Merge pull request #89 from Makuna/DmaNeoDesign

Esp8266 Dma Method Redesing
This commit is contained in:
Michael Miller
2016-04-01 15:49:26 -07:00
2 changed files with 162 additions and 164 deletions

View File

@@ -1,5 +1,5 @@
name=NeoPixelBus by Makuna
version=2.0.5
version=2.0.6
author=Michael C. Miller (makuna@live.com)
maintainer=Michael C. Miller (makuna@live.com)
sentence=A library that makes controlling NeoPixels (WS2811, WS2812 & SK6812) easy.

View File

@@ -63,6 +63,7 @@ struct slc_queue_item
uint32 next_link_ptr;
};
class NeoEsp8266DmaSpeed800Kbps
{
public:
@@ -77,6 +78,13 @@ public:
const static uint32_t I2sBaseClockDivisor = 16;
};
enum NeoDmaState
{
NeoDmaState_Idle,
NeoDmaState_Pending,
NeoDmaState_Sending,
};
template<typename T_SPEED> class NeoEsp8266DmaMethodBase
{
public:
@@ -92,124 +100,116 @@ public:
memset(_i2sBlock, 0x00, _bitBufferSize);
memset(_i2sZeroes, 0x00, sizeof(_i2sZeroes));
s_this = this;
}
~NeoEsp8266DmaMethodBase()
{
StopDma();
free(_pixels);
free(_i2sBlock);
}
bool IsReadyToUpdate() const
{
return IsStoppedDmaState();
return (_dmaState == NeoDmaState_Idle);
}
void Initialize()
{
InitializeDma();
}
_dmaState = NeoDmaState_Idle;
void InitializeDma()
{
// reset DMA registers
SET_PERI_REG_MASK(SLC_CONF0, SLC_RXLINK_RST);
CLEAR_PERI_REG_MASK(SLC_CONF0, SLC_RXLINK_RST);
// prepare linked DMA descriptors, having EOF set only for the data
// primary data item
_i2sBufDescData.owner = 1;
_i2sBufDescData.eof = 1;
_i2sBufDescData.sub_sof = 0;
_i2sBufDescData.datalen = sizeof(_i2sZeroes); // will get modified in ISR
_i2sBufDescData.blocksize = sizeof(_i2sZeroes); // will get modified in ISR
_i2sBufDescData.buf_ptr = (uint32_t)_i2sZeroes; // will get modified in ISR
_i2sBufDescData.unused = 0;
_i2sBufDescData.next_link_ptr = (uint32_t)&_i2sBufDescLatch;
// clear all interrupt flags
SET_PERI_REG_MASK(SLC_INT_CLR, 0xffffffff);
// set up DMA
CLEAR_PERI_REG_MASK(SLC_CONF0, (SLC_MODE << SLC_MODE_S));
SET_PERI_REG_MASK(SLC_CONF0, (1 << SLC_MODE_S));
SET_PERI_REG_MASK(SLC_RX_DSCR_CONF, SLC_INFOR_NO_REPLACE | SLC_TOKEN_NO_REPLACE);
CLEAR_PERI_REG_MASK(SLC_RX_DSCR_CONF, SLC_RX_FILL_EN | SLC_RX_EOF_MODE | SLC_RX_FILL_MODE);
// prepare linked DMA descriptors, having EOF set for all
_i2sBufDescOut.owner = 1;
_i2sBufDescOut.eof = 1;
_i2sBufDescOut.sub_sof = 0;
_i2sBufDescOut.datalen = _bitBufferSize;
_i2sBufDescOut.blocksize = _bitBufferSize;
_i2sBufDescOut.buf_ptr = (uint32_t)_i2sBlock;
_i2sBufDescOut.unused = 0;
_i2sBufDescOut.next_link_ptr = (uint32_t)&_i2sBufDescLatch;
// this zero-buffer block implements the latch/reset signal
// this zero-buffer block helps implements the latch/reset signal
// and gives the ISR time to modify buf_ptr in _i2sBufDescData
_i2sBufDescLatch.owner = 1;
_i2sBufDescLatch.eof = 1;
_i2sBufDescLatch.eof = 0; // no need to trigger interrupt
_i2sBufDescLatch.sub_sof = 0;
_i2sBufDescLatch.datalen = sizeof(_i2sZeroes);
_i2sBufDescLatch.blocksize = sizeof(_i2sZeroes);
_i2sBufDescLatch.buf_ptr = (uint32_t)_i2sZeroes;
_i2sBufDescLatch.unused = 0;
_i2sBufDescLatch.next_link_ptr = (uint32_t)&_i2sBufDescStopped;
_i2sBufDescLatch.next_link_ptr = (uint32_t)&_i2sBufDescData;
// this empty block will stop the output and provide a flag that latch/reset has been sent
// it basically loops
_i2sBufDescStopped.owner = 1;
_i2sBufDescStopped.eof = 1;
_i2sBufDescStopped.sub_sof = 0;
_i2sBufDescStopped.datalen = sizeof(_i2sZeroes);
_i2sBufDescStopped.blocksize = sizeof(_i2sZeroes);
_i2sBufDescStopped.buf_ptr = (uint32_t)_i2sZeroes;;
_i2sBufDescStopped.unused = 0;
_i2sBufDescStopped.next_link_ptr = (uint32_t)&_i2sBufDescStopped;
// configure the first descriptor
// TX_LINK isnt used, but has to be configured
CLEAR_PERI_REG_MASK(SLC_RX_LINK, SLC_RXLINK_DESCADDR_MASK);
CLEAR_PERI_REG_MASK(SLC_TX_LINK, SLC_TXLINK_DESCADDR_MASK);
SET_PERI_REG_MASK(SLC_RX_LINK, ((uint32)&_i2sBufDescOut) & SLC_RXLINK_DESCADDR_MASK);
SET_PERI_REG_MASK(SLC_TX_LINK, ((uint32)&_i2sBufDescOut) & SLC_TXLINK_DESCADDR_MASK);
// we dont need interrupts
ETS_SLC_INTR_DISABLE();
WRITE_PERI_REG(SLC_INT_CLR, 0xffffffff);
SLCC0 |= SLCRXLR | SLCTXLR;
SLCC0 &= ~(SLCRXLR | SLCTXLR);
SLCIC = 0xFFFFFFFF;
// configure RDX0/GPIO3 for output. it is the only supported pin unfortunately.
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_I2SO_DATA);
// Configure DMA
SLCC0 &= ~(SLCMM << SLCM); // clear DMA MODE
SLCC0 |= (1 << SLCM); // set DMA MODE to 1
SLCRXDC |= SLCBINR | SLCBTNR; // enable INFOR_NO_REPLACE and TOKEN_NO_REPLACE
SLCRXDC &= ~(SLCBRXFE | SLCBRXEM | SLCBRXFM); // disable RX_FILL, RX_EOF_MODE and RX_FILL_MODE
// Feed DMA the 1st buffer desc addr
// To send data to the I2S subsystem, counter-intuitively we use the RXLINK part, not the TXLINK as you might
// expect. The TXLINK part still needs a valid DMA descriptor, even if it's unused: the DMA engine will throw
// an error at us otherwise. Just feed it any random descriptor.
SLCTXL &= ~(SLCTXLAM << SLCTXLA); // clear TX descriptor address
SLCTXL |= (uint32)&_i2sBufDescLatch << SLCTXLA; // set TX descriptor address. any random desc is OK, we don't use TX but it needs to be valid
SLCRXL &= ~(SLCRXLAM << SLCRXLA); // clear RX descriptor address
SLCRXL |= (uint32)&_i2sBufDescData << SLCRXLA; // set RX descriptor address
ETS_SLC_INTR_ATTACH(i2s_slc_isr, NULL);
SLCIE = SLCIRXEOF; // Enable only for RX EOF interrupt
ETS_SLC_INTR_ENABLE();
//Start transmission
SLCTXL |= SLCTXLS;
SLCRXL |= SLCRXLS;
pinMode(3, FUNCTION_1); // I2S0_DATA
// configure I2S subsystem
I2S_CLK_ENABLE();
CLEAR_PERI_REG_MASK(I2SCONF, I2S_I2S_RESET_MASK);
SET_PERI_REG_MASK(I2SCONF, I2S_I2S_RESET_MASK);
CLEAR_PERI_REG_MASK(I2SCONF, I2S_I2S_RESET_MASK);
I2SIC = 0x3F;
I2SIE = 0;
// Select 16bits per channel (FIFO_MOD=0), no DMA access (FIFO only)
CLEAR_PERI_REG_MASK(I2S_FIFO_CONF, I2S_I2S_DSCR_EN |
(I2S_I2S_RX_FIFO_MOD << I2S_I2S_RX_FIFO_MOD_S) |
(I2S_I2S_TX_FIFO_MOD << I2S_I2S_TX_FIFO_MOD_S));
// Enable DMA in i2s subsystem
SET_PERI_REG_MASK(I2S_FIFO_CONF, I2S_I2S_DSCR_EN);
//Reset I2S
I2SC &= ~(I2SRST);
I2SC |= I2SRST;
I2SC &= ~(I2SRST);
// configure the rates
CLEAR_PERI_REG_MASK(I2SCONF, I2S_TRANS_SLAVE_MOD |
(I2S_BITS_MOD << I2S_BITS_MOD_S) |
(I2S_BCK_DIV_NUM << I2S_BCK_DIV_NUM_S) |
(I2S_CLKM_DIV_NUM << I2S_CLKM_DIV_NUM_S));
SET_PERI_REG_MASK(I2SCONF, I2S_RIGHT_FIRST | I2S_MSB_RIGHT | I2S_RECE_SLAVE_MOD |
I2S_RECE_MSB_SHIFT | I2S_TRANS_MSB_SHIFT |
((T_SPEED::I2sBaseClockDivisor & I2S_BCK_DIV_NUM) << I2S_BCK_DIV_NUM_S) |
((T_SPEED::I2sClockDivisor & I2S_CLKM_DIV_NUM) << I2S_CLKM_DIV_NUM_S));
I2SFC &= ~(I2SDE | (I2STXFMM << I2STXFM) | (I2SRXFMM << I2SRXFM)); // Set RX/TX FIFO_MOD=0 and disable DMA (FIFO only)
I2SFC |= I2SDE; //Enable DMA
I2SCC &= ~((I2STXCMM << I2STXCM) | (I2SRXCMM << I2SRXCM)); // Set RX/TX CHAN_MOD=0
// disable all interrupts
SET_PERI_REG_MASK(I2SINT_CLR, I2S_I2S_RX_WFULL_INT_CLR |
I2S_I2S_PUT_DATA_INT_CLR |
I2S_I2S_TAKE_DATA_INT_CLR);
// set the rate
uint32_t i2s_clock_div = T_SPEED::I2sClockDivisor & I2SCDM;
uint8_t i2s_bck_div = T_SPEED::I2sBaseClockDivisor & I2SBDM;
// dma is now ready to start
//!trans master, !bits mod, rece slave mod, rece msb shift, right first, msb right
I2SC &= ~(I2STSM | (I2SBMM << I2SBM) | (I2SBDM << I2SBD) | (I2SCDM << I2SCD));
I2SC |= I2SRF | I2SMR | I2SRSM | I2SRMS | (i2s_bck_div << I2SBD) | (i2s_clock_div << I2SCD);
I2SC |= I2STXS; // Start transmission
}
void Update()
void ICACHE_RAM_ATTR Update()
{
// wait for not actively sending data
while (_dmaState != NeoDmaState_Idle)
{
yield();
}
FillBuffers();
// wait for latch to complete if it hasn't already
NullWait();
StopDma();
StartDma();
// toggle state so the ISR reacts
_dmaState = NeoDmaState_Pending;
}
uint8_t* getPixels() const
@@ -223,6 +223,67 @@ public:
}
private:
static NeoEsp8266DmaMethodBase* s_this; // for the ISR
size_t _sizePixels; // Size of '_pixels' buffer below
uint8_t* _pixels; // Holds LED color values
struct slc_queue_item _i2sBufDescData;
struct slc_queue_item _i2sBufDescLatch;
uint32_t _bitBufferSize;
uint8_t* _i2sBlock;
// normally 24 bytes creates the minimum 50us latch per spec but
// with the new logic, this latch is used to space between three states
uint8_t _i2sZeroes[8];
volatile NeoDmaState _dmaState;
// This routine is called as soon as the DMA routine has something to tell us. All we
// handle here is the RX_EOF_INT status, which indicate the DMA has sent a buffer whose
// descriptor has the 'EOF' field set to 1.
volatile static void ICACHE_RAM_ATTR i2s_slc_isr(void)
{
uint32_t slc_intr_status = SLCIS;
SLCIC = 0xFFFFFFFF;
if (slc_intr_status & SLCIRXEOF)
{
ETS_SLC_INTR_DISABLE();
slc_queue_item* finished_item = (slc_queue_item*)SLCRXEDA;
if (finished_item == &(s_this->_i2sBufDescData))
{
switch (s_this->_dmaState)
{
case NeoDmaState_Idle:
break;
case NeoDmaState_Pending:
// data block has pending data waiting to send, prepare it
finished_item->datalen = s_this->_bitBufferSize;
finished_item->blocksize = s_this->_bitBufferSize;
finished_item->buf_ptr = (uint32_t)(s_this->_i2sBlock);
s_this->_dmaState = NeoDmaState_Sending;
break;
case NeoDmaState_Sending:
// the data block had actual data, clear it
finished_item->datalen = sizeof(s_this->_i2sZeroes);
finished_item->blocksize = sizeof(s_this->_i2sZeroes);
finished_item->buf_ptr = (uint32_t)(s_this->_i2sZeroes);
s_this->_dmaState = NeoDmaState_Idle;
break;
}
}
ETS_SLC_INTR_ENABLE();
}
}
static uint32_t CalculateI2sBufferSize(uint16_t pixelCount, size_t elementSize)
{
@@ -240,11 +301,6 @@ private:
0b1110111010001000, 0b1110111010001110, 0b1110111011101000, 0b1110111011101110,
};
// wait for the data to be done transmission before updating,
// it may still be sending the latch/reset though, buts OK
SyncWait();
// now it is transferring blank area, so it is safe to update dma buffers
uint16_t* pDma = (uint16_t*)_i2sBlock;
uint8_t* pPixelsEnd = _pixels + _sizePixels;
for (uint8_t* pPixel = _pixels; pPixel < pPixelsEnd; pPixel++)
@@ -256,77 +312,19 @@ private:
void StopDma()
{
SET_PERI_REG_MASK(SLC_RX_LINK, SLC_RXLINK_STOP);
ETS_SLC_INTR_DISABLE();
SLCIC = 0xFFFFFFFF;
SLCIE = 0;
SLCTXL &= ~(SLCTXLAM << SLCTXLA); // clear TX descriptor address
SLCRXL &= ~(SLCRXLAM << SLCRXLA); // clear RX descriptor address
pinMode(3, INPUT);
}
void StartDma()
{
// clear all interrupt flags
SET_PERI_REG_MASK(SLC_INT_CLR, 0xffffffff);
// configure the first descriptor
// TX_LINK isnt used, but has to be configured
CLEAR_PERI_REG_MASK(SLC_RX_LINK, SLC_RXLINK_DESCADDR_MASK);
CLEAR_PERI_REG_MASK(SLC_TX_LINK, SLC_TXLINK_DESCADDR_MASK);
SET_PERI_REG_MASK(SLC_RX_LINK, ((uint32)&_i2sBufDescOut) & SLC_RXLINK_DESCADDR_MASK);
SET_PERI_REG_MASK(SLC_TX_LINK, ((uint32)&_i2sBufDescOut) & SLC_TXLINK_DESCADDR_MASK);
WRITE_PERI_REG(SLC_INT_CLR, 0xffffffff);
// start RX link
SET_PERI_REG_MASK(SLC_RX_LINK, SLC_RXLINK_START);
// fire the machine again
SET_PERI_REG_MASK(I2SCONF, I2S_I2S_TX_START);
}
void NullWait() const
{
while (!IsStoppedDmaState())
{
// due to how long the data send could be (300 pixels is 9ms)
// we will yield while we wait
yield();
}
// okay right now we are not sending anything
}
void SyncWait() const
{
// poll for SLC_RX_EOF_DES_ADDR getting set to anything other than
// the buffer with pixel data
while (READ_PERI_REG(SLC_RX_EOF_DES_ADDR) == (uint32_t)&_i2sBufDescLatch)
{
WRITE_PERI_REG(SLC_RX_EOF_DES_ADDR, 0xffffffff);
// due to how long the data send could be (300 pixels is 9ms)
// we will yield while we wait
yield();
}
// okay right now we are somewhere in the blank "latch/reset" section or
// stopped
}
bool IsStoppedDmaState() const
{
uint32_t state = READ_PERI_REG(SLC_RX_EOF_DES_ADDR);
return (state == 0 || state == (uint32_t)&_i2sBufDescStopped);
}
size_t _sizePixels; // Size of '_pixels' buffer below
uint8_t* _pixels; // Holds LED color values
struct slc_queue_item _i2sBufDescOut;
struct slc_queue_item _i2sBufDescLatch;
struct slc_queue_item _i2sBufDescStopped;
uint32_t _bitBufferSize;
uint8_t* _i2sBlock;
uint8_t _i2sZeroes[24]; // 24 bytes creates the minimum 50us latch per spec
};
template<typename T_SPEED>
NeoEsp8266DmaMethodBase<T_SPEED>* NeoEsp8266DmaMethodBase<T_SPEED>::s_this;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaSpeed800Kbps> NeoEsp8266Dma800KbpsMethod;
typedef NeoEsp8266DmaMethodBase<NeoEsp8266DmaSpeed400Kbps> NeoEsp8266Dma400KbpsMethod;