mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 15:11:40 +01:00 
			
		
		
		
	requirement from github(https://github.com/espressif/esp-idf/issues/805): to provide the position in the buffer of the pattern detected. requirement from AT application: in AT app, when no hardware flow control is enabled, in some situation the rx buffer might be full, and the terminator “+++” might be lost, we can use pattern detect interrupt to avoid missing the terminator. When pattern detect interrupt happens, it will not send a data event at the same time. 1. Add API to get position of detected pattern in rx buffer 2. Modify UART event example 3. Add comments for uart_flush, add alias API uart_flush_input to clear the rx buffer 4. Modify the way rx_buffered_len is calculated
		
			
				
	
	
		
			1332 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1332 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| 
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| #include <string.h>
 | |
| #include "esp_types.h"
 | |
| #include "esp_attr.h"
 | |
| #include "esp_intr.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_err.h"
 | |
| #include "esp_clk.h"
 | |
| #include "malloc.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/semphr.h"
 | |
| #include "freertos/xtensa_api.h"
 | |
| #include "freertos/task.h"
 | |
| #include "freertos/ringbuf.h"
 | |
| #include "soc/dport_reg.h"
 | |
| #include "soc/uart_struct.h"
 | |
| #include "driver/uart.h"
 | |
| #include "driver/gpio.h"
 | |
| 
 | |
| #define XOFF (char)0x13
 | |
| #define XON (char)0x11
 | |
| 
 | |
| static const char* UART_TAG = "uart";
 | |
| #define UART_CHECK(a, str, ret_val) \
 | |
|     if (!(a)) { \
 | |
|         ESP_LOGE(UART_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
 | |
|         return (ret_val); \
 | |
|     }
 | |
| 
 | |
| #define UART_EMPTY_THRESH_DEFAULT  (10)
 | |
| #define UART_FULL_THRESH_DEFAULT  (120)
 | |
| #define UART_TOUT_THRESH_DEFAULT   (10)
 | |
| #define UART_TX_IDLE_NUM_DEFAULT   (0)
 | |
| #define UART_PATTERN_DET_QLEN_DEFAULT (10)
 | |
| 
 | |
| #define UART_ENTER_CRITICAL_ISR(mux)    portENTER_CRITICAL_ISR(mux)
 | |
| #define UART_EXIT_CRITICAL_ISR(mux)     portEXIT_CRITICAL_ISR(mux)
 | |
| #define UART_ENTER_CRITICAL(mux)    portENTER_CRITICAL(mux)
 | |
| #define UART_EXIT_CRITICAL(mux)     portEXIT_CRITICAL(mux)
 | |
| 
 | |
| typedef struct {
 | |
|     uart_event_type_t type;        /*!< UART TX data type */
 | |
|     struct {
 | |
|         int brk_len;
 | |
|         size_t size;
 | |
|         uint8_t data[0];
 | |
|     } tx_data;
 | |
| } uart_tx_data_t;
 | |
| 
 | |
| typedef struct {
 | |
|     int wr;
 | |
|     int rd;
 | |
|     int len;
 | |
|     int* data;
 | |
| } uart_pat_rb_t;
 | |
| 
 | |
| typedef struct {
 | |
|     uart_port_t uart_num;               /*!< UART port number*/
 | |
|     int queue_size;                     /*!< UART event queue size*/
 | |
|     QueueHandle_t xQueueUart;           /*!< UART queue handler*/
 | |
|     intr_handle_t intr_handle;          /*!< UART interrupt handle*/
 | |
|     //rx parameters
 | |
|     int rx_buffered_len;                  /*!< UART cached data length */
 | |
|     SemaphoreHandle_t rx_mux;           /*!< UART RX data mutex*/
 | |
|     int rx_buf_size;                    /*!< RX ring buffer size */
 | |
|     RingbufHandle_t rx_ring_buf;        /*!< RX ring buffer handler*/
 | |
|     bool rx_buffer_full_flg;            /*!< RX ring buffer full flag. */
 | |
|     int rx_cur_remain;                  /*!< Data number that waiting to be read out in ring buffer item*/
 | |
|     uint8_t* rx_ptr;                    /*!< pointer to the current data in ring buffer*/
 | |
|     uint8_t* rx_head_ptr;               /*!< pointer to the head of RX item*/
 | |
|     uint8_t rx_data_buf[UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
 | |
|     uint8_t rx_stash_len;               /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
 | |
|     uart_pat_rb_t rx_pattern_pos;
 | |
| 
 | |
|     //tx parameters
 | |
|     SemaphoreHandle_t tx_fifo_sem;      /*!< UART TX FIFO semaphore*/
 | |
|     SemaphoreHandle_t tx_mux;           /*!< UART TX mutex*/
 | |
|     SemaphoreHandle_t tx_done_sem;      /*!< UART TX done semaphore*/
 | |
|     SemaphoreHandle_t tx_brk_sem;       /*!< UART TX send break done semaphore*/
 | |
|     int tx_buf_size;                    /*!< TX ring buffer size */
 | |
|     RingbufHandle_t tx_ring_buf;        /*!< TX ring buffer handler*/
 | |
|     bool tx_waiting_fifo;               /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
 | |
|     uint8_t* tx_ptr;                    /*!< TX data pointer to push to FIFO in TX buffer mode*/
 | |
|     uart_tx_data_t* tx_head;            /*!< TX data pointer to head of the current buffer in TX ring buffer*/
 | |
|     uint32_t tx_len_tot;                /*!< Total length of current item in ring buffer*/
 | |
|     uint32_t tx_len_cur;
 | |
|     uint8_t tx_brk_flg;                 /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
 | |
|     uint8_t tx_brk_len;                 /*!< TX break signal cycle length/number */
 | |
|     uint8_t tx_waiting_brk;             /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
 | |
| } uart_obj_t;
 | |
| 
 | |
| static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
 | |
| /* DRAM_ATTR is required to avoid UART array placed in flash, due to accessed from ISR */
 | |
| static DRAM_ATTR uart_dev_t* const UART[UART_NUM_MAX] = {&UART0, &UART1, &UART2};
 | |
| static portMUX_TYPE uart_spinlock[UART_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
 | |
| 
 | |
| esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((data_bit < UART_DATA_BITS_MAX), "data bit error", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     UART[uart_num]->conf0.bit_num = data_bit;
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t* data_bit)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     *(data_bit) = UART[uart_num]->conf0.bit_num;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((stop_bit < UART_STOP_BITS_MAX), "stop bit error", ESP_FAIL);
 | |
| 
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     //workaround for hardware bug, when uart stop bit set as 2-bit mode.
 | |
|     if (stop_bit == UART_STOP_BITS_2) {
 | |
|         stop_bit = UART_STOP_BITS_1;
 | |
|         UART[uart_num]->rs485_conf.dl1_en = 1;
 | |
|     } else {
 | |
|         UART[uart_num]->rs485_conf.dl1_en = 0;
 | |
|     }
 | |
|     UART[uart_num]->conf0.stop_bit_num = stop_bit;
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t* stop_bit)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     //workaround for hardware bug, when uart stop bit set as 2-bit mode.
 | |
|     if (UART[uart_num]->rs485_conf.dl1_en == 1 && UART[uart_num]->conf0.stop_bit_num == UART_STOP_BITS_1) {
 | |
|         (*stop_bit) = UART_STOP_BITS_2;
 | |
|     } else {
 | |
|         (*stop_bit) = UART[uart_num]->conf0.stop_bit_num;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     UART[uart_num]->conf0.parity = parity_mode & 0x1;
 | |
|     UART[uart_num]->conf0.parity_en = (parity_mode >> 1) & 0x1;
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t* parity_mode)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     int val = UART[uart_num]->conf0.val;
 | |
|     if(val & UART_PARITY_EN_M) {
 | |
|         if(val & UART_PARITY_M) {
 | |
|             (*parity_mode) = UART_PARITY_ODD;
 | |
|         } else {
 | |
|             (*parity_mode) = UART_PARITY_EVEN;
 | |
|         }
 | |
|     } else {
 | |
|         (*parity_mode) = UART_PARITY_DISABLE;
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     int uart_clk_freq;
 | |
|     if (UART[uart_num]->conf0.tick_ref_always_on == 0) {
 | |
|         /* this UART has been configured to use REF_TICK */
 | |
|         uart_clk_freq = REF_CLK_FREQ;
 | |
|     } else {
 | |
|         uart_clk_freq = esp_clk_apb_freq();
 | |
|     }
 | |
|     uint32_t clk_div = (((uart_clk_freq) << 4) / baud_rate);
 | |
|     if (clk_div < 16) {
 | |
|         /* baud rate is too high for this clock frequency */
 | |
|         ret = ESP_ERR_INVALID_ARG;
 | |
|     } else {
 | |
|         UART[uart_num]->clk_div.div_int = clk_div >> 4;
 | |
|         UART[uart_num]->clk_div.div_frag = clk_div & 0xf;
 | |
|     }
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t* baudrate)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     uint32_t clk_div = (UART[uart_num]->clk_div.div_int << 4) | UART[uart_num]->clk_div.div_frag;
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     (*baudrate) = ((UART_CLK_FREQ) << 4) / clk_div;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((((inverse_mask & ~UART_LINE_INV_MASK) == 0) || (inverse_mask == 0)), "inverse_mask error", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     CLEAR_PERI_REG_MASK(UART_CONF0_REG(uart_num), UART_LINE_INV_MASK);
 | |
|     SET_PERI_REG_MASK(UART_CONF0_REG(uart_num), inverse_mask);
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable,  uint8_t rx_thresh_xon,  uint8_t rx_thresh_xoff)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((rx_thresh_xon < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
 | |
|     UART_CHECK((rx_thresh_xoff < UART_FIFO_LEN), "rx flow xon thresh error", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     UART[uart_num]->flow_conf.sw_flow_con_en = enable? 1:0;
 | |
|     UART[uart_num]->flow_conf.xonoff_del = enable?1:0;
 | |
|     UART[uart_num]->swfc_conf.xon_threshold =  rx_thresh_xon;
 | |
|     UART[uart_num]->swfc_conf.xoff_threshold =  rx_thresh_xoff;
 | |
|     UART[uart_num]->swfc_conf.xon_char = XON;
 | |
|     UART[uart_num]->swfc_conf.xoff_char = XOFF;
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| //only when UART_HW_FLOWCTRL_RTS is set , will the rx_thresh value be set.
 | |
| esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((rx_thresh < UART_FIFO_LEN), "rx flow thresh error", ESP_FAIL);
 | |
|     UART_CHECK((flow_ctrl < UART_HW_FLOWCTRL_MAX), "hw_flowctrl mode error", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     if(flow_ctrl & UART_HW_FLOWCTRL_RTS) {
 | |
|         UART[uart_num]->conf1.rx_flow_thrhd = rx_thresh;
 | |
|         UART[uart_num]->conf1.rx_flow_en = 1;
 | |
|     } else {
 | |
|         UART[uart_num]->conf1.rx_flow_en = 0;
 | |
|     }
 | |
|     if(flow_ctrl & UART_HW_FLOWCTRL_CTS) {
 | |
|         UART[uart_num]->conf0.tx_flow_en = 1;
 | |
|     } else {
 | |
|         UART[uart_num]->conf0.tx_flow_en = 0;
 | |
|     }
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t* flow_ctrl)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     uart_hw_flowcontrol_t val = UART_HW_FLOWCTRL_DISABLE;
 | |
|     if(UART[uart_num]->conf1.rx_flow_en) {
 | |
|         val |= UART_HW_FLOWCTRL_RTS;
 | |
|     }
 | |
|     if(UART[uart_num]->conf0.tx_flow_en) {
 | |
|         val |= UART_HW_FLOWCTRL_CTS;
 | |
|     }
 | |
|     (*flow_ctrl) = val;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t uart_reset_rx_fifo(uart_port_t uart_num)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     //Due to hardware issue, we can not use fifo_rst to reset uart fifo.
 | |
|     //See description about UART_TXFIFO_RST and UART_RXFIFO_RST in <<esp32_technical_reference_manual>> v2.6 or later.
 | |
| 
 | |
|     // we read the data out and make `fifo_len == 0 && rd_addr == wr_addr`.
 | |
|     while(UART[uart_num]->status.rxfifo_cnt != 0 || (UART[uart_num]->mem_rx_status.wr_addr != UART[uart_num]->mem_rx_status.rd_addr)) {
 | |
|         READ_PERI_REG(UART_FIFO_REG(uart_num));
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     //intr_clr register is write-only
 | |
|     UART[uart_num]->int_clr.val = clr_mask;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     SET_PERI_REG_MASK(UART_INT_CLR_REG(uart_num), enable_mask);
 | |
|     SET_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), enable_mask);
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     CLEAR_PERI_REG_MASK(UART_INT_ENA_REG(uart_num), disable_mask);
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
 | |
| {
 | |
|     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
 | |
|     if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
 | |
|         int* pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
 | |
|         UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|         p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
 | |
|         p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
 | |
|         p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
 | |
|         UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|         free(pdata);
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t uart_pattern_enqueue(uart_port_t uart_num, int pos)
 | |
| {
 | |
|     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
 | |
|     int next = p_pos->wr + 1;
 | |
|     if (next >= p_pos->len) {
 | |
|         next = 0;
 | |
|     }
 | |
|     if (next == p_pos->rd) {
 | |
|         ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
 | |
|         ret = ESP_FAIL;
 | |
|     } else {
 | |
|         p_pos->data[p_pos->wr] = pos;
 | |
|         p_pos->wr = next;
 | |
|         ret = ESP_OK;
 | |
|     }
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
 | |
| {
 | |
|     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
 | |
|     if(p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     } else {
 | |
|         esp_err_t ret = ESP_OK;
 | |
|         UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|         uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
 | |
|         if (p_pos->rd == p_pos->wr) {
 | |
|             ret = ESP_FAIL;
 | |
|         } else {
 | |
|             p_pos->rd++;
 | |
|         }
 | |
|         if (p_pos->rd >= p_pos->len) {
 | |
|             p_pos->rd = 0;
 | |
|         }
 | |
|         UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|         return ret;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
 | |
| {
 | |
|     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     uart_pat_rb_t* p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
 | |
|     int rd = p_pos->rd;
 | |
|     while(rd != p_pos->wr) {
 | |
|         p_pos->data[rd] -= diff_len;
 | |
|         int rd_rec = rd;
 | |
|         rd ++;
 | |
|         if (rd >= p_pos->len) {
 | |
|             rd = 0;
 | |
|         }
 | |
|         if (p_pos->data[rd_rec] < 0) {
 | |
|             p_pos->rd = rd;
 | |
|         }
 | |
|     }
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| int uart_pattern_pop_pos(uart_port_t uart_num)
 | |
| {
 | |
|     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     uart_pat_rb_t* pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
 | |
|     int pos = -1;
 | |
|     if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
 | |
|         pos = pat_pos->data[pat_pos->rd];
 | |
|         uart_pattern_dequeue(uart_num);
 | |
|     }
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return pos;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_ERR_INVALID_STATE);
 | |
| 
 | |
|     int* pdata = (int*) malloc(queue_length * sizeof(int));
 | |
|     if(pdata == NULL) {
 | |
|         return ESP_ERR_NO_MEM;
 | |
|     }
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     int* ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
 | |
|     p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
 | |
|     p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
 | |
|     p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
 | |
|     p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     free(ptmp);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, "uart pattern set error\n", ESP_FAIL);
 | |
|     UART_CHECK(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
 | |
|     UART_CHECK(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, "uart pattern set error\n", ESP_FAIL);
 | |
|     UART[uart_num]->at_cmd_char.data = pattern_chr;
 | |
|     UART[uart_num]->at_cmd_char.char_num = chr_num;
 | |
|     UART[uart_num]->at_cmd_gaptout.rx_gap_tout = chr_tout;
 | |
|     UART[uart_num]->at_cmd_postcnt.post_idle_num = post_idle;
 | |
|     UART[uart_num]->at_cmd_precnt.pre_idle_num = pre_idle;
 | |
|     return uart_enable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
 | |
| }
 | |
| 
 | |
| esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
 | |
| {
 | |
|     return uart_disable_intr_mask(uart_num, UART_AT_CMD_CHAR_DET_INT_ENA_M);
 | |
| }
 | |
| 
 | |
| esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
 | |
| {
 | |
|     return uart_enable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
 | |
| }
 | |
| 
 | |
| esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
 | |
| {
 | |
|     return uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA|UART_RXFIFO_TOUT_INT_ENA);
 | |
| }
 | |
| 
 | |
| esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
 | |
| {
 | |
|     return uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA);
 | |
| }
 | |
| 
 | |
| esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((thresh < UART_FIFO_LEN), "empty intr threshold error", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     UART[uart_num]->int_clr.txfifo_empty = 1;
 | |
|     UART[uart_num]->conf1.txfifo_empty_thrhd = thresh & UART_TXFIFO_EMPTY_THRHD_V;
 | |
|     UART[uart_num]->int_ena.txfifo_empty = enable & 0x1;
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void*), void * arg, int intr_alloc_flags,  uart_isr_handle_t *handle)
 | |
| {
 | |
|     int ret;
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     switch(uart_num) {
 | |
|         case UART_NUM_1:
 | |
|             ret=esp_intr_alloc(ETS_UART1_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
 | |
|             break;
 | |
|         case UART_NUM_2:
 | |
|             ret=esp_intr_alloc(ETS_UART2_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
 | |
|             break;
 | |
|         case UART_NUM_0:
 | |
|             default:
 | |
|             ret=esp_intr_alloc(ETS_UART0_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
 | |
|             break;
 | |
|     }
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| esp_err_t uart_isr_free(uart_port_t uart_num)
 | |
| {
 | |
|     esp_err_t ret;
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     if (p_uart_obj[uart_num]->intr_handle==NULL) return ESP_ERR_INVALID_ARG;
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     ret=esp_intr_free(p_uart_obj[uart_num]->intr_handle);
 | |
|     p_uart_obj[uart_num]->intr_handle=NULL;
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| //internal signal can be output to multiple GPIO pads
 | |
| //only one GPIO pad can connect with input signal
 | |
| esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), "tx_io_num error", ESP_FAIL);
 | |
|     UART_CHECK((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), "rx_io_num error", ESP_FAIL);
 | |
|     UART_CHECK((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), "rts_io_num error", ESP_FAIL);
 | |
|     UART_CHECK((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), "cts_io_num error", ESP_FAIL);
 | |
| 
 | |
|     int tx_sig, rx_sig, rts_sig, cts_sig;
 | |
|     switch(uart_num) {
 | |
|         case UART_NUM_0:
 | |
|             tx_sig = U0TXD_OUT_IDX;
 | |
|             rx_sig = U0RXD_IN_IDX;
 | |
|             rts_sig = U0RTS_OUT_IDX;
 | |
|             cts_sig = U0CTS_IN_IDX;
 | |
|             break;
 | |
|         case UART_NUM_1:
 | |
|             tx_sig = U1TXD_OUT_IDX;
 | |
|             rx_sig = U1RXD_IN_IDX;
 | |
|             rts_sig = U1RTS_OUT_IDX;
 | |
|             cts_sig = U1CTS_IN_IDX;
 | |
|             break;
 | |
|         case UART_NUM_2:
 | |
|             tx_sig = U2TXD_OUT_IDX;
 | |
|             rx_sig = U2RXD_IN_IDX;
 | |
|             rts_sig = U2RTS_OUT_IDX;
 | |
|             cts_sig = U2CTS_IN_IDX;
 | |
|             break;
 | |
|         case UART_NUM_MAX:
 | |
|             default:
 | |
|             tx_sig = U0TXD_OUT_IDX;
 | |
|             rx_sig = U0RXD_IN_IDX;
 | |
|             rts_sig = U0RTS_OUT_IDX;
 | |
|             cts_sig = U0CTS_IN_IDX;
 | |
|             break;
 | |
|     }
 | |
|     if(tx_io_num >= 0) {
 | |
|         PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
 | |
|         gpio_set_level(tx_io_num, 1);
 | |
|         gpio_matrix_out(tx_io_num, tx_sig, 0, 0);
 | |
|     }
 | |
| 
 | |
|     if(rx_io_num >= 0) {
 | |
|         PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
 | |
|         gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
 | |
|         gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
 | |
|         gpio_matrix_in(rx_io_num, rx_sig, 0);
 | |
|     }
 | |
|     if(rts_io_num >= 0) {
 | |
|         PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
 | |
|         gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
 | |
|         gpio_matrix_out(rts_io_num, rts_sig, 0, 0);
 | |
|     }
 | |
|     if(cts_io_num >= 0) {
 | |
|         PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
 | |
|         gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
 | |
|         gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
 | |
|         gpio_matrix_in(cts_io_num, cts_sig, 0);
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_rts(uart_port_t uart_num, int level)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((UART[uart_num]->conf1.rx_flow_en != 1), "disable hw flowctrl before using sw control", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     UART[uart_num]->conf0.sw_rts = level & 0x1;
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     UART[uart_num]->conf0.sw_dtr = level & 0x1;
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((idle_num <= UART_TX_IDLE_NUM_V), "uart idle num error", ESP_FAIL);
 | |
| 
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     UART[uart_num]->idle_conf.tx_idle_num = idle_num;
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
 | |
| {
 | |
|     esp_err_t r;
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((uart_config), "param null", ESP_FAIL);
 | |
|     if(uart_num == UART_NUM_0) {
 | |
|         periph_module_enable(PERIPH_UART0_MODULE);
 | |
|     } else if(uart_num == UART_NUM_1) {
 | |
|         periph_module_enable(PERIPH_UART1_MODULE);
 | |
|     } else if(uart_num == UART_NUM_2) {
 | |
|         periph_module_enable(PERIPH_UART2_MODULE);
 | |
|     }
 | |
|     r = uart_set_hw_flow_ctrl(uart_num, uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
 | |
|     if (r != ESP_OK) return r;
 | |
| 
 | |
|     UART[uart_num]->conf0.val =
 | |
|           (uart_config->parity << UART_PARITY_S)
 | |
|         | (uart_config->data_bits << UART_BIT_NUM_S)
 | |
|         | ((uart_config->flow_ctrl & UART_HW_FLOWCTRL_CTS) ? UART_TX_FLOW_EN : 0x0)
 | |
|         | (uart_config->use_ref_tick ? 0 : UART_TICK_REF_ALWAYS_ON_M);
 | |
| 
 | |
|     r = uart_set_baudrate(uart_num, uart_config->baud_rate);
 | |
|     if (r != ESP_OK) return r;
 | |
|     r = uart_set_tx_idle_num(uart_num, UART_TX_IDLE_NUM_DEFAULT);
 | |
|     if (r != ESP_OK) return r;
 | |
|     r = uart_set_stop_bits(uart_num, uart_config->stop_bits);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((intr_conf), "param null", ESP_FAIL);
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     UART[uart_num]->int_clr.val = UART_INTR_MASK;
 | |
|     if(intr_conf->intr_enable_mask & UART_RXFIFO_TOUT_INT_ENA_M) {
 | |
|         UART[uart_num]->conf1.rx_tout_thrhd = ((intr_conf->rx_timeout_thresh) & UART_RX_TOUT_THRHD_V);
 | |
|         UART[uart_num]->conf1.rx_tout_en = 1;
 | |
|     } else {
 | |
|         UART[uart_num]->conf1.rx_tout_en = 0;
 | |
|     }
 | |
|     if(intr_conf->intr_enable_mask & UART_RXFIFO_FULL_INT_ENA_M) {
 | |
|         UART[uart_num]->conf1.rxfifo_full_thrhd = intr_conf->rxfifo_full_thresh;
 | |
|     }
 | |
|     if(intr_conf->intr_enable_mask & UART_TXFIFO_EMPTY_INT_ENA_M) {
 | |
|         UART[uart_num]->conf1.txfifo_empty_thrhd = intr_conf->txfifo_empty_intr_thresh;
 | |
|     }
 | |
|     UART[uart_num]->int_ena.val = intr_conf->intr_enable_mask;
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static int uart_find_pattern_from_last(uint8_t* buf, int length, uint8_t pat_chr, int pat_num)
 | |
| {
 | |
|     int cnt = 0;
 | |
|     int len = length;
 | |
|     while (len >= 0) {
 | |
|         if (buf[len] == pat_chr) {
 | |
|             cnt++;
 | |
|         } else {
 | |
|             cnt = 0;
 | |
|         }
 | |
|         if (cnt >= pat_num) {
 | |
|             break;
 | |
|         }
 | |
|         len --;
 | |
|     }
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| //internal isr handler for default driver code.
 | |
| static void uart_rx_intr_handler_default(void *param)
 | |
| {
 | |
|     uart_obj_t *p_uart = (uart_obj_t*) param;
 | |
|     uint8_t uart_num = p_uart->uart_num;
 | |
|     uart_dev_t* uart_reg = UART[uart_num];
 | |
|     int rx_fifo_len = uart_reg->status.rxfifo_cnt;
 | |
|     uint8_t buf_idx = 0;
 | |
|     uint32_t uart_intr_status = UART[uart_num]->int_st.val;
 | |
|     uart_event_t uart_event;
 | |
|     portBASE_TYPE HPTaskAwoken = 0;
 | |
|     static uint8_t pat_flg = 0;
 | |
|     while(uart_intr_status != 0x0) {
 | |
|         buf_idx = 0;
 | |
|         uart_event.type = UART_EVENT_MAX;
 | |
|         if(uart_intr_status & UART_TXFIFO_EMPTY_INT_ST_M) {
 | |
|             uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
 | |
|             uart_disable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
 | |
|             if(p_uart->tx_waiting_brk) {
 | |
|                 continue;
 | |
|             }
 | |
|             //TX semaphore will only be used when tx_buf_size is zero.
 | |
|             if(p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
 | |
|                 p_uart->tx_waiting_fifo = false;
 | |
|                 xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
 | |
|                 if(HPTaskAwoken == pdTRUE) {
 | |
|                     portYIELD_FROM_ISR() ;
 | |
|                 }
 | |
|             } else {
 | |
|                 //We don't use TX ring buffer, because the size is zero.
 | |
|                 if(p_uart->tx_buf_size == 0) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 int tx_fifo_rem = UART_FIFO_LEN - UART[uart_num]->status.txfifo_cnt;
 | |
|                 bool en_tx_flg = false;
 | |
|                 //We need to put a loop here, in case all the buffer items are very short.
 | |
|                 //That would cause a watch_dog reset because empty interrupt happens so often.
 | |
|                 //Although this is a loop in ISR, this loop will execute at most 128 turns.
 | |
|                 while(tx_fifo_rem) {
 | |
|                     if(p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
 | |
|                         size_t size;
 | |
|                         p_uart->tx_head = (uart_tx_data_t*) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
 | |
|                         if(p_uart->tx_head) {
 | |
|                             //The first item is the data description
 | |
|                             //Get the first item to get the data information
 | |
|                             if(p_uart->tx_len_tot == 0) {
 | |
|                                 p_uart->tx_ptr = NULL;
 | |
|                                 p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
 | |
|                                 if(p_uart->tx_head->type == UART_DATA_BREAK) {
 | |
|                                     p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
 | |
|                                     p_uart->tx_brk_flg = 1;
 | |
|                                     p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
 | |
|                                 }
 | |
|                                 //We have saved the data description from the 1st item, return buffer.
 | |
|                                 vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
 | |
|                                 if(HPTaskAwoken == pdTRUE) {
 | |
|                                     portYIELD_FROM_ISR() ;
 | |
|                                 }
 | |
|                             }else if(p_uart->tx_ptr == NULL) {
 | |
|                                 //Update the TX item pointer, we will need this to return item to buffer.
 | |
|                                 p_uart->tx_ptr =  (uint8_t*) p_uart->tx_head;
 | |
|                                 en_tx_flg = true;
 | |
|                                 p_uart->tx_len_cur = size;
 | |
|                             }
 | |
|                         }
 | |
|                         else {
 | |
|                             //Can not get data from ring buffer, return;
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                     if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
 | |
|                         //To fill the TX FIFO.
 | |
|                         int send_len = p_uart->tx_len_cur > tx_fifo_rem ? tx_fifo_rem : p_uart->tx_len_cur;
 | |
|                         for(buf_idx = 0; buf_idx < send_len; buf_idx++) {
 | |
|                             WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), *(p_uart->tx_ptr++) & 0xff);
 | |
|                         }
 | |
|                         p_uart->tx_len_tot -= send_len;
 | |
|                         p_uart->tx_len_cur -= send_len;
 | |
|                         tx_fifo_rem -= send_len;
 | |
|                         if (p_uart->tx_len_cur == 0) {
 | |
|                             //Return item to ring buffer.
 | |
|                             vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
 | |
|                             if(HPTaskAwoken == pdTRUE) {
 | |
|                                 portYIELD_FROM_ISR() ;
 | |
|                             }
 | |
|                             p_uart->tx_head = NULL;
 | |
|                             p_uart->tx_ptr = NULL;
 | |
|                             //Sending item done, now we need to send break if there is a record.
 | |
|                             //Set TX break signal after FIFO is empty
 | |
|                             if(p_uart->tx_brk_flg == 1 && p_uart->tx_len_tot == 0) {
 | |
|                                 UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
 | |
|                                 uart_reg->int_ena.tx_brk_done = 0;
 | |
|                                 uart_reg->idle_conf.tx_brk_num = p_uart->tx_brk_len;
 | |
|                                 uart_reg->conf0.txd_brk = 1;
 | |
|                                 uart_reg->int_clr.tx_brk_done = 1;
 | |
|                                 uart_reg->int_ena.tx_brk_done = 1;
 | |
|                                 UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
 | |
|                                 p_uart->tx_waiting_brk = 1;
 | |
|                             } else {
 | |
|                                 //enable TX empty interrupt
 | |
|                                 en_tx_flg = true;
 | |
|                             }
 | |
|                         } else {
 | |
|                             //enable TX empty interrupt
 | |
|                             en_tx_flg = true;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 if (en_tx_flg) {
 | |
|                     uart_clear_intr_status(uart_num, UART_TXFIFO_EMPTY_INT_CLR_M);
 | |
|                     uart_enable_intr_mask(uart_num, UART_TXFIFO_EMPTY_INT_ENA_M);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else if ((uart_intr_status & UART_RXFIFO_TOUT_INT_ST_M)
 | |
|                 || (uart_intr_status & UART_RXFIFO_FULL_INT_ST_M)
 | |
|                 || (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M)
 | |
|                 ) {
 | |
|             rx_fifo_len = uart_reg->status.rxfifo_cnt;
 | |
|             if(pat_flg == 1) {
 | |
|                 uart_intr_status |= UART_AT_CMD_CHAR_DET_INT_ST_M;
 | |
|                 pat_flg = 0;
 | |
|             }
 | |
|             if (p_uart->rx_buffer_full_flg == false) {
 | |
|                 //We have to read out all data in RX FIFO to clear the interrupt signal
 | |
|                 while (buf_idx < rx_fifo_len) {
 | |
|                     p_uart->rx_data_buf[buf_idx++] = uart_reg->fifo.rw_byte;
 | |
|                 }
 | |
|                 uint8_t pat_chr = uart_reg->at_cmd_char.data;
 | |
|                 int pat_num = uart_reg->at_cmd_char.char_num;
 | |
|                 int pat_idx = -1;
 | |
| 
 | |
|                 //Get the buffer from the FIFO
 | |
|                 if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
 | |
|                     uart_clear_intr_status(uart_num, UART_AT_CMD_CHAR_DET_INT_CLR_M);
 | |
|                     uart_event.type = UART_PATTERN_DET;
 | |
|                     uart_event.size = rx_fifo_len;
 | |
|                     pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
 | |
|                 } else {
 | |
|                     //After Copying the Data From FIFO ,Clear intr_status
 | |
|                     uart_clear_intr_status(uart_num, UART_RXFIFO_TOUT_INT_CLR_M | UART_RXFIFO_FULL_INT_CLR_M);
 | |
|                     uart_event.type = UART_DATA;
 | |
|                     uart_event.size = rx_fifo_len;
 | |
|                 }
 | |
|                 p_uart->rx_stash_len = rx_fifo_len;
 | |
|                 //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
 | |
|                 //Mainly for applications that uses flow control or small ring buffer.
 | |
|                 if(pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
 | |
|                     uart_disable_intr_mask(uart_num, UART_RXFIFO_TOUT_INT_ENA_M | UART_RXFIFO_FULL_INT_ENA_M);
 | |
|                     if (uart_event.type == UART_PATTERN_DET) {
 | |
|                         if (rx_fifo_len < pat_num) {
 | |
|                             //some of the characters are read out in last interrupt
 | |
|                             uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
 | |
|                         } else {
 | |
|                             uart_pattern_enqueue(uart_num,
 | |
|                                     pat_idx <= -1 ?
 | |
|                                             //can not find the pattern in buffer,
 | |
|                                             p_uart->rx_buffered_len + p_uart->rx_stash_len :
 | |
|                                             // find the pattern in buffer
 | |
|                                             p_uart->rx_buffered_len + pat_idx);
 | |
|                         }
 | |
|                         if ((p_uart->xQueueUart != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken))) {
 | |
|                             ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
 | |
|                         }
 | |
|                     }
 | |
|                     uart_event.type = UART_BUFFER_FULL;
 | |
|                     p_uart->rx_buffer_full_flg = true;
 | |
|                 } else {
 | |
|                     UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
 | |
|                     if (uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
 | |
|                         if (rx_fifo_len < pat_num) {
 | |
|                             //some of the characters are read out in last interrupt
 | |
|                             uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
 | |
|                         } else if(pat_idx >= 0) {
 | |
|                             // find pattern in statsh buffer.
 | |
|                             uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
 | |
|                         }
 | |
|                     }
 | |
|                     p_uart->rx_buffered_len += p_uart->rx_stash_len;
 | |
|                     UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
 | |
|                 }
 | |
|                 if(HPTaskAwoken == pdTRUE) {
 | |
|                     portYIELD_FROM_ISR() ;
 | |
|                 }
 | |
|             } else {
 | |
|                 uart_disable_intr_mask(uart_num, UART_RXFIFO_FULL_INT_ENA_M | UART_RXFIFO_TOUT_INT_ENA_M);
 | |
|                 uart_clear_intr_status(uart_num, UART_RXFIFO_FULL_INT_CLR_M | UART_RXFIFO_TOUT_INT_CLR_M);
 | |
|                 if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
 | |
|                     uart_reg->int_clr.at_cmd_char_det = 1;
 | |
|                     uart_event.type = UART_PATTERN_DET;
 | |
|                     uart_event.size = rx_fifo_len;
 | |
|                     pat_flg = 1;
 | |
|                 }
 | |
|             }
 | |
|         } else if(uart_intr_status & UART_RXFIFO_OVF_INT_ST_M) {
 | |
|             // When fifo overflows, we reset the fifo.
 | |
|             UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
 | |
|             uart_reset_rx_fifo(uart_num);
 | |
|             uart_reg->int_clr.rxfifo_ovf = 1;
 | |
|             UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
 | |
|             uart_event.type = UART_FIFO_OVF;
 | |
|         } else if(uart_intr_status & UART_BRK_DET_INT_ST_M) {
 | |
|             uart_reg->int_clr.brk_det = 1;
 | |
|             uart_event.type = UART_BREAK;
 | |
|         } else if(uart_intr_status & UART_FRM_ERR_INT_ST_M) {
 | |
|             uart_reg->int_clr.frm_err = 1;
 | |
|             uart_event.type = UART_FRAME_ERR;
 | |
|         } else if(uart_intr_status & UART_PARITY_ERR_INT_ST_M) {
 | |
|             uart_reg->int_clr.parity_err = 1;
 | |
|             uart_event.type = UART_PARITY_ERR;
 | |
|         } else if(uart_intr_status & UART_TX_BRK_DONE_INT_ST_M) {
 | |
|             UART_ENTER_CRITICAL_ISR(&uart_spinlock[uart_num]);
 | |
|             uart_reg->conf0.txd_brk = 0;
 | |
|             uart_reg->int_ena.tx_brk_done = 0;
 | |
|             uart_reg->int_clr.tx_brk_done = 1;
 | |
|             if(p_uart->tx_brk_flg == 1) {
 | |
|                 uart_reg->int_ena.txfifo_empty = 1;
 | |
|             }
 | |
|             UART_EXIT_CRITICAL_ISR(&uart_spinlock[uart_num]);
 | |
|             if(p_uart->tx_brk_flg == 1) {
 | |
|                 p_uart->tx_brk_flg = 0;
 | |
|                 p_uart->tx_waiting_brk = 0;
 | |
|             } else {
 | |
|                 xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
 | |
|                 if(HPTaskAwoken == pdTRUE) {
 | |
|                     portYIELD_FROM_ISR() ;
 | |
|                 }
 | |
|             }
 | |
|         } else if(uart_intr_status & UART_TX_BRK_IDLE_DONE_INT_ST_M) {
 | |
|             uart_disable_intr_mask(uart_num, UART_TX_BRK_IDLE_DONE_INT_ENA_M);
 | |
|             uart_clear_intr_status(uart_num, UART_TX_BRK_IDLE_DONE_INT_CLR_M);
 | |
|         } else if(uart_intr_status & UART_AT_CMD_CHAR_DET_INT_ST_M) {
 | |
|             uart_reg->int_clr.at_cmd_char_det = 1;
 | |
|             uart_event.type = UART_PATTERN_DET;
 | |
|         } else if(uart_intr_status & UART_TX_DONE_INT_ST_M) {
 | |
|             uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
 | |
|             uart_clear_intr_status(uart_num, UART_TX_DONE_INT_CLR_M);
 | |
|             xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
 | |
|             if(HPTaskAwoken == pdTRUE) {
 | |
|                 portYIELD_FROM_ISR() ;
 | |
|             }
 | |
|         } else {
 | |
|             uart_reg->int_clr.val = uart_intr_status; /*simply clear all other intr status*/
 | |
|             uart_event.type = UART_EVENT_MAX;
 | |
|         }
 | |
| 
 | |
|         if(uart_event.type != UART_EVENT_MAX && p_uart->xQueueUart) {
 | |
|             if (pdFALSE == xQueueSendFromISR(p_uart->xQueueUart, (void * )&uart_event, &HPTaskAwoken)) {
 | |
|                 ESP_EARLY_LOGW(UART_TAG, "UART event queue full");
 | |
|             }
 | |
|             if(HPTaskAwoken == pdTRUE) {
 | |
|                 portYIELD_FROM_ISR() ;
 | |
|             }
 | |
|         }
 | |
|         uart_intr_status = uart_reg->int_st.val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**************************************************************/
 | |
| esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
 | |
|     BaseType_t res;
 | |
|     portTickType ticks_end = xTaskGetTickCount() + ticks_to_wait;
 | |
|     //Take tx_mux
 | |
|     res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait);
 | |
|     if(res == pdFALSE) {
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
|     ticks_to_wait = ticks_end - xTaskGetTickCount();
 | |
|     xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
 | |
|     ticks_to_wait = ticks_end - xTaskGetTickCount();
 | |
|     if(UART[uart_num]->status.txfifo_cnt == 0) {
 | |
|         xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
 | |
|         return ESP_OK;
 | |
|     }
 | |
|     uart_enable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
 | |
|     //take 2nd tx_done_sem, wait given from ISR
 | |
|     res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait);
 | |
|     if(res == pdFALSE) {
 | |
|         uart_disable_intr_mask(uart_num, UART_TX_DONE_INT_ENA_M);
 | |
|         xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
|     xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t uart_set_break(uart_port_t uart_num, int break_num)
 | |
| {
 | |
|     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     UART[uart_num]->idle_conf.tx_brk_num = break_num;
 | |
|     UART[uart_num]->conf0.txd_brk = 1;
 | |
|     UART[uart_num]->int_clr.tx_brk_done = 1;
 | |
|     UART[uart_num]->int_ena.tx_brk_done = 1;
 | |
|     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| //Fill UART tx_fifo and return a number,
 | |
| //This function by itself is not thread-safe, always call from within a muxed section.
 | |
| static int uart_fill_fifo(uart_port_t uart_num, const char* buffer, uint32_t len)
 | |
| {
 | |
|     uint8_t i = 0;
 | |
|     uint8_t tx_fifo_cnt = UART[uart_num]->status.txfifo_cnt;
 | |
|     uint8_t tx_remain_fifo_cnt = (UART_FIFO_LEN - tx_fifo_cnt);
 | |
|     uint8_t copy_cnt = (len >= tx_remain_fifo_cnt ? tx_remain_fifo_cnt : len);
 | |
|     for(i = 0; i < copy_cnt; i++) {
 | |
|         WRITE_PERI_REG(UART_FIFO_AHB_REG(uart_num), buffer[i]);
 | |
|     }
 | |
|     return copy_cnt;
 | |
| }
 | |
| 
 | |
| int uart_tx_chars(uart_port_t uart_num, const char* buffer, uint32_t len)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
 | |
|     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
 | |
|     UART_CHECK(buffer, "buffer null", (-1));
 | |
|     if(len == 0) {
 | |
|         return 0;
 | |
|     }
 | |
|     xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
 | |
|     int tx_len = uart_fill_fifo(uart_num, (const char*) buffer, len);
 | |
|     xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
 | |
|     return tx_len;
 | |
| }
 | |
| 
 | |
| static int uart_tx_all(uart_port_t uart_num, const char* src, size_t size, bool brk_en, int brk_len)
 | |
| {
 | |
|     if(size == 0) {
 | |
|         return 0;
 | |
|     }
 | |
|     size_t original_size = size;
 | |
| 
 | |
|     //lock for uart_tx
 | |
|     xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY);
 | |
|     if(p_uart_obj[uart_num]->tx_buf_size > 0) {
 | |
|         int max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
 | |
|         int offset = 0;
 | |
|         uart_tx_data_t evt;
 | |
|         evt.tx_data.size = size;
 | |
|         evt.tx_data.brk_len = brk_len;
 | |
|         if(brk_en) {
 | |
|             evt.type = UART_DATA_BREAK;
 | |
|         } else {
 | |
|             evt.type = UART_DATA;
 | |
|         }
 | |
|         xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
 | |
|         while(size > 0) {
 | |
|             int send_size = size > max_size / 2 ? max_size / 2 : size;
 | |
|             xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void*) (src + offset), send_size, portMAX_DELAY);
 | |
|             size -= send_size;
 | |
|             offset += send_size;
 | |
|             uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
 | |
|         }
 | |
|     } else {
 | |
|         while(size) {
 | |
|             //semaphore for tx_fifo available
 | |
|             if(pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) {
 | |
|                 size_t sent = uart_fill_fifo(uart_num, (char*) src, size);
 | |
|                 if(sent < size) {
 | |
|                     p_uart_obj[uart_num]->tx_waiting_fifo = true;
 | |
|                     uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
 | |
|                 }
 | |
|                 size -= sent;
 | |
|                 src += sent;
 | |
|             }
 | |
|         }
 | |
|         if(brk_en) {
 | |
|             uart_set_break(uart_num, brk_len);
 | |
|             xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY);
 | |
|         }
 | |
|         xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
 | |
|     }
 | |
|     xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
 | |
|     return original_size;
 | |
| }
 | |
| 
 | |
| int uart_write_bytes(uart_port_t uart_num, const char* src, size_t size)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
 | |
|     UART_CHECK((p_uart_obj[uart_num] != NULL), "uart driver error", (-1));
 | |
|     UART_CHECK(src, "buffer null", (-1));
 | |
|     return uart_tx_all(uart_num, src, size, 0, 0);
 | |
| }
 | |
| 
 | |
| int uart_write_bytes_with_break(uart_port_t uart_num, const char* src, size_t size, int brk_len)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
 | |
|     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
 | |
|     UART_CHECK((size > 0), "uart size error", (-1));
 | |
|     UART_CHECK((src), "uart data null", (-1));
 | |
|     UART_CHECK((brk_len > 0 && brk_len < 256), "break_num error", (-1));
 | |
|     return uart_tx_all(uart_num, src, size, 1, brk_len);
 | |
| }
 | |
| 
 | |
| int uart_read_bytes(uart_port_t uart_num, uint8_t* buf, uint32_t length, TickType_t ticks_to_wait)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", (-1));
 | |
|     UART_CHECK((buf), "uart data null", (-1));
 | |
|     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", (-1));
 | |
|     uint8_t* data = NULL;
 | |
|     size_t size;
 | |
|     size_t copy_len = 0;
 | |
|     int len_tmp;
 | |
|     if(xSemaphoreTake(p_uart_obj[uart_num]->rx_mux,(portTickType)ticks_to_wait) != pdTRUE) {
 | |
|         return -1;
 | |
|     }
 | |
|     while(length) {
 | |
|         if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
 | |
|             data = (uint8_t*) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait);
 | |
|             if(data) {
 | |
|                 p_uart_obj[uart_num]->rx_head_ptr = data;
 | |
|                 p_uart_obj[uart_num]->rx_ptr = data;
 | |
|                 p_uart_obj[uart_num]->rx_cur_remain = size;
 | |
|             } else {
 | |
|                 xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
 | |
|                 return copy_len;
 | |
|             }
 | |
|         }
 | |
|         if(p_uart_obj[uart_num]->rx_cur_remain > length) {
 | |
|             len_tmp = length;
 | |
|         } else {
 | |
|             len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
 | |
|         }
 | |
|         memcpy(buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
 | |
|         UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|         p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
 | |
|         uart_pattern_queue_update(uart_num, len_tmp);
 | |
|         p_uart_obj[uart_num]->rx_ptr += len_tmp;
 | |
|         UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|         p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
 | |
|         copy_len += len_tmp;
 | |
|         length -= len_tmp;
 | |
|         if(p_uart_obj[uart_num]->rx_cur_remain == 0) {
 | |
|             vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
 | |
|             p_uart_obj[uart_num]->rx_head_ptr = NULL;
 | |
|             p_uart_obj[uart_num]->rx_ptr = NULL;
 | |
|             if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
 | |
|                 BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
 | |
|                 if(res == pdTRUE) {
 | |
|                     UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|                     p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
 | |
|                     UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|                     p_uart_obj[uart_num]->rx_buffer_full_flg = false;
 | |
|                     uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
 | |
|     return copy_len;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t* size)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
 | |
|     *size = p_uart_obj[uart_num]->rx_buffered_len;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
 | |
| 
 | |
| esp_err_t uart_flush_input(uart_port_t uart_num)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((p_uart_obj[uart_num]), "uart driver error", ESP_FAIL);
 | |
|     uart_obj_t* p_uart = p_uart_obj[uart_num];
 | |
|     uint8_t* data;
 | |
|     size_t size;
 | |
| 
 | |
|     //rx sem protect the ring buffer read related functions
 | |
|     xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY);
 | |
|     uart_disable_rx_intr(p_uart_obj[uart_num]->uart_num);
 | |
|     while(true) {
 | |
|         if(p_uart->rx_head_ptr) {
 | |
|             vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
 | |
|             UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|             p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
 | |
|             uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
 | |
|             UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|             p_uart->rx_ptr = NULL;
 | |
|             p_uart->rx_cur_remain = 0;
 | |
|             p_uart->rx_head_ptr = NULL;
 | |
|         }
 | |
|         data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0);
 | |
|         if(data == NULL) {
 | |
|             break;
 | |
|         }
 | |
|         UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|         p_uart_obj[uart_num]->rx_buffered_len -= size;
 | |
|         uart_pattern_queue_update(uart_num, size);
 | |
|         UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|         vRingbufferReturnItem(p_uart->rx_ring_buf, data);
 | |
|         if(p_uart_obj[uart_num]->rx_buffer_full_flg) {
 | |
|             BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
 | |
|             if(res == pdTRUE) {
 | |
|                 UART_ENTER_CRITICAL(&uart_spinlock[uart_num]);
 | |
|                 p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
 | |
|                 UART_EXIT_CRITICAL(&uart_spinlock[uart_num]);
 | |
|                 p_uart_obj[uart_num]->rx_buffer_full_flg = false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     p_uart->rx_ptr = NULL;
 | |
|     p_uart->rx_cur_remain = 0;
 | |
|     p_uart->rx_head_ptr = NULL;
 | |
|     uart_reset_rx_fifo(uart_num);
 | |
|     uart_enable_rx_intr(p_uart_obj[uart_num]->uart_num);
 | |
|     xSemaphoreGive(p_uart->rx_mux);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
 | |
| {
 | |
|     esp_err_t r;
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     UART_CHECK((rx_buffer_size > UART_FIFO_LEN), "uart rx buffer length error(>128)", ESP_FAIL);
 | |
|     UART_CHECK((tx_buffer_size > UART_FIFO_LEN) || (tx_buffer_size == 0), "uart tx buffer length error(>128 or 0)", ESP_FAIL);
 | |
|     UART_CHECK((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM set in intr_alloc_flags", ESP_FAIL); /* uart_rx_intr_handler_default is not in IRAM */
 | |
| 
 | |
|     if(p_uart_obj[uart_num] == NULL) {
 | |
|         p_uart_obj[uart_num] = (uart_obj_t*) calloc(1, sizeof(uart_obj_t));
 | |
|         if(p_uart_obj[uart_num] == NULL) {
 | |
|             ESP_LOGE(UART_TAG, "UART driver malloc error");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
|         p_uart_obj[uart_num]->uart_num = uart_num;
 | |
|         p_uart_obj[uart_num]->tx_fifo_sem = xSemaphoreCreateBinary();
 | |
|         xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
 | |
|         p_uart_obj[uart_num]->tx_done_sem = xSemaphoreCreateBinary();
 | |
|         p_uart_obj[uart_num]->tx_brk_sem = xSemaphoreCreateBinary();
 | |
|         p_uart_obj[uart_num]->tx_mux = xSemaphoreCreateMutex();
 | |
|         p_uart_obj[uart_num]->rx_mux = xSemaphoreCreateMutex();
 | |
|         p_uart_obj[uart_num]->queue_size = queue_size;
 | |
|         p_uart_obj[uart_num]->tx_ptr = NULL;
 | |
|         p_uart_obj[uart_num]->tx_head = NULL;
 | |
|         p_uart_obj[uart_num]->tx_len_tot = 0;
 | |
|         p_uart_obj[uart_num]->tx_brk_flg = 0;
 | |
|         p_uart_obj[uart_num]->tx_brk_len = 0;
 | |
|         p_uart_obj[uart_num]->tx_waiting_brk = 0;
 | |
|         p_uart_obj[uart_num]->rx_buffered_len = 0;
 | |
|         uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
 | |
| 
 | |
|         if(uart_queue) {
 | |
|             p_uart_obj[uart_num]->xQueueUart = xQueueCreate(queue_size, sizeof(uart_event_t));
 | |
|             *uart_queue = p_uart_obj[uart_num]->xQueueUart;
 | |
|             ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->xQueueUart));
 | |
|         } else {
 | |
|             p_uart_obj[uart_num]->xQueueUart = NULL;
 | |
|         }
 | |
|         p_uart_obj[uart_num]->rx_buffer_full_flg = false;
 | |
|         p_uart_obj[uart_num]->tx_waiting_fifo = false;
 | |
|         p_uart_obj[uart_num]->rx_ptr = NULL;
 | |
|         p_uart_obj[uart_num]->rx_cur_remain = 0;
 | |
|         p_uart_obj[uart_num]->rx_head_ptr = NULL;
 | |
|         p_uart_obj[uart_num]->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
 | |
|         if(tx_buffer_size > 0) {
 | |
|             p_uart_obj[uart_num]->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
 | |
|             p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
 | |
|         } else {
 | |
|             p_uart_obj[uart_num]->tx_ring_buf = NULL;
 | |
|             p_uart_obj[uart_num]->tx_buf_size = 0;
 | |
|         }
 | |
|     } else {
 | |
|         ESP_LOGE(UART_TAG, "UART driver already installed");
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
| 
 | |
|     r=uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle);
 | |
|     if (r!=ESP_OK) goto err;
 | |
|     uart_intr_config_t uart_intr = {
 | |
|         .intr_enable_mask = UART_RXFIFO_FULL_INT_ENA_M
 | |
|                             | UART_RXFIFO_TOUT_INT_ENA_M
 | |
|                             | UART_FRM_ERR_INT_ENA_M
 | |
|                             | UART_RXFIFO_OVF_INT_ENA_M
 | |
|                             | UART_BRK_DET_INT_ENA_M
 | |
|                             | UART_PARITY_ERR_INT_ENA_M,
 | |
|         .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
 | |
|         .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
 | |
|         .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT
 | |
|     };
 | |
|     r=uart_intr_config(uart_num, &uart_intr);
 | |
|     if (r!=ESP_OK) goto err;
 | |
|     return r;
 | |
| 
 | |
| err:
 | |
|     uart_driver_delete(uart_num);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| //Make sure no other tasks are still using UART before you call this function
 | |
| esp_err_t uart_driver_delete(uart_port_t uart_num)
 | |
| {
 | |
|     UART_CHECK((uart_num < UART_NUM_MAX), "uart_num error", ESP_FAIL);
 | |
|     if(p_uart_obj[uart_num] == NULL) {
 | |
|         ESP_LOGI(UART_TAG, "ALREADY NULL");
 | |
|         return ESP_OK;
 | |
|     }
 | |
|     esp_intr_free(p_uart_obj[uart_num]->intr_handle);
 | |
|     uart_disable_rx_intr(uart_num);
 | |
|     uart_disable_tx_intr(uart_num);
 | |
|     uart_pattern_link_free(uart_num);
 | |
| 
 | |
|     if(p_uart_obj[uart_num]->tx_fifo_sem) {
 | |
|         vSemaphoreDelete(p_uart_obj[uart_num]->tx_fifo_sem);
 | |
|         p_uart_obj[uart_num]->tx_fifo_sem = NULL;
 | |
|     }
 | |
|     if(p_uart_obj[uart_num]->tx_done_sem) {
 | |
|         vSemaphoreDelete(p_uart_obj[uart_num]->tx_done_sem);
 | |
|         p_uart_obj[uart_num]->tx_done_sem = NULL;
 | |
|     }
 | |
|     if(p_uart_obj[uart_num]->tx_brk_sem) {
 | |
|         vSemaphoreDelete(p_uart_obj[uart_num]->tx_brk_sem);
 | |
|         p_uart_obj[uart_num]->tx_brk_sem = NULL;
 | |
|     }
 | |
|     if(p_uart_obj[uart_num]->tx_mux) {
 | |
|         vSemaphoreDelete(p_uart_obj[uart_num]->tx_mux);
 | |
|         p_uart_obj[uart_num]->tx_mux = NULL;
 | |
|     }
 | |
|     if(p_uart_obj[uart_num]->rx_mux) {
 | |
|         vSemaphoreDelete(p_uart_obj[uart_num]->rx_mux);
 | |
|         p_uart_obj[uart_num]->rx_mux = NULL;
 | |
|     }
 | |
|     if(p_uart_obj[uart_num]->xQueueUart) {
 | |
|         vQueueDelete(p_uart_obj[uart_num]->xQueueUart);
 | |
|         p_uart_obj[uart_num]->xQueueUart = NULL;
 | |
|     }
 | |
|     if(p_uart_obj[uart_num]->rx_ring_buf) {
 | |
|         vRingbufferDelete(p_uart_obj[uart_num]->rx_ring_buf);
 | |
|         p_uart_obj[uart_num]->rx_ring_buf = NULL;
 | |
|     }
 | |
|     if(p_uart_obj[uart_num]->tx_ring_buf) {
 | |
|         vRingbufferDelete(p_uart_obj[uart_num]->tx_ring_buf);
 | |
|         p_uart_obj[uart_num]->tx_ring_buf = NULL;
 | |
|     }
 | |
| 
 | |
|     free(p_uart_obj[uart_num]);
 | |
|     p_uart_obj[uart_num] = NULL;
 | |
| 
 | |
|     if (uart_num != CONFIG_CONSOLE_UART_NUM ) {
 | |
|        if(uart_num == UART_NUM_0) {
 | |
|            periph_module_disable(PERIPH_UART0_MODULE);
 | |
|        } else if(uart_num == UART_NUM_1) {
 | |
|            periph_module_disable(PERIPH_UART1_MODULE);
 | |
|        } else if(uart_num == UART_NUM_2) {
 | |
|            periph_module_disable(PERIPH_UART2_MODULE);
 | |
|        }
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 |