mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-10-31 07:01:43 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			1739 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1739 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
 | |
|  *
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| #include <string.h>
 | |
| #include <sys/param.h>
 | |
| #include "esp_types.h"
 | |
| #include "esp_attr.h"
 | |
| #include "esp_intr_alloc.h"
 | |
| #include "esp_log.h"
 | |
| #include "esp_err.h"
 | |
| #include "esp_check.h"
 | |
| #include "malloc.h"
 | |
| #include "freertos/FreeRTOS.h"
 | |
| #include "freertos/semphr.h"
 | |
| #include "freertos/ringbuf.h"
 | |
| #include "hal/uart_hal.h"
 | |
| #include "hal/gpio_hal.h"
 | |
| #include "soc/uart_periph.h"
 | |
| #include "soc/rtc_cntl_reg.h"
 | |
| #include "driver/uart.h"
 | |
| #include "driver/gpio.h"
 | |
| #include "driver/uart_select.h"
 | |
| #include "esp_private/periph_ctrl.h"
 | |
| #include "esp_private/esp_clk.h"
 | |
| #include "sdkconfig.h"
 | |
| #include "esp_rom_gpio.h"
 | |
| #include "clk_ctrl_os.h"
 | |
| 
 | |
| #ifdef CONFIG_UART_ISR_IN_IRAM
 | |
| #define UART_ISR_ATTR     IRAM_ATTR
 | |
| #define UART_MALLOC_CAPS  (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)
 | |
| #else
 | |
| #define UART_ISR_ATTR
 | |
| #define UART_MALLOC_CAPS  MALLOC_CAP_DEFAULT
 | |
| #endif
 | |
| 
 | |
| #define XOFF (0x13)
 | |
| #define XON (0x11)
 | |
| 
 | |
| static const char *UART_TAG = "uart";
 | |
| 
 | |
| #define UART_EMPTY_THRESH_DEFAULT       (10)
 | |
| #define UART_FULL_THRESH_DEFAULT        (120)
 | |
| #define UART_TOUT_THRESH_DEFAULT        (10)
 | |
| #define UART_CLKDIV_FRAG_BIT_WIDTH      (3)
 | |
| #define UART_TX_IDLE_NUM_DEFAULT        (0)
 | |
| #define UART_PATTERN_DET_QLEN_DEFAULT   (10)
 | |
| #define UART_MIN_WAKEUP_THRESH          (UART_LL_MIN_WAKEUP_THRESH)
 | |
| 
 | |
| #if SOC_UART_SUPPORT_WAKEUP_INT
 | |
| #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
 | |
|                             | (UART_INTR_RXFIFO_TOUT) \
 | |
|                             | (UART_INTR_RXFIFO_OVF) \
 | |
|                             | (UART_INTR_BRK_DET) \
 | |
|                             | (UART_INTR_PARITY_ERR)) \
 | |
|                             | (UART_INTR_WAKEUP)
 | |
| #else
 | |
| #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \
 | |
|                             | (UART_INTR_RXFIFO_TOUT) \
 | |
|                             | (UART_INTR_RXFIFO_OVF) \
 | |
|                             | (UART_INTR_BRK_DET) \
 | |
|                             | (UART_INTR_PARITY_ERR))
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #define UART_ENTER_CRITICAL_SAFE(mux)   portENTER_CRITICAL_SAFE(mux)
 | |
| #define UART_EXIT_CRITICAL_SAFE(mux)    portEXIT_CRITICAL_SAFE(mux)
 | |
| #define UART_ENTER_CRITICAL_ISR(mux)    portENTER_CRITICAL_ISR(mux)
 | |
| #define UART_EXIT_CRITICAL_ISR(mux)     portEXIT_CRITICAL_ISR(mux)
 | |
| #define UART_ENTER_CRITICAL(mux)    portENTER_CRITICAL(mux)
 | |
| #define UART_EXIT_CRITICAL(mux)     portEXIT_CRITICAL(mux)
 | |
| 
 | |
| 
 | |
| // Check actual UART mode set
 | |
| #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode))
 | |
| 
 | |
| #define UART_CONTEX_INIT_DEF(uart_num) {\
 | |
|     .hal.dev = UART_LL_GET_HW(uart_num),\
 | |
|     .spinlock = portMUX_INITIALIZER_UNLOCKED,\
 | |
|     .hw_enabled = false,\
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     uart_event_type_t type;        /*!< UART TX data type */
 | |
|     struct {
 | |
|         int brk_len;
 | |
|         size_t size;
 | |
|         uint8_t data[0];
 | |
|     } tx_data;
 | |
| } uart_tx_data_t;
 | |
| 
 | |
| typedef struct {
 | |
|     int wr;
 | |
|     int rd;
 | |
|     int len;
 | |
|     int *data;
 | |
| } uart_pat_rb_t;
 | |
| 
 | |
| typedef struct {
 | |
|     uart_port_t uart_num;               /*!< UART port number*/
 | |
|     int event_queue_size;               /*!< UART event queue size*/
 | |
|     intr_handle_t intr_handle;          /*!< UART interrupt handle*/
 | |
|     uart_mode_t uart_mode;              /*!< UART controller actual mode set by uart_set_mode() */
 | |
|     bool coll_det_flg;                  /*!< UART collision detection flag */
 | |
|     bool rx_always_timeout_flg;         /*!< UART always detect rx timeout flag */
 | |
|     int rx_buffered_len;                /*!< UART cached data length */
 | |
|     int rx_buf_size;                    /*!< RX ring buffer size */
 | |
|     bool rx_buffer_full_flg;            /*!< RX ring buffer full flag. */
 | |
|     uint32_t rx_cur_remain;             /*!< Data number that waiting to be read out in ring buffer item*/
 | |
|     uint8_t *rx_ptr;                    /*!< pointer to the current data in ring buffer*/
 | |
|     uint8_t *rx_head_ptr;               /*!< pointer to the head of RX item*/
 | |
|     uint8_t rx_data_buf[SOC_UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/
 | |
|     uint8_t rx_stash_len;               /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */
 | |
|     uint32_t rx_int_usr_mask;           /*!< RX interrupt status. Valid at any time, regardless of RX buffer status. */
 | |
|     uart_pat_rb_t rx_pattern_pos;
 | |
|     int tx_buf_size;                    /*!< TX ring buffer size */
 | |
|     bool tx_waiting_fifo;               /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/
 | |
|     uint8_t *tx_ptr;                    /*!< TX data pointer to push to FIFO in TX buffer mode*/
 | |
|     uart_tx_data_t *tx_head;            /*!< TX data pointer to head of the current buffer in TX ring buffer*/
 | |
|     uint32_t tx_len_tot;                /*!< Total length of current item in ring buffer*/
 | |
|     uint32_t tx_len_cur;
 | |
|     uint8_t tx_brk_flg;                 /*!< Flag to indicate to send a break signal in the end of the item sending procedure */
 | |
|     uint8_t tx_brk_len;                 /*!< TX break signal cycle length/number */
 | |
|     uint8_t tx_waiting_brk;             /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/
 | |
|     uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */
 | |
|     QueueHandle_t event_queue;          /*!< UART event queue handler*/
 | |
|     RingbufHandle_t rx_ring_buf;        /*!< RX ring buffer handler*/
 | |
|     RingbufHandle_t tx_ring_buf;        /*!< TX ring buffer handler*/
 | |
|     SemaphoreHandle_t rx_mux;           /*!< UART RX data mutex*/
 | |
|     SemaphoreHandle_t tx_mux;           /*!< UART TX mutex*/
 | |
|     SemaphoreHandle_t tx_fifo_sem;      /*!< UART TX FIFO semaphore*/
 | |
|     SemaphoreHandle_t tx_done_sem;      /*!< UART TX done semaphore*/
 | |
|     SemaphoreHandle_t tx_brk_sem;       /*!< UART TX send break done semaphore*/
 | |
| #if CONFIG_UART_ISR_IN_IRAM
 | |
|     void *event_queue_storage;
 | |
|     void *event_queue_struct;
 | |
|     void *rx_ring_buf_storage;
 | |
|     void *rx_ring_buf_struct;
 | |
|     void *tx_ring_buf_storage;
 | |
|     void *tx_ring_buf_struct;
 | |
|     void *rx_mux_struct;
 | |
|     void *tx_mux_struct;
 | |
|     void *tx_fifo_sem_struct;
 | |
|     void *tx_done_sem_struct;
 | |
|     void *tx_brk_sem_struct;
 | |
| #endif
 | |
| } uart_obj_t;
 | |
| 
 | |
| typedef struct {
 | |
|     uart_hal_context_t hal;        /*!< UART hal context*/
 | |
|     portMUX_TYPE spinlock;
 | |
|     bool hw_enabled;
 | |
| } uart_context_t;
 | |
| 
 | |
| static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0};
 | |
| 
 | |
| static uart_context_t uart_context[UART_NUM_MAX] = {
 | |
|     UART_CONTEX_INIT_DEF(UART_NUM_0),
 | |
|     UART_CONTEX_INIT_DEF(UART_NUM_1),
 | |
| #if UART_NUM_MAX > 2
 | |
|     UART_CONTEX_INIT_DEF(UART_NUM_2),
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED;
 | |
| 
 | |
| static void uart_module_enable(uart_port_t uart_num)
 | |
| {
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     if (uart_context[uart_num].hw_enabled != true) {
 | |
|         periph_module_enable(uart_periph_signal[uart_num].module);
 | |
|         if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) {
 | |
|             // Workaround for ESP32C3/S3: enable core reset before enabling uart module clock to prevent uart output
 | |
|             // garbage value.
 | |
| #if SOC_UART_REQUIRE_CORE_RESET
 | |
|             uart_hal_set_reset_core(&(uart_context[uart_num].hal), true);
 | |
|             periph_module_reset(uart_periph_signal[uart_num].module);
 | |
|             uart_hal_set_reset_core(&(uart_context[uart_num].hal), false);
 | |
| #else
 | |
|             periph_module_reset(uart_periph_signal[uart_num].module);
 | |
| #endif
 | |
|         }
 | |
|         uart_context[uart_num].hw_enabled = true;
 | |
|     }
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
| }
 | |
| 
 | |
| static void uart_module_disable(uart_port_t uart_num)
 | |
| {
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     if (uart_context[uart_num].hw_enabled != false) {
 | |
|         if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) {
 | |
|             periph_module_disable(uart_periph_signal[uart_num].module);
 | |
|         }
 | |
|         uart_context[uart_num].hw_enabled = false;
 | |
|     }
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((data_bit < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((stop_bit < UART_STOP_BITS_MAX), ESP_FAIL, UART_TAG, "stop bit error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_baudrate(&(uart_context[uart_num].hal), baud_rate);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable,  uint8_t rx_thresh_xon,  uint8_t rx_thresh_xoff)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((rx_thresh_xon < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xon thresh error");
 | |
|     ESP_RETURN_ON_FALSE((rx_thresh_xoff < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xoff thresh error");
 | |
|     uart_sw_flowctrl_t sw_flow_ctl = {
 | |
|         .xon_char = XON,
 | |
|         .xoff_char = XOFF,
 | |
|         .xon_thrd = rx_thresh_xon,
 | |
|         .xoff_thrd = rx_thresh_xoff,
 | |
|     };
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((rx_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error");
 | |
|     ESP_RETURN_ON_FALSE((flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     /* Keep track of the interrupt toggling. In fact, without such variable,
 | |
|      * once the RX buffer is full and the RX interrupts disabled, it is
 | |
|      * impossible what was the previous state (enabled/disabled) of these
 | |
|      * interrupt masks. Thus, this will be very particularly handy when
 | |
|      * emptying a filled RX buffer. */
 | |
|     p_uart_obj[uart_num]->rx_int_usr_mask |= enable_mask;
 | |
|     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask);
 | |
|     uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @brief Function re-enabling the given interrupts (mask) if and only if
 | |
|  *        they have not been disabled by the user.
 | |
|  *
 | |
|  * @param uart_num      UART number to perform the operation on
 | |
|  * @param enable_mask   Interrupts (flags) to be re-enabled
 | |
|  *
 | |
|  * @return ESP_OK in success, ESP_FAIL if uart_num is incorrect
 | |
|  */
 | |
| static esp_err_t uart_reenable_intr_mask(uart_port_t uart_num, uint32_t enable_mask)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     /* Mask will only contain the interrupt flags that needs to be re-enabled
 | |
|      * AND which have NOT been explicitly disabled by the user. */
 | |
|     uint32_t mask = p_uart_obj[uart_num]->rx_int_usr_mask & enable_mask;
 | |
|     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), mask);
 | |
|     uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), mask);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     p_uart_obj[uart_num]->rx_int_usr_mask &= ~disable_mask;
 | |
|     uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t uart_pattern_link_free(uart_port_t uart_num)
 | |
| {
 | |
|     int *pdata = NULL;
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) {
 | |
|         pdata = p_uart_obj[uart_num]->rx_pattern_pos.data;
 | |
|         p_uart_obj[uart_num]->rx_pattern_pos.data = NULL;
 | |
|         p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
 | |
|         p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
 | |
|     }
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     free(pdata);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos)
 | |
| {
 | |
|     esp_err_t ret = ESP_OK;
 | |
|     uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
 | |
|     int next = p_pos->wr + 1;
 | |
|     if (next >= p_pos->len) {
 | |
|         next = 0;
 | |
|     }
 | |
|     if (next == p_pos->rd) {
 | |
| #ifndef CONFIG_UART_ISR_IN_IRAM     //Only log if ISR is not in IRAM
 | |
|         ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full.");
 | |
| #endif
 | |
|         ret = ESP_FAIL;
 | |
|     } else {
 | |
|         p_pos->data[p_pos->wr] = pos;
 | |
|         p_pos->wr = next;
 | |
|         ret = ESP_OK;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static esp_err_t uart_pattern_dequeue(uart_port_t uart_num)
 | |
| {
 | |
|     if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) {
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     } else {
 | |
|         esp_err_t ret = ESP_OK;
 | |
|         uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
 | |
|         if (p_pos->rd == p_pos->wr) {
 | |
|             ret = ESP_FAIL;
 | |
|         } else {
 | |
|             p_pos->rd++;
 | |
|         }
 | |
|         if (p_pos->rd >= p_pos->len) {
 | |
|             p_pos->rd = 0;
 | |
|         }
 | |
|         return ret;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len)
 | |
| {
 | |
|     uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
 | |
|     int rd = p_pos->rd;
 | |
|     while (rd != p_pos->wr) {
 | |
|         p_pos->data[rd] -= diff_len;
 | |
|         int rd_rec = rd;
 | |
|         rd ++;
 | |
|         if (rd >= p_pos->len) {
 | |
|             rd = 0;
 | |
|         }
 | |
|         if (p_pos->data[rd_rec] < 0) {
 | |
|             p_pos->rd = rd;
 | |
|         }
 | |
|     }
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| int uart_pattern_pop_pos(uart_port_t uart_num)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
 | |
|     int pos = -1;
 | |
|     if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
 | |
|         pos = pat_pos->data[pat_pos->rd];
 | |
|         uart_pattern_dequeue(uart_num);
 | |
|     }
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return pos;
 | |
| }
 | |
| 
 | |
| int uart_pattern_get_pos(uart_port_t uart_num)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos;
 | |
|     int pos = -1;
 | |
|     if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) {
 | |
|         pos = pat_pos->data[pat_pos->rd];
 | |
|     }
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return pos;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
 | |
| 
 | |
|     int *pdata = (int *) malloc(queue_length * sizeof(int));
 | |
|     if (pdata == NULL) {
 | |
|         return ESP_ERR_NO_MEM;
 | |
|     }
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data;
 | |
|     p_uart_obj[uart_num]->rx_pattern_pos.data = pdata;
 | |
|     p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length;
 | |
|     p_uart_obj[uart_num]->rx_pattern_pos.rd = 0;
 | |
|     p_uart_obj[uart_num]->rx_pattern_pos.wr = 0;
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     free(ptmp);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
| esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
 | |
|     ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
 | |
|     ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
 | |
|     uart_at_cmd_t at_cmd = {0};
 | |
|     at_cmd.cmd_char = pattern_chr;
 | |
|     at_cmd.char_num = chr_num;
 | |
|     at_cmd.gap_tout = chr_tout;
 | |
|     at_cmd.pre_idle = pre_idle;
 | |
|     at_cmd.post_idle = post_idle;
 | |
|     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
 | |
|     uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE(uart_num < UART_NUM_MAX, ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
 | |
|     ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
 | |
|     ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n");
 | |
|     uart_at_cmd_t at_cmd = {0};
 | |
|     at_cmd.cmd_char = pattern_chr;
 | |
|     at_cmd.char_num = chr_num;
 | |
| 
 | |
| #if CONFIG_IDF_TARGET_ESP32
 | |
|     int apb_clk_freq = 0;
 | |
|     uint32_t uart_baud = 0;
 | |
|     uint32_t uart_div = 0;
 | |
|     uart_get_baudrate(uart_num, &uart_baud);
 | |
|     apb_clk_freq = esp_clk_apb_freq();
 | |
|     uart_div = apb_clk_freq / uart_baud;
 | |
| 
 | |
|     at_cmd.gap_tout = chr_tout * uart_div;
 | |
|     at_cmd.pre_idle = pre_idle * uart_div;
 | |
|     at_cmd.post_idle = post_idle * uart_div;
 | |
| #else
 | |
|     at_cmd.gap_tout = chr_tout;
 | |
|     at_cmd.pre_idle = pre_idle;
 | |
|     at_cmd.post_idle = post_idle;
 | |
| #endif
 | |
|     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd);
 | |
|     uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num)
 | |
| {
 | |
|     return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET);
 | |
| }
 | |
| 
 | |
| esp_err_t uart_enable_rx_intr(uart_port_t uart_num)
 | |
| {
 | |
|     return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
 | |
| }
 | |
| 
 | |
| esp_err_t uart_disable_rx_intr(uart_port_t uart_num)
 | |
| {
 | |
|     return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
 | |
| }
 | |
| 
 | |
| esp_err_t uart_disable_tx_intr(uart_port_t uart_num)
 | |
| {
 | |
|     return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY);
 | |
| }
 | |
| 
 | |
| esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "empty intr threshold error");
 | |
|     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh);
 | |
|     uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static bool uart_try_set_iomux_pin(uart_port_t uart_num, int io_num, uint32_t idx)
 | |
| {
 | |
|     /* Store a pointer to the default pin, to optimize access to its fields. */
 | |
|     const uart_periph_sig_t *upin = &uart_periph_signal[uart_num].pins[idx];
 | |
| 
 | |
|     /* In theory, if default_gpio is -1, iomux_func should also be -1, but
 | |
|      * let's be safe and test both. */
 | |
|     if (upin->iomux_func == -1 || upin->default_gpio == -1 || upin->default_gpio != io_num) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /* Assign the correct funct to the GPIO. */
 | |
|     assert (upin->iomux_func != -1);
 | |
|     gpio_iomux_out(io_num, upin->iomux_func, false);
 | |
| 
 | |
|     /* If the pin is input, we also have to redirect the signal,
 | |
|      * in order to bypasse the GPIO matrix. */
 | |
|     if (upin->input) {
 | |
|         gpio_iomux_in(io_num, upin->signal);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| //internal signal can be output to multiple GPIO pads
 | |
| //only one GPIO pad can connect with input signal
 | |
| esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num >= 0), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), ESP_FAIL, UART_TAG, "tx_io_num error");
 | |
|     ESP_RETURN_ON_FALSE((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), ESP_FAIL, UART_TAG, "rx_io_num error");
 | |
|     ESP_RETURN_ON_FALSE((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), ESP_FAIL, UART_TAG, "rts_io_num error");
 | |
|     ESP_RETURN_ON_FALSE((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), ESP_FAIL, UART_TAG, "cts_io_num error");
 | |
| 
 | |
|     /* In the following statements, if the io_num is negative, no need to configure anything. */
 | |
|     if (tx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, tx_io_num, SOC_UART_TX_PIN_IDX)) {
 | |
|         gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO);
 | |
|         gpio_set_level(tx_io_num, 1);
 | |
|         esp_rom_gpio_connect_out_signal(tx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_TX_PIN_IDX), 0, 0);
 | |
|     }
 | |
| 
 | |
|     if (rx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rx_io_num, SOC_UART_RX_PIN_IDX)) {
 | |
|         gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO);
 | |
|         gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY);
 | |
|         gpio_set_direction(rx_io_num, GPIO_MODE_INPUT);
 | |
|         esp_rom_gpio_connect_in_signal(rx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RX_PIN_IDX), 0);
 | |
|     }
 | |
| 
 | |
|     if (rts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rts_io_num, SOC_UART_RTS_PIN_IDX)) {
 | |
|         gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO);
 | |
|         gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT);
 | |
|         esp_rom_gpio_connect_out_signal(rts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RTS_PIN_IDX), 0, 0);
 | |
|     }
 | |
| 
 | |
|     if (cts_io_num >= 0  && !uart_try_set_iomux_pin(uart_num, cts_io_num, SOC_UART_CTS_PIN_IDX)) {
 | |
|         gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO);
 | |
|         gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY);
 | |
|         gpio_set_direction(cts_io_num, GPIO_MODE_INPUT);
 | |
|         esp_rom_gpio_connect_in_signal(cts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_CTS_PIN_IDX), 0);
 | |
|     }
 | |
| 
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_rts(uart_port_t uart_num, int level)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_FAIL, UART_TAG, "disable hw flowctrl before using sw control");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_rts(&(uart_context[uart_num].hal), level);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_dtr(uart_port_t uart_num, int level)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_dtr(&(uart_context[uart_num].hal), level);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((idle_num <= UART_TX_IDLE_NUM_V), ESP_FAIL, UART_TAG, "uart idle num error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((uart_config), ESP_FAIL, UART_TAG, "param null");
 | |
|     ESP_RETURN_ON_FALSE((uart_config->rx_flow_ctrl_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error");
 | |
|     ESP_RETURN_ON_FALSE((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error");
 | |
|     ESP_RETURN_ON_FALSE((uart_config->data_bits < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error");
 | |
|     uart_module_enable(uart_num);
 | |
| #if SOC_UART_SUPPORT_RTC_CLK
 | |
|     if (uart_config->source_clk == UART_SCLK_RTC) {
 | |
|         periph_rtc_dig_clk8m_enable();
 | |
|     }
 | |
| #endif
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_init(&(uart_context[uart_num].hal), uart_num);
 | |
|     uart_hal_set_sclk(&(uart_context[uart_num].hal), uart_config->source_clk);
 | |
|     uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->baud_rate);
 | |
|     uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity);
 | |
|     uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits);
 | |
|     uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits);
 | |
|     uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT);
 | |
|     uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
 | |
|     uart_hal_txfifo_rst(&(uart_context[uart_num].hal));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((intr_conf), ESP_FAIL, UART_TAG, "param null");
 | |
|     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) {
 | |
|         uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh);
 | |
|     } else {
 | |
|         //Disable rx_tout intr
 | |
|         uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0);
 | |
|     }
 | |
|     if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) {
 | |
|         uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh);
 | |
|     }
 | |
|     if (intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) {
 | |
|         uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh);
 | |
|     }
 | |
|     uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t *buf, int length, uint8_t pat_chr, uint8_t pat_num)
 | |
| {
 | |
|     int cnt = 0;
 | |
|     int len = length;
 | |
|     while (len >= 0) {
 | |
|         if (buf[len] == pat_chr) {
 | |
|             cnt++;
 | |
|         } else {
 | |
|             cnt = 0;
 | |
|         }
 | |
|         if (cnt >= pat_num) {
 | |
|             break;
 | |
|         }
 | |
|         len --;
 | |
|     }
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| static uint32_t UART_ISR_ATTR uart_enable_tx_write_fifo(uart_port_t uart_num, const uint8_t *pbuf, uint32_t len)
 | |
| {
 | |
|     uint32_t sent_len = 0;
 | |
|     UART_ENTER_CRITICAL_SAFE(&(uart_context[uart_num].spinlock));
 | |
|     if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
 | |
|         uart_hal_set_rts(&(uart_context[uart_num].hal), 0);
 | |
|         uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
 | |
|     }
 | |
|     uart_hal_write_txfifo(&(uart_context[uart_num].hal), pbuf, len, &sent_len);
 | |
|     UART_EXIT_CRITICAL_SAFE(&(uart_context[uart_num].spinlock));
 | |
|     return sent_len;
 | |
| }
 | |
| 
 | |
| //internal isr handler for default driver code.
 | |
| static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param)
 | |
| {
 | |
|     uart_obj_t *p_uart = (uart_obj_t *) param;
 | |
|     uint8_t uart_num = p_uart->uart_num;
 | |
|     int rx_fifo_len = 0;
 | |
|     uint32_t uart_intr_status = 0;
 | |
|     uart_event_t uart_event;
 | |
|     portBASE_TYPE HPTaskAwoken = 0;
 | |
|     static uint8_t pat_flg = 0;
 | |
|     while (1) {
 | |
|         // The `continue statement` may cause the interrupt to loop infinitely
 | |
|         // we exit the interrupt here
 | |
|         uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal));
 | |
|         //Exit form while loop
 | |
|         if (uart_intr_status == 0) {
 | |
|             break;
 | |
|         }
 | |
|         uart_event.type = UART_EVENT_MAX;
 | |
|         if (uart_intr_status & UART_INTR_TXFIFO_EMPTY) {
 | |
|             UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|             uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
 | |
|             UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
 | |
|             if (p_uart->tx_waiting_brk) {
 | |
|                 continue;
 | |
|             }
 | |
|             //TX semaphore will only be used when tx_buf_size is zero.
 | |
|             if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) {
 | |
|                 p_uart->tx_waiting_fifo = false;
 | |
|                 xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken);
 | |
|             } else {
 | |
|                 //We don't use TX ring buffer, because the size is zero.
 | |
|                 if (p_uart->tx_buf_size == 0) {
 | |
|                     continue;
 | |
|                 }
 | |
|                 bool en_tx_flg = false;
 | |
|                 uint32_t tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal));
 | |
|                 //We need to put a loop here, in case all the buffer items are very short.
 | |
|                 //That would cause a watch_dog reset because empty interrupt happens so often.
 | |
|                 //Although this is a loop in ISR, this loop will execute at most 128 turns.
 | |
|                 while (tx_fifo_rem) {
 | |
|                     if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) {
 | |
|                         size_t size;
 | |
|                         p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size);
 | |
|                         if (p_uart->tx_head) {
 | |
|                             //The first item is the data description
 | |
|                             //Get the first item to get the data information
 | |
|                             if (p_uart->tx_len_tot == 0) {
 | |
|                                 p_uart->tx_ptr = NULL;
 | |
|                                 p_uart->tx_len_tot = p_uart->tx_head->tx_data.size;
 | |
|                                 if (p_uart->tx_head->type == UART_DATA_BREAK) {
 | |
|                                     p_uart->tx_brk_flg = 1;
 | |
|                                     p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len;
 | |
|                                 }
 | |
|                                 //We have saved the data description from the 1st item, return buffer.
 | |
|                                 vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
 | |
|                             } else if (p_uart->tx_ptr == NULL) {
 | |
|                                 //Update the TX item pointer, we will need this to return item to buffer.
 | |
|                                 p_uart->tx_ptr = (uint8_t *)p_uart->tx_head;
 | |
|                                 en_tx_flg = true;
 | |
|                                 p_uart->tx_len_cur = size;
 | |
|                             }
 | |
|                         } else {
 | |
|                             //Can not get data from ring buffer, return;
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                     if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) {
 | |
|                         // To fill the TX FIFO.
 | |
|                         uint32_t send_len = uart_enable_tx_write_fifo(uart_num, (const uint8_t *) p_uart->tx_ptr,
 | |
|                                                                       MIN(p_uart->tx_len_cur, tx_fifo_rem));
 | |
|                         p_uart->tx_ptr += send_len;
 | |
|                         p_uart->tx_len_tot -= send_len;
 | |
|                         p_uart->tx_len_cur -= send_len;
 | |
|                         tx_fifo_rem -= send_len;
 | |
|                         if (p_uart->tx_len_cur == 0) {
 | |
|                             //Return item to ring buffer.
 | |
|                             vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken);
 | |
|                             p_uart->tx_head = NULL;
 | |
|                             p_uart->tx_ptr = NULL;
 | |
|                             //Sending item done, now we need to send break if there is a record.
 | |
|                             //Set TX break signal after FIFO is empty
 | |
|                             if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) {
 | |
|                                 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
 | |
|                                 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                                 uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len);
 | |
|                                 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
 | |
|                                 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                                 p_uart->tx_waiting_brk = 1;
 | |
|                                 //do not enable TX empty interrupt
 | |
|                                 en_tx_flg = false;
 | |
|                             } else {
 | |
|                                 //enable TX empty interrupt
 | |
|                                 en_tx_flg = true;
 | |
|                             }
 | |
|                         } else {
 | |
|                             //enable TX empty interrupt
 | |
|                             en_tx_flg = true;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 if (en_tx_flg) {
 | |
|                     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
 | |
|                     UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                     uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
 | |
|                     UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                 }
 | |
|             }
 | |
|         } else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT)
 | |
|                    || (uart_intr_status & UART_INTR_RXFIFO_FULL)
 | |
|                    || (uart_intr_status & UART_INTR_CMD_CHAR_DET)
 | |
|                   ) {
 | |
|             if (pat_flg == 1) {
 | |
|                 uart_intr_status |= UART_INTR_CMD_CHAR_DET;
 | |
|                 pat_flg = 0;
 | |
|             }
 | |
|             if (p_uart->rx_buffer_full_flg == false) {
 | |
|                 rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal));
 | |
|                 if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) {
 | |
|                     rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout
 | |
|                 }
 | |
|                 uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len);
 | |
|                 uint8_t pat_chr = 0;
 | |
|                 uint8_t pat_num = 0;
 | |
|                 int pat_idx = -1;
 | |
|                 uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num);
 | |
| 
 | |
|                 //Get the buffer from the FIFO
 | |
|                 if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
 | |
|                     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
 | |
|                     uart_event.type = UART_PATTERN_DET;
 | |
|                     uart_event.size = rx_fifo_len;
 | |
|                     pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num);
 | |
|                 } else {
 | |
|                     //After Copying the Data From FIFO ,Clear intr_status
 | |
|                     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
 | |
|                     uart_event.type = UART_DATA;
 | |
|                     uart_event.size = rx_fifo_len;
 | |
|                     uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false;
 | |
|                     UART_ENTER_CRITICAL_ISR(&uart_selectlock);
 | |
|                     if (p_uart->uart_select_notif_callback) {
 | |
|                         p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken);
 | |
|                     }
 | |
|                     UART_EXIT_CRITICAL_ISR(&uart_selectlock);
 | |
|                 }
 | |
|                 p_uart->rx_stash_len = rx_fifo_len;
 | |
|                 //If we fail to push data to ring buffer, we will have to stash the data, and send next time.
 | |
|                 //Mainly for applications that uses flow control or small ring buffer.
 | |
|                 if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) {
 | |
|                     p_uart->rx_buffer_full_flg = true;
 | |
|                     UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                     uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
 | |
|                     UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                     if (uart_event.type == UART_PATTERN_DET) {
 | |
|                         UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                         if (rx_fifo_len < pat_num) {
 | |
|                             //some of the characters are read out in last interrupt
 | |
|                             uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
 | |
|                         } else {
 | |
|                             uart_pattern_enqueue(uart_num,
 | |
|                                                  pat_idx <= -1 ?
 | |
|                                                  //can not find the pattern in buffer,
 | |
|                                                  p_uart->rx_buffered_len + p_uart->rx_stash_len :
 | |
|                                                  // find the pattern in buffer
 | |
|                                                  p_uart->rx_buffered_len + pat_idx);
 | |
|                         }
 | |
|                         UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                         if ((p_uart->event_queue != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken))) {
 | |
| #ifndef CONFIG_UART_ISR_IN_IRAM     //Only log if ISR is not in IRAM
 | |
|                             ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
 | |
| #endif
 | |
|                         }
 | |
|                     }
 | |
|                     uart_event.type = UART_BUFFER_FULL;
 | |
|                 } else {
 | |
|                     UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                     if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
 | |
|                         if (rx_fifo_len < pat_num) {
 | |
|                             //some of the characters are read out in last interrupt
 | |
|                             uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len));
 | |
|                         } else if (pat_idx >= 0) {
 | |
|                             // find the pattern in stash buffer.
 | |
|                             uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx);
 | |
|                         }
 | |
|                     }
 | |
|                     p_uart->rx_buffered_len += p_uart->rx_stash_len;
 | |
|                     UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                 }
 | |
|             } else {
 | |
|                 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                 uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
 | |
|                 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
 | |
|                 if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
 | |
|                     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
 | |
|                     uart_event.type = UART_PATTERN_DET;
 | |
|                     uart_event.size = rx_fifo_len;
 | |
|                     pat_flg = 1;
 | |
|                 }
 | |
|             }
 | |
|         } else if (uart_intr_status & UART_INTR_RXFIFO_OVF) {
 | |
|             // When fifo overflows, we reset the fifo.
 | |
|             UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|             uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
 | |
|             UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|             UART_ENTER_CRITICAL_ISR(&uart_selectlock);
 | |
|             if (p_uart->uart_select_notif_callback) {
 | |
|                 p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
 | |
|             }
 | |
|             UART_EXIT_CRITICAL_ISR(&uart_selectlock);
 | |
|             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF);
 | |
|             uart_event.type = UART_FIFO_OVF;
 | |
|         } else if (uart_intr_status & UART_INTR_BRK_DET) {
 | |
|             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET);
 | |
|             uart_event.type = UART_BREAK;
 | |
|         } else if (uart_intr_status & UART_INTR_FRAM_ERR) {
 | |
|             UART_ENTER_CRITICAL_ISR(&uart_selectlock);
 | |
|             if (p_uart->uart_select_notif_callback) {
 | |
|                 p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
 | |
|             }
 | |
|             UART_EXIT_CRITICAL_ISR(&uart_selectlock);
 | |
|             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR);
 | |
|             uart_event.type = UART_FRAME_ERR;
 | |
|         } else if (uart_intr_status & UART_INTR_PARITY_ERR) {
 | |
|             UART_ENTER_CRITICAL_ISR(&uart_selectlock);
 | |
|             if (p_uart->uart_select_notif_callback) {
 | |
|                 p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken);
 | |
|             }
 | |
|             UART_EXIT_CRITICAL_ISR(&uart_selectlock);
 | |
|             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR);
 | |
|             uart_event.type = UART_PARITY_ERR;
 | |
|         } else if (uart_intr_status & UART_INTR_TX_BRK_DONE) {
 | |
|             UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|             uart_hal_tx_break(&(uart_context[uart_num].hal), 0);
 | |
|             uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
 | |
|             if (p_uart->tx_brk_flg == 1) {
 | |
|                 uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY);
 | |
|             }
 | |
|             UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
 | |
|             if (p_uart->tx_brk_flg == 1) {
 | |
|                 p_uart->tx_brk_flg = 0;
 | |
|                 p_uart->tx_waiting_brk = 0;
 | |
|             } else {
 | |
|                 xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken);
 | |
|             }
 | |
|         } else if (uart_intr_status & UART_INTR_TX_BRK_IDLE) {
 | |
|             UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|             uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
 | |
|             UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE);
 | |
|         } else if (uart_intr_status & UART_INTR_CMD_CHAR_DET) {
 | |
|             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET);
 | |
|             uart_event.type = UART_PATTERN_DET;
 | |
|         } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR)
 | |
|                    || (uart_intr_status & UART_INTR_RS485_FRM_ERR)
 | |
|                    || (uart_intr_status & UART_INTR_RS485_CLASH)) {
 | |
|             // RS485 collision or frame error interrupt triggered
 | |
|             UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|             uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
 | |
|             // Set collision detection flag
 | |
|             p_uart_obj[uart_num]->coll_det_flg = true;
 | |
|             UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR);
 | |
|             uart_event.type = UART_EVENT_MAX;
 | |
|         } else if (uart_intr_status & UART_INTR_TX_DONE) {
 | |
|             if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) {
 | |
|                 // The TX_DONE interrupt is triggered but transmit is active
 | |
|                 // then postpone interrupt processing for next interrupt
 | |
|                 uart_event.type = UART_EVENT_MAX;
 | |
|             } else {
 | |
|                 // Workaround for RS485: If the RS485 half duplex mode is active
 | |
|                 // and transmitter is in idle state then reset received buffer and reset RTS pin
 | |
|                 // skip this behavior for other UART modes
 | |
|                 uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
 | |
|                 UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                 uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
 | |
|                 if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) {
 | |
|                     uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
 | |
|                     uart_hal_set_rts(&(uart_context[uart_num].hal), 1);
 | |
|                 }
 | |
|                 UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock));
 | |
|                 xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken);
 | |
|             }
 | |
|         }
 | |
|     #if SOC_UART_SUPPORT_WAKEUP_INT
 | |
|         else if (uart_intr_status & UART_INTR_WAKEUP) {
 | |
|             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_WAKEUP);
 | |
|             uart_event.type = UART_WAKEUP;
 | |
|         }
 | |
|     #endif
 | |
|         else {
 | |
|             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/
 | |
|             uart_event.type = UART_EVENT_MAX;
 | |
|         }
 | |
| 
 | |
|         if (uart_event.type != UART_EVENT_MAX && p_uart->event_queue) {
 | |
|             if (pdFALSE == xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken)) {
 | |
| #ifndef CONFIG_UART_ISR_IN_IRAM     //Only log if ISR is not in IRAM
 | |
|                 ESP_EARLY_LOGV(UART_TAG, "UART event queue full");
 | |
| #endif
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (HPTaskAwoken == pdTRUE) {
 | |
|         portYIELD_FROM_ISR();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**************************************************************/
 | |
| esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
 | |
|     BaseType_t res;
 | |
|     TickType_t ticks_start = xTaskGetTickCount();
 | |
|     //Take tx_mux
 | |
|     res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (TickType_t)ticks_to_wait);
 | |
|     if (res == pdFALSE) {
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
|     xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0);
 | |
|     if (uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) {
 | |
|         xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
 | |
|         return ESP_OK;
 | |
|     }
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
| 
 | |
|     TickType_t ticks_end = xTaskGetTickCount();
 | |
|     if (ticks_end - ticks_start > ticks_to_wait) {
 | |
|         ticks_to_wait = 0;
 | |
|     } else {
 | |
|         ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start);
 | |
|     }
 | |
|     //take 2nd tx_done_sem, wait given from ISR
 | |
|     res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (TickType_t)ticks_to_wait);
 | |
|     if (res == pdFALSE) {
 | |
|         // The TX_DONE interrupt will be disabled in ISR
 | |
|         xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
 | |
|         return ESP_ERR_TIMEOUT;
 | |
|     }
 | |
|     xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
 | |
|     ESP_RETURN_ON_FALSE(buffer, (-1), UART_TAG, "buffer null");
 | |
|     if (len == 0) {
 | |
|         return 0;
 | |
|     }
 | |
|     int tx_len = 0;
 | |
|     xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (TickType_t)portMAX_DELAY);
 | |
|     tx_len = (int)uart_enable_tx_write_fifo(uart_num, (const uint8_t *) buffer, len);
 | |
|     xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
 | |
|     return tx_len;
 | |
| }
 | |
| 
 | |
| static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len)
 | |
| {
 | |
|     if (size == 0) {
 | |
|         return 0;
 | |
|     }
 | |
|     size_t original_size = size;
 | |
| 
 | |
|     //lock for uart_tx
 | |
|     xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (TickType_t)portMAX_DELAY);
 | |
|     p_uart_obj[uart_num]->coll_det_flg = false;
 | |
|     if (p_uart_obj[uart_num]->tx_buf_size > 0) {
 | |
|         size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf);
 | |
|         int offset = 0;
 | |
|         uart_tx_data_t evt;
 | |
|         evt.tx_data.size = size;
 | |
|         evt.tx_data.brk_len = brk_len;
 | |
|         if (brk_en) {
 | |
|             evt.type = UART_DATA_BREAK;
 | |
|         } else {
 | |
|             evt.type = UART_DATA;
 | |
|         }
 | |
|         xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY);
 | |
|         while (size > 0) {
 | |
|             size_t send_size = size > max_size / 2 ? max_size / 2 : size;
 | |
|             xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY);
 | |
|             size -= send_size;
 | |
|             offset += send_size;
 | |
|             uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
 | |
|         }
 | |
|     } else {
 | |
|         while (size) {
 | |
|             //semaphore for tx_fifo available
 | |
|             if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (TickType_t)portMAX_DELAY)) {
 | |
|                 uint32_t sent = uart_enable_tx_write_fifo(uart_num, (const uint8_t *) src, size);
 | |
|                 if (sent < size) {
 | |
|                     p_uart_obj[uart_num]->tx_waiting_fifo = true;
 | |
|                     uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT);
 | |
|                 }
 | |
|                 size -= sent;
 | |
|                 src += sent;
 | |
|             }
 | |
|         }
 | |
|         if (brk_en) {
 | |
|             uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
 | |
|             UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|             uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len);
 | |
|             uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE);
 | |
|             UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|             xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (TickType_t)portMAX_DELAY);
 | |
|         }
 | |
|         xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
 | |
|     }
 | |
|     xSemaphoreGive(p_uart_obj[uart_num]->tx_mux);
 | |
|     return original_size;
 | |
| }
 | |
| 
 | |
| int uart_write_bytes(uart_port_t uart_num, const void *src, size_t size)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((p_uart_obj[uart_num] != NULL), (-1), UART_TAG, "uart driver error");
 | |
|     ESP_RETURN_ON_FALSE(src, (-1), UART_TAG, "buffer null");
 | |
|     return uart_tx_all(uart_num, src, size, 0, 0);
 | |
| }
 | |
| 
 | |
| int uart_write_bytes_with_break(uart_port_t uart_num, const void *src, size_t size, int brk_len)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
 | |
|     ESP_RETURN_ON_FALSE((size > 0), (-1), UART_TAG, "uart size error");
 | |
|     ESP_RETURN_ON_FALSE((src), (-1), UART_TAG, "uart data null");
 | |
|     ESP_RETURN_ON_FALSE((brk_len > 0 && brk_len < 256), (-1), UART_TAG, "break_num error");
 | |
|     return uart_tx_all(uart_num, src, size, 1, brk_len);
 | |
| }
 | |
| 
 | |
| static bool uart_check_buf_full(uart_port_t uart_num)
 | |
| {
 | |
|     if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
 | |
|         BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
 | |
|         if (res == pdTRUE) {
 | |
|             UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|             p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
 | |
|             p_uart_obj[uart_num]->rx_buffer_full_flg = false;
 | |
|             UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|             /* Only re-activate UART_INTR_RXFIFO_TOUT or UART_INTR_RXFIFO_FULL
 | |
|              * interrupts if they were NOT explicitly disabled by the user. */
 | |
|             uart_reenable_intr_mask(p_uart_obj[uart_num]->uart_num, UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| int uart_read_bytes(uart_port_t uart_num, void *buf, uint32_t length, TickType_t ticks_to_wait)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((buf), (-1), UART_TAG, "uart data null");
 | |
|     ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error");
 | |
|     uint8_t *data = NULL;
 | |
|     size_t size;
 | |
|     size_t copy_len = 0;
 | |
|     int len_tmp;
 | |
|     if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (TickType_t)ticks_to_wait) != pdTRUE) {
 | |
|         return -1;
 | |
|     }
 | |
|     while (length) {
 | |
|         if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
 | |
|             data = (uint8_t *) xRingbufferReceive(p_uart_obj[uart_num]->rx_ring_buf, &size, (TickType_t) ticks_to_wait);
 | |
|             if (data) {
 | |
|                 p_uart_obj[uart_num]->rx_head_ptr = data;
 | |
|                 p_uart_obj[uart_num]->rx_ptr = data;
 | |
|                 p_uart_obj[uart_num]->rx_cur_remain = size;
 | |
|             } else {
 | |
|                 //When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time,
 | |
|                 //which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty
 | |
|                 //to solve the possible asynchronous issues.
 | |
|                 if (uart_check_buf_full(uart_num)) {
 | |
|                     //This condition will never be true if `uart_read_bytes`
 | |
|                     //and `uart_rx_intr_handler_default` are scheduled on the same core.
 | |
|                     continue;
 | |
|                 } else {
 | |
|                     xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
 | |
|                     return copy_len;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (p_uart_obj[uart_num]->rx_cur_remain > length) {
 | |
|             len_tmp = length;
 | |
|         } else {
 | |
|             len_tmp = p_uart_obj[uart_num]->rx_cur_remain;
 | |
|         }
 | |
|         memcpy((uint8_t *)buf + copy_len, p_uart_obj[uart_num]->rx_ptr, len_tmp);
 | |
|         UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|         p_uart_obj[uart_num]->rx_buffered_len -= len_tmp;
 | |
|         uart_pattern_queue_update(uart_num, len_tmp);
 | |
|         p_uart_obj[uart_num]->rx_ptr += len_tmp;
 | |
|         UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|         p_uart_obj[uart_num]->rx_cur_remain -= len_tmp;
 | |
|         copy_len += len_tmp;
 | |
|         length -= len_tmp;
 | |
|         if (p_uart_obj[uart_num]->rx_cur_remain == 0) {
 | |
|             vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_head_ptr);
 | |
|             p_uart_obj[uart_num]->rx_head_ptr = NULL;
 | |
|             p_uart_obj[uart_num]->rx_ptr = NULL;
 | |
|             uart_check_buf_full(uart_num);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     xSemaphoreGive(p_uart_obj[uart_num]->rx_mux);
 | |
|     return copy_len;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     *size = p_uart_obj[uart_num]->rx_buffered_len;
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input")));
 | |
| 
 | |
| esp_err_t uart_flush_input(uart_port_t uart_num)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
 | |
|     uart_obj_t *p_uart = p_uart_obj[uart_num];
 | |
|     uint8_t *data;
 | |
|     size_t size;
 | |
| 
 | |
|     //rx sem protect the ring buffer read related functions
 | |
|     xSemaphoreTake(p_uart->rx_mux, (TickType_t)portMAX_DELAY);
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     while (true) {
 | |
|         if (p_uart->rx_head_ptr) {
 | |
|             vRingbufferReturnItem(p_uart->rx_ring_buf, p_uart->rx_head_ptr);
 | |
|             UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|             p_uart_obj[uart_num]->rx_buffered_len -= p_uart->rx_cur_remain;
 | |
|             uart_pattern_queue_update(uart_num, p_uart->rx_cur_remain);
 | |
|             UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|             p_uart->rx_ptr = NULL;
 | |
|             p_uart->rx_cur_remain = 0;
 | |
|             p_uart->rx_head_ptr = NULL;
 | |
|         }
 | |
|         data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (TickType_t) 0);
 | |
|         if(data == NULL) {
 | |
|             bool error = false;
 | |
|             UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|             if( p_uart_obj[uart_num]->rx_buffered_len != 0 ) {
 | |
|                 p_uart_obj[uart_num]->rx_buffered_len = 0;
 | |
|                 error = true;
 | |
|             }
 | |
|             //We also need to clear the `rx_buffer_full_flg` here.
 | |
|             p_uart_obj[uart_num]->rx_buffer_full_flg = false;
 | |
|             UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|             if (error) {
 | |
|                 // this must be called outside the critical section
 | |
|                 ESP_LOGE(UART_TAG, "rx_buffered_len error");
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
|         UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|         p_uart_obj[uart_num]->rx_buffered_len -= size;
 | |
|         uart_pattern_queue_update(uart_num, size);
 | |
|         UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|         vRingbufferReturnItem(p_uart->rx_ring_buf, data);
 | |
|         if (p_uart_obj[uart_num]->rx_buffer_full_flg) {
 | |
|             BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1);
 | |
|             if (res == pdTRUE) {
 | |
|                 UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|                 p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len;
 | |
|                 p_uart_obj[uart_num]->rx_buffer_full_flg = false;
 | |
|                 UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     p_uart->rx_ptr = NULL;
 | |
|     p_uart->rx_cur_remain = 0;
 | |
|     p_uart->rx_head_ptr = NULL;
 | |
|     uart_hal_rxfifo_rst(&(uart_context[uart_num].hal));
 | |
|     /* Only re-enable UART_INTR_RXFIFO_TOUT or UART_INTR_RXFIFO_FULL if they
 | |
|      * were explicitly enabled by the user. */
 | |
|     uart_reenable_intr_mask(uart_num, UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL);
 | |
|     xSemaphoreGive(p_uart->rx_mux);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| static void uart_free_driver_obj(uart_obj_t *uart_obj)
 | |
| {
 | |
|     if (uart_obj->tx_fifo_sem) {
 | |
|         vSemaphoreDelete(uart_obj->tx_fifo_sem);
 | |
|     }
 | |
|     if (uart_obj->tx_done_sem) {
 | |
|         vSemaphoreDelete(uart_obj->tx_done_sem);
 | |
|     }
 | |
|     if (uart_obj->tx_brk_sem) {
 | |
|         vSemaphoreDelete(uart_obj->tx_brk_sem);
 | |
|     }
 | |
|     if (uart_obj->tx_mux) {
 | |
|         vSemaphoreDelete(uart_obj->tx_mux);
 | |
|     }
 | |
|     if (uart_obj->rx_mux) {
 | |
|         vSemaphoreDelete(uart_obj->rx_mux);
 | |
|     }
 | |
|     if (uart_obj->event_queue) {
 | |
|         vQueueDelete(uart_obj->event_queue);
 | |
|     }
 | |
|     if (uart_obj->rx_ring_buf) {
 | |
|         vRingbufferDelete(uart_obj->rx_ring_buf);
 | |
|     }
 | |
|     if (uart_obj->tx_ring_buf) {
 | |
|         vRingbufferDelete(uart_obj->tx_ring_buf);
 | |
|     }
 | |
| #if CONFIG_UART_ISR_IN_IRAM
 | |
|     free(uart_obj->event_queue_storage);
 | |
|     free(uart_obj->event_queue_struct);
 | |
|     free(uart_obj->tx_ring_buf_storage);
 | |
|     free(uart_obj->tx_ring_buf_struct);
 | |
|     free(uart_obj->rx_ring_buf_storage);
 | |
|     free(uart_obj->rx_ring_buf_struct);
 | |
|     free(uart_obj->rx_mux_struct);
 | |
|     free(uart_obj->tx_mux_struct);
 | |
|     free(uart_obj->tx_brk_sem_struct);
 | |
|     free(uart_obj->tx_done_sem_struct);
 | |
|     free(uart_obj->tx_fifo_sem_struct);
 | |
| #endif
 | |
|     free(uart_obj);
 | |
| }
 | |
| 
 | |
| static uart_obj_t *uart_alloc_driver_obj(int event_queue_size, int tx_buffer_size, int rx_buffer_size)
 | |
| {
 | |
|     uart_obj_t *uart_obj = heap_caps_calloc(1, sizeof(uart_obj_t), UART_MALLOC_CAPS);
 | |
|     if (!uart_obj) {
 | |
|         return NULL;
 | |
|     }
 | |
| #if CONFIG_UART_ISR_IN_IRAM
 | |
|     if (event_queue_size > 0) {
 | |
|         uart_obj->event_queue_storage = heap_caps_calloc(event_queue_size, sizeof(uart_event_t), UART_MALLOC_CAPS);
 | |
|         uart_obj->event_queue_struct = heap_caps_calloc(1, sizeof(StaticQueue_t), UART_MALLOC_CAPS);
 | |
|         if (!uart_obj->event_queue_storage || !uart_obj->event_queue_struct) {
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     if (tx_buffer_size > 0) {
 | |
|         uart_obj->tx_ring_buf_storage = heap_caps_calloc(1, tx_buffer_size, UART_MALLOC_CAPS);
 | |
|         uart_obj->tx_ring_buf_struct = heap_caps_calloc(1, sizeof(StaticRingbuffer_t), UART_MALLOC_CAPS);
 | |
|         if (!uart_obj->tx_ring_buf_storage || !uart_obj->tx_ring_buf_struct) {
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     uart_obj->rx_ring_buf_storage = heap_caps_calloc(1, rx_buffer_size, UART_MALLOC_CAPS);
 | |
|     uart_obj->rx_ring_buf_struct = heap_caps_calloc(1, sizeof(StaticRingbuffer_t), UART_MALLOC_CAPS);
 | |
|     uart_obj->rx_mux_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
 | |
|     uart_obj->tx_mux_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
 | |
|     uart_obj->tx_brk_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
 | |
|     uart_obj->tx_done_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
 | |
|     uart_obj->tx_fifo_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS);
 | |
|     if (!uart_obj->rx_ring_buf_storage || !uart_obj->rx_ring_buf_struct || !uart_obj->rx_mux_struct ||
 | |
|             !uart_obj->tx_mux_struct || !uart_obj->tx_brk_sem_struct || !uart_obj->tx_done_sem_struct ||
 | |
|             !uart_obj->tx_fifo_sem_struct) {
 | |
|         goto err;
 | |
|     }
 | |
|     if (event_queue_size > 0) {
 | |
|         uart_obj->event_queue = xQueueCreateStatic(event_queue_size, sizeof(uart_event_t),
 | |
|                                 uart_obj->event_queue_storage, uart_obj->event_queue_struct);
 | |
|         if (!uart_obj->event_queue) {
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     if (tx_buffer_size > 0) {
 | |
|         uart_obj->tx_ring_buf = xRingbufferCreateStatic(tx_buffer_size, RINGBUF_TYPE_NOSPLIT,
 | |
|                                 uart_obj->tx_ring_buf_storage, uart_obj->tx_ring_buf_struct);
 | |
|         if (!uart_obj->tx_ring_buf) {
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     uart_obj->rx_ring_buf = xRingbufferCreateStatic(rx_buffer_size, RINGBUF_TYPE_BYTEBUF,
 | |
|                             uart_obj->rx_ring_buf_storage, uart_obj->rx_ring_buf_struct);
 | |
|     uart_obj->rx_mux = xSemaphoreCreateMutexStatic(uart_obj->rx_mux_struct);
 | |
|     uart_obj->tx_mux = xSemaphoreCreateMutexStatic(uart_obj->tx_mux_struct);
 | |
|     uart_obj->tx_brk_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_brk_sem_struct);
 | |
|     uart_obj->tx_done_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_done_sem_struct);
 | |
|     uart_obj->tx_fifo_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_fifo_sem_struct);
 | |
|     if (!uart_obj->rx_ring_buf || !uart_obj->rx_mux || !uart_obj->tx_mux || !uart_obj->tx_brk_sem ||
 | |
|             !uart_obj->tx_done_sem || !uart_obj->tx_fifo_sem) {
 | |
|         goto err;
 | |
|     }
 | |
| #else
 | |
|     if (event_queue_size > 0) {
 | |
|         uart_obj->event_queue = xQueueCreate(event_queue_size, sizeof(uart_event_t));
 | |
|         if (!uart_obj->event_queue) {
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     if (tx_buffer_size > 0) {
 | |
|         uart_obj->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT);
 | |
|         if (!uart_obj->tx_ring_buf) {
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
|     uart_obj->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF);
 | |
|     uart_obj->tx_mux = xSemaphoreCreateMutex();
 | |
|     uart_obj->rx_mux = xSemaphoreCreateMutex();
 | |
|     uart_obj->tx_brk_sem = xSemaphoreCreateBinary();
 | |
|     uart_obj->tx_done_sem = xSemaphoreCreateBinary();
 | |
|     uart_obj->tx_fifo_sem = xSemaphoreCreateBinary();
 | |
|     if (!uart_obj->rx_ring_buf || !uart_obj->rx_mux || !uart_obj->tx_mux || !uart_obj->tx_brk_sem ||
 | |
|             !uart_obj->tx_done_sem || !uart_obj->tx_fifo_sem) {
 | |
|         goto err;
 | |
|     }
 | |
| #endif
 | |
|     return uart_obj;
 | |
| 
 | |
| err:
 | |
|     uart_free_driver_obj(uart_obj);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int event_queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags)
 | |
| {
 | |
|     esp_err_t ret;
 | |
| #ifdef CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
 | |
|     ESP_RETURN_ON_FALSE((uart_num != CONFIG_ESP_CONSOLE_UART_NUM), ESP_FAIL, UART_TAG, "UART used by GDB-stubs! Please disable GDB in menuconfig.");
 | |
| #endif // CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((rx_buffer_size > SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "uart rx buffer length error");
 | |
|     ESP_RETURN_ON_FALSE((tx_buffer_size > SOC_UART_FIFO_LEN) || (tx_buffer_size == 0), ESP_FAIL, UART_TAG, "uart tx buffer length error");
 | |
| #if CONFIG_UART_ISR_IN_IRAM
 | |
|     if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) {
 | |
|         ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated");
 | |
|         intr_alloc_flags |= ESP_INTR_FLAG_IRAM;
 | |
|     }
 | |
| #else
 | |
|     if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) {
 | |
|         ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated");
 | |
|         intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (p_uart_obj[uart_num] == NULL) {
 | |
|         p_uart_obj[uart_num] = uart_alloc_driver_obj(event_queue_size, tx_buffer_size, rx_buffer_size);
 | |
|         if (p_uart_obj[uart_num] == NULL) {
 | |
|             ESP_LOGE(UART_TAG, "UART driver malloc error");
 | |
|             return ESP_FAIL;
 | |
|         }
 | |
|         p_uart_obj[uart_num]->uart_num = uart_num;
 | |
|         p_uart_obj[uart_num]->uart_mode = UART_MODE_UART;
 | |
|         p_uart_obj[uart_num]->coll_det_flg = false;
 | |
|         p_uart_obj[uart_num]->rx_always_timeout_flg = false;
 | |
|         p_uart_obj[uart_num]->event_queue_size = event_queue_size;
 | |
|         p_uart_obj[uart_num]->tx_ptr = NULL;
 | |
|         p_uart_obj[uart_num]->tx_head = NULL;
 | |
|         p_uart_obj[uart_num]->tx_len_tot = 0;
 | |
|         p_uart_obj[uart_num]->tx_brk_flg = 0;
 | |
|         p_uart_obj[uart_num]->tx_brk_len = 0;
 | |
|         p_uart_obj[uart_num]->tx_waiting_brk = 0;
 | |
|         p_uart_obj[uart_num]->rx_buffered_len = 0;
 | |
|         p_uart_obj[uart_num]->rx_buffer_full_flg = false;
 | |
|         p_uart_obj[uart_num]->tx_waiting_fifo = false;
 | |
|         p_uart_obj[uart_num]->rx_ptr = NULL;
 | |
|         p_uart_obj[uart_num]->rx_cur_remain = 0;
 | |
|         p_uart_obj[uart_num]->rx_int_usr_mask = UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT;
 | |
|         p_uart_obj[uart_num]->rx_head_ptr = NULL;
 | |
|         p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size;
 | |
|         p_uart_obj[uart_num]->uart_select_notif_callback = NULL;
 | |
|         xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem);
 | |
|         uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT);
 | |
|         if (uart_queue) {
 | |
|             *uart_queue = p_uart_obj[uart_num]->event_queue;
 | |
|             ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->event_queue));
 | |
|         }
 | |
|     } else {
 | |
|         ESP_LOGE(UART_TAG, "UART driver already installed");
 | |
|         return ESP_FAIL;
 | |
|     }
 | |
| 
 | |
|     uart_intr_config_t uart_intr = {
 | |
|         .intr_enable_mask = UART_INTR_CONFIG_FLAG,
 | |
|         .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT,
 | |
|         .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT,
 | |
|         .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT,
 | |
|     };
 | |
|     uart_module_enable(uart_num);
 | |
|     uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
 | |
|     uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK);
 | |
| 
 | |
|     ret = esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags,
 | |
|                        uart_rx_intr_handler_default, p_uart_obj[uart_num],
 | |
|                        &p_uart_obj[uart_num]->intr_handle);
 | |
|     ESP_GOTO_ON_ERROR(ret, err, UART_TAG, "Could not allocate an interrupt for UART");
 | |
| 
 | |
|     ret = uart_intr_config(uart_num, &uart_intr);
 | |
|     ESP_GOTO_ON_ERROR(ret, err, UART_TAG, "Could not configure the interrupt for UART");
 | |
| 
 | |
|     return ret;
 | |
| 
 | |
| err:
 | |
|     uart_driver_delete(uart_num);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| //Make sure no other tasks are still using UART before you call this function
 | |
| esp_err_t uart_driver_delete(uart_port_t uart_num)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error");
 | |
|     if (p_uart_obj[uart_num] == NULL) {
 | |
|         ESP_LOGI(UART_TAG, "ALREADY NULL");
 | |
|         return ESP_OK;
 | |
|     }
 | |
|     esp_intr_free(p_uart_obj[uart_num]->intr_handle);
 | |
|     uart_disable_rx_intr(uart_num);
 | |
|     uart_disable_tx_intr(uart_num);
 | |
|     uart_pattern_link_free(uart_num);
 | |
|     uart_free_driver_obj(p_uart_obj[uart_num]);
 | |
|     p_uart_obj[uart_num] = NULL;
 | |
| 
 | |
| #if SOC_UART_SUPPORT_RTC_CLK
 | |
|     uart_sclk_t sclk = 0;
 | |
|     uart_hal_get_sclk(&(uart_context[uart_num].hal), &sclk);
 | |
|     if (sclk == UART_SCLK_RTC) {
 | |
|         periph_rtc_dig_clk8m_disable();
 | |
|     }
 | |
| #endif
 | |
|     uart_module_disable(uart_num);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| bool uart_is_driver_installed(uart_port_t uart_num)
 | |
| {
 | |
|     return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL);
 | |
| }
 | |
| 
 | |
| void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback)
 | |
| {
 | |
|     if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) {
 | |
|         p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback;
 | |
|     }
 | |
| }
 | |
| 
 | |
| portMUX_TYPE *uart_get_selectlock(void)
 | |
| {
 | |
|     return &uart_selectlock;
 | |
| }
 | |
| 
 | |
| // Set UART mode
 | |
| esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error");
 | |
|     if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL)
 | |
|             || (mode == UART_MODE_RS485_HALF_DUPLEX)) {
 | |
|         ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_ERR_INVALID_ARG, UART_TAG,
 | |
|                             "disable hw flowctrl before using RS485 mode");
 | |
|     }
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_mode(&(uart_context[uart_num].hal), mode);
 | |
|     if (mode ==  UART_MODE_RS485_COLLISION_DETECT) {
 | |
|         // This mode allows read while transmitting that allows collision detection
 | |
|         p_uart_obj[uart_num]->coll_det_flg = false;
 | |
|         // Enable collision detection interrupts
 | |
|         uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT
 | |
|                                | UART_INTR_RXFIFO_FULL
 | |
|                                | UART_INTR_RS485_CLASH
 | |
|                                | UART_INTR_RS485_FRM_ERR
 | |
|                                | UART_INTR_RS485_PARITY_ERR);
 | |
|     }
 | |
|     p_uart_obj[uart_num]->uart_mode = mode;
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
 | |
|                         "rx fifo full threshold value error");
 | |
|     if (p_uart_obj[uart_num] == NULL) {
 | |
|         ESP_LOGE(UART_TAG, "call uart_driver_install API first");
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) {
 | |
|         uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold);
 | |
|     }
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG,
 | |
|                         "tx fifo empty threshold value error");
 | |
|     if (p_uart_obj[uart_num] == NULL) {
 | |
|         ESP_LOGE(UART_TAG, "call uart_driver_install API first");
 | |
|         return ESP_ERR_INVALID_STATE;
 | |
|     }
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) {
 | |
|         uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold);
 | |
|     }
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
 | |
|     // get maximum timeout threshold
 | |
|     uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal));
 | |
|     if (tout_thresh > tout_max_thresh) {
 | |
|         ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh);
 | |
|         return ESP_ERR_INVALID_ARG;
 | |
|     }
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error");
 | |
|     ESP_RETURN_ON_FALSE((collision_flag != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "wrong parameter pointer");
 | |
|     ESP_RETURN_ON_FALSE((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)),
 | |
|                         ESP_ERR_INVALID_ARG, UART_TAG, "wrong mode");
 | |
|     *collision_flag = p_uart_obj[uart_num]->coll_det_flg;
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V && wakeup_threshold > UART_MIN_WAKEUP_THRESH), ESP_ERR_INVALID_ARG, UART_TAG,
 | |
|                         "wakeup_threshold out of bounds");
 | |
|     UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold);
 | |
|     UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
 | |
|     ESP_RETURN_ON_FALSE((out_wakeup_threshold != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "argument is NULL");
 | |
|     uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
 | |
|     while (!uart_hal_is_tx_idle(&(uart_context[uart_num].hal)));
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en)
 | |
| {
 | |
|     ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error");
 | |
|     uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en);
 | |
|     return ESP_OK;
 | |
| }
 | |
| 
 | |
| void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout)
 | |
| {
 | |
|     uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal));
 | |
|     if (rx_tout) {
 | |
|         p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout;
 | |
|     } else {
 | |
|         p_uart_obj[uart_num]->rx_always_timeout_flg = false;
 | |
|     }
 | |
| }
 |