IDF release/v3.3 (#3339)

* IDF release/v3.3 46b12a560

* fix build

* IDF release/v3.3 367c3c09c
This commit is contained in:
Me No Dev
2020-01-20 22:07:04 +02:00
committed by GitHub
parent 307b1368dd
commit 1977370e6f
282 changed files with 13004 additions and 4377 deletions

View File

@ -11,13 +11,13 @@ typedef int16_t qtp_t;
typedef struct
{
/******* fix start *******/
int w; /*!< Width */
int h; /*!< Height */
int c; /*!< Channel */
int n; /*!< Number of filter, input and output must be 1 */
int stride; /*!< Step between lines */
int exponent; /*!< Exponent for quantization */
qtp_t *item; /*!< Data */
int w; /*!< Width */
int h; /*!< Height */
int c; /*!< Channel */
int n; /*!< Number of filter, input and output must be 1 */
int stride; /*!< Step between lines */
int exponent; /*!< Exponent for quantization */
qtp_t *item; /*!< Data */
/******* fix end *******/
} dl_matrix3dq_t;
@ -38,23 +38,22 @@ typedef struct
*/
typedef enum
{
DL_C_IMPL = 0, /*!< ANSI C */
DL_XTENSA_IMPL = 1 /*!< Handwrite xtensa instruction */
DL_C_IMPL = 0, /*!< ANSI C */
DL_XTENSA_IMPL = 1 /*!< Handwrite xtensa instruction */
} dl_conv_mode;
/**
* Configuration of mobilenet operation
*/
typedef struct
{
int stride_x; /*!< Strides of width */
int stride_y; /*!< Strides of height */
dl_padding_type padding; /*!< Padding type */
dl_conv_mode mode; /*!< Implementation mode */
int dilate_exponent; /*!< Exponent of dilation filter */
int depthwise_exponent; /*!< Exponent of depthwise filter */
int compress_exponent; /*!< Exponent of compress filter */
int stride_x; /*!< Strides of width */
int stride_y; /*!< Strides of height */
dl_padding_type padding; /*!< Padding type */
dl_conv_mode mode; /*!< Implementation mode */
int dilate_exponent; /*!< Exponent of dilation filter */
int depthwise_exponent; /*!< Exponent of depthwise filter */
int compress_exponent; /*!< Exponent of compress filter */
} dl_matrix3dq_mobilenet_config_t;
//
@ -71,14 +70,52 @@ typedef struct
* @param e Exponent of matrix data
* @return 3d quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dq_alloc(int n, int w, int h, int c, int e);
static inline dl_matrix3dq_t *dl_matrix3dq_alloc(int n, int w, int h, int c, int e)
{
dl_matrix3dq_t *r = (dl_matrix3dq_t *)dl_lib_calloc(1, sizeof(dl_matrix3dq_t), 0);
if (NULL == r)
{
printf("dl_matrix3dq alloc failed.\n");
return NULL;
}
qtp_t *items = (qtp_t *)dl_lib_calloc(n * w * h * c, sizeof(qtp_t), 16);
if (NULL == items)
{
printf("matrix3dq item alloc failed.\n");
dl_lib_free(r);
return NULL;
}
r->w = w;
r->h = h;
r->c = c;
r->n = n;
r->exponent = e;
r->stride = w * c;
r->item = items;
return r;
}
/*
* @brief Free a 3d quantized matrix
*
* @param m 3d quantised matrix
*/
void dl_matrix3dq_free(dl_matrix3dq_t *m);
static inline void dl_matrix3dq_free(dl_matrix3dq_t *m)
{
if (NULL == m)
return;
if (NULL == m->item)
{
dl_lib_free(m);
return;
}
dl_lib_free(m->item);
dl_lib_free(m);
}
/**
* @brief Copy a range of items from an existing matrix to a preallocated matrix
@ -92,6 +129,15 @@ void dl_matrix3dq_free(dl_matrix3dq_t *m);
*/
void dl_matrix3dq_slice_copy(dl_matrix3dq_t *dst, dl_matrix3dq_t *src, int x, int y, int w, int h);
/**
* @brief Transform a sliced matrix block from nhwc to nchw, the block needs to be memory continous.
*
* @param out The destination sliced matrix in nchw
* @param in The source sliced matrix in nhwc
*/
void dl_matrix3dq_sliced_transform_nchw(dl_matrix3dq_t *out,
dl_matrix3dq_t *in);
/**
* @brief Transform a fixed point matrix to a float point matrix
*
@ -245,7 +291,8 @@ dl_matrix3dq_t *dl_matrix3dq_concat_8(dl_matrix3dq_t *in_1,
void dl_matrix3dqq_conv_1x1(dl_matrix3dq_t *out,
dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_conv_mode mode);
dl_conv_mode mode,
char *name);
/**
* @brief Do 1x1 convolution with a quantized matrix, with relu activation
@ -258,7 +305,8 @@ void dl_matrix3dqq_conv_1x1(dl_matrix3dq_t *out,
void dl_matrix3dqq_conv_1x1_with_relu(dl_matrix3dq_t *out,
dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_conv_mode mode);
dl_conv_mode mode,
char *name);
/**
* @brief Do 1x1 convolution with a quantized matrix, with bias adding
@ -290,13 +338,25 @@ void dl_matrix3dqq_conv_1x1_with_bias_relu(dl_matrix3dq_t *out,
dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
dl_conv_mode mode);
dl_conv_mode mode,
char *name);
/**
* @brief
*
* @param out
* @param in
* @param filter
* @param prelu
* @param mode
* @param name
*/
void dl_matrix3dqq_conv_1x1_with_prelu(dl_matrix3dq_t *out,
dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *prelu,
dl_conv_mode mode);
dl_conv_mode mode,
char *name);
/**
* @brief Do 1x1 convolution with an 8-bit fixed point matrix
@ -309,7 +369,8 @@ void dl_matrix3dqq_conv_1x1_with_prelu(dl_matrix3dq_t *out,
void dl_matrix3duq_conv_1x1(dl_matrix3dq_t *out,
dl_matrix3du_t *in,
dl_matrix3dq_t *filter,
dl_conv_mode mode);
dl_conv_mode mode,
char *name);
/**
* @brief Do 1x1 convolution with an 8-bit fixed point matrix, with bias adding
@ -324,66 +385,47 @@ void dl_matrix3duq_conv_1x1_with_bias(dl_matrix3dq_t *out,
dl_matrix3du_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
dl_conv_mode mode);
dl_conv_mode mode,
char *name);
//
// Conv 3x3
//
/**
* @brief Do 3x3 convolution basic operation with a quantized matrix
*
* @param out Preallocated quantized matrix
* @param in Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (n, 3, 3, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
*/
void dl_matrix3dqq_conv_3x3_op(dl_matrix3dq_t *out,
dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
int stride_x,
int stride_y);
/**
* @brief Do 3x3 convolution with a quantized matrix
*
* @param in Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (n, 3, 3, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type, 0: valid, 1: same
* @param exponent Exponent for resulting matrix
* @return Resulting quantized matrix
*
* @param input Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (n, 3, 3, c)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type, 0: valid, 1: same
* @param exponent Exponent for resulting matrix
* @param name
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_conv_3x3(dl_matrix3dq_t *in,
dl_matrix3dq_t *dl_matrix3dqq_conv_3x3(dl_matrix3dq_t *input,
dl_matrix3dq_t *filter,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent);
int exponent,
char *name);
/**
* @brief Do 3x3 convolution with a quantized matrix, with bias adding
*
* @param in Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (n, 3, 3, c)
* @param bias Bias, size (1, 1, 1, n)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding Padding type, 0: valid, 1: same
* @param exponent Exponent for resulting matrix
* @return Resulting quantized matrix
*
* @param input Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (n, 3, 3, c)
* @param bias Bias, size (1, 1, 1, n)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding
* @param exponent Exponent for resulting matrix
* @param name
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_conv_3x3_with_bias(dl_matrix3dq_t *in,
dl_matrix3dq_t *f,
dl_matrix3dq_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
int relu);
dl_matrix3dq_t *dl_matrix3duq_conv_3x3_with_bias(dl_matrix3du_t *in,
dl_matrix3dq_t *dl_matrix3dqq_conv_3x3_with_bias(dl_matrix3dq_t *input,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
int stride_x,
@ -392,7 +434,65 @@ dl_matrix3dq_t *dl_matrix3duq_conv_3x3_with_bias(dl_matrix3du_t *in,
int exponent,
char *name);
dl_matrix3dq_t *dl_matrix3duq_conv_3x3_with_bias_prelu(dl_matrix3du_t *in,
/**
* @brief Do 3x3 convolution with a quantized matrix, with bias adding, relu activation
*
* @param input Input matrix, size (1, w, h, c)
* @param filter 3x3 filter, size (n, 3, 3, c)
* @param bias Bias, size (1, 1, 1, n)
* @param stride_x Stride of width
* @param stride_y Stride of height
* @param padding
* @param exponent Exponent for resulting matrix
* @param name
* @return dl_matrix3dq_t* Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_conv_3x3_with_bias_relu(dl_matrix3dq_t *input,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief
*
* @param input
* @param filter
* @param bias
* @param stride_x
* @param stride_y
* @param padding
* @param exponent
* @param name
* @return dl_matrix3dq_t*
*/
dl_matrix3dq_t *dl_matrix3duq_conv_3x3_with_bias(dl_matrix3du_t *input,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
/**
* @brief
*
* @param input
* @param filter
* @param bias
* @param prelu
* @param stride_x
* @param stride_y
* @param padding
* @param exponent
* @param name
* @return dl_matrix3dq_t*
*/
dl_matrix3dq_t *dl_matrix3duq_conv_3x3_with_bias_prelu(dl_matrix3du_t *input,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
dl_matrix3dq_t *prelu,
@ -402,6 +502,17 @@ dl_matrix3dq_t *dl_matrix3duq_conv_3x3_with_bias_prelu(dl_matrix3du_t *in,
int exponent,
char *name);
dl_matrix3dq_t *dl_matrix3dqq_conv_3x3_with_bias_prelu(dl_matrix3dq_t *input,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
dl_matrix3dq_t *prelu,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
//
// Conv common
//
@ -469,7 +580,8 @@ dl_matrix3dq_t *dl_matrix3duq_depthwise_conv_3x3(dl_matrix3du_t *in,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent);
int exponent,
char *name);
/**
* @brief Do 3x3 depthwise convolution with a quantized matrix
@ -487,7 +599,8 @@ dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3(dl_matrix3dq_t *in,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent);
int exponent,
char *name);
#if CONFIG_DEVELOPING_CODE
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_2(dl_matrix3dq_t *in,
@ -495,14 +608,16 @@ dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_2(dl_matrix3dq_t *in,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent);
int exponent,
char *name);
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_3(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent);
int exponent,
char *name);
#endif
/**
@ -519,13 +634,14 @@ dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_3(dl_matrix3dq_t *in,
* @return Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_with_bias(dl_matrix3dq_t *in,
dl_matrix3dq_t *f,
dl_matrix3dq_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
int relu);
dl_matrix3dq_t *f,
dl_matrix3dq_t *bias,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
int relu,
char *name);
/**
* @brief Do 3x3 depthwise convolution with a quantized matrix, with bias adding and stride 1
@ -539,11 +655,12 @@ dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_with_bias(dl_matrix3dq_t *in,
* @return Resulting quantized matrix
*/
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3s1_with_bias(dl_matrix3dq_t *in,
dl_matrix3dq_t *f,
dl_matrix3dq_t *bias,
dl_padding_type padding,
int exponent,
int relu);
dl_matrix3dq_t *f,
dl_matrix3dq_t *bias,
dl_padding_type padding,
int exponent,
int relu,
char *name);
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_with_prelu(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
@ -551,9 +668,25 @@ dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_with_prelu(dl_matrix3dq_t *in,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent);
int exponent,
char *name);
dl_matrix3dq_t *dl_matrix3dqq_depthwise_conv_3x3_with_bias_prelu(dl_matrix3dq_t *in,
dl_matrix3dq_t *f,
dl_matrix3dq_t *bias,
dl_matrix3dq_t *prelu,
int stride_x,
int stride_y,
dl_padding_type padding,
int exponent,
char *name);
dl_matrix3dq_t *dl_matrix3dqq_global_depthwise_conv_with_bias(dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_matrix3dq_t *bias,
int exponent,
char *name);
//
// Depthwise Common
//
@ -594,11 +727,13 @@ void dl_matrix3dqq_dot_product(dl_matrix3dq_t *out,
* @param in Input matrix, size (1, 1, 1, w)
* @param filter Filter matrix, size (1, w, h, 1)
* @param mode Implementation mode
* @param name
*/
void dl_matrix3dqq_fc(dl_matrix3dq_t *out,
dl_matrix3dq_t *in,
dl_matrix3dq_t *filter,
dl_conv_mode mode);
dl_conv_mode mode,
char *name);
/**
* @brief Do fully connected layer forward, with bias adding
@ -695,6 +830,86 @@ dl_matrix3dq_t *dl_matrix3dqq_mobilefaceblock(dl_matrix3dq_t *in,
dl_conv_mode mode,
int shortcut);
dl_matrix3dq_t *dl_matrix3dqq_mobilefaceblock_prelu(dl_matrix3dq_t *in,
dl_matrix3dq_t *pw,
dl_matrix3dq_t *pw_bias,
dl_matrix3dq_t *pw_prelu,
dl_matrix3dq_t *dw,
dl_matrix3dq_t *dw_bias,
dl_matrix3dq_t *dw_prelu,
dl_matrix3dq_t *pw_linear,
dl_matrix3dq_t *pw_linear_bias,
int pw_exponent,
int dw_exponent,
int pw_linear_exponent,
int stride_x,
int stride_y,
dl_padding_type padding,
dl_conv_mode mode,
int shortcut);
dl_matrix3dq_t *dl_matrix3dqq_mobilefaceblock_prelu_split_2_2(dl_matrix3dq_t *in,
dl_matrix3dq_t *pw_1,
dl_matrix3dq_t *pw_2,
dl_matrix3dq_t *pw_bias,
dl_matrix3dq_t *pw_prelu,
dl_matrix3dq_t *dw,
dl_matrix3dq_t *dw_bias,
dl_matrix3dq_t *dw_prelu,
dl_matrix3dq_t *pw_linear_1,
dl_matrix3dq_t *pw_linear_2,
dl_matrix3dq_t *pw_linear_bias,
int pw_exponent,
int dw_exponent,
int pw_linear_exponent,
int stride_x,
int stride_y,
dl_padding_type padding,
dl_conv_mode mode,
int shortcut);
dl_matrix3dq_t *dl_matrix3dqq_mobilefaceblock_prelu_split_4_4(dl_matrix3dq_t *in,
dl_matrix3dq_t *pw_1,
dl_matrix3dq_t *pw_2,
dl_matrix3dq_t *pw_3,
dl_matrix3dq_t *pw_4,
dl_matrix3dq_t *pw_bias,
dl_matrix3dq_t *pw_prelu,
dl_matrix3dq_t *dw,
dl_matrix3dq_t *dw_bias,
dl_matrix3dq_t *dw_prelu,
dl_matrix3dq_t *pw_linear_1,
dl_matrix3dq_t *pw_linear_2,
dl_matrix3dq_t *pw_linear_3,
dl_matrix3dq_t *pw_linear_4,
dl_matrix3dq_t *pw_linear_bias,
int pw_exponent,
int dw_exponent,
int pw_linear_exponent,
int stride_x,
int stride_y,
dl_padding_type padding,
dl_conv_mode mode,
int shortcut);
dl_matrix3dq_t *dl_matrix3dqq_mobilefaceblock_prelu_split_1_2(dl_matrix3dq_t *in,
dl_matrix3dq_t *pw,
dl_matrix3dq_t *pw_bias,
dl_matrix3dq_t *pw_prelu,
dl_matrix3dq_t *dw,
dl_matrix3dq_t *dw_bias,
dl_matrix3dq_t *dw_prelu,
dl_matrix3dq_t *pw_linear_1,
dl_matrix3dq_t *pw_linear_2,
dl_matrix3dq_t *pw_linear_bias,
int pw_exponent,
int dw_exponent,
int pw_linear_exponent,
int stride_x,
int stride_y,
dl_padding_type padding,
dl_conv_mode mode,
int shortcut);
//
// Mobilenet
//
@ -749,23 +964,49 @@ dl_matrix3dq_t *dl_matrix3duq_mobilenet(dl_matrix3du_t *in,
// Padding
//
dl_error_type dl_matrix3dqq_padding(dl_matrix3dq_t **padded_in,
dl_matrix3dq_t **out,
dl_matrix3dq_t *in,
int out_c,
/**
* @brief
*
* @param padded_input
* @param output_height
* @param output_width
* @param input
* @param stride_x
* @param stride_y
* @param kernel_size
* @param padding_type
* @return dl_error_type
*/
dl_error_type dl_matrix3dqq_padding(dl_matrix3dq_t **padded_input,
int *output_height,
int *output_width,
dl_matrix3dq_t *input,
int stride_x,
int stride_y,
int padding,
int exponent);
int kernel_size,
dl_padding_type padding_type);
dl_error_type dl_matrix3duq_padding(dl_matrix3du_t **padded_in,
dl_matrix3dq_t **out,
dl_matrix3du_t *in,
int out_c,
/**
* @brief
*
* @param padded_input
* @param output_height
* @param output_width
* @param input
* @param stride_x
* @param stride_y
* @param kernel_size
* @param padding_type
* @return dl_error_type
*/
dl_error_type dl_matrix3duq_padding(dl_matrix3du_t **padded_input,
int *output_height,
int *output_width,
dl_matrix3du_t *input,
int stride_x,
int stride_y,
int padding,
int exponent);
int kernel_size,
dl_padding_type padding_type);
//
// Pooling
@ -777,3 +1018,23 @@ dl_error_type dl_matrix3duq_padding(dl_matrix3du_t **padded_in,
* @return Resulting matrix, size (1, 1, 1, c)
*/
dl_matrix3dq_t *dl_matrix3dq_global_pool(dl_matrix3dq_t *in);
/**
* @brief Calculate pooling layer of a feature map
*
* @param in Input matrix, size (1, w, h, c)
* @param f_w Window width
* @param f_h Window height
* @param stride_x Stride in horizontal direction
* @param stride_y Stride in vertical direction
* @param padding Padding type: PADDING_VALID and PADDING_SAME
* @param pooling_type Pooling type: DL_POOLING_MAX and POOLING_AVG
* @return Resulting matrix, size (1, w', h', c)
*/
dl_matrix3dq_t *dl_matrix3dq_pooling(dl_matrix3dq_t *in,
int f_w,
int f_h,
int stride_x,
int stride_y,
dl_padding_type padding,
dl_pooling_type pooling_type);