fix(mdns): Refactor freertos linux compat layers

Move it to a separate component that could be shared by multiple network
libs.
This commit is contained in:
David Cermak
2023-03-31 17:06:28 +02:00
parent 68392f0ba9
commit 79a0e57ca1
17 changed files with 567 additions and 282 deletions

View File

@ -1,4 +1,5 @@
idf_component_register(SRCS freertos_linux.c queue_unique_ptr.cpp
idf_component_register(SRCS freertos_linux.c
osal/queue.cpp osal/event_group.cpp osal/mutex.cpp
INCLUDE_DIRS include)
set(THREADS_PREFER_PTHREAD_FLAG ON)

View File

@ -0,0 +1,272 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <unistd.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include <pthread.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "osal/osal_api.h"
static uint64_t s_semaphore_data = 0;
typedef enum queue_type_tag {
MUTEX_REC,
MUTEX,
SEMA,
QUEUE,
} queue_type_t;
struct generic_queue_handle {
queue_type_t type;
size_t item_size;
void *q;
};
static struct generic_queue_handle *create_generic_queue(queue_type_t type, uint32_t len, uint32_t item_size)
{
struct generic_queue_handle *h = calloc(1, sizeof(struct generic_queue_handle));
h->item_size = len;
h->type = type;
switch (type) {
default:
case QUEUE:
case SEMA:
h->q = osal_queue_create();
break;
case MUTEX:
case MUTEX_REC:
h->q = osal_mutex_create();
break;
}
return h;
}
QueueHandle_t xQueueCreate(uint32_t uxQueueLength, uint32_t uxItemSize )
{
return (QueueHandle_t)create_generic_queue(QUEUE, uxQueueLength, uxItemSize);
}
uint32_t xQueueSend(QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait)
{
struct generic_queue_handle *h = xQueue;
return osal_queue_send(h->q, (uint8_t *)pvItemToQueue, h->item_size) ? pdTRUE : pdFAIL;
}
uint32_t xQueueSendToBack(QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait )
{
return xQueueSend(xQueue, pvItemToQueue, xTicksToWait);
}
uint32_t xQueueReceive(QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait)
{
struct generic_queue_handle *h = xQueue;
return osal_queue_recv(h->q, (uint8_t *)pvBuffer, h->item_size, xTicksToWait) ? pdTRUE : pdFAIL;
}
BaseType_t xSemaphoreGive( QueueHandle_t xQueue)
{
struct generic_queue_handle *h = xQueue;
if (h->type == MUTEX) {
osal_mutex_give(h->q);
return pdTRUE;
}
return xQueueSend(xQueue, &s_semaphore_data, portMAX_DELAY);
}
BaseType_t xSemaphoreGiveRecursive( QueueHandle_t xQueue)
{
struct generic_queue_handle *h = xQueue;
if (h->type == MUTEX_REC) {
osal_mutex_give(h->q);
return pdTRUE;
}
return pdFALSE;
}
BaseType_t xSemaphoreTake( QueueHandle_t xQueue, TickType_t pvTask )
{
struct generic_queue_handle *h = xQueue;
if (h->type == MUTEX) {
osal_mutex_take(h->q);
return pdTRUE;
}
return xQueueReceive(xQueue, &s_semaphore_data, portMAX_DELAY);
}
BaseType_t xSemaphoreTakeRecursive( QueueHandle_t xQueue, TickType_t pvTask )
{
struct generic_queue_handle *h = xQueue;
if (h->type == MUTEX_REC) {
osal_mutex_take(h->q);
return pdTRUE;
}
return pdFALSE;
}
void vQueueDelete( QueueHandle_t xQueue )
{
struct generic_queue_handle *h = xQueue;
if (h->q) {
if (h->type == MUTEX) {
osal_mutex_delete(h->q);
} else {
osal_queue_delete(h->q);
}
}
free(xQueue);
}
QueueHandle_t xSemaphoreCreateBinary(void)
{
QueueHandle_t sempaphore = xQueueCreate(1, 1);
return sempaphore;
}
QueueHandle_t xSemaphoreCreateMutex(void)
{
return (QueueHandle_t)create_generic_queue(MUTEX, 1, 1);
}
QueueHandle_t xSemaphoreCreateRecursiveMutex(void)
{
return (QueueHandle_t)create_generic_queue(MUTEX_REC, 1, 1);
}
void vTaskDelete(TaskHandle_t *task)
{
if (task == NULL) {
pthread_exit(0);
}
void *thread_rval = NULL;
pthread_join((pthread_t)task, &thread_rval);
}
void vTaskSuspend(void *task)
{
vTaskDelete(task);
}
TickType_t xTaskGetTickCount( void )
{
struct timespec spec;
clock_gettime(CLOCK_REALTIME, &spec);
return spec.tv_nsec / 1000000 + spec.tv_sec * 1000;
}
void vTaskDelay( const TickType_t xTicksToDelay )
{
usleep(xTicksToDelay * 1000);
}
void *pthread_task(void *params)
{
struct {
void *const param;
TaskFunction_t task;
bool started;
} *pthread_params = params;
void *const param = pthread_params->param;
TaskFunction_t task = pthread_params->task;
pthread_params->started = true;
task(param);
return NULL;
}
BaseType_t xTaskCreatePinnedToCore( TaskFunction_t pvTaskCode,
const char *const pcName,
const uint32_t usStackDepth,
void *const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t *const pvCreatedTask,
const BaseType_t xCoreID)
{
xTaskCreate(pvTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pvCreatedTask);
return pdTRUE;
}
BaseType_t xTaskCreate(TaskFunction_t pvTaskCode, const char *const pcName, const uint32_t usStackDepth, void *const pvParameters, UBaseType_t uxPriority, TaskHandle_t *const pvCreatedTask)
{
pthread_t new_thread = (pthread_t)NULL;
pthread_attr_t attr;
struct {
void *const param;
TaskFunction_t task;
bool started;
} pthread_params = { .param = pvParameters, .task = pvTaskCode};
int res = pthread_attr_init(&attr);
assert(res == 0);
res = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
assert(res == 0);
res = pthread_create(&new_thread, &attr, pthread_task, &pthread_params);
assert(res == 0);
if (pvCreatedTask) {
*pvCreatedTask = (void *)new_thread;
}
// just wait till the task started so we can unwind params from the stack
while (pthread_params.started == false) {
usleep(1000);
}
return pdTRUE;
}
void xTaskNotifyGive(TaskHandle_t task)
{
}
BaseType_t xTaskNotifyWait(uint32_t bits_entry_clear, uint32_t bits_exit_clear, uint32_t *value, TickType_t wait_time )
{
return true;
}
TaskHandle_t xTaskGetCurrentTaskHandle(void)
{
return NULL;
}
EventGroupHandle_t xEventGroupCreate( void )
{
return osal_signal_create();
}
void vEventGroupDelete( EventGroupHandle_t xEventGroup )
{
osal_signal_delete(xEventGroup);
}
EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear )
{
return osal_signal_clear(xEventGroup, uxBitsToClear);
}
EventBits_t xEventGroupGetBits( EventGroupHandle_t xEventGroup)
{
return osal_signal_get(xEventGroup);
}
EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet )
{
return osal_signal_set(xEventGroup, uxBitsToSet);
}
EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToWaitFor, const BaseType_t xClearOnExit, const BaseType_t xWaitForAllBits, TickType_t xTicksToWait )
{
return osal_signal_wait(xEventGroup, uxBitsToWaitFor, xWaitForAllBits, xTicksToWait);
}

View File

@ -10,3 +10,4 @@
#define ESP_TASK_PRIO_MAX 25
#define ESP_TASKD_EVENT_PRIO 5
#define ESP_TASKD_EVENT_STACK 1024

View File

@ -16,7 +16,9 @@
typedef void *SemaphoreHandle_t;
typedef void *QueueHandle_t;
typedef void *TaskHandle_t;
typedef void *EventGroupHandle_t;
typedef uint32_t TickType_t;
typedef TickType_t EventBits_t;
typedef void (*TaskFunction_t)( void * );
typedef unsigned int UBaseType_t;

View File

@ -0,0 +1,6 @@
/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once

View File

@ -3,11 +3,4 @@
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
//
// Created by david on 1/13/23.
//
#ifndef _QUEUE_H_
#define _QUEUE_H_
#endif //_QUEUE_H_
#pragma once

View File

@ -3,11 +3,4 @@
*
* SPDX-License-Identifier: Unlicense OR CC0-1.0
*/
//
// Created by david on 1/13/23.
//
#ifndef _SEMAPHR_H_
#define _SEMAPHR_H_
#endif //_SEMAPHR_H_
#pragma once

View File

@ -26,7 +26,7 @@ BaseType_t xTaskCreatePinnedToCore( TaskFunction_t pvTaskCode,
TaskHandle_t *const pvCreatedTask,
const BaseType_t xCoreID);
void xTaskCreate(TaskFunction_t pvTaskCode, const char *const pcName, const uint32_t usStackDepth, void *const pvParameters, UBaseType_t uxPriority, TaskHandle_t *const pvCreatedTask);
BaseType_t xTaskCreate(TaskFunction_t pvTaskCode, const char *const pcName, const uint32_t usStackDepth, void *const pvParameters, UBaseType_t uxPriority, TaskHandle_t *const pvCreatedTask);
TickType_t xTaskGetTickCount( void );
@ -35,11 +35,16 @@ void vQueueDelete( QueueHandle_t xQueue );
QueueHandle_t xSemaphoreCreateBinary(void);
QueueHandle_t xSemaphoreCreateMutex(void);
QueueHandle_t xSemaphoreCreateRecursiveMutex(void);
BaseType_t xSemaphoreGive( QueueHandle_t xQueue);
BaseType_t xSemaphoreTake( QueueHandle_t xQueue, TickType_t pvTask );
BaseType_t xSemaphoreGiveRecursive( QueueHandle_t xQueue);
BaseType_t xSemaphoreTakeRecursive( QueueHandle_t xQueue, TickType_t pvTask );
void vTaskDelete(TaskHandle_t *task);
QueueHandle_t xQueueCreate( uint32_t uxQueueLength,
@ -48,3 +53,23 @@ QueueHandle_t xQueueCreate( uint32_t uxQueueLength,
uint32_t xQueueSend(QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait);
uint32_t xQueueReceive(QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait);
void vTaskSuspend(void *task);
EventGroupHandle_t xEventGroupCreate( void );
void vEventGroupDelete( EventGroupHandle_t xEventGroup );
EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup,
const EventBits_t uxBitsToClear );
EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup,
const EventBits_t uxBitsToWaitFor,
const BaseType_t xClearOnExit,
const BaseType_t xWaitForAllBits,
TickType_t xTicksToWait );
EventBits_t xEventGroupGetBits( EventGroupHandle_t xEventGroup);
EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup,
const EventBits_t uxBitsToSet );
uint32_t xQueueSendToBack(QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait );

View File

@ -0,0 +1,111 @@
/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <mutex>
#include <condition_variable>
#include "osal_api.h"
struct SignalGroupInternal {
std::condition_variable notify;
std::mutex m;
uint32_t flags{ 0 };
};
using SignalT = std::unique_ptr<SignalGroupInternal>;
class SignalGroup {
public:
explicit SignalGroup(): event_group(std::make_unique<SignalGroupInternal>()) {}
void set(uint32_t bits)
{
std::unique_lock<std::mutex> lock(event_group->m);
event_group->flags |= bits;
event_group->notify.notify_all();
}
uint32_t get()
{
return event_group->flags;
}
void clear(uint32_t bits)
{
std::unique_lock<std::mutex> lock(event_group->m);
event_group->flags &= ~bits;
event_group->notify.notify_all();
}
// waiting for all and clearing if set
bool wait(uint32_t flags, uint32_t time_ms)
{
std::unique_lock<std::mutex> lock(event_group->m);
return event_group->notify.wait_for(lock, std::chrono::milliseconds(time_ms), [&] {
if ((flags & event_group->flags) == flags)
{
event_group->flags &= ~flags;
return true;
}
return false;
});
}
// waiting for any bit, not clearing them
bool wait_any(uint32_t flags, uint32_t time_ms)
{
std::unique_lock<std::mutex> lock(event_group->m);
return event_group->notify.wait_for(lock, std::chrono::milliseconds(time_ms), [&] { return flags & event_group->flags; });
}
~SignalGroup() = default;
private:
SignalT event_group;
};
void *osal_signal_create()
{
auto signal = new SignalGroup;
return signal;
}
void osal_signal_delete(void *s)
{
delete static_cast<SignalGroup *>(s);
}
uint32_t osal_signal_clear(void *s, uint32_t bits)
{
auto signal = static_cast<SignalGroup *>(s);
signal->clear(bits);
return signal->get();
}
uint32_t osal_signal_set(void *s, uint32_t bits)
{
auto signal = static_cast<SignalGroup *>(s);
signal->set(bits);
return signal->get();
}
uint32_t osal_signal_get(void *s)
{
auto signal = static_cast<SignalGroup *>(s);
return signal->get();
}
uint32_t osal_signal_wait(void *s, uint32_t flags, bool all, uint32_t timeout)
{
auto signal = static_cast<SignalGroup *>(s);
if (all) {
signal->wait(flags, timeout);
} else {
signal->wait_any(flags, timeout);
}
return signal->get();
}

View File

@ -0,0 +1,31 @@
/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <queue>
#include <mutex>
#include "osal_api.h"
void *osal_mutex_create()
{
auto mut = new std::recursive_mutex();
return mut;
}
void osal_mutex_delete(void *mut)
{
delete static_cast<std::recursive_mutex *>(mut);
}
void osal_mutex_take(void *m)
{
auto mut = static_cast<std::recursive_mutex *>(m);
mut->lock();
}
void osal_mutex_give(void *m)
{
auto mut = static_cast<std::recursive_mutex *>(m);
mut->unlock();
}

View File

@ -0,0 +1,34 @@
/*
* SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
// queue api
void *osal_queue_create(void);
void osal_queue_delete(void *q);
bool osal_queue_send(void *q, uint8_t *data, size_t len);
bool osal_queue_recv(void *q, uint8_t *data, size_t len, uint32_t ms);
// mutex api
void *osal_mutex_create(void);
void osal_mutex_delete(void *m);
void osal_mutex_take(void *m);
void osal_mutex_give(void *m);
// event groups
void *osal_signal_create(void);
void osal_signal_delete(void *s);
uint32_t osal_signal_clear(void *s, uint32_t bits);
uint32_t osal_signal_set(void *s, uint32_t bits);
uint32_t osal_signal_get(void *s);
uint32_t osal_signal_wait(void *s, uint32_t flags, bool all, uint32_t timeout);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,79 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <cstdint>
#include <vector>
#include <cstring>
#include <queue>
#include <mutex>
#include <condition_variable>
#include <atomic>
#include "osal_api.h"
template <class T>
class Queue {
public:
Queue(): q(), m(), c() {}
~Queue() {}
void send(std::unique_ptr<T> t)
{
std::lock_guard<std::mutex> lock(m);
q.push(std::move(t));
c.notify_one();
}
std::unique_ptr<T> receive(uint32_t ms)
{
std::unique_lock<std::mutex> lock(m);
while (q.empty()) {
if (c.wait_for(lock, std::chrono::milliseconds(ms)) == std::cv_status::timeout) {
return nullptr;
}
}
std::unique_ptr<T> val = std::move(q.front());
q.pop();
return val;
}
private:
std::queue<std::unique_ptr<T>> q;
mutable std::mutex m;
std::condition_variable c;
};
void *osal_queue_create(void)
{
auto *q = new Queue<std::vector<uint8_t>>();
return q;
}
void osal_queue_delete(void *q)
{
auto *queue = static_cast<Queue<std::vector<uint8_t>> *>(q);
delete (queue);
}
bool osal_queue_send(void *q, uint8_t *data, size_t len)
{
auto v = std::make_unique<std::vector<uint8_t>>(len);
v->assign(data, data + len);
auto queue = static_cast<Queue<std::vector<uint8_t>> *>(q);
queue->send(std::move(v));
return true;
}
bool osal_queue_recv(void *q, uint8_t *data, size_t len, uint32_t ms)
{
auto queue = static_cast<Queue<std::vector<uint8_t>> *>(q);
auto v = queue->receive(ms);
if (v == nullptr) {
return false;
}
memcpy(data, (void *)v->data(), len);
return true;
}

View File

@ -1,6 +1,6 @@
cmake_minimum_required(VERSION 3.5)
set(EXTRA_COMPONENT_DIRS "../..")
set(EXTRA_COMPONENT_DIRS "../.. ../../../../common_components/linux_compat/freertos")
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
set(COMPONENTS main esp_netif_linux)

View File

@ -1,174 +0,0 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <unistd.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include <pthread.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
void *create_q(void);
void destroy_q(void *q);
bool send_q(void *q, uint8_t *data, size_t len);
bool recv_q(void *q, uint8_t *data, size_t len, uint32_t ms);
static uint64_t s_semaphore_data = 0;
struct queue_handle {
size_t item_size;
void *q;
};
QueueHandle_t xQueueCreate( uint32_t uxQueueLength, uint32_t uxItemSize )
{
struct queue_handle *h = calloc(1, sizeof(struct queue_handle));
h->item_size = uxItemSize;
h->q = create_q();
return (QueueHandle_t)h;
}
uint32_t xQueueSend(QueueHandle_t xQueue, const void *pvItemToQueue, TickType_t xTicksToWait)
{
struct queue_handle *h = xQueue;
return send_q(h->q, (uint8_t *)pvItemToQueue, h->item_size) ? pdTRUE : pdFAIL;
}
uint32_t xQueueReceive(QueueHandle_t xQueue, void *pvBuffer, TickType_t xTicksToWait)
{
struct queue_handle *h = xQueue;
return recv_q(h->q, (uint8_t *)pvBuffer, h->item_size, xTicksToWait) ? pdTRUE : pdFAIL;
}
BaseType_t xSemaphoreGive( QueueHandle_t xQueue)
{
return xQueueSend(xQueue, &s_semaphore_data, portMAX_DELAY);
}
BaseType_t xSemaphoreTake( QueueHandle_t xQueue, TickType_t pvTask )
{
return xQueueReceive(xQueue, &s_semaphore_data, portMAX_DELAY);
}
void vQueueDelete( QueueHandle_t xQueue )
{
struct queue_handle *h = xQueue;
if (h->q) {
destroy_q(h->q);
}
free(xQueue);
}
QueueHandle_t xSemaphoreCreateBinary(void)
{
QueueHandle_t sempaphore = xQueueCreate(1, 1);
return sempaphore;
}
QueueHandle_t xSemaphoreCreateMutex(void)
{
QueueHandle_t sempaphore = xQueueCreate(1, 1);
if (sempaphore) {
xSemaphoreGive(sempaphore);
}
return sempaphore;
}
void vTaskDelete(TaskHandle_t *task)
{
if (task == NULL) {
pthread_exit(0);
}
void *thread_rval = NULL;
pthread_join((pthread_t)task, &thread_rval);
}
TickType_t xTaskGetTickCount( void )
{
struct timespec spec;
clock_gettime(CLOCK_REALTIME, &spec);
return spec.tv_nsec / 1000000 + spec.tv_sec * 1000;
}
void vTaskDelay( const TickType_t xTicksToDelay )
{
usleep(xTicksToDelay * 1000);
}
void *pthread_task(void *params)
{
struct {
void *const param;
TaskFunction_t task;
bool started;
} *pthread_params = params;
void *const param = pthread_params->param;
TaskFunction_t task = pthread_params->task;
pthread_params->started = true;
task(param);
return NULL;
}
BaseType_t xTaskCreatePinnedToCore( TaskFunction_t pvTaskCode,
const char *const pcName,
const uint32_t usStackDepth,
void *const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t *const pvCreatedTask,
const BaseType_t xCoreID)
{
xTaskCreate(pvTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pvCreatedTask);
return pdTRUE;
}
void xTaskCreate(TaskFunction_t pvTaskCode, const char *const pcName, const uint32_t usStackDepth, void *const pvParameters, UBaseType_t uxPriority, TaskHandle_t *const pvCreatedTask)
{
pthread_t new_thread = (pthread_t)NULL;
pthread_attr_t attr;
struct {
void *const param;
TaskFunction_t task;
bool started;
} pthread_params = { .param = pvParameters, .task = pvTaskCode};
int res = pthread_attr_init(&attr);
assert(res == 0);
res = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
assert(res == 0);
res = pthread_create(&new_thread, &attr, pthread_task, &pthread_params);
assert(res == 0);
if (pvCreatedTask) {
*pvCreatedTask = (void *)new_thread;
}
// just wait till the task started so we can unwind params from the stack
while (pthread_params.started == false) {
usleep(1000);
}
}
void xTaskNotifyGive(TaskHandle_t task)
{
}
BaseType_t xTaskNotifyWait(uint32_t bits_entry_clear, uint32_t bits_exit_clear, uint32_t *value, TickType_t wait_time )
{
return true;
}
TaskHandle_t xTaskGetCurrentTaskHandle(void)
{
return NULL;
}

View File

@ -1,43 +0,0 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "queue_unique_ptr.hpp"
#include <cstdint>
#include <vector>
#include <memory>
#include <cstring>
extern "C" void *create_q(void)
{
auto *q = new QueueMock<std::vector<uint8_t>>();
return q;
}
extern "C" void destroy_q(void *q)
{
auto *queue = static_cast<QueueMock<std::vector<uint8_t>> *>(q);
delete (queue);
}
extern "C" bool send_q(void *q, uint8_t *data, size_t len)
{
auto v = std::make_unique<std::vector<uint8_t>>(len);
v->assign(data, data + len);
auto queue = static_cast<QueueMock<std::vector<uint8_t>> *>(q);
queue->send(std::move(v));
return true;
}
extern "C" bool recv_q(void *q, uint8_t *data, size_t len, uint32_t ms)
{
auto queue = static_cast<QueueMock<std::vector<uint8_t>> *>(q);
auto v = queue->receive(ms);
if (v == nullptr) {
return false;
}
memcpy(data, (void *)v->data(), len);
return true;
}

View File

@ -1,46 +0,0 @@
/*
* SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <queue>
#include <mutex>
#include <condition_variable>
#include <memory>
#include <thread>
#include <atomic>
template <class T>
class QueueMock {
public:
QueueMock(void): q(), m(), c() {}
~QueueMock(void) {}
void send(std::unique_ptr<T> t)
{
std::lock_guard<std::mutex> lock(m);
q.push(std::move(t));
c.notify_one();
}
std::unique_ptr<T> receive(uint32_t ms)
{
std::unique_lock<std::mutex> lock(m);
while (q.empty()) {
if (c.wait_for(lock, std::chrono::milliseconds(ms)) == std::cv_status::timeout) {
return nullptr;
}
}
std::unique_ptr<T> val = std::move(q.front());
q.pop();
return val;
}
private:
std::queue<std::unique_ptr<T>> q;
mutable std::mutex m;
std::condition_variable c;
};