mirror of
				https://github.com/espressif/esp-idf.git
				synced 2025-11-04 00:51:42 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			231 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			231 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Multi-precision integer library
 | 
						|
 * ESP32 H2 hardware accelerated parts based on mbedTLS implementation
 | 
						|
 *
 | 
						|
 * SPDX-FileCopyrightText: The Mbed TLS Contributors
 | 
						|
 *
 | 
						|
 * SPDX-License-Identifier: Apache-2.0
 | 
						|
 *
 | 
						|
 * SPDX-FileContributor: 2023 Espressif Systems (Shanghai) CO LTD
 | 
						|
 */
 | 
						|
#include <string.h>
 | 
						|
#include <sys/param.h>
 | 
						|
#include "soc/hwcrypto_periph.h"
 | 
						|
#include "esp_private/periph_ctrl.h"
 | 
						|
#include "mbedtls/bignum.h"
 | 
						|
#include "bignum_impl.h"
 | 
						|
#include "soc/pcr_reg.h"
 | 
						|
#include "soc/periph_defs.h"
 | 
						|
#include "soc/system_reg.h"
 | 
						|
#include "esp_crypto_lock.h"
 | 
						|
 | 
						|
 | 
						|
size_t esp_mpi_hardware_words(size_t words)
 | 
						|
{
 | 
						|
    return words;
 | 
						|
}
 | 
						|
 | 
						|
void esp_mpi_enable_hardware_hw_op( void )
 | 
						|
{
 | 
						|
    esp_crypto_mpi_lock_acquire();
 | 
						|
 | 
						|
    /* Enable RSA hardware */
 | 
						|
    periph_module_enable(PERIPH_RSA_MODULE);
 | 
						|
 | 
						|
    REG_CLR_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
 | 
						|
 | 
						|
    while (REG_READ(RSA_QUERY_CLEAN_REG) != 1) {
 | 
						|
    }
 | 
						|
    // Note: from enabling RSA clock to here takes about 1.3us
 | 
						|
 | 
						|
    REG_WRITE(RSA_INT_ENA_REG, 0);
 | 
						|
}
 | 
						|
 | 
						|
void esp_mpi_disable_hardware_hw_op( void )
 | 
						|
{
 | 
						|
    REG_SET_BIT(PCR_RSA_PD_CTRL_REG, PCR_RSA_MEM_PD);
 | 
						|
 | 
						|
    /* Disable RSA hardware */
 | 
						|
    periph_module_disable(PERIPH_RSA_MODULE);
 | 
						|
 | 
						|
    esp_crypto_mpi_lock_release();
 | 
						|
}
 | 
						|
 | 
						|
void esp_mpi_interrupt_enable( bool enable )
 | 
						|
{
 | 
						|
    REG_WRITE(RSA_INT_ENA_REG, enable);
 | 
						|
}
 | 
						|
 | 
						|
void esp_mpi_interrupt_clear( void )
 | 
						|
{
 | 
						|
    REG_WRITE(RSA_INT_CLR_REG, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'.
 | 
						|
 | 
						|
   If num_words is higher than the number of words in the bignum then
 | 
						|
   these additional words will be zeroed in the memory buffer.
 | 
						|
*/
 | 
						|
static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t num_words)
 | 
						|
{
 | 
						|
    uint32_t *pbase = (uint32_t *)mem_base;
 | 
						|
    uint32_t copy_words = MIN(num_words, mpi->MBEDTLS_PRIVATE(n));
 | 
						|
 | 
						|
    /* Copy MPI data to memory block registers */
 | 
						|
    for (int i = 0; i < copy_words; i++) {
 | 
						|
        pbase[i] = mpi->MBEDTLS_PRIVATE(p)[i];
 | 
						|
    }
 | 
						|
 | 
						|
    /* Zero any remaining memory block data */
 | 
						|
    for (int i = copy_words; i < num_words; i++) {
 | 
						|
        pbase[i] = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Read mbedTLS MPI bignum back from hardware memory block.
 | 
						|
 | 
						|
   Reads num_words words from block.
 | 
						|
*/
 | 
						|
static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, int num_words)
 | 
						|
{
 | 
						|
 | 
						|
    /* Copy data from memory block registers */
 | 
						|
    const size_t REG_WIDTH = sizeof(uint32_t);
 | 
						|
    for (size_t i = 0; i < num_words; i++) {
 | 
						|
        x->MBEDTLS_PRIVATE(p)[i] = REG_READ(mem_base + (i * REG_WIDTH));
 | 
						|
    }
 | 
						|
    /* Zero any remaining limbs in the bignum, if the buffer is bigger
 | 
						|
       than num_words */
 | 
						|
    for (size_t i = num_words; i < x->MBEDTLS_PRIVATE(n); i++) {
 | 
						|
        x->MBEDTLS_PRIVATE(p)[i] = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Begin an RSA operation. op_reg specifies which 'START' register
 | 
						|
   to write to.
 | 
						|
*/
 | 
						|
static inline void start_op(uint32_t op_reg)
 | 
						|
{
 | 
						|
    /* Clear interrupt status */
 | 
						|
    REG_WRITE(RSA_INT_CLR_REG, 1);
 | 
						|
 | 
						|
    /* Note: above REG_WRITE includes a memw, so we know any writes
 | 
						|
       to the memory blocks are also complete. */
 | 
						|
 | 
						|
    REG_WRITE(op_reg, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Wait for an RSA operation to complete.
 | 
						|
*/
 | 
						|
static inline void wait_op_complete(void)
 | 
						|
{
 | 
						|
    while (REG_READ(RSA_QUERY_IDLE_REG) != 1)
 | 
						|
    { }
 | 
						|
 | 
						|
    /* clear the interrupt */
 | 
						|
    REG_WRITE(RSA_INT_CLR_REG, 1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Read result from last MPI operation */
 | 
						|
void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words)
 | 
						|
{
 | 
						|
    wait_op_complete();
 | 
						|
    mem_block_to_mpi(Z, RSA_Z_MEM_REG, z_words);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Z = (X * Y) mod M
 | 
						|
 | 
						|
   Not an mbedTLS function
 | 
						|
*/
 | 
						|
void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
 | 
						|
{
 | 
						|
    REG_WRITE(RSA_MODE_REG, (num_words - 1));
 | 
						|
 | 
						|
    /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
 | 
						|
    mpi_to_mem_block(RSA_X_MEM_REG, X, num_words);
 | 
						|
    mpi_to_mem_block(RSA_Y_MEM_REG, Y, num_words);
 | 
						|
    mpi_to_mem_block(RSA_M_MEM_REG, M, num_words);
 | 
						|
    mpi_to_mem_block(RSA_Z_MEM_REG, Rinv, num_words);
 | 
						|
    REG_WRITE(RSA_M_PRIME_REG, Mprime);
 | 
						|
 | 
						|
    start_op(RSA_SET_START_MODMULT_REG);
 | 
						|
}
 | 
						|
 | 
						|
/* Z = (X ^ Y) mod M
 | 
						|
*/
 | 
						|
void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words)
 | 
						|
{
 | 
						|
    size_t y_bits = mbedtls_mpi_bitlen(Y);
 | 
						|
 | 
						|
    REG_WRITE(RSA_MODE_REG, (num_words - 1));
 | 
						|
 | 
						|
    /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */
 | 
						|
    mpi_to_mem_block(RSA_X_MEM_REG, X, num_words);
 | 
						|
    mpi_to_mem_block(RSA_Y_MEM_REG, Y, num_words);
 | 
						|
    mpi_to_mem_block(RSA_M_MEM_REG, M, num_words);
 | 
						|
    mpi_to_mem_block(RSA_Z_MEM_REG, Rinv, num_words);
 | 
						|
    REG_WRITE(RSA_M_PRIME_REG, Mprime);
 | 
						|
 | 
						|
    /* Enable acceleration options */
 | 
						|
    REG_WRITE(RSA_CONSTANT_TIME_REG, 0);
 | 
						|
    REG_WRITE(RSA_SEARCH_ENABLE_REG, 1);
 | 
						|
    REG_WRITE(RSA_SEARCH_POS_REG, y_bits - 1);
 | 
						|
 | 
						|
    /* Execute first stage montgomery multiplication */
 | 
						|
    start_op(RSA_SET_START_MODEXP_REG);
 | 
						|
 | 
						|
    REG_WRITE(RSA_SEARCH_ENABLE_REG, 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Z = X * Y */
 | 
						|
void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
 | 
						|
{
 | 
						|
    /* Copy X (right-extended) & Y (left-extended) to memory block */
 | 
						|
    mpi_to_mem_block(RSA_X_MEM_REG, X, num_words);
 | 
						|
    mpi_to_mem_block(RSA_Z_MEM_REG + num_words * 4, Y, num_words);
 | 
						|
    /* NB: as Y is left-exte, we don't zero the bottom words_mult words of Y block.
 | 
						|
       This is OK for now bec zeroing is done by hardware when we do esp_mpi_acquire_hardware().
 | 
						|
    */
 | 
						|
    REG_WRITE(RSA_MODE_REG, (num_words * 2 - 1));
 | 
						|
    start_op(RSA_SET_START_MULT_REG);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * @brief Special-case of (X * Y), where we use hardware montgomery mod
 | 
						|
   multiplication to calculate result where either A or B are >2048 bits so
 | 
						|
   can't use the standard multiplication method.
 | 
						|
 *
 | 
						|
 */
 | 
						|
void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words)
 | 
						|
{
 | 
						|
    /* M = 2^num_words - 1, so block is entirely FF */
 | 
						|
    for (int i = 0; i < num_words; i++) {
 | 
						|
        REG_WRITE(RSA_M_MEM_REG + i * 4, UINT32_MAX);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Mprime = 1 */
 | 
						|
    REG_WRITE(RSA_M_PRIME_REG, 1);
 | 
						|
    REG_WRITE(RSA_MODE_REG, num_words - 1);
 | 
						|
 | 
						|
    /* Load X & Y */
 | 
						|
    mpi_to_mem_block(RSA_X_MEM_REG, X, num_words);
 | 
						|
    mpi_to_mem_block(RSA_Y_MEM_REG, Y, num_words);
 | 
						|
 | 
						|
    /* Rinv = 1, write first word */
 | 
						|
    REG_WRITE(RSA_Z_MEM_REG, 1);
 | 
						|
 | 
						|
    /* Zero out rest of the Rinv words */
 | 
						|
    for (int i = 1; i < num_words; i++) {
 | 
						|
        REG_WRITE(RSA_Z_MEM_REG + i * 4, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    start_op(RSA_SET_START_MODMULT_REG);
 | 
						|
}
 |