mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-11-04 09:01:40 +01:00 
			
		
		
		
	- Use DPORT_WRITE_REG (volatile writes) wrappers to write to the MPI peripheral - Updated the previous workaround added for the same issue as it was failing in some long runs and with `COMPILER_OPTIMIZATION_PERF` enabled. - The test performance numbers had to be updated due to the performance penalty introduced by this fix. Closes https://github.com/espressif/esp-idf/issues/10403
		
			
				
	
	
		
			297 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			297 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Multi-precision integer library
 | 
						|
 * ESP32 hardware accelerated parts based on mbedTLS implementation
 | 
						|
 *
 | 
						|
 * SPDX-FileCopyrightText: The Mbed TLS Contributors
 | 
						|
 *
 | 
						|
 * SPDX-License-Identifier: Apache-2.0
 | 
						|
 *
 | 
						|
 * SPDX-FileContributor: 2016-2022 Espressif Systems (Shanghai) CO LTD
 | 
						|
 */
 | 
						|
#include "soc/hwcrypto_periph.h"
 | 
						|
#include "soc/dport_reg.h"
 | 
						|
#include "esp_private/periph_ctrl.h"
 | 
						|
#include <mbedtls/bignum.h>
 | 
						|
#include "bignum_impl.h"
 | 
						|
#include <sys/param.h>
 | 
						|
#include <sys/lock.h>
 | 
						|
 | 
						|
static _lock_t mpi_lock;
 | 
						|
 | 
						|
/* Round up number of words to nearest
 | 
						|
   512 bit (16 word) block count.
 | 
						|
*/
 | 
						|
size_t esp_mpi_hardware_words(size_t words)
 | 
						|
{
 | 
						|
    return (words + 0xF) & ~0xF;
 | 
						|
}
 | 
						|
 | 
						|
void esp_mpi_enable_hardware_hw_op( void )
 | 
						|
{
 | 
						|
    /* newlib locks lazy initialize on ESP-IDF */
 | 
						|
    _lock_acquire(&mpi_lock);
 | 
						|
 | 
						|
    /* Enable RSA hardware */
 | 
						|
    periph_module_enable(PERIPH_RSA_MODULE);
 | 
						|
    DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
 | 
						|
 | 
						|
    while (DPORT_REG_READ(RSA_CLEAN_REG) != 1)
 | 
						|
    { }
 | 
						|
    // Note: from enabling RSA clock to here takes about 1.3us
 | 
						|
}
 | 
						|
 | 
						|
void esp_mpi_disable_hardware_hw_op( void )
 | 
						|
{
 | 
						|
    DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD);
 | 
						|
 | 
						|
    /* Disable RSA hardware */
 | 
						|
    periph_module_disable(PERIPH_RSA_MODULE);
 | 
						|
 | 
						|
    _lock_release(&mpi_lock);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void esp_mpi_interrupt_enable( bool enable )
 | 
						|
{
 | 
						|
    DPORT_REG_WRITE(RSA_INTERRUPT_REG, enable);
 | 
						|
}
 | 
						|
 | 
						|
void esp_mpi_interrupt_clear( void )
 | 
						|
{
 | 
						|
    DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
 | 
						|
 | 
						|
   If hw_words is higher than the number of words in the bignum then
 | 
						|
   these additional words will be zeroed in the memory buffer.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
/* Please see detailed note inside the function body below.
 | 
						|
 * Relevant: IDF-6029
 | 
						|
             https://github.com/espressif/esp-idf/issues/8710
 | 
						|
             https://github.com/espressif/esp-idf/issues/10403
 | 
						|
 */
 | 
						|
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t hw_words)
 | 
						|
{
 | 
						|
    uint32_t copy_words = MIN(hw_words, mpi->MBEDTLS_PRIVATE(n));
 | 
						|
 | 
						|
    /* Copy MPI data to memory block registers */
 | 
						|
    for (uint32_t i = 0; i < copy_words; i++) {
 | 
						|
        DPORT_REG_WRITE(mem_base + i * 4, mpi->MBEDTLS_PRIVATE(p[i]));
 | 
						|
    }
 | 
						|
 | 
						|
    /* Zero any remaining memory block data */
 | 
						|
    for (uint32_t i = copy_words; i < hw_words; i++) {
 | 
						|
        DPORT_REG_WRITE(mem_base + i * 4, 0);
 | 
						|
    }
 | 
						|
 | 
						|
#if _INTERNAL_DEBUG_PURPOSE
 | 
						|
    /*
 | 
						|
     * With Xtensa GCC 11.2.0 (from ESP-IDF v5.x), it was observed that above zero initialization
 | 
						|
     * loop gets optimized to `memset` call from the ROM library. This was causing an issue that
 | 
						|
     * specific write (store) operation to the MPI peripheral block was getting lost erroneously.
 | 
						|
     * Following data re-verify loop could catch it during runtime.
 | 
						|
     *
 | 
						|
     * As a workaround, we are using DPORT_WRITE_REG (volatile writes) wrappers to write to
 | 
						|
     * the MPI peripheral.
 | 
						|
     *
 | 
						|
     */
 | 
						|
 | 
						|
    //for (uint32_t i = copy_words; i < hw_words; i++) { assert(pbase[i] == 0); }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Read mbedTLS MPI bignum back from hardware memory block.
 | 
						|
 | 
						|
   Reads num_words words from block.
 | 
						|
 | 
						|
   Bignum 'x' should already be grown to at least num_words by caller (can be done while
 | 
						|
   calculation is in progress, to save some cycles)
 | 
						|
*/
 | 
						|
static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, size_t num_words)
 | 
						|
{
 | 
						|
    assert(x->MBEDTLS_PRIVATE(n) >= num_words);
 | 
						|
 | 
						|
    /* Copy data from memory block registers */
 | 
						|
    esp_dport_access_read_buffer(x->MBEDTLS_PRIVATE(p), mem_base, num_words);
 | 
						|
 | 
						|
    /* Zero any remaining limbs in the bignum, if the buffer is bigger
 | 
						|
       than num_words */
 | 
						|
    for (size_t i = num_words; i < x->MBEDTLS_PRIVATE(n); i++) {
 | 
						|
        x->MBEDTLS_PRIVATE(p[i]) = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Begin an RSA operation. op_reg specifies which 'START' register
 | 
						|
   to write to.
 | 
						|
*/
 | 
						|
static inline void start_op(uint32_t op_reg)
 | 
						|
{
 | 
						|
    /* Clear interrupt status */
 | 
						|
    DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
 | 
						|
 | 
						|
    /* Note: above REG_WRITE includes a memw, so we know any writes
 | 
						|
       to the memory blocks are also complete. */
 | 
						|
 | 
						|
    DPORT_REG_WRITE(op_reg, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Wait for an RSA operation to complete.
 | 
						|
*/
 | 
						|
static inline void wait_op_complete(void)
 | 
						|
{
 | 
						|
    while (DPORT_REG_READ(RSA_INTERRUPT_REG) != 1)
 | 
						|
    { }
 | 
						|
 | 
						|
    /* clear the interrupt */
 | 
						|
    DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Read result from last MPI operation */
 | 
						|
void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
 | 
						|
{
 | 
						|
    wait_op_complete();
 | 
						|
    mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words);
 | 
						|
}
 | 
						|
 | 
						|
/* Z = (X * Y) mod M */
 | 
						|
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words)
 | 
						|
{
 | 
						|
    /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
 | 
						|
    mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
 | 
						|
    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
 | 
						|
    mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, hw_words);
 | 
						|
    DPORT_REG_WRITE(RSA_M_DASH_REG, (uint32_t)Mprime);
 | 
						|
 | 
						|
    /* "mode" register loaded with number of 512-bit blocks, minus 1 */
 | 
						|
    DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1);
 | 
						|
 | 
						|
    /* Execute first stage montgomery multiplication */
 | 
						|
    start_op(RSA_MULT_START_REG);
 | 
						|
 | 
						|
    wait_op_complete();
 | 
						|
 | 
						|
    /* execute second stage */
 | 
						|
    /* Load Y to X input memory block, rerun */
 | 
						|
    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words);
 | 
						|
 | 
						|
    start_op(RSA_MULT_START_REG);
 | 
						|
}
 | 
						|
 | 
						|
/* Z = X * Y */
 | 
						|
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t hw_words)
 | 
						|
{
 | 
						|
    /* Copy X (right-extended) & Y (left-extended) to memory block */
 | 
						|
    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
 | 
						|
    mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + hw_words * 4, Y, hw_words);
 | 
						|
    /* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block.
 | 
						|
       This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware().
 | 
						|
    */
 | 
						|
 | 
						|
    DPORT_REG_WRITE(RSA_M_DASH_REG, 0);
 | 
						|
 | 
						|
    /* "mode" register loaded with number of 512-bit blocks in result,
 | 
						|
       plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8))
 | 
						|
    */
 | 
						|
    DPORT_REG_WRITE(RSA_MULT_MODE_REG, ((hw_words * 2) / 16) + 7);
 | 
						|
 | 
						|
    start_op(RSA_MULT_START_REG);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int esp_mont_hw_op(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M,
 | 
						|
                   mbedtls_mpi_uint Mprime,
 | 
						|
                   size_t hw_words,
 | 
						|
                   bool again)
 | 
						|
{
 | 
						|
    // Note Z may be the same pointer as X or Y
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    // montgomery mult prepare
 | 
						|
    if (again == false) {
 | 
						|
        mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words);
 | 
						|
        DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime);
 | 
						|
        DPORT_REG_WRITE(RSA_MULT_MODE_REG, hw_words / 16 - 1);
 | 
						|
    }
 | 
						|
 | 
						|
    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
 | 
						|
    mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Y, hw_words);
 | 
						|
 | 
						|
    start_op(RSA_MULT_START_REG);
 | 
						|
    Z->MBEDTLS_PRIVATE(s) = 1; // The sign of Z will be = M->s (but M->s is always 1)
 | 
						|
    MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) );
 | 
						|
 | 
						|
    wait_op_complete();
 | 
						|
 | 
						|
    /* Read back the result */
 | 
						|
    mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, hw_words);
 | 
						|
 | 
						|
 | 
						|
    /* from HAC 14.36 - 3. If Z >= M then Z = Z - M */
 | 
						|
    if (mbedtls_mpi_cmp_mpi(Z, M) >= 0) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Z, Z, M));
 | 
						|
    }
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod
 | 
						|
   multiplication to calculate an mbedtls_mpi_mult_mpi result where either
 | 
						|
   A or B are >2048 bits so can't use the standard multiplication method.
 | 
						|
 | 
						|
   Result (z_words, based on A bits + B bits) must still be less than 4096 bits.
 | 
						|
 | 
						|
   This case is simpler than the general case modulo multiply of
 | 
						|
   esp_mpi_mul_mpi_mod() because we can control the other arguments:
 | 
						|
 | 
						|
   * Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output
 | 
						|
   isn't actually modulo anything.
 | 
						|
   * Mprime and Rinv are therefore predictable as follows:
 | 
						|
   Mprime = 1
 | 
						|
   Rinv = 1
 | 
						|
 | 
						|
   (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv)
 | 
						|
*/
 | 
						|
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
 | 
						|
{
 | 
						|
    size_t hw_words = num_words;
 | 
						|
 | 
						|
    /* M = 2^num_words - 1, so block is entirely FF */
 | 
						|
    for (size_t i = 0; i < hw_words; i++) {
 | 
						|
        DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX);
 | 
						|
    }
 | 
						|
    /* Mprime = 1 */
 | 
						|
    DPORT_REG_WRITE(RSA_M_DASH_REG, 1);
 | 
						|
 | 
						|
    /* "mode" register loaded with number of 512-bit blocks, minus 1 */
 | 
						|
    DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1);
 | 
						|
 | 
						|
    /* Load X */
 | 
						|
    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words);
 | 
						|
 | 
						|
    /* Rinv = 1, write first word */
 | 
						|
    DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1);
 | 
						|
 | 
						|
    /* Zero out rest of the Rinv words */
 | 
						|
    for (size_t i = 1; i < hw_words; i++) {
 | 
						|
        DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    start_op(RSA_MULT_START_REG);
 | 
						|
 | 
						|
    wait_op_complete();
 | 
						|
 | 
						|
    /* finish the modular multiplication */
 | 
						|
    /* Load Y to X input memory block, rerun */
 | 
						|
    mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words);
 | 
						|
 | 
						|
    start_op(RSA_MULT_START_REG);
 | 
						|
 | 
						|
}
 |