mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 07:01:43 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			245 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			245 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /******************************************************************************
 | |
|  *
 | |
|  *  Copyright (C) 1999-2012 Broadcom Corporation
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  *  you may not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at:
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  *
 | |
|  ******************************************************************************/
 | |
| 
 | |
| /******************************************************************************
 | |
|  *
 | |
|  *  source file for fast dct operations
 | |
|  *
 | |
|  ******************************************************************************/
 | |
| #include "bt_target.h"
 | |
| #include "sbc_encoder.h"
 | |
| #include "sbc_enc_func_declare.h"
 | |
| #include "sbc_dct.h"
 | |
| 
 | |
| 
 | |
| #if (defined(SBC_ENC_INCLUDED) && SBC_ENC_INCLUDED == TRUE)
 | |
| 
 | |
| /*******************************************************************************
 | |
| **
 | |
| ** Function         SBC_FastIDCT8
 | |
| **
 | |
| ** Description      implementation of fast DCT algorithm by Feig and Winograd
 | |
| **
 | |
| **
 | |
| ** Returns          y = dct(pInVect)
 | |
| **
 | |
| **
 | |
| *******************************************************************************/
 | |
| 
 | |
| #if (SBC_IS_64_MULT_IN_IDCT == FALSE)
 | |
| #define SBC_COS_PI_SUR_4            (0x00005a82)  /* ((0x8000) * 0.7071)     = cos(pi/4) */
 | |
| #define SBC_COS_PI_SUR_8            (0x00007641)  /* ((0x8000) * 0.9239)     = (cos(pi/8)) */
 | |
| #define SBC_COS_3PI_SUR_8           (0x000030fb)  /* ((0x8000) * 0.3827)     = (cos(3*pi/8)) */
 | |
| #define SBC_COS_PI_SUR_16           (0x00007d8a)  /* ((0x8000) * 0.9808))     = (cos(pi/16)) */
 | |
| #define SBC_COS_3PI_SUR_16          (0x00006a6d)  /* ((0x8000) * 0.8315))     = (cos(3*pi/16)) */
 | |
| #define SBC_COS_5PI_SUR_16          (0x0000471c)  /* ((0x8000) * 0.5556))     = (cos(5*pi/16)) */
 | |
| #define SBC_COS_7PI_SUR_16          (0x000018f8)  /* ((0x8000) * 0.1951))     = (cos(7*pi/16)) */
 | |
| #define SBC_IDCT_MULT(a,b,c) SBC_MULT_32_16_SIMPLIFIED(a,b,c)
 | |
| #else
 | |
| #define SBC_COS_PI_SUR_4            (0x5A827999)  /* ((0x80000000) * 0.707106781)      = (cos(pi/4)   ) */
 | |
| #define SBC_COS_PI_SUR_8            (0x7641AF3C)  /* ((0x80000000) * 0.923879533)      = (cos(pi/8)   ) */
 | |
| #define SBC_COS_3PI_SUR_8           (0x30FBC54D)  /* ((0x80000000) * 0.382683432)      = (cos(3*pi/8) ) */
 | |
| #define SBC_COS_PI_SUR_16           (0x7D8A5F3F)  /* ((0x80000000) * 0.98078528 ))     = (cos(pi/16)  ) */
 | |
| #define SBC_COS_3PI_SUR_16          (0x6A6D98A4)  /* ((0x80000000) * 0.831469612))     = (cos(3*pi/16)) */
 | |
| #define SBC_COS_5PI_SUR_16          (0x471CECE6)  /* ((0x80000000) * 0.555570233))     = (cos(5*pi/16)) */
 | |
| #define SBC_COS_7PI_SUR_16          (0x18F8B83C)  /* ((0x80000000) * 0.195090322))     = (cos(7*pi/16)) */
 | |
| #define SBC_IDCT_MULT(a,b,c) SBC_MULT_32_32(a,b,c)
 | |
| #endif /* SBC_IS_64_MULT_IN_IDCT */
 | |
| 
 | |
| #if (SBC_FAST_DCT == FALSE)
 | |
| extern const SINT16 gas16AnalDCTcoeff8[];
 | |
| extern const SINT16 gas16AnalDCTcoeff4[];
 | |
| #endif
 | |
| 
 | |
| void SBC_FastIDCT8(SINT32 *pInVect, SINT32 *pOutVect)
 | |
| {
 | |
| #if (SBC_FAST_DCT == TRUE)
 | |
| #if (SBC_ARM_ASM_OPT==TRUE)
 | |
| #else
 | |
| #if (SBC_IPAQ_OPT==TRUE)
 | |
| #if (SBC_IS_64_MULT_IN_IDCT == TRUE)
 | |
|     SINT64 s64Temp;
 | |
| #endif
 | |
| #else
 | |
| #if (SBC_IS_64_MULT_IN_IDCT == TRUE)
 | |
|     SINT32 s32HiTemp;
 | |
| #else
 | |
|     SINT32 s32In2Temp;
 | |
|     register SINT32 s32In1Temp;
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|     register SINT32 x0, x1, x2, x3, x4, x5, x6, x7, temp;
 | |
|     SINT32 res_even[4], res_odd[4];
 | |
|     /*x0= (pInVect[4])/2 ;*/
 | |
|     SBC_IDCT_MULT(SBC_COS_PI_SUR_4, pInVect[4], x0);
 | |
|     /*printf("x0 0x%x = %d = %d * %d\n", x0, x0, SBC_COS_PI_SUR_4, pInVect[4]);*/
 | |
| 
 | |
|     x1 = (pInVect[3] + pInVect[5])  >> 1;
 | |
|     x2 = (pInVect[2] + pInVect[6])  >> 1;
 | |
|     x3 = (pInVect[1] + pInVect[7])  >> 1;
 | |
|     x4 = (pInVect[0] + pInVect[8])  >> 1;
 | |
|     x5 = (pInVect[9] - pInVect[15]) >> 1;
 | |
|     x6 = (pInVect[10] - pInVect[14]) >> 1;
 | |
|     x7 = (pInVect[11] - pInVect[13]) >> 1;
 | |
| 
 | |
|     /* 2-point IDCT of x0 and x4 as in (11) */
 | |
|     temp = x0 ;
 | |
|     SBC_IDCT_MULT(SBC_COS_PI_SUR_4, ( x0 + x4 ), x0);          /*x0 = ( x0 + x4 ) * cos(1*pi/4) ; */
 | |
|     SBC_IDCT_MULT(SBC_COS_PI_SUR_4, ( temp - x4 ), x4);        /*x4 = ( temp - x4 ) * cos(1*pi/4) ; */
 | |
| 
 | |
|     /* rearrangement of x2 and x6 as in (15) */
 | |
|     x2 -= x6;
 | |
|     x6 <<= 1 ;
 | |
| 
 | |
|     /* 2-point IDCT of x2 and x6 and post-multiplication as in (15) */
 | |
|     SBC_IDCT_MULT(SBC_COS_PI_SUR_4, x6, x6); /*x6 = x6 * cos(1*pi/4) ; */
 | |
|     temp = x2 ;
 | |
|     SBC_IDCT_MULT(SBC_COS_PI_SUR_8, ( x2 + x6 ), x2); /*x2 = ( x2 + x6 ) * cos(1*pi/8) ; */
 | |
|     SBC_IDCT_MULT(SBC_COS_3PI_SUR_8, ( temp - x6 ), x6); /*x6 = ( temp - x6 ) * cos(3*pi/8) ;*/
 | |
| 
 | |
|     /* 4-point IDCT of x0,x2,x4 and x6 as in (11) */
 | |
|     res_even[ 0 ] = x0 + x2 ;
 | |
|     res_even[ 1 ] = x4 + x6 ;
 | |
|     res_even[ 2 ] = x4 - x6 ;
 | |
|     res_even[ 3 ] = x0 - x2 ;
 | |
| 
 | |
| 
 | |
|     /* rearrangement of x1,x3,x5,x7 as in (15) */
 | |
|     x7 <<= 1 ;
 | |
|     x5 = ( x5 << 1 ) - x7 ;
 | |
|     x3 = ( x3 << 1 ) - x5 ;
 | |
|     x1 -= x3 >> 1 ;
 | |
| 
 | |
|     /* two-dimensional IDCT of x1 and x5 */
 | |
|     SBC_IDCT_MULT(SBC_COS_PI_SUR_4, x5, x5);          /*x5 = x5 * cos(1*pi/4) ; */
 | |
|     temp = x1 ;
 | |
|     x1 = x1 + x5 ;
 | |
|     x5 = temp - x5 ;
 | |
| 
 | |
|     /* rearrangement of x3 and x7 as in (15) */
 | |
|     x3 -= x7;
 | |
|     x7 <<= 1 ;
 | |
|     SBC_IDCT_MULT(SBC_COS_PI_SUR_4, x7, x7);          /*x7 = x7 * cos(1*pi/4) ; */
 | |
| 
 | |
|     /* 2-point IDCT of x3 and x7 and post-multiplication as in (15) */
 | |
|     temp = x3 ;
 | |
|     SBC_IDCT_MULT( SBC_COS_PI_SUR_8, ( x3 + x7 ), x3);         /*x3 = ( x3 + x7 ) * cos(1*pi/8)  ; */
 | |
|     SBC_IDCT_MULT( SBC_COS_3PI_SUR_8, ( temp - x7 ), x7);         /*x7 = ( temp - x7 ) * cos(3*pi/8) ;*/
 | |
| 
 | |
|     /* 4-point IDCT of x1,x3,x5 and x7 and post multiplication by diagonal matrix as in (14) */
 | |
|     SBC_IDCT_MULT((SBC_COS_PI_SUR_16),   ( x1 + x3 ) ,   res_odd[0]); /*res_odd[ 0 ] = ( x1 + x3 ) * cos(1*pi/16) ; */
 | |
|     SBC_IDCT_MULT((SBC_COS_3PI_SUR_16),  ( x5 + x7 ) ,   res_odd[1]); /*res_odd[ 1 ] = ( x5 + x7 ) * cos(3*pi/16) ; */
 | |
|     SBC_IDCT_MULT((SBC_COS_5PI_SUR_16),  ( x5 - x7 ) ,   res_odd[2]); /*res_odd[ 2 ] = ( x5 - x7 ) * cos(5*pi/16) ; */
 | |
|     SBC_IDCT_MULT((SBC_COS_7PI_SUR_16),  ( x1 - x3 ) ,  res_odd[3]); /*res_odd[ 3 ] = ( x1 - x3 ) * cos(7*pi/16) ; */
 | |
| 
 | |
|     /* additions and subtractions as in (9) */
 | |
|     pOutVect[0] = (res_even[ 0 ] + res_odd[ 0 ])  ;
 | |
|     pOutVect[1] = (res_even[ 1 ] + res_odd[ 1 ])  ;
 | |
|     pOutVect[2] = (res_even[ 2 ] + res_odd[ 2 ])  ;
 | |
|     pOutVect[3] = (res_even[ 3 ] + res_odd[ 3 ])  ;
 | |
|     pOutVect[7] = (res_even[ 0 ] - res_odd[ 0 ])  ;
 | |
|     pOutVect[6] = (res_even[ 1 ] - res_odd[ 1 ])  ;
 | |
|     pOutVect[5] = (res_even[ 2 ] - res_odd[ 2 ])  ;
 | |
|     pOutVect[4] = (res_even[ 3 ] - res_odd[ 3 ])  ;
 | |
| #else
 | |
|     UINT8 Index, k;
 | |
|     SINT32 temp;
 | |
|     /*Calculate 4 subband samples by matrixing*/
 | |
|     for (Index = 0; Index < 8; Index++) {
 | |
|         temp = 0;
 | |
|         for (k = 0; k < 16; k++) {
 | |
|             /*temp += (SINT32)(((SINT64)M[(Index*strEncParams->numOfSubBands*2)+k] * Y[k]) >> 16 );*/
 | |
|             temp += (gas16AnalDCTcoeff8[(Index * 8 * 2) + k] * (pInVect[k] >> 16));
 | |
|             temp += ((gas16AnalDCTcoeff8[(Index * 8 * 2) + k] * (pInVect[k] & 0xFFFF)) >> 16);
 | |
|         }
 | |
|         pOutVect[Index] = temp;
 | |
|     }
 | |
| #endif
 | |
|     /*    printf("pOutVect: 0x%x;0x%x;0x%x;0x%x;0x%x;0x%x;0x%x;0x%x\n",\
 | |
|             pOutVect[0],pOutVect[1],pOutVect[2],pOutVect[3],pOutVect[4],pOutVect[5],pOutVect[6],pOutVect[7]);*/
 | |
| }
 | |
| 
 | |
| /*******************************************************************************
 | |
| **
 | |
| ** Function         SBC_FastIDCT4
 | |
| **
 | |
| ** Description      implementation of fast DCT algorithm by Feig and Winograd
 | |
| **
 | |
| **
 | |
| ** Returns          y = dct(x0)
 | |
| **
 | |
| **
 | |
| *******************************************************************************/
 | |
| void SBC_FastIDCT4(SINT32 *pInVect, SINT32 *pOutVect)
 | |
| {
 | |
| #if (SBC_FAST_DCT == TRUE)
 | |
| #if (SBC_ARM_ASM_OPT==TRUE)
 | |
| #else
 | |
| #if (SBC_IPAQ_OPT==TRUE)
 | |
| #if (SBC_IS_64_MULT_IN_IDCT == TRUE)
 | |
|     SINT64 s64Temp;
 | |
| #endif
 | |
| #else
 | |
| #if (SBC_IS_64_MULT_IN_IDCT == TRUE)
 | |
|     SINT32 s32HiTemp;
 | |
| #else
 | |
|     UINT16 s32In2Temp;
 | |
|     SINT32 s32In1Temp;
 | |
| #endif
 | |
| #endif
 | |
| #endif
 | |
|     SINT32 temp, x2;
 | |
|     SINT32 tmp[8];
 | |
| 
 | |
|     x2 = pInVect[2] >> 1;
 | |
|     temp = (pInVect[0] + pInVect[4]);
 | |
|     SBC_IDCT_MULT((SBC_COS_PI_SUR_4 >> 1), temp , tmp[0]);
 | |
|     tmp[1] = x2 - tmp[0];
 | |
|     tmp[0] += x2;
 | |
|     temp = (pInVect[1] + pInVect[3]);
 | |
|     SBC_IDCT_MULT((SBC_COS_3PI_SUR_8 >> 1), temp , tmp[3]);
 | |
|     SBC_IDCT_MULT((SBC_COS_PI_SUR_8 >> 1), temp , tmp[2]);
 | |
|     temp = (pInVect[5] - pInVect[7]);
 | |
|     SBC_IDCT_MULT((SBC_COS_3PI_SUR_8 >> 1), temp , tmp[5]);
 | |
|     SBC_IDCT_MULT((SBC_COS_PI_SUR_8 >> 1), temp , tmp[4]);
 | |
|     tmp[6] = tmp[2] + tmp[5];
 | |
|     tmp[7] = tmp[3] - tmp[4];
 | |
|     pOutVect[0] = (tmp[0] + tmp[6]);
 | |
|     pOutVect[1] = (tmp[1] + tmp[7]);
 | |
|     pOutVect[2] = (tmp[1] - tmp[7]);
 | |
|     pOutVect[3] = (tmp[0] - tmp[6]);
 | |
| #else
 | |
|     UINT8 Index, k;
 | |
|     SINT32 temp;
 | |
|     /*Calculate 4 subband samples by matrixing*/
 | |
|     for (Index = 0; Index < 4; Index++) {
 | |
|         temp = 0;
 | |
|         for (k = 0; k < 8; k++) {
 | |
|             /*temp += (SINT32)(((SINT64)M[(Index*strEncParams->numOfSubBands*2)+k] * Y[k]) >> 16 ); */
 | |
|             temp += (gas16AnalDCTcoeff4[(Index * 4 * 2) + k] * (pInVect[k] >> 16));
 | |
|             temp += ((gas16AnalDCTcoeff4[(Index * 4 * 2) + k] * (pInVect[k] & 0xFFFF)) >> 16);
 | |
|         }
 | |
|         pOutVect[Index] = temp;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif /* #if (defined(SBC_ENC_INCLUDED) && SBC_ENC_INCLUDED == TRUE) */
 |