mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-11-04 00:51:42 +01:00 
			
		
		
		
	global: Uses CCOUNT API instead of XTHAL macro Closes IDF-2554 See merge request espressif/esp-idf!11954
		
			
				
	
	
		
			750 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			750 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
//
 | 
						|
 | 
						|
/*
 | 
						|
Architecture:
 | 
						|
 | 
						|
The whole SDIO slave peripheral consists of three parts: the registers (including the control registers of
 | 
						|
interrupts and shared registers), the sending FIFO and the receiving FIFO. A document ``esp_slave_protocol.rst``
 | 
						|
describes the functionality of the peripheral detailedly.
 | 
						|
The host can access only one of those parts at once, and the hardware functions of these parts are totally
 | 
						|
independent. Hence this driver is designed into these three independent parts. The shared registers are quite
 | 
						|
simple. As well as the interrupts: when a slave interrupt is written by the host, the slave gets an interrupt;
 | 
						|
when one of the host interrupt bits is active, slave hardware output interrupt signals on the DAT1 line.
 | 
						|
 | 
						|
For the FIFOs, the peripheral provides counters as registers so that the host can always know whether the slave
 | 
						|
is ready to send/receive data. The driver resets the counters during initialization, and the host should somehow
 | 
						|
inform the slave to reset the counters again if it should reboot (or lose the counter value for some reasons).
 | 
						|
Then the host can read/write the FIFOs by CMD53 commands according to the counters.
 | 
						|
 | 
						|
Since we don't want to copy all the data from the buffer each time we use sending/receiving buffer,
 | 
						|
the buffers are directly loaded onto the sending/receiving linked-list and taken off only after use.
 | 
						|
Hence the driver takes ownership of the buffer when the buffer is fed to the driver.
 | 
						|
 | 
						|
The driver returns the ownership of buffers when a "finish" function is called. When the hardware finishes
 | 
						|
the sending/receiving of a buffer, the ISR is invoked and it goes through the linked-list to see how many buffers
 | 
						|
are freed after last interrupt, and send corresponding signals to the app.
 | 
						|
 | 
						|
The driver of FIFOs works as below:
 | 
						|
 | 
						|
1.  The receive driver requires application to "register" a buffer before it's used. The driver
 | 
						|
    dynamically allocate a linked-list descriptor for the buffer, and return the descriptor as a handle
 | 
						|
    to the app.
 | 
						|
 | 
						|
    Each time the app asks to receive by a buffer, the descriptor of the buffer is loaded onto the linked-list,
 | 
						|
    and the counter of receiving buffers is increased so that the host will know this by the receiving interrupt.
 | 
						|
    The hardware will automatically go through the linked list and write data into the buffers loaded on the
 | 
						|
    list.
 | 
						|
 | 
						|
    The receiving driver sends a counting semaphore to the app for each buffer finished receiving. A task can only
 | 
						|
    check the linked list and fetch one finished buffer for a received semaphore.
 | 
						|
 | 
						|
2.  The sending driver is slightly different due to different hardware working styles.
 | 
						|
    (TODO: re-write this part if the stitch mode is released)
 | 
						|
    The hardware has a cache, so that once a descriptor is loaded onto the linked-list, it cannot be modified
 | 
						|
    until returned (used) by the hardware. This forbids us from loading descriptors onto the linked list during
 | 
						|
    the transfer (or the time waiting for host to start a transfer). However, we use a "ringbuffer" (different from
 | 
						|
    the one in ``freertos/`` folder) holding descriptors to solve this:
 | 
						|
 | 
						|
    1.  The driver allocates continuous memory for several buffer descriptors (the maximum buffer number) during
 | 
						|
        initialization. Then the driver points the STAILQ_NEXT pointer of all the descriptors except the last one
 | 
						|
        to the next descriptor of each of them. Then the pointer of the last descriptor points back to the first one:
 | 
						|
        now the descriptor is in a ring.
 | 
						|
 | 
						|
    2.  The "ringbuffer" has a write pointer points to where app can write new descriptor. The app writes the new descriptor
 | 
						|
        indicated by the write pointer without touching the STAILQ_NEXT pointer so that the descriptors are always in a
 | 
						|
        ring-like linked-list. The app never touches the part of linked-list being used by the hardware.
 | 
						|
 | 
						|
    3.  When the hardware needs some data to send, it automatically pick a part of connected descriptors. According to the mode:
 | 
						|
            - Buffer mode: only pick the next one of the last sent one;
 | 
						|
            - Stream mode: pick the one above to the latest one.
 | 
						|
 | 
						|
        The driver removes the STAILQ_NEXT pointer of the last descriptor and put the head of the part to the DMA controller so
 | 
						|
        that it looks like just a linear linked-list rather than a ring to the hardware.
 | 
						|
 | 
						|
    4.  The counter of sending FIFO can increase when app load new buffers (in STREAM_MODE) or when new transfer should
 | 
						|
        start (in PACKET_MODE).
 | 
						|
 | 
						|
    5.  When the sending transfer is finished, the driver goes through the descriptors just send in the ISR and push all
 | 
						|
        the ``arg`` member of descriptors to the queue back to the app, so that the app can handle finished buffers. The
 | 
						|
        driver also fix the STAILQ_NEXT pointer of the last descriptor so that the descriptors are now in a ring again.
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
#include "driver/sdio_slave.h"
 | 
						|
#include "soc/sdio_slave_periph.h"
 | 
						|
#include "esp32/rom/lldesc.h"
 | 
						|
#include "esp_log.h"
 | 
						|
#include "esp_intr_alloc.h"
 | 
						|
#include "freertos/FreeRTOS.h"
 | 
						|
#include "soc/soc_memory_layout.h"
 | 
						|
#include "soc/gpio_periph.h"
 | 
						|
#include "hal/cpu_hal.h"
 | 
						|
#include "freertos/semphr.h"
 | 
						|
#include "driver/periph_ctrl.h"
 | 
						|
#include "driver/gpio.h"
 | 
						|
#include "hal/sdio_slave_hal.h"
 | 
						|
 | 
						|
 | 
						|
#define SDIO_SLAVE_CHECK(res, str, ret_val) do { if(!(res)){\
 | 
						|
    SDIO_SLAVE_LOGE("%s", str);\
 | 
						|
    return ret_val;\
 | 
						|
} }while (0)
 | 
						|
 | 
						|
static const char TAG[] = "sdio_slave";
 | 
						|
 | 
						|
#define SDIO_SLAVE_LOGE(s, ...) ESP_LOGE(TAG, "%s(%d): "s, __FUNCTION__,__LINE__,##__VA_ARGS__)
 | 
						|
#define SDIO_SLAVE_LOGW(s, ...) ESP_LOGW(TAG, "%s: "s, __FUNCTION__,##__VA_ARGS__)
 | 
						|
 | 
						|
 | 
						|
// sdio_slave_buf_handle_t is of type recv_desc_t*;
 | 
						|
typedef struct recv_desc_s{
 | 
						|
    union {
 | 
						|
        struct {
 | 
						|
            // the third word, pointer to next desc, is shared with the tailq entry.
 | 
						|
            sdio_slave_hal_recv_desc_t hal_desc;
 | 
						|
            // when the forth word is used (not NULL), means the tailq is used, not in the receiving state.
 | 
						|
            uint32_t not_receiving;
 | 
						|
        };
 | 
						|
        struct {
 | 
						|
            // first 3 WORDs of this struct is defined by and compatible to the DMA link list format.
 | 
						|
            uint32_t _reserved0;
 | 
						|
            uint32_t _reserved1;
 | 
						|
            TAILQ_ENTRY(recv_desc_s) te; // tailq used to store the registered descriptors.
 | 
						|
        };
 | 
						|
    };
 | 
						|
} recv_desc_t;
 | 
						|
 | 
						|
 | 
						|
typedef TAILQ_HEAD(recv_tailq_head_s, recv_desc_s) recv_tailq_t;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    sdio_slave_config_t     config;
 | 
						|
    sdio_slave_context_t    *hal;
 | 
						|
    intr_handle_t           intr_handle; //allocated interrupt handle
 | 
						|
    /*------- events ---------------*/
 | 
						|
    union {
 | 
						|
        SemaphoreHandle_t       events[9]; // 0-7 for gp intr
 | 
						|
        struct {
 | 
						|
            SemaphoreHandle_t   _events[8];
 | 
						|
            SemaphoreHandle_t   recv_event; // 8 for recv
 | 
						|
        };
 | 
						|
    };
 | 
						|
    portMUX_TYPE            reg_spinlock;
 | 
						|
    /*------- sending ---------------*/
 | 
						|
    //desc in the send_link_list are temporary, taken information and space from the ringbuf, return to ringbuf after use.
 | 
						|
    SemaphoreHandle_t   remain_cnt;
 | 
						|
    portMUX_TYPE        write_spinlock;
 | 
						|
    QueueHandle_t       ret_queue;
 | 
						|
    /*------- receiving ---------------*/
 | 
						|
    recv_tailq_t        recv_reg_list;  // removed from the link list, registered but not used now
 | 
						|
    portMUX_TYPE        recv_spinlock;
 | 
						|
} sdio_context_t;
 | 
						|
 | 
						|
#define CONTEXT_INIT_VAL { \
 | 
						|
    .intr_handle = NULL, \
 | 
						|
    .hal = NULL, \
 | 
						|
    /*------- events ---------------*/ \
 | 
						|
    .events     =   {}, \
 | 
						|
    .reg_spinlock = portMUX_INITIALIZER_UNLOCKED, \
 | 
						|
    /*------- sending ---------------*/ \
 | 
						|
    .ret_queue      =   NULL, \
 | 
						|
    .write_spinlock =   portMUX_INITIALIZER_UNLOCKED, \
 | 
						|
    /*------- receiving ---------------*/ \
 | 
						|
    .recv_reg_list  =   TAILQ_HEAD_INITIALIZER(context.recv_reg_list), \
 | 
						|
    .recv_spinlock  =   portMUX_INITIALIZER_UNLOCKED, \
 | 
						|
}
 | 
						|
 | 
						|
static sdio_context_t context = CONTEXT_INIT_VAL;
 | 
						|
 | 
						|
static void sdio_intr(void*);
 | 
						|
static void sdio_intr_host(void*);
 | 
						|
static void sdio_intr_send(void*);
 | 
						|
static void sdio_intr_recv(void*);
 | 
						|
 | 
						|
static esp_err_t send_flush_data(void);
 | 
						|
static esp_err_t recv_flush_data(void);
 | 
						|
 | 
						|
static inline void critical_enter_recv(void);
 | 
						|
static inline void critical_exit_recv(void);
 | 
						|
 | 
						|
static void deinit_context(void);
 | 
						|
 | 
						|
static inline void show_ll(lldesc_t *item)
 | 
						|
{
 | 
						|
    ESP_EARLY_LOGI(TAG, "=> %p: size: %d(%d), eof: %d, owner: %d", item, item->size, item->length, item->eof, item->owner);
 | 
						|
    ESP_EARLY_LOGI(TAG, "   buf: %p, stqe_next: %p", item->buf, item->qe.stqe_next);
 | 
						|
}
 | 
						|
 | 
						|
static void __attribute((unused)) dump_ll(lldesc_t *queue)
 | 
						|
{
 | 
						|
    int cnt = 0;
 | 
						|
    lldesc_t *item = queue;
 | 
						|
    while (item != NULL) {
 | 
						|
        cnt++;
 | 
						|
        show_ll(item);
 | 
						|
        item = STAILQ_NEXT(item, qe);
 | 
						|
    }
 | 
						|
    ESP_EARLY_LOGI(TAG, "total: %d", cnt);
 | 
						|
}
 | 
						|
 | 
						|
static inline void deinit_context(void)
 | 
						|
{
 | 
						|
    context.config = (sdio_slave_config_t){};
 | 
						|
    for(int i = 0; i < 9; i++) {
 | 
						|
        if (context.events[i] != NULL) {
 | 
						|
            vSemaphoreDelete(context.events[i]);
 | 
						|
            context.events[i] = NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (context.ret_queue != NULL) {
 | 
						|
        vQueueDelete(context.ret_queue);
 | 
						|
        context.ret_queue = NULL;
 | 
						|
    }
 | 
						|
    if (context.remain_cnt != NULL) vSemaphoreDelete(context.remain_cnt);
 | 
						|
    free(context.hal->send_desc_queue.data);
 | 
						|
    context.hal->send_desc_queue.data = NULL;
 | 
						|
    free(context.hal);
 | 
						|
    context.hal = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static esp_err_t init_context(const sdio_slave_config_t *config)
 | 
						|
{
 | 
						|
    SDIO_SLAVE_CHECK(*(uint32_t*)&context.config == 0, "sdio slave already initialized", ESP_ERR_INVALID_STATE);
 | 
						|
    context = (sdio_context_t)CONTEXT_INIT_VAL;
 | 
						|
    context.config = *config;
 | 
						|
 | 
						|
    //initialize and configure the HAL
 | 
						|
    context.hal = (sdio_slave_context_t*)heap_caps_calloc(sizeof(sdio_slave_context_t), 1, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
 | 
						|
    if (context.hal == NULL) goto no_mem;
 | 
						|
 | 
						|
    context.hal->sending_mode = config->sending_mode;
 | 
						|
    context.hal->timing = config->timing;
 | 
						|
    context.hal->send_queue_size = config->send_queue_size;
 | 
						|
    context.hal->recv_buffer_size = config->recv_buffer_size;
 | 
						|
    //initialize ringbuffer resources
 | 
						|
    sdio_ringbuf_t *buf = &(context.hal->send_desc_queue);
 | 
						|
    //one item is not used.
 | 
						|
    buf->size = SDIO_SLAVE_SEND_DESC_SIZE * (config->send_queue_size+1);
 | 
						|
    buf->data = (uint8_t*)heap_caps_malloc(buf->size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
 | 
						|
    if (buf->data == NULL) goto no_mem;
 | 
						|
 | 
						|
    sdio_slave_hal_init(context.hal);
 | 
						|
 | 
						|
    // in theory we can queue infinite buffers in the linked list, but for multi-core reason we have to use a queue to
 | 
						|
    // count the finished buffers.
 | 
						|
    context.recv_event = xSemaphoreCreateCounting(UINT32_MAX, 0);
 | 
						|
    for(int i = 0; i < 9; i++) {
 | 
						|
        if (i < 8) {
 | 
						|
            context.events[i] = xSemaphoreCreateBinary();
 | 
						|
        }   //for 8, already created.
 | 
						|
        if (context.events[i] == NULL) {
 | 
						|
            SDIO_SLAVE_LOGE("event initialize failed");
 | 
						|
            goto no_mem;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    context.remain_cnt = xSemaphoreCreateCounting(context.config.send_queue_size, context.config.send_queue_size);
 | 
						|
    if (context.remain_cnt == NULL) goto no_mem;
 | 
						|
 | 
						|
    context.ret_queue = xQueueCreate(config->send_queue_size, sizeof(void*));
 | 
						|
    if (context.ret_queue == NULL) goto no_mem;
 | 
						|
 | 
						|
    return ESP_OK;
 | 
						|
 | 
						|
no_mem:
 | 
						|
    deinit_context();
 | 
						|
    return ESP_ERR_NO_MEM;
 | 
						|
}
 | 
						|
 | 
						|
static void configure_pin(int pin, uint32_t func, bool pullup)
 | 
						|
{
 | 
						|
    const int sdmmc_func = func;
 | 
						|
    const int drive_strength = 3;
 | 
						|
    assert(pin != -1);
 | 
						|
    uint32_t reg = GPIO_PIN_MUX_REG[pin];
 | 
						|
    assert(reg != UINT32_MAX);
 | 
						|
 | 
						|
    PIN_INPUT_ENABLE(reg);
 | 
						|
    PIN_FUNC_SELECT(reg, sdmmc_func);
 | 
						|
    PIN_SET_DRV(reg, drive_strength);
 | 
						|
    gpio_pulldown_dis(pin);
 | 
						|
    if (pullup) {
 | 
						|
        gpio_pullup_en(pin);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline esp_err_t sdio_slave_hw_init(sdio_slave_config_t *config)
 | 
						|
{
 | 
						|
    //initialize pin
 | 
						|
    const sdio_slave_slot_info_t *slot = &sdio_slave_slot_info[1];
 | 
						|
 | 
						|
    bool pullup = config->flags & SDIO_SLAVE_FLAG_INTERNAL_PULLUP;
 | 
						|
    configure_pin(slot->clk_gpio, slot->func, false);   //clk doesn't need a pullup
 | 
						|
    configure_pin(slot->cmd_gpio, slot->func, pullup);
 | 
						|
    configure_pin(slot->d0_gpio, slot->func, pullup);
 | 
						|
    if ((config->flags & SDIO_SLAVE_FLAG_HOST_INTR_DISABLED)==0) {
 | 
						|
        configure_pin(slot->d1_gpio, slot->func, pullup);
 | 
						|
    }
 | 
						|
    if ((config->flags & SDIO_SLAVE_FLAG_DAT2_DISABLED)==0) {
 | 
						|
       configure_pin(slot->d2_gpio, slot->func, pullup);
 | 
						|
    }
 | 
						|
    configure_pin(slot->d3_gpio, slot->func, pullup);
 | 
						|
 | 
						|
    //enable module and config
 | 
						|
    periph_module_reset(PERIPH_SDIO_SLAVE_MODULE);
 | 
						|
    periph_module_enable(PERIPH_SDIO_SLAVE_MODULE);
 | 
						|
 | 
						|
    sdio_slave_hal_hw_init(context.hal);
 | 
						|
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
static void recover_pin(int pin, int sdio_func)
 | 
						|
{
 | 
						|
    uint32_t reg = GPIO_PIN_MUX_REG[pin];
 | 
						|
    assert(reg != UINT32_MAX);
 | 
						|
 | 
						|
    int func = REG_GET_FIELD(reg, MCU_SEL);
 | 
						|
    if (func == sdio_func) {
 | 
						|
        gpio_set_direction(pin, GPIO_MODE_INPUT);
 | 
						|
        PIN_FUNC_SELECT(reg, PIN_FUNC_GPIO);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void sdio_slave_hw_deinit(void)
 | 
						|
{
 | 
						|
    const sdio_slave_slot_info_t *slot = &sdio_slave_slot_info[1];
 | 
						|
    recover_pin(slot->clk_gpio, slot->func);
 | 
						|
    recover_pin(slot->cmd_gpio, slot->func);
 | 
						|
    recover_pin(slot->d0_gpio, slot->func);
 | 
						|
    recover_pin(slot->d1_gpio, slot->func);
 | 
						|
    recover_pin(slot->d2_gpio, slot->func);
 | 
						|
    recover_pin(slot->d3_gpio, slot->func);
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t sdio_slave_initialize(sdio_slave_config_t *config)
 | 
						|
{
 | 
						|
    esp_err_t r;
 | 
						|
    intr_handle_t intr_handle = NULL;
 | 
						|
    const int flags = 0;
 | 
						|
    r = esp_intr_alloc(ETS_SLC0_INTR_SOURCE, flags, sdio_intr, NULL, &intr_handle);
 | 
						|
    if (r != ESP_OK) return r;
 | 
						|
 | 
						|
    r = init_context(config);
 | 
						|
    if (r != ESP_OK) return r;
 | 
						|
    context.intr_handle = intr_handle;
 | 
						|
 | 
						|
    r = sdio_slave_hw_init(config);
 | 
						|
    if (r != ESP_OK) return r;
 | 
						|
 | 
						|
    sdio_slave_reset();
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
void sdio_slave_deinit(void)
 | 
						|
{
 | 
						|
    sdio_slave_hw_deinit();
 | 
						|
 | 
						|
    //unregister all buffers registered but returned (not loaded)
 | 
						|
    recv_desc_t *temp_desc;
 | 
						|
    recv_desc_t *desc;
 | 
						|
    TAILQ_FOREACH_SAFE(desc, &context.recv_reg_list, te, temp_desc) {
 | 
						|
        TAILQ_REMOVE(&context.recv_reg_list, desc, te);
 | 
						|
        free(desc);
 | 
						|
    }
 | 
						|
    //unregister all buffers that is loaded and not returned
 | 
						|
    while (1) {
 | 
						|
        desc = (recv_desc_t*)sdio_slave_hal_recv_unload_desc(context.hal);
 | 
						|
        if (desc == NULL) break;
 | 
						|
        free(desc);
 | 
						|
    }
 | 
						|
    esp_err_t ret = esp_intr_free(context.intr_handle);
 | 
						|
    assert(ret==ESP_OK);
 | 
						|
    context.intr_handle = NULL;
 | 
						|
    deinit_context();
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t sdio_slave_start(void)
 | 
						|
{
 | 
						|
    esp_err_t ret;
 | 
						|
    sdio_slave_hostint_t intr = (sdio_slave_hostint_t)UINT32_MAX;
 | 
						|
    sdio_slave_hal_hostint_clear(context.hal, &intr);
 | 
						|
    ret = sdio_slave_hal_send_start(context.hal);
 | 
						|
    if (ret != ESP_OK) return ret;
 | 
						|
 | 
						|
    critical_enter_recv();
 | 
						|
    sdio_slave_hal_recv_start(context.hal);
 | 
						|
    critical_exit_recv();
 | 
						|
    ret = ESP_OK;
 | 
						|
    if (ret != ESP_OK) return ret;
 | 
						|
 | 
						|
    sdio_slave_hal_set_ioready(context.hal, true);
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t sdio_slave_reset(void)
 | 
						|
{
 | 
						|
    esp_err_t err;
 | 
						|
    err = send_flush_data();
 | 
						|
    if (err != ESP_OK) {
 | 
						|
        return err;
 | 
						|
    }
 | 
						|
 | 
						|
    err = sdio_slave_hal_send_reset_counter(context.hal);
 | 
						|
    if (err != ESP_OK) {
 | 
						|
        return err;
 | 
						|
    }
 | 
						|
 | 
						|
    err = recv_flush_data();
 | 
						|
    if (err != ESP_OK) {
 | 
						|
        return err;
 | 
						|
    }
 | 
						|
 | 
						|
    critical_enter_recv();
 | 
						|
    sdio_slave_hal_recv_reset_counter(context.hal);
 | 
						|
    critical_exit_recv();
 | 
						|
    err = ESP_OK;
 | 
						|
    return err;
 | 
						|
}
 | 
						|
 | 
						|
void sdio_slave_stop(void)
 | 
						|
{
 | 
						|
    sdio_slave_hal_set_ioready(context.hal, false);
 | 
						|
    sdio_slave_hal_send_stop(context.hal);
 | 
						|
    sdio_slave_hal_recv_stop(context.hal);
 | 
						|
}
 | 
						|
 | 
						|
static void sdio_intr(void* arg)
 | 
						|
{
 | 
						|
    sdio_intr_send(arg);
 | 
						|
    sdio_intr_recv(arg);
 | 
						|
    sdio_intr_host(arg);
 | 
						|
}
 | 
						|
 | 
						|
/*---------------------------------------------------------------------------
 | 
						|
 *                  Host
 | 
						|
 *--------------------------------------------------------------------------*/
 | 
						|
static void sdio_intr_host(void* arg)
 | 
						|
{
 | 
						|
    sdio_slave_ll_slvint_t int_val;
 | 
						|
    sdio_slave_hal_slvint_fetch_clear(context.hal, &int_val);
 | 
						|
    portBASE_TYPE yield = pdFALSE;
 | 
						|
    for(int i = 0; i < 8; i++) {
 | 
						|
        if (BIT(i) & int_val) {
 | 
						|
            if (context.config.event_cb != NULL) (*context.config.event_cb)(i);
 | 
						|
            xSemaphoreGiveFromISR(context.events[i], &yield);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (yield) portYIELD_FROM_ISR();
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t sdio_slave_wait_int(int pos, TickType_t wait)
 | 
						|
{
 | 
						|
    SDIO_SLAVE_CHECK(pos >= 0 && pos < 8, "interrupt num invalid", ESP_ERR_INVALID_ARG);
 | 
						|
    return xSemaphoreTake(context.events[pos], wait);
 | 
						|
}
 | 
						|
 | 
						|
uint8_t sdio_slave_read_reg(int pos)
 | 
						|
{
 | 
						|
    if (pos >= 28 && pos <= 31) SDIO_SLAVE_LOGW("%s: interrupt reg, for reference", __FUNCTION__);
 | 
						|
    if (pos < 0 || pos >= 64) SDIO_SLAVE_LOGE("read register address wrong");
 | 
						|
    return sdio_slave_hal_host_get_reg(context.hal, pos);
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t sdio_slave_write_reg(int pos, uint8_t reg)
 | 
						|
{
 | 
						|
    if (pos >= 28 && pos <= 31) {
 | 
						|
        SDIO_SLAVE_LOGE("interrupt reg, please use sdio_slave_clear_int");
 | 
						|
        return ESP_ERR_INVALID_ARG;
 | 
						|
    }
 | 
						|
    if (pos < 0 || pos >= 64) {
 | 
						|
        SDIO_SLAVE_LOGE("write register address wrong");
 | 
						|
        return ESP_ERR_INVALID_ARG;
 | 
						|
    }
 | 
						|
 | 
						|
    portENTER_CRITICAL(&context.reg_spinlock);
 | 
						|
    sdio_slave_hal_host_set_reg(context.hal, pos, reg);
 | 
						|
    portEXIT_CRITICAL(&context.reg_spinlock);
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
sdio_slave_hostint_t sdio_slave_get_host_intena(void)
 | 
						|
{
 | 
						|
    sdio_slave_hostint_t host_int;
 | 
						|
    sdio_slave_hal_hostint_get_ena(context.hal, &host_int);
 | 
						|
    return host_int;
 | 
						|
}
 | 
						|
 | 
						|
void sdio_slave_set_host_intena(sdio_slave_hostint_t mask)
 | 
						|
{
 | 
						|
    sdio_slave_hal_hostint_set_ena(context.hal, &mask);
 | 
						|
}
 | 
						|
 | 
						|
void sdio_slave_clear_host_int(sdio_slave_hostint_t mask)
 | 
						|
{
 | 
						|
    sdio_slave_hal_hostint_clear(context.hal, &mask);
 | 
						|
}
 | 
						|
 | 
						|
static inline sdio_slave_hostint_t get_hostint_by_pos(int pos)
 | 
						|
{
 | 
						|
    return (sdio_slave_hostint_t)BIT(pos);
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t sdio_slave_send_host_int(uint8_t pos)
 | 
						|
{
 | 
						|
    SDIO_SLAVE_CHECK(pos < 8, "interrupt num invalid", ESP_ERR_INVALID_ARG);
 | 
						|
    sdio_slave_hostint_t intr = get_hostint_by_pos(pos);
 | 
						|
    sdio_slave_hal_hostint_send(context.hal, &intr);
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
/*---------------------------------------------------------------------------
 | 
						|
 *                  Send
 | 
						|
 *--------------------------------------------------------------------------*/
 | 
						|
 | 
						|
/* The link list is handled in the app, while counter and pointer processed in ISR.
 | 
						|
 * Driver abuse rx_done bit to invoke ISR.
 | 
						|
 * If driver is stopped, the link list is stopped as well as the ISR invoker.
 | 
						|
 */
 | 
						|
 | 
						|
static void sdio_intr_send(void* arg)
 | 
						|
{
 | 
						|
    ESP_EARLY_LOGV(TAG, "intr_send");
 | 
						|
    portBASE_TYPE yield = pdFALSE;
 | 
						|
 | 
						|
    // this interrupt is abused to get ISR invoked by app
 | 
						|
    sdio_slave_hal_send_handle_isr_invoke(context.hal);
 | 
						|
 | 
						|
    uint32_t returned_cnt;
 | 
						|
    if (sdio_slave_hal_send_eof_happened(context.hal)) {
 | 
						|
        portBASE_TYPE ret = pdTRUE;
 | 
						|
 | 
						|
        esp_err_t err;
 | 
						|
        while (1) {
 | 
						|
            void *finished_arg;
 | 
						|
            err = sdio_slave_hal_send_get_next_finished_arg(context.hal, &finished_arg, &returned_cnt);
 | 
						|
            if (err != ESP_OK) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            assert(returned_cnt == 0);
 | 
						|
            ESP_EARLY_LOGV(TAG, "end: %x", finished_arg);
 | 
						|
            ret = xQueueSendFromISR(context.ret_queue, &finished_arg, &yield);
 | 
						|
            assert(ret == pdTRUE);
 | 
						|
        }
 | 
						|
        //get_next_finished_arg returns the total amount of returned descs.
 | 
						|
        for(size_t i = 0; i < returned_cnt; i++) {
 | 
						|
            portBASE_TYPE ret = xSemaphoreGiveFromISR(context.remain_cnt, &yield);
 | 
						|
            assert(ret == pdTRUE);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    sdio_slave_hal_send_new_packet_if_exist(context.hal);
 | 
						|
 | 
						|
    if (yield) portYIELD_FROM_ISR();
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t sdio_slave_send_queue(uint8_t* addr, size_t len, void* arg, TickType_t wait)
 | 
						|
{
 | 
						|
    SDIO_SLAVE_CHECK(len > 0, "len <= 0", ESP_ERR_INVALID_ARG);
 | 
						|
    SDIO_SLAVE_CHECK(esp_ptr_dma_capable(addr) && (uint32_t)addr%4==0, "buffer to send should be DMA capable and 32-bit aligned",
 | 
						|
        ESP_ERR_INVALID_ARG);
 | 
						|
 | 
						|
    portBASE_TYPE cnt_ret = xSemaphoreTake(context.remain_cnt, wait);
 | 
						|
    if (cnt_ret != pdTRUE) return ESP_ERR_TIMEOUT;
 | 
						|
 | 
						|
    portENTER_CRITICAL(&context.write_spinlock);
 | 
						|
    esp_err_t ret = sdio_slave_hal_send_queue(context.hal, addr, len, arg);
 | 
						|
    portEXIT_CRITICAL(&context.write_spinlock);
 | 
						|
    if (ret != ESP_OK) return ret;
 | 
						|
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t sdio_slave_send_get_finished(void** out_arg, TickType_t wait)
 | 
						|
{
 | 
						|
    void* arg = NULL;
 | 
						|
    portBASE_TYPE err = xQueueReceive(context.ret_queue, &arg, wait);
 | 
						|
    if (out_arg) *out_arg = arg;
 | 
						|
    if (err != pdTRUE) return ESP_ERR_TIMEOUT;
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t sdio_slave_transmit(uint8_t* addr, size_t len)
 | 
						|
{
 | 
						|
    uint32_t timestamp = cpu_hal_get_cycle_count();
 | 
						|
    uint32_t ret_stamp;
 | 
						|
 | 
						|
    esp_err_t err = sdio_slave_send_queue(addr, len, (void*)timestamp, portMAX_DELAY);
 | 
						|
    if (err != ESP_OK) return err;
 | 
						|
    err = sdio_slave_send_get_finished((void**)&ret_stamp, portMAX_DELAY);
 | 
						|
    if (err != ESP_OK) return err;
 | 
						|
    SDIO_SLAVE_CHECK(ret_stamp == timestamp, "already sent without return before", ESP_ERR_INVALID_STATE);
 | 
						|
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
//clear data but keep counter
 | 
						|
static esp_err_t send_flush_data(void)
 | 
						|
{
 | 
						|
    esp_err_t err;
 | 
						|
 | 
						|
    while (1) {
 | 
						|
        void *finished_arg;
 | 
						|
        uint32_t return_cnt = 0;
 | 
						|
        err = sdio_slave_hal_send_flush_next_buffer(context.hal, &finished_arg, &return_cnt);
 | 
						|
        if (err == ESP_OK) {
 | 
						|
            portBASE_TYPE ret = xQueueSend(context.ret_queue, &finished_arg, portMAX_DELAY);
 | 
						|
            assert(ret == pdTRUE);
 | 
						|
            for (size_t i = 0; i < return_cnt; i++) {
 | 
						|
                portBASE_TYPE ret = xSemaphoreGive(context.remain_cnt);
 | 
						|
                assert(ret == pdTRUE);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            if (err == ESP_ERR_NOT_FOUND) {
 | 
						|
                err = ESP_OK;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (err == ESP_ERR_INVALID_STATE) {
 | 
						|
        ESP_LOGE(TAG, "flush data when transmission started");
 | 
						|
    }
 | 
						|
    return err;
 | 
						|
}
 | 
						|
 | 
						|
/*---------------------------------------------------------------------------
 | 
						|
 *                  Recv
 | 
						|
 *--------------------------------------------------------------------------*/
 | 
						|
#define CHECK_HANDLE_IDLE(desc) do { if (desc == NULL || !desc->not_receiving) {\
 | 
						|
    return ESP_ERR_INVALID_ARG; } } while(0)
 | 
						|
 | 
						|
static inline void critical_enter_recv(void)
 | 
						|
{
 | 
						|
    portENTER_CRITICAL(&context.recv_spinlock);
 | 
						|
}
 | 
						|
 | 
						|
static inline void critical_exit_recv(void)
 | 
						|
{
 | 
						|
    portEXIT_CRITICAL(&context.recv_spinlock);
 | 
						|
}
 | 
						|
 | 
						|
// remove data, still increase the counter
 | 
						|
static esp_err_t recv_flush_data(void)
 | 
						|
{
 | 
						|
    while(1) {
 | 
						|
        portBASE_TYPE ret = xSemaphoreTake(context.recv_event, 0);
 | 
						|
        if (ret == pdFALSE) break;
 | 
						|
        critical_enter_recv();
 | 
						|
        sdio_slave_hal_recv_flush_one_buffer(context.hal);
 | 
						|
        critical_exit_recv();
 | 
						|
    }
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
static void sdio_intr_recv(void* arg)
 | 
						|
{
 | 
						|
    portBASE_TYPE yield = 0;
 | 
						|
    while (sdio_slave_hal_recv_done(context.hal)) {
 | 
						|
        portENTER_CRITICAL_ISR(&context.recv_spinlock);
 | 
						|
        bool has_next_item = sdio_slave_hal_recv_has_next_item(context.hal);
 | 
						|
        portEXIT_CRITICAL_ISR(&context.recv_spinlock);
 | 
						|
        if (has_next_item) {
 | 
						|
            ESP_EARLY_LOGV(TAG, "intr_recv: Give");
 | 
						|
            xSemaphoreGiveFromISR(context.recv_event, &yield);
 | 
						|
            continue;   //check the linked list again skip the interrupt checking
 | 
						|
        }
 | 
						|
        // if no more items on the list, go back and check again the interrupt,
 | 
						|
        // will loop until the interrupt bit is kept cleared.
 | 
						|
    }
 | 
						|
    if (yield) portYIELD_FROM_ISR();
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t sdio_slave_recv_load_buf(sdio_slave_buf_handle_t handle)
 | 
						|
{
 | 
						|
    recv_desc_t *desc = (recv_desc_t*)handle;
 | 
						|
    CHECK_HANDLE_IDLE(desc);
 | 
						|
    assert(desc->not_receiving);
 | 
						|
 | 
						|
    critical_enter_recv();
 | 
						|
    TAILQ_REMOVE(&context.recv_reg_list, desc, te);
 | 
						|
    desc->not_receiving = 0; //manually remove the prev link (by set not_receiving=0), to indicate this is in the queue
 | 
						|
    sdio_slave_hal_load_buf(context.hal, &desc->hal_desc);
 | 
						|
    critical_exit_recv();
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
sdio_slave_buf_handle_t sdio_slave_recv_register_buf(uint8_t *start)
 | 
						|
{
 | 
						|
    SDIO_SLAVE_CHECK(esp_ptr_dma_capable(start) && (uint32_t)start%4==0,
 | 
						|
        "buffer to register should be DMA capable and 32-bit aligned", NULL);
 | 
						|
    recv_desc_t *desc = (recv_desc_t*)heap_caps_malloc(sizeof(recv_desc_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
 | 
						|
    if (desc == NULL) {
 | 
						|
        SDIO_SLAVE_LOGE("cannot allocate lldesc for new buffer");
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    //initially in the reg list
 | 
						|
    sdio_slave_hal_recv_init_desc(context.hal, &desc->hal_desc, start);
 | 
						|
    critical_enter_recv();
 | 
						|
    TAILQ_INSERT_TAIL(&context.recv_reg_list, desc, te);
 | 
						|
    critical_exit_recv();
 | 
						|
    return desc;
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t sdio_slave_recv(sdio_slave_buf_handle_t* handle_ret, uint8_t **out_addr, size_t *out_len, TickType_t wait)
 | 
						|
{
 | 
						|
    SDIO_SLAVE_CHECK(handle_ret != NULL, "handle address cannot be 0", ESP_ERR_INVALID_ARG);
 | 
						|
    portBASE_TYPE ret = xSemaphoreTake(context.recv_event, wait);
 | 
						|
    if (ret == pdFALSE) return ESP_ERR_TIMEOUT;
 | 
						|
 | 
						|
    critical_enter_recv();
 | 
						|
    //remove from queue, add back to reg list.
 | 
						|
    recv_desc_t *desc = (recv_desc_t*)sdio_slave_hal_recv_unload_desc(context.hal);
 | 
						|
    assert(desc != NULL && desc->hal_desc.owner == 0);
 | 
						|
    TAILQ_INSERT_TAIL(&context.recv_reg_list, desc, te);
 | 
						|
    critical_exit_recv();
 | 
						|
 | 
						|
    *handle_ret = (sdio_slave_buf_handle_t)desc;
 | 
						|
    if (out_addr) *out_addr = (uint8_t*)desc->hal_desc.buf;
 | 
						|
    if (out_len) *out_len = desc->hal_desc.length;
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
esp_err_t sdio_slave_recv_unregister_buf(sdio_slave_buf_handle_t handle)
 | 
						|
{
 | 
						|
    recv_desc_t *desc = (recv_desc_t*)handle;
 | 
						|
    CHECK_HANDLE_IDLE(desc); //in the queue, fail.
 | 
						|
 | 
						|
    critical_enter_recv();
 | 
						|
    TAILQ_REMOVE(&context.recv_reg_list, desc, te);
 | 
						|
    critical_exit_recv();
 | 
						|
    free(desc);
 | 
						|
    return ESP_OK;
 | 
						|
}
 | 
						|
 | 
						|
uint8_t* sdio_slave_recv_get_buf(sdio_slave_buf_handle_t handle, size_t *len_o)
 | 
						|
{
 | 
						|
    if (handle == NULL) return NULL;
 | 
						|
    recv_desc_t *desc = (recv_desc_t*)handle;
 | 
						|
 | 
						|
    if (len_o!= NULL) *len_o= desc->hal_desc.length;
 | 
						|
    return (uint8_t*)desc->hal_desc.buf;
 | 
						|
}
 |