and tx DMA buffer destroyed only when receiving from the queue (transaction finished).
 | |
|         // If timeout, wait and retry. 
 | |
|         // Every on-flight transaction request occupies internal memory as DMA buffer if needed.
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
| 
 | |
|     (*trans_desc) = trans_buf.trans;
 | |
| 
 | |
|     if ( (void*)trans_buf.buffer_to_send != &(*trans_desc)->tx_data[0] && trans_buf.buffer_to_send != (*trans_desc)->tx_buffer ) {
 | |
|         free( trans_buf.buffer_to_send );
 | |
|     }   
 | |
| 
 | |
|     //copy data from temporary DMA-capable buffer back to IRAM buffer and free the temporary one.
 | |
|     if ( (void*)trans_buf.buffer_to_rcv != &(*trans_desc)->rx_data[0] && trans_buf.buffer_to_rcv != (*trans_desc)->rx_buffer ) {
 | |
|         if ( (*trans_desc)->flags & SPI_TRANS_USE_RXDATA ) {
 | |
|             memcpy( (uint8_t*)&(*trans_desc)->rx_data[0], trans_buf.buffer_to_rcv, ((*trans_desc)->rxlength+7)/8 );   
 | |
|         } else {
 | |
|             memcpy( (*trans_desc)->rx_buffer, trans_buf.buffer_to_rcv, ((*trans_desc)->rxlength+7)/8 );
 | |
|         }
 | |
|         free( trans_buf.buffer_to_rcv );
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| //Porcelain to do one blocking transmission.
 | |
| esp_err_t spi_device_transmit(spi_device_handle_t handle, spi_transaction_t *trans_desc)
 | |
| {
 | |
|     esp_err_t ret;
 | |
|     spi_transaction_t *ret_trans;
 | |
|     //ToDo: check if any spi transfers in flight
 | |
|     ret=spi_device_queue_trans(handle, trans_desc, portMAX_DELAY);
 | |
|     if (ret!=ESP_OK) return ret;
 | |
|     ret=spi_device_get_trans_result(handle, &ret_trans, portMAX_DELAY);
 | |
|     if (ret!=ESP_OK) return ret;
 | |
|     assert(ret_trans==trans_desc);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 |