mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 15:11:40 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			167 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			167 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2017 Espressif Systems (Shanghai) PTE LTD
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| /* Unit tests need to have access to reliable timestamps even if CPU and APB
 | |
|  * clock frequencies change over time. This reference clock is built upon two
 | |
|  * peripherals: one RMT channel and one PCNT channel, plus one GPIO to connect
 | |
|  * these peripherals.
 | |
|  *
 | |
|  * RMT channel is configured to use REF_TICK as clock source, which is a 1 MHz
 | |
|  * clock derived from APB_CLK using a set of dividers. The divider is changed
 | |
|  * automatically by hardware depending on the current clock source of APB_CLK.
 | |
|  * For example, if APB_CLK is derived from PLL, one divider is used, and when
 | |
|  * APB_CLK is derived from XTAL, another divider is used. RMT channel clocked
 | |
|  * by REF_TICK is configured to generate a continuous 0.5 MHz signal, which is
 | |
|  * connected to a GPIO. PCNT takes the input signal from this GPIO and counts
 | |
|  * the edges (which occur at 1MHz frequency). PCNT counter is only 16 bit wide,
 | |
|  * so an interrupt is configured to trigger when the counter reaches 30000,
 | |
|  * incrementing a 32-bit millisecond counter maintained by software.
 | |
|  * Together these two counters may be used at any time to obtain the timestamp.
 | |
|  */
 | |
| 
 | |
| #include "test_utils.h"
 | |
| #include "soc/rmt_periph.h"
 | |
| #include "soc/pcnt_periph.h"
 | |
| #include "soc/gpio_periph.h"
 | |
| #include "soc/dport_reg.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "driver/periph_ctrl.h"
 | |
| 
 | |
| /* Select which RMT and PCNT channels, and GPIO to use */
 | |
| #define REF_CLOCK_RMT_CHANNEL   7
 | |
| #define REF_CLOCK_PCNT_UNIT     0
 | |
| #define REF_CLOCK_GPIO          21
 | |
| 
 | |
| #define REF_CLOCK_PRESCALER_MS  30
 | |
| 
 | |
| static void IRAM_ATTR pcnt_isr(void* arg);
 | |
| 
 | |
| static intr_handle_t s_intr_handle;
 | |
| static portMUX_TYPE s_lock = portMUX_INITIALIZER_UNLOCKED;
 | |
| static volatile uint32_t s_milliseconds;
 | |
| 
 | |
| void ref_clock_init()
 | |
| {
 | |
|     assert(s_intr_handle == NULL && "already initialized");
 | |
| 
 | |
|     // Route RMT output to GPIO matrix
 | |
|     gpio_matrix_out(REF_CLOCK_GPIO, RMT_SIG_OUT0_IDX + REF_CLOCK_RMT_CHANNEL, false, false);
 | |
| 
 | |
| 
 | |
|     // Initialize RMT
 | |
|     periph_module_enable(PERIPH_RMT_MODULE);
 | |
|     RMT.apb_conf.fifo_mask = 1;
 | |
|     rmt_item32_t data = {
 | |
|             .duration0 = 1,
 | |
|             .level0 = 1,
 | |
|             .duration1 = 0,
 | |
|             .level1 = 0
 | |
|     };
 | |
|     RMTMEM.chan[REF_CLOCK_RMT_CHANNEL].data32[0] = data;
 | |
|     RMTMEM.chan[REF_CLOCK_RMT_CHANNEL].data32[1].val = 0;
 | |
| 
 | |
| 
 | |
|     RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.clk_en = 1;
 | |
|     RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_start = 0;
 | |
|     RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.mem_owner = 0;
 | |
|     RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.mem_rd_rst = 1;
 | |
|     RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.apb_mem_rst = 1;
 | |
|     RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.carrier_en = 0;
 | |
|     RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.div_cnt = 1;
 | |
|     RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.mem_size = 1;
 | |
|     RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.ref_always_on = 0;
 | |
|     RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_conti_mode = 1;
 | |
|     RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_start = 1;
 | |
| 
 | |
|     // Route signal to PCNT
 | |
|     int pcnt_sig_idx = (REF_CLOCK_PCNT_UNIT < 5) ?
 | |
|             PCNT_SIG_CH0_IN0_IDX + 4 * REF_CLOCK_PCNT_UNIT :
 | |
|             PCNT_SIG_CH0_IN5_IDX + 4 * (REF_CLOCK_PCNT_UNIT - 5);
 | |
|     gpio_matrix_in(REF_CLOCK_GPIO, pcnt_sig_idx, false);
 | |
|     if (REF_CLOCK_GPIO != 20) {
 | |
|         PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[REF_CLOCK_GPIO]);
 | |
|     } else {
 | |
|         PIN_INPUT_ENABLE(PERIPHS_IO_MUX_GPIO20_U);
 | |
|     }
 | |
| 
 | |
|     // Initialize PCNT
 | |
|     periph_module_enable(PERIPH_PCNT_MODULE);
 | |
| 
 | |
|     PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_hctrl_mode = 0;
 | |
|     PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_lctrl_mode = 0;
 | |
|     PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_pos_mode = 1;
 | |
|     PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.ch0_neg_mode = 1;
 | |
|     PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_l_lim_en = 0;
 | |
|     PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_h_lim_en = 1;
 | |
|     PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_zero_en = 0;
 | |
|     PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_thres0_en = 0;
 | |
|     PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf0.thr_thres1_en = 0;
 | |
|     PCNT.conf_unit[REF_CLOCK_PCNT_UNIT].conf2.cnt_h_lim = REF_CLOCK_PRESCALER_MS * 1000;
 | |
| 
 | |
|     // Enable PCNT and wait for it to start counting
 | |
|     PCNT.ctrl.val &= ~(BIT(REF_CLOCK_PCNT_UNIT * 2 + 1));
 | |
|     PCNT.ctrl.val |= BIT(REF_CLOCK_PCNT_UNIT * 2);
 | |
|     PCNT.ctrl.val &= ~BIT(REF_CLOCK_PCNT_UNIT * 2);
 | |
| 
 | |
|     ets_delay_us(10000);
 | |
| 
 | |
|     // Enable interrupt
 | |
|     s_milliseconds = 0;
 | |
|     ESP_ERROR_CHECK(esp_intr_alloc(ETS_PCNT_INTR_SOURCE, ESP_INTR_FLAG_IRAM, pcnt_isr, NULL, &s_intr_handle));
 | |
|     PCNT.int_clr.val = BIT(REF_CLOCK_PCNT_UNIT);
 | |
|     PCNT.int_ena.val = BIT(REF_CLOCK_PCNT_UNIT);
 | |
| }
 | |
| 
 | |
| static void IRAM_ATTR pcnt_isr(void* arg)
 | |
| {
 | |
|     portENTER_CRITICAL_ISR(&s_lock);
 | |
|     PCNT.int_clr.val = BIT(REF_CLOCK_PCNT_UNIT);
 | |
|     s_milliseconds += REF_CLOCK_PRESCALER_MS;
 | |
|     portEXIT_CRITICAL_ISR(&s_lock);
 | |
| }
 | |
| 
 | |
| void ref_clock_deinit()
 | |
| {
 | |
|     assert(s_intr_handle && "deinit called without init");
 | |
| 
 | |
|     // Disable interrupt
 | |
|     PCNT.int_ena.val &= ~BIT(REF_CLOCK_PCNT_UNIT);
 | |
|     esp_intr_free(s_intr_handle);
 | |
|     s_intr_handle = NULL;
 | |
| 
 | |
|     // Disable RMT
 | |
|     RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf1.tx_start = 0;
 | |
|     RMT.conf_ch[REF_CLOCK_RMT_CHANNEL].conf0.clk_en = 0;
 | |
|     periph_module_disable(PERIPH_RMT_MODULE);
 | |
| 
 | |
|     // Disable PCNT
 | |
|     PCNT.ctrl.val |= ~(BIT(REF_CLOCK_PCNT_UNIT * 2 + 1));
 | |
|     periph_module_disable(PERIPH_PCNT_MODULE);
 | |
| }
 | |
| 
 | |
| uint64_t ref_clock_get()
 | |
| {
 | |
|     portENTER_CRITICAL(&s_lock);
 | |
|     uint32_t microseconds = PCNT.cnt_unit[REF_CLOCK_PCNT_UNIT].cnt_val;
 | |
|     uint32_t milliseconds = s_milliseconds;
 | |
|     if (PCNT.int_st.val & BIT(REF_CLOCK_PCNT_UNIT)) {
 | |
|         // refresh counter value, in case the overflow has happened after reading cnt_val
 | |
|         microseconds = PCNT.cnt_unit[REF_CLOCK_PCNT_UNIT].cnt_val;
 | |
|         milliseconds += REF_CLOCK_PRESCALER_MS;
 | |
|     }
 | |
|     portEXIT_CRITICAL(&s_lock);
 | |
|     return 1000 * (uint64_t) milliseconds + (uint64_t) microseconds;
 | |
| }
 |