Merge pull request #50 from brentru/add-more-units

Add sensor types for gas resistance and unitless percentage
This commit is contained in:
Brent Rubell
2023-03-03 13:18:05 -05:00
committed by GitHub
3 changed files with 33 additions and 16 deletions

View File

@ -94,6 +94,12 @@ void Adafruit_Sensor::printSensorDetails(void) {
case SENSOR_TYPE_PM100_ENV: case SENSOR_TYPE_PM100_ENV:
Serial.print(F("Environmental Particulate Matter 100 (ppm)")); Serial.print(F("Environmental Particulate Matter 100 (ppm)"));
break; break;
case SENSOR_TYPE_GAS_RESISTANCE:
Serial.print(F("Gas Resistance (ohms)"));
break;
case SENSOR_TYPE_UNITLESS_PERCENT:
Serial.print(F("Unitless Percent (%)"));
break;
} }
Serial.println(); Serial.println();

View File

@ -77,7 +77,9 @@ typedef enum {
SENSOR_TYPE_PM100_STD = (25), SENSOR_TYPE_PM100_STD = (25),
SENSOR_TYPE_PM10_ENV = (26), SENSOR_TYPE_PM10_ENV = (26),
SENSOR_TYPE_PM25_ENV = (27), SENSOR_TYPE_PM25_ENV = (27),
SENSOR_TYPE_PM100_ENV = (28) SENSOR_TYPE_PM100_ENV = (28),
SENSOR_TYPE_GAS_RESISTANCE = (29),
SENSOR_TYPE_UNITLESS_PERCENT = (30)
} sensors_type_t; } sensors_type_t;
/** struct sensors_vec_s is used to return a vector in a common format. */ /** struct sensors_vec_s is used to return a vector in a common format. */
@ -131,7 +133,7 @@ typedef struct {
int32_t reserved0; /**< reserved */ int32_t reserved0; /**< reserved */
int32_t timestamp; /**< time is in milliseconds */ int32_t timestamp; /**< time is in milliseconds */
union { union {
float data[4]; ///< Raw data float data[4]; ///< Raw data */
sensors_vec_t acceleration; /**< acceleration values are in meter per second sensors_vec_t acceleration; /**< acceleration values are in meter per second
per second (m/s^2) */ per second (m/s^2) */
sensors_vec_t sensors_vec_t
@ -163,10 +165,13 @@ typedef struct {
million (ppm) */ million (ppm) */
float pm25_env; /**< Environmental Particulate Matter 2.5 in parts per float pm25_env; /**< Environmental Particulate Matter 2.5 in parts per
million (ppm) */ million (ppm) */
float pm100_env; /**< EnvironmentalParticulate Matter 100 in parts per float pm100_env; /**< Environmental Particulate Matter 100 in parts per
million (ppm) */ million (ppm) */
sensors_color_t color; /**< color in RGB component values */ float gas_resistance; /**< Proportional to the amount of VOC particles in
}; ///< Union for the wide ranges of data we can carry the air (Ohms) */
float unitless_percent; /**<Percentage, unit-less (%) */
sensors_color_t color; /**< color in RGB component values */
}; ///< Union for the wide ranges of data we can carry
} sensors_event_t; } sensors_event_t;
/* Sensor details (40 bytes) */ /* Sensor details (40 bytes) */

View File

@ -85,7 +85,9 @@ typedef enum
SENSOR_TYPE_PM100_STD = (25), SENSOR_TYPE_PM100_STD = (25),
SENSOR_TYPE_PM10_ENV = (26), SENSOR_TYPE_PM10_ENV = (26),
SENSOR_TYPE_PM25_ENV = (27), SENSOR_TYPE_PM25_ENV = (27),
SENSOR_TYPE_PM100_ENV = (28) SENSOR_TYPE_PM100_ENV = (28),
SENSOR_TYPE_GAS_RESISTANCE = (29),
SENSOR_TYPE_UNITLESS_PERCENT = (30)
} sensors_type_t; } sensors_type_t;
``` ```
@ -159,6 +161,8 @@ typedef struct
float pm10_env, float pm10_env,
float pm25_env, float pm25_env,
float pm100_env, float pm100_env,
float gas_resistance,
float unitless_percent,
sensors_color_t color; sensors_color_t color;
}; };
} sensors_event_t; } sensors_event_t;
@ -187,7 +191,7 @@ Calling this function will provide some basic information about the sensor (the
## Standardised SI values for `sensors_event_t` ## Standardised SI values for `sensors_event_t`
A key part of the abstraction layer is the standardisation of values on SI units of a particular scale, which is accomplished via the data[4] union in sensors\_event\_t above. This 16 byte union includes fields for each main sensor type, and uses the following SI units and scales: A key part of the abstraction layer is the standardization of values on SI units of a particular scale, which is accomplished via the data[4] union in sensors\_event\_t above. This 16 byte union includes fields for each main sensor type, and uses the following SI units and scales:
- **acceleration**: values are in **meter per second per second** (m/s^2) - **acceleration**: values are in **meter per second per second** (m/s^2)
- **magnetic**: values are in **micro-Tesla** (uT) - **magnetic**: values are in **micro-Tesla** (uT)
@ -204,20 +208,22 @@ A key part of the abstraction layer is the standardisation of values on SI units
- **tvoc**: values are in **parts per billion** (ppb) - **tvoc**: values are in **parts per billion** (ppb)
- **voc_index**: values are an **index** from 1-500 with 100 being normal - **voc_index**: values are an **index** from 1-500 with 100 being normal
- **nox_index**: values are an **index** from 1-500 with 100 being normal - **nox_index**: values are an **index** from 1-500 with 100 being normal
- **CO2**: values are in **parts per million*** (ppm) - **CO2**: values are in **parts per million** (ppm)
- **eCO2**: values are in **parts per million*** (ppm) - **eCO2**: values are in **parts per million** (ppm)
- **pm10_std**: values are in **parts per million*** (ppm) - **pm10_std**: values are in **parts per million** (ppm)
- **pm25_std**: values are in **parts per million*** (ppm) - **pm25_std**: values are in **parts per million** (ppm)
- **pm100_std**: values are in **parts per million*** (ppm) - **pm100_std**: values are in **parts per million** (ppm)
- **pm10_env**: values are in **parts per million*** (ppm) - **pm10_env**: values are in **parts per million** (ppm)
- **pm25_env**: values are in **parts per million*** (ppm) - **pm25_env**: values are in **parts per million** (ppm)
- **pm100_env**: values are in **parts per million*** (ppm) - **pm100_env**: values are in **parts per million** (ppm)
- **gas_resistance**: values are in **ohms**
- **unitless_percent**: values are in **%**
## The Unified Driver Abstraction Layer in Practice ## ## The Unified Driver Abstraction Layer in Practice ##
Using the unified sensor abstraction layer is relatively easy once a compliant driver has been created. Using the unified sensor abstraction layer is relatively easy once a compliant driver has been created.
Every compliant sensor can now be read using a single, well-known 'type' (sensors\_event\_t), and there is a standardised way of interrogating a sensor about its specific capabilities (via sensor\_t). Every compliant sensor can now be read using a single, well-known 'type' (sensors\_event\_t), and there is a standardized way of interrogating a sensor about its specific capabilities (via sensor\_t).
An example of reading the [TSL2561](https://github.com/adafruit/Adafruit_TSL2561) light sensor can be seen below: An example of reading the [TSL2561](https://github.com/adafruit/Adafruit_TSL2561) light sensor can be seen below: