Writing documentation...

This commit is contained in:
Benoit Blanchon
2014-11-07 18:21:34 +01:00
parent d38131d495
commit 6eef52cc9c
4 changed files with 194 additions and 44 deletions

View File

@ -28,52 +28,9 @@ Here is an example to generate `{"sensor":"gps","time":1351824120,"data":[48.756
## Step 1: Reserve memory space ## Step 1: Reserve memory space
#### Introducing `StaticJsonBuffer`
Arduino JSON uses a preallocated memory pool to store the object tree, this is done by the `StaticJsonBuffer`. Arduino JSON uses a preallocated memory pool to store the object tree, this is done by the `StaticJsonBuffer`.
Before using any function of the library you need to create a `StaticJsonBuffer`. Then you can use this instance to create arrays and objects, or parse a JSON string. Before continuing please read the page [Arduino JSON memory model](Memory model.md) that explains everything you need to know about `StaticJsonBuffer`.
`StaticJsonBuffer` has a template parameter that determines the number of bytes that it contains. For example, the following line create a `StaticJsonBuffer` containing 200 bytes on the stack:
StaticJsonBuffer<200> jsonBuffer;
The bigger the buffer is, the more complex the object tree can be, but also the more memory you need.
#### How to determine the buffer size?
So the big question you should have in mind right now is *How can I determine the size?*.
There are basically two approaches here:
1. either you can predict the content of the object tree,
2. or, you know how much memory is available.
In the first case, you know some constraints on the object tree. For instance, let's say that your know in advance (and by that I mean "at compilation time") that you want to generate an object with 3 values, one of them being an array with 2 values, like the following:
{"sensor":"gps","time":1351824120,"data":[48.756080,2.302038]}
To determine the memory usage of this object tree, you use the two macros `JSON_ARRAY_SIZE(n)` `JSON_OBJECT_SIZE(n)`, both take the number of elements as a parameter.
For the example above, it would be:
const int BUFFER_SIZE = JSON_OBJECT_SIZE(3) + JSON_ARRAY_SIZE(2);
StaticJsonBuffer<BUFFER_SIZE> jsonBuffer;
In the second case, let's say you dynamically generate a JSON object tree of a random complexity so you can't put a limit base on that. But on the other hand, you don't want your program to crash because the object tree doesn't fit in memory.
The solution here is to determine how much memory is available, or in other words how much memory you can afford for the JSON generation.
#### Why choosing fixed allocation?
This fixed allocation approach may seem a bit strange, especially if your a desktop app developer used to dynamic allocation, but it make a lot of sense in an embedded context:
1. the code is smaller
2. it uses less memory
3. it doesn't create memory fragmentation
4. it predictable
Don't forget that, the memory is "freed" as soon as the `StaticJsonBuffer` is out of scope, like any other variable. It only hold the memory for a short amount of time.
For that reason, you should never use a `StaticJsonBuffer` as a **global variable** because it would hold a lot of memory for the whole life of the program.
## Step 2: Build object tree in memory ## Step 2: Build object tree in memory

View File

51
doc/Memory model.md Normal file
View File

@ -0,0 +1,51 @@
Arduino JSON memory model
=========================
## Fixed memory allocation
### Introducing `StaticJsonBuffer`
Arduino JSON uses a preallocated memory pool to store the object tree, this is done by the `StaticJsonBuffer`.
Before using any function of the library you need to create a `StaticJsonBuffer`. Then you can use this instance to create arrays and objects, or parse a JSON string.
`StaticJsonBuffer` has a template parameter that determines the number of bytes that it contains. For example, the following line create a `StaticJsonBuffer` containing 200 bytes on the stack:
StaticJsonBuffer<200> jsonBuffer;
The bigger the buffer is, the more complex the object tree can be, but also the more memory you need.
### How to determine the buffer size?
So the big question you should have in mind right now is *How can I determine the size?*.
There are basically two approaches here:
1. either you can predict the content of the object tree,
2. or, you know how much memory is available.
In the first case, you know some constraints on the object tree. For instance, let's say that your know in advance (and by that I mean "at compilation time") that you want to generate an object with 3 values, one of them being an array with 2 values, like the following:
{"sensor":"gps","time":1351824120,"data":[48.756080,2.302038]}
To determine the memory usage of this object tree, you use the two macros `JSON_ARRAY_SIZE(n)` `JSON_OBJECT_SIZE(n)`, both take the number of elements as a parameter.
For the example above, it would be:
const int BUFFER_SIZE = JSON_OBJECT_SIZE(3) + JSON_ARRAY_SIZE(2);
StaticJsonBuffer<BUFFER_SIZE> jsonBuffer;
In the second case, let's say you dynamically generate a JSON object tree of a random complexity so you can't put a limit base on that. But on the other hand, you don't want your program to crash because the object tree doesn't fit in memory.
The solution here is to determine how much memory is available, or in other words how much memory you can afford for the JSON generation.
### Why choosing fixed allocation?
This fixed allocation approach may seem a bit strange, especially if your a desktop app developer used to dynamic allocation, but it make a lot of sense in an embedded context:
1. the code is smaller
2. it uses less memory
3. it doesn't create memory fragmentation
4. it predictable
Don't forget that, the memory is "freed" as soon as the `StaticJsonBuffer` is out of scope, like any other variable. It only hold the memory for a short amount of time.
For that reason, you should never use a `StaticJsonBuffer` as a **global variable** because it would hold a lot of memory for the whole life of the program.

View File

@ -0,0 +1,142 @@
Parsing JSON with Arduino JSON
==============================
## Example
Here an example that parse the string `{"sensor":"gps","time":1351824120,"data":[48.756080,2.302038]}`:
char json[] = "{\"sensor\":\"gps\",\"time\":1351824120,\"data\":[48.756080,2.302038]}";
//
// Step 1: Reserve memory space
//
StaticJsonBuffer<200> jsonBuffer;
//
// Step 2: Deserialize the JSON string
//
JsonObject& root = jsonBuffer.parseObject(json);
if (!root.success())
{
Serial.println("parseObject() failed");
return;
}
//
// Step 3: Retrieve the values
//
const char* sensor = root["sensor"];
long time = root["time"];
double latitude = root["data"][0];
double longitude = root["data"][1];
## Step 1: Reserve memory space
Arduino JSON uses a preallocated memory pool to store the object tree, this is done by the `StaticJsonBuffer`.
Before continuing please read the page [Arduino JSON memory model](Memory model.md) that explains everything you need to know about `StaticJsonBuffer`.
## Step 2: Parse the JSON string
You call the JSON parser through the instance of `StaticJsonBuffer`.
It exposes two function for parsing JSON:
1. parseArray() that returns a reference to a `JsonArray`
2. parseObject() that returns a reference to a `JsonObject`
Let's see an example.
Say we want to parse `{"sensor":"gps","time":1351824120,"data":[48.756080,2.302038]}`, it's an object so we call `parseObject` as follows:
char json[] = "{\"sensor\":\"gps\",\"time\":1351824120,\"data\":[48.756080,2.302038]}";
JsonObject& root = jsonBuffer.parseObject(json);
As you can see `parseObject()` takes a `char*` as a parameter.
Be careful, it's not a `const char*`, the memory must be writable.
Indeed, the parser will modify the string in two cases:
1. to insert string endings (character `\0`),
2. to translate escaped characters (like `\n` or `\t`).
Another thing that you must keep in mind is that the string (`char json[]` in the example above) must stay in memory during the whole parsing process.
That is because the in memory object tree will store pointer to chunks of the string, so as to avoid any memory duplication.
Now, to check if the parsing was successful, you can call `JsonObject::success()`:
if (!root.success())
{
// Parsing fail
}
The result can be `false` for tree reasons:
1. the JSON string is invalid,
2. the JSON string doesn't represent an object,
3. the `StaticJsonBuffer` is too small.
We just saw how to parse an object, there is nothing more to say for arrays, the procedure is exactly the same.
## Step 3: Retrieve the values
Now that the object or array is in memory, you can extract the data very easily.
In this section, we'll see how to do it with a `JsonObject`.
Once again, there is nothing more to say about arrays, `JsonArray` works exactly the same as `JsonObject`.
#### Subscript operator
The simplest way is to use the subscript operator of `JsonObject`:
const char* sensor = root["sensor"];
long time = root["time"];
You can chain the subscript operator if you have nested arrays or objects:
double latitude = root["data"][0];
double longitude = root["data"][1];
But alternatively, you can get a reference to the nested array:
JsonArray& nestedArray = root["data"];
#### Casting values
In the previous examples, the values were implicitly casted to the target type.
You can also do this explicitly
const char* sensor = root["sensor"].asString();
long time = root["time"].as<long>();
JsonArray& nestedArray = root["data"].asArray();
If the actual value doesn't match the target type, a default value will be return:
1. `false` for boolean values
2. `0` for integer values
3. `NULL` for string values
4. `JsonArray::invalid()` for nested arrays
5. `JsonObject::invalid()` for nested object
#### Check values
If you want to know if some value is present, call `containsKey()`:
if (root.contains("extra"))
{
// root["extra"] is valid
}
If you want to check the type value has a certain type, call `is<T>()`:
if (root["extra"].is<JsonArray&>())
{
// root["extra"] is an array
}
You can also iterate through the key-value pairs of the object:
for (JsonObject::itertor it=root.begin(); it!=root.end(); ++it)
{
Serial.println(it->key);
Serial.println(i->value.asString());
}